sequenzo 0.1.18__cp310-cp310-win_amd64.whl → 0.1.19__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (396) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp310-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp310-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +107 -5
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp310-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp310-win_amd64.pyd +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  13. sequenzo/dissimilarity_measures/utils/seqconc.cp310-win_amd64.pyd +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  15. sequenzo/dissimilarity_measures/utils/seqdss.cp310-win_amd64.pyd +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  17. sequenzo/dissimilarity_measures/utils/seqdur.cp310-win_amd64.pyd +0 -0
  18. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  19. sequenzo/dissimilarity_measures/utils/seqlength.cp310-win_amd64.pyd +0 -0
  20. sequenzo/multidomain/cat.py +0 -53
  21. sequenzo/multidomain/idcd.py +0 -1
  22. sequenzo/openmp_setup.py +233 -0
  23. sequenzo/visualization/plot_transition_matrix.py +21 -22
  24. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  25. sequenzo-0.1.19.dist-info/RECORD +272 -0
  26. sequenzo/dissimilarity_measures/setup.py +0 -35
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  169. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  171. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  172. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  173. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  174. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  175. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  176. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  177. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  178. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  179. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  180. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  181. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  182. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  183. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  184. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  185. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  186. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  187. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  188. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  189. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  190. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  191. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  192. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  197. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  198. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  199. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  200. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  201. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  202. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  203. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  206. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  207. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  208. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  209. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  210. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  211. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  212. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  213. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  214. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  215. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  216. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  217. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  218. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  219. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  220. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  221. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  222. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  223. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  393. sequenzo-0.1.18.dist-info/RECORD +0 -638
  394. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  395. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  396. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,904 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
- // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12
- #define EIGEN_SELFADJOINTEIGENSOLVER_H
13
-
14
- #include "./Tridiagonalization.h"
15
-
16
- namespace Eigen {
17
-
18
- template<typename _MatrixType>
19
- class GeneralizedSelfAdjointEigenSolver;
20
-
21
- namespace internal {
22
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
-
24
- template<typename MatrixType, typename DiagType, typename SubDiagType>
25
- EIGEN_DEVICE_FUNC
26
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27
- }
28
-
29
- /** \eigenvalues_module \ingroup Eigenvalues_Module
30
- *
31
- *
32
- * \class SelfAdjointEigenSolver
33
- *
34
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35
- *
36
- * \tparam _MatrixType the type of the matrix of which we are computing the
37
- * eigendecomposition; this is expected to be an instantiation of the Matrix
38
- * class template.
39
- *
40
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41
- * matrices, this means that the matrix is symmetric: it equals its
42
- * transpose. This class computes the eigenvalues and eigenvectors of a
43
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48
- * eigendecomposition.
49
- *
50
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
54
- *
55
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
56
- * faster and more accurate than the general purpose eigenvalue algorithms
57
- * implemented in EigenSolver and ComplexEigenSolver.
58
- *
59
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
60
- *
61
- * Call the function compute() to compute the eigenvalues and eigenvectors of
62
- * a given matrix. Alternatively, you can use the
63
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66
- * and eigenvectors() functions.
67
- *
68
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69
- * contains an example of the typical use of this class.
70
- *
71
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73
- *
74
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75
- */
76
- template<typename _MatrixType> class SelfAdjointEigenSolver
77
- {
78
- public:
79
-
80
- typedef _MatrixType MatrixType;
81
- enum {
82
- Size = MatrixType::RowsAtCompileTime,
83
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84
- Options = MatrixType::Options,
85
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86
- };
87
-
88
- /** \brief Scalar type for matrices of type \p _MatrixType. */
89
- typedef typename MatrixType::Scalar Scalar;
90
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
-
92
- typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
93
-
94
- /** \brief Real scalar type for \p _MatrixType.
95
- *
96
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
97
- * \c double), and the type of the real part of \c Scalar if #Scalar is
98
- * complex.
99
- */
100
- typedef typename NumTraits<Scalar>::Real RealScalar;
101
-
102
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
103
-
104
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105
- *
106
- * This is a column vector with entries of type #RealScalar.
107
- * The length of the vector is the size of \p _MatrixType.
108
- */
109
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
110
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
111
- typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
112
-
113
- /** \brief Default constructor for fixed-size matrices.
114
- *
115
- * The default constructor is useful in cases in which the user intends to
116
- * perform decompositions via compute(). This constructor
117
- * can only be used if \p _MatrixType is a fixed-size matrix; use
118
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119
- *
120
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122
- */
123
- EIGEN_DEVICE_FUNC
124
- SelfAdjointEigenSolver()
125
- : m_eivec(),
126
- m_eivalues(),
127
- m_subdiag(),
128
- m_hcoeffs(),
129
- m_info(InvalidInput),
130
- m_isInitialized(false),
131
- m_eigenvectorsOk(false)
132
- { }
133
-
134
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135
- *
136
- * \param [in] size Positive integer, size of the matrix whose
137
- * eigenvalues and eigenvectors will be computed.
138
- *
139
- * This constructor is useful for dynamic-size matrices, when the user
140
- * intends to perform decompositions via compute(). The \p size
141
- * parameter is only used as a hint. It is not an error to give a wrong
142
- * \p size, but it may impair performance.
143
- *
144
- * \sa compute() for an example
145
- */
146
- EIGEN_DEVICE_FUNC
147
- explicit SelfAdjointEigenSolver(Index size)
148
- : m_eivec(size, size),
149
- m_eivalues(size),
150
- m_subdiag(size > 1 ? size - 1 : 1),
151
- m_hcoeffs(size > 1 ? size - 1 : 1),
152
- m_isInitialized(false),
153
- m_eigenvectorsOk(false)
154
- {}
155
-
156
- /** \brief Constructor; computes eigendecomposition of given matrix.
157
- *
158
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159
- * be computed. Only the lower triangular part of the matrix is referenced.
160
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161
- *
162
- * This constructor calls compute(const MatrixType&, int) to compute the
163
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164
- * \p options equals #ComputeEigenvectors.
165
- *
166
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168
- *
169
- * \sa compute(const MatrixType&, int)
170
- */
171
- template<typename InputType>
172
- EIGEN_DEVICE_FUNC
173
- explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
174
- : m_eivec(matrix.rows(), matrix.cols()),
175
- m_eivalues(matrix.cols()),
176
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177
- m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178
- m_isInitialized(false),
179
- m_eigenvectorsOk(false)
180
- {
181
- compute(matrix.derived(), options);
182
- }
183
-
184
- /** \brief Computes eigendecomposition of given matrix.
185
- *
186
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187
- * be computed. Only the lower triangular part of the matrix is referenced.
188
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189
- * \returns Reference to \c *this
190
- *
191
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
192
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193
- * then the eigenvectors are also computed and can be retrieved by
194
- * calling eigenvectors().
195
- *
196
- * This implementation uses a symmetric QR algorithm. The matrix is first
197
- * reduced to tridiagonal form using the Tridiagonalization class. The
198
- * tridiagonal matrix is then brought to diagonal form with implicit
199
- * symmetric QR steps with Wilkinson shift. Details can be found in
200
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201
- *
202
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203
- * are required and \f$ 4n^3/3 \f$ if they are not required.
204
- *
205
- * This method reuses the memory in the SelfAdjointEigenSolver object that
206
- * was allocated when the object was constructed, if the size of the
207
- * matrix does not change.
208
- *
209
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211
- *
212
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213
- */
214
- template<typename InputType>
215
- EIGEN_DEVICE_FUNC
216
- SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
217
-
218
- /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219
- *
220
- * This is a variant of compute(const MatrixType&, int options) which
221
- * directly solves the underlying polynomial equation.
222
- *
223
- * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224
- *
225
- * This method is usually significantly faster than the QR iterative algorithm
226
- * but it might also be less accurate. It is also worth noting that
227
- * for 3x3 matrices it involves trigonometric operations which are
228
- * not necessarily available for all scalar types.
229
- *
230
- * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231
- * - double: 1e-8
232
- * - float: 1e-3
233
- *
234
- * \sa compute(const MatrixType&, int options)
235
- */
236
- EIGEN_DEVICE_FUNC
237
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
238
-
239
- /**
240
- *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241
- *
242
- * \param[in] diag The vector containing the diagonal of the matrix.
243
- * \param[in] subdiag The subdiagonal of the matrix.
244
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245
- * \returns Reference to \c *this
246
- *
247
- * This function assumes that the matrix has been reduced to tridiagonal form.
248
- *
249
- * \sa compute(const MatrixType&, int) for more information
250
- */
251
- SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
252
-
253
- /** \brief Returns the eigenvectors of given matrix.
254
- *
255
- * \returns A const reference to the matrix whose columns are the eigenvectors.
256
- *
257
- * \pre The eigenvectors have been computed before.
258
- *
259
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262
- * this object was used to solve the eigenproblem for the selfadjoint
263
- * matrix \f$ A \f$, then the matrix returned by this function is the
264
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265
- *
266
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
270
- *
271
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273
- *
274
- * \sa eigenvalues()
275
- */
276
- EIGEN_DEVICE_FUNC
277
- const EigenvectorsType& eigenvectors() const
278
- {
279
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281
- return m_eivec;
282
- }
283
-
284
- /** \brief Returns the eigenvalues of given matrix.
285
- *
286
- * \returns A const reference to the column vector containing the eigenvalues.
287
- *
288
- * \pre The eigenvalues have been computed before.
289
- *
290
- * The eigenvalues are repeated according to their algebraic multiplicity,
291
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292
- * are sorted in increasing order.
293
- *
294
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296
- *
297
- * \sa eigenvectors(), MatrixBase::eigenvalues()
298
- */
299
- EIGEN_DEVICE_FUNC
300
- const RealVectorType& eigenvalues() const
301
- {
302
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303
- return m_eivalues;
304
- }
305
-
306
- /** \brief Computes the positive-definite square root of the matrix.
307
- *
308
- * \returns the positive-definite square root of the matrix
309
- *
310
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311
- * have been computed before.
312
- *
313
- * The square root of a positive-definite matrix \f$ A \f$ is the
314
- * positive-definite matrix whose square equals \f$ A \f$. This function
315
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317
- *
318
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320
- *
321
- * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322
- */
323
- EIGEN_DEVICE_FUNC
324
- MatrixType operatorSqrt() const
325
- {
326
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329
- }
330
-
331
- /** \brief Computes the inverse square root of the matrix.
332
- *
333
- * \returns the inverse positive-definite square root of the matrix
334
- *
335
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336
- * have been computed before.
337
- *
338
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340
- * cheaper than first computing the square root with operatorSqrt() and
341
- * then its inverse with MatrixBase::inverse().
342
- *
343
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345
- *
346
- * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347
- */
348
- EIGEN_DEVICE_FUNC
349
- MatrixType operatorInverseSqrt() const
350
- {
351
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354
- }
355
-
356
- /** \brief Reports whether previous computation was successful.
357
- *
358
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359
- */
360
- EIGEN_DEVICE_FUNC
361
- ComputationInfo info() const
362
- {
363
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364
- return m_info;
365
- }
366
-
367
- /** \brief Maximum number of iterations.
368
- *
369
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371
- */
372
- static const int m_maxIterations = 30;
373
-
374
- protected:
375
- static EIGEN_DEVICE_FUNC
376
- void check_template_parameters()
377
- {
378
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
379
- }
380
-
381
- EigenvectorsType m_eivec;
382
- RealVectorType m_eivalues;
383
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
384
- typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
385
- ComputationInfo m_info;
386
- bool m_isInitialized;
387
- bool m_eigenvectorsOk;
388
- };
389
-
390
- namespace internal {
391
- /** \internal
392
- *
393
- * \eigenvalues_module \ingroup Eigenvalues_Module
394
- *
395
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
396
- * pair of two vectors \a diag and \a subdiag.
397
- *
398
- * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399
- * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400
- * \param start starting index of the submatrix to work on
401
- * \param end last+1 index of the submatrix to work on
402
- * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403
- * \param n size of the input matrix
404
- *
405
- * For compilation efficiency reasons, this procedure does not use eigen expression
406
- * for its arguments.
407
- *
408
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409
- * "implicit symmetric QR step with Wilkinson shift"
410
- */
411
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
412
- EIGEN_DEVICE_FUNC
413
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414
- }
415
-
416
- template<typename MatrixType>
417
- template<typename InputType>
418
- EIGEN_DEVICE_FUNC
419
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420
- ::compute(const EigenBase<InputType>& a_matrix, int options)
421
- {
422
- check_template_parameters();
423
-
424
- const InputType &matrix(a_matrix.derived());
425
-
426
- EIGEN_USING_STD(abs);
427
- eigen_assert(matrix.cols() == matrix.rows());
428
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
429
- && (options&EigVecMask)!=EigVecMask
430
- && "invalid option parameter");
431
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432
- Index n = matrix.cols();
433
- m_eivalues.resize(n,1);
434
-
435
- if(n==1)
436
- {
437
- m_eivec = matrix;
438
- m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439
- if(computeEigenvectors)
440
- m_eivec.setOnes(n,n);
441
- m_info = Success;
442
- m_isInitialized = true;
443
- m_eigenvectorsOk = computeEigenvectors;
444
- return *this;
445
- }
446
-
447
- // declare some aliases
448
- RealVectorType& diag = m_eivalues;
449
- EigenvectorsType& mat = m_eivec;
450
-
451
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452
- mat = matrix.template triangularView<Lower>();
453
- RealScalar scale = mat.cwiseAbs().maxCoeff();
454
- if(scale==RealScalar(0)) scale = RealScalar(1);
455
- mat.template triangularView<Lower>() /= scale;
456
- m_subdiag.resize(n-1);
457
- m_hcoeffs.resize(n-1);
458
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
-
460
- m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
-
462
- // scale back the eigen values
463
- m_eivalues *= scale;
464
-
465
- m_isInitialized = true;
466
- m_eigenvectorsOk = computeEigenvectors;
467
- return *this;
468
- }
469
-
470
- template<typename MatrixType>
471
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
472
- ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473
- {
474
- //TODO : Add an option to scale the values beforehand
475
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
-
477
- m_eivalues = diag;
478
- m_subdiag = subdiag;
479
- if (computeEigenvectors)
480
- {
481
- m_eivec.setIdentity(diag.size(), diag.size());
482
- }
483
- m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
-
485
- m_isInitialized = true;
486
- m_eigenvectorsOk = computeEigenvectors;
487
- return *this;
488
- }
489
-
490
- namespace internal {
491
- /**
492
- * \internal
493
- * \brief Compute the eigendecomposition from a tridiagonal matrix
494
- *
495
- * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496
- * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497
- * \param[in] maxIterations : the maximum number of iterations
498
- * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499
- * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500
- * \returns \c Success or \c NoConvergence
501
- */
502
- template<typename MatrixType, typename DiagType, typename SubDiagType>
503
- EIGEN_DEVICE_FUNC
504
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505
- {
506
- ComputationInfo info;
507
- typedef typename MatrixType::Scalar Scalar;
508
-
509
- Index n = diag.size();
510
- Index end = n-1;
511
- Index start = 0;
512
- Index iter = 0; // total number of iterations
513
-
514
- typedef typename DiagType::RealScalar RealScalar;
515
- const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516
- const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517
- while (end>0)
518
- {
519
- for (Index i = start; i<end; ++i) {
520
- if (numext::abs(subdiag[i]) < considerAsZero) {
521
- subdiag[i] = RealScalar(0);
522
- } else {
523
- // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524
- // Scaled to prevent underflows.
525
- const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526
- if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527
- subdiag[i] = RealScalar(0);
528
- }
529
- }
530
- }
531
-
532
- // find the largest unreduced block at the end of the matrix.
533
- while (end>0 && subdiag[end-1]==RealScalar(0))
534
- {
535
- end--;
536
- }
537
- if (end<=0)
538
- break;
539
-
540
- // if we spent too many iterations, we give up
541
- iter++;
542
- if(iter > maxIterations * n) break;
543
-
544
- start = end - 1;
545
- while (start>0 && subdiag[start-1]!=0)
546
- start--;
547
-
548
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549
- }
550
- if (iter <= maxIterations * n)
551
- info = Success;
552
- else
553
- info = NoConvergence;
554
-
555
- // Sort eigenvalues and corresponding vectors.
556
- // TODO make the sort optional ?
557
- // TODO use a better sort algorithm !!
558
- if (info == Success)
559
- {
560
- for (Index i = 0; i < n-1; ++i)
561
- {
562
- Index k;
563
- diag.segment(i,n-i).minCoeff(&k);
564
- if (k > 0)
565
- {
566
- numext::swap(diag[i], diag[k+i]);
567
- if(computeEigenvectors)
568
- eivec.col(i).swap(eivec.col(k+i));
569
- }
570
- }
571
- }
572
- return info;
573
- }
574
-
575
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576
- {
577
- EIGEN_DEVICE_FUNC
578
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579
- { eig.compute(A,options); }
580
- };
581
-
582
- template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583
- {
584
- typedef typename SolverType::MatrixType MatrixType;
585
- typedef typename SolverType::RealVectorType VectorType;
586
- typedef typename SolverType::Scalar Scalar;
587
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
-
589
-
590
- /** \internal
591
- * Computes the roots of the characteristic polynomial of \a m.
592
- * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593
- */
594
- EIGEN_DEVICE_FUNC
595
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
596
- {
597
- EIGEN_USING_STD(sqrt)
598
- EIGEN_USING_STD(atan2)
599
- EIGEN_USING_STD(cos)
600
- EIGEN_USING_STD(sin)
601
- const Scalar s_inv3 = Scalar(1)/Scalar(3);
602
- const Scalar s_sqrt3 = sqrt(Scalar(3));
603
-
604
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605
- // eigenvalues are the roots to this equation, all guaranteed to be
606
- // real-valued, because the matrix is symmetric.
607
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
-
611
- // Construct the parameters used in classifying the roots of the equation
612
- // and in solving the equation for the roots in closed form.
613
- Scalar c2_over_3 = c2*s_inv3;
614
- Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615
- a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
-
617
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
-
619
- Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620
- q = numext::maxi(q, Scalar(0));
621
-
622
- // Compute the eigenvalues by solving for the roots of the polynomial.
623
- Scalar rho = sqrt(a_over_3);
624
- Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625
- Scalar cos_theta = cos(theta);
626
- Scalar sin_theta = sin(theta);
627
- // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628
- roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629
- roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630
- roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631
- }
632
-
633
- EIGEN_DEVICE_FUNC
634
- static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635
- {
636
- EIGEN_USING_STD(abs);
637
- EIGEN_USING_STD(sqrt);
638
- Index i0;
639
- // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640
- mat.diagonal().cwiseAbs().maxCoeff(&i0);
641
- // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642
- // so let's save it:
643
- representative = mat.col(i0);
644
- Scalar n0, n1;
645
- VectorType c0, c1;
646
- n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647
- n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648
- if(n0>n1) res = c0/sqrt(n0);
649
- else res = c1/sqrt(n1);
650
-
651
- return true;
652
- }
653
-
654
- EIGEN_DEVICE_FUNC
655
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
656
- {
657
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
659
- && (options&EigVecMask)!=EigVecMask
660
- && "invalid option parameter");
661
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
-
663
- EigenvectorsType& eivecs = solver.m_eivec;
664
- VectorType& eivals = solver.m_eivalues;
665
-
666
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667
- Scalar shift = mat.trace() / Scalar(3);
668
- // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669
- MatrixType scaledMat = mat.template selfadjointView<Lower>();
670
- scaledMat.diagonal().array() -= shift;
671
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672
- if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
-
674
- // compute the eigenvalues
675
- computeRoots(scaledMat,eivals);
676
-
677
- // compute the eigenvectors
678
- if(computeEigenvectors)
679
- {
680
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681
- {
682
- // All three eigenvalues are numerically the same
683
- eivecs.setIdentity();
684
- }
685
- else
686
- {
687
- MatrixType tmp;
688
- tmp = scaledMat;
689
-
690
- // Compute the eigenvector of the most distinct eigenvalue
691
- Scalar d0 = eivals(2) - eivals(1);
692
- Scalar d1 = eivals(1) - eivals(0);
693
- Index k(0), l(2);
694
- if(d0 > d1)
695
- {
696
- numext::swap(k,l);
697
- d0 = d1;
698
- }
699
-
700
- // Compute the eigenvector of index k
701
- {
702
- tmp.diagonal().array () -= eivals(k);
703
- // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704
- extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705
- }
706
-
707
- // Compute eigenvector of index l
708
- if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
709
- {
710
- // If d0 is too small, then the two other eigenvalues are numerically the same,
711
- // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712
- eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713
- eivecs.col(l).normalize();
714
- }
715
- else
716
- {
717
- tmp = scaledMat;
718
- tmp.diagonal().array () -= eivals(l);
719
-
720
- VectorType dummy;
721
- extract_kernel(tmp, eivecs.col(l), dummy);
722
- }
723
-
724
- // Compute last eigenvector from the other two
725
- eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726
- }
727
- }
728
-
729
- // Rescale back to the original size.
730
- eivals *= scale;
731
- eivals.array() += shift;
732
-
733
- solver.m_info = Success;
734
- solver.m_isInitialized = true;
735
- solver.m_eigenvectorsOk = computeEigenvectors;
736
- }
737
- };
738
-
739
- // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740
- template<typename SolverType>
741
- struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742
- {
743
- typedef typename SolverType::MatrixType MatrixType;
744
- typedef typename SolverType::RealVectorType VectorType;
745
- typedef typename SolverType::Scalar Scalar;
746
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
-
748
- EIGEN_DEVICE_FUNC
749
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
750
- {
751
- EIGEN_USING_STD(sqrt);
752
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754
- roots(0) = t1 - t0;
755
- roots(1) = t1 + t0;
756
- }
757
-
758
- EIGEN_DEVICE_FUNC
759
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
760
- {
761
- EIGEN_USING_STD(sqrt);
762
- EIGEN_USING_STD(abs);
763
-
764
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
766
- && (options&EigVecMask)!=EigVecMask
767
- && "invalid option parameter");
768
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
-
770
- EigenvectorsType& eivecs = solver.m_eivec;
771
- VectorType& eivals = solver.m_eivalues;
772
-
773
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774
- Scalar shift = mat.trace() / Scalar(2);
775
- MatrixType scaledMat = mat;
776
- scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777
- scaledMat.diagonal().array() -= shift;
778
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779
- if(scale > Scalar(0))
780
- scaledMat /= scale;
781
-
782
- // Compute the eigenvalues
783
- computeRoots(scaledMat,eivals);
784
-
785
- // compute the eigen vectors
786
- if(computeEigenvectors)
787
- {
788
- if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789
- {
790
- eivecs.setIdentity();
791
- }
792
- else
793
- {
794
- scaledMat.diagonal().array () -= eivals(1);
795
- Scalar a2 = numext::abs2(scaledMat(0,0));
796
- Scalar c2 = numext::abs2(scaledMat(1,1));
797
- Scalar b2 = numext::abs2(scaledMat(1,0));
798
- if(a2>c2)
799
- {
800
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801
- eivecs.col(1) /= sqrt(a2+b2);
802
- }
803
- else
804
- {
805
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806
- eivecs.col(1) /= sqrt(c2+b2);
807
- }
808
-
809
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810
- }
811
- }
812
-
813
- // Rescale back to the original size.
814
- eivals *= scale;
815
- eivals.array() += shift;
816
-
817
- solver.m_info = Success;
818
- solver.m_isInitialized = true;
819
- solver.m_eigenvectorsOk = computeEigenvectors;
820
- }
821
- };
822
-
823
- }
824
-
825
- template<typename MatrixType>
826
- EIGEN_DEVICE_FUNC
827
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828
- ::computeDirect(const MatrixType& matrix, int options)
829
- {
830
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
831
- return *this;
832
- }
833
-
834
- namespace internal {
835
-
836
- // Francis implicit QR step.
837
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
838
- EIGEN_DEVICE_FUNC
839
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840
- {
841
- // Wilkinson Shift.
842
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843
- RealScalar e = subdiag[end-1];
844
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845
- // underflow thus leading to inf/NaN values when using the following commented code:
846
- // RealScalar e2 = numext::abs2(subdiag[end-1]);
847
- // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848
- // This explain the following, somewhat more complicated, version:
849
- RealScalar mu = diag[end];
850
- if(td==RealScalar(0)) {
851
- mu -= numext::abs(e);
852
- } else if (e != RealScalar(0)) {
853
- const RealScalar e2 = numext::abs2(e);
854
- const RealScalar h = numext::hypot(td,e);
855
- if(e2 == RealScalar(0)) {
856
- mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857
- } else {
858
- mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859
- }
860
- }
861
-
862
- RealScalar x = diag[start] - mu;
863
- RealScalar z = subdiag[start];
864
- // If z ever becomes zero, the Givens rotation will be the identity and
865
- // z will stay zero for all future iterations.
866
- for (Index k = start; k < end && z != RealScalar(0); ++k)
867
- {
868
- JacobiRotation<RealScalar> rot;
869
- rot.makeGivens(x, z);
870
-
871
- // do T = G' T G
872
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
-
875
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
-
879
- if (k > start)
880
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
-
882
- // "Chasing the bulge" to return to triangular form.
883
- x = subdiag[k];
884
- if (k < end - 1)
885
- {
886
- z = -rot.s() * subdiag[k+1];
887
- subdiag[k + 1] = rot.c() * subdiag[k+1];
888
- }
889
-
890
- // apply the givens rotation to the unit matrix Q = Q * G
891
- if (matrixQ)
892
- {
893
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
894
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
895
- q.applyOnTheRight(k,k+1,rot);
896
- }
897
- }
898
- }
899
-
900
- } // end namespace internal
901
-
902
- } // end namespace Eigen
903
-
904
- #endif // EIGEN_SELFADJOINTEIGENSOLVER_H