sequenzo 0.1.18__cp310-cp310-win_amd64.whl → 0.1.19__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (396) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp310-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp310-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +107 -5
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp310-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp310-win_amd64.pyd +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  13. sequenzo/dissimilarity_measures/utils/seqconc.cp310-win_amd64.pyd +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  15. sequenzo/dissimilarity_measures/utils/seqdss.cp310-win_amd64.pyd +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  17. sequenzo/dissimilarity_measures/utils/seqdur.cp310-win_amd64.pyd +0 -0
  18. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  19. sequenzo/dissimilarity_measures/utils/seqlength.cp310-win_amd64.pyd +0 -0
  20. sequenzo/multidomain/cat.py +0 -53
  21. sequenzo/multidomain/idcd.py +0 -1
  22. sequenzo/openmp_setup.py +233 -0
  23. sequenzo/visualization/plot_transition_matrix.py +21 -22
  24. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  25. sequenzo-0.1.19.dist-info/RECORD +272 -0
  26. sequenzo/dissimilarity_measures/setup.py +0 -35
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  169. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  171. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  172. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  173. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  174. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  175. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  176. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  177. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  178. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  179. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  180. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  181. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  182. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  183. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  184. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  185. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  186. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  187. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  188. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  189. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  190. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  191. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  192. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  197. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  198. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  199. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  200. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  201. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  202. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  203. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  206. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  207. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  208. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  209. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  210. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  211. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  212. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  213. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  214. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  215. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  216. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  217. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  218. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  219. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  220. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  221. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  222. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  223. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  393. sequenzo-0.1.18.dist-info/RECORD +0 -638
  394. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  395. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  396. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1863 +0,0 @@
1
- // // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- // This file is modified from the colamd/symamd library. The copyright is below
11
-
12
- // The authors of the code itself are Stefan I. Larimore and Timothy A.
13
- // Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
14
- // developed in collaboration with John Gilbert, Xerox PARC, and Esmond
15
- // Ng, Oak Ridge National Laboratory.
16
- //
17
- // Date:
18
- //
19
- // September 8, 2003. Version 2.3.
20
- //
21
- // Acknowledgements:
22
- //
23
- // This work was supported by the National Science Foundation, under
24
- // grants DMS-9504974 and DMS-9803599.
25
- //
26
- // Notice:
27
- //
28
- // Copyright (c) 1998-2003 by the University of Florida.
29
- // All Rights Reserved.
30
- //
31
- // THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
32
- // EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
33
- //
34
- // Permission is hereby granted to use, copy, modify, and/or distribute
35
- // this program, provided that the Copyright, this License, and the
36
- // Availability of the original version is retained on all copies and made
37
- // accessible to the end-user of any code or package that includes COLAMD
38
- // or any modified version of COLAMD.
39
- //
40
- // Availability:
41
- //
42
- // The colamd/symamd library is available at
43
- //
44
- // http://www.suitesparse.com
45
-
46
-
47
- #ifndef EIGEN_COLAMD_H
48
- #define EIGEN_COLAMD_H
49
-
50
- namespace internal {
51
-
52
- namespace Colamd {
53
-
54
- /* Ensure that debugging is turned off: */
55
- #ifndef COLAMD_NDEBUG
56
- #define COLAMD_NDEBUG
57
- #endif /* NDEBUG */
58
-
59
-
60
- /* ========================================================================== */
61
- /* === Knob and statistics definitions ====================================== */
62
- /* ========================================================================== */
63
-
64
- /* size of the knobs [ ] array. Only knobs [0..1] are currently used. */
65
- const int NKnobs = 20;
66
-
67
- /* number of output statistics. Only stats [0..6] are currently used. */
68
- const int NStats = 20;
69
-
70
- /* Indices into knobs and stats array. */
71
- enum KnobsStatsIndex {
72
- /* knobs [0] and stats [0]: dense row knob and output statistic. */
73
- DenseRow = 0,
74
-
75
- /* knobs [1] and stats [1]: dense column knob and output statistic. */
76
- DenseCol = 1,
77
-
78
- /* stats [2]: memory defragmentation count output statistic */
79
- DefragCount = 2,
80
-
81
- /* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */
82
- Status = 3,
83
-
84
- /* stats [4..6]: error info, or info on jumbled columns */
85
- Info1 = 4,
86
- Info2 = 5,
87
- Info3 = 6
88
- };
89
-
90
- /* error codes returned in stats [3]: */
91
- enum Status {
92
- Ok = 0,
93
- OkButJumbled = 1,
94
- ErrorANotPresent = -1,
95
- ErrorPNotPresent = -2,
96
- ErrorNrowNegative = -3,
97
- ErrorNcolNegative = -4,
98
- ErrorNnzNegative = -5,
99
- ErrorP0Nonzero = -6,
100
- ErrorATooSmall = -7,
101
- ErrorColLengthNegative = -8,
102
- ErrorRowIndexOutOfBounds = -9,
103
- ErrorOutOfMemory = -10,
104
- ErrorInternalError = -999
105
- };
106
- /* ========================================================================== */
107
- /* === Definitions ========================================================== */
108
- /* ========================================================================== */
109
-
110
- template <typename IndexType>
111
- IndexType ones_complement(const IndexType r) {
112
- return (-(r)-1);
113
- }
114
-
115
- /* -------------------------------------------------------------------------- */
116
- const int Empty = -1;
117
-
118
- /* Row and column status */
119
- enum RowColumnStatus {
120
- Alive = 0,
121
- Dead = -1
122
- };
123
-
124
- /* Column status */
125
- enum ColumnStatus {
126
- DeadPrincipal = -1,
127
- DeadNonPrincipal = -2
128
- };
129
-
130
- /* ========================================================================== */
131
- /* === Colamd reporting mechanism =========================================== */
132
- /* ========================================================================== */
133
-
134
- // == Row and Column structures ==
135
- template <typename IndexType>
136
- struct ColStructure
137
- {
138
- IndexType start ; /* index for A of first row in this column, or Dead */
139
- /* if column is dead */
140
- IndexType length ; /* number of rows in this column */
141
- union
142
- {
143
- IndexType thickness ; /* number of original columns represented by this */
144
- /* col, if the column is alive */
145
- IndexType parent ; /* parent in parent tree super-column structure, if */
146
- /* the column is dead */
147
- } shared1 ;
148
- union
149
- {
150
- IndexType score ; /* the score used to maintain heap, if col is alive */
151
- IndexType order ; /* pivot ordering of this column, if col is dead */
152
- } shared2 ;
153
- union
154
- {
155
- IndexType headhash ; /* head of a hash bucket, if col is at the head of */
156
- /* a degree list */
157
- IndexType hash ; /* hash value, if col is not in a degree list */
158
- IndexType prev ; /* previous column in degree list, if col is in a */
159
- /* degree list (but not at the head of a degree list) */
160
- } shared3 ;
161
- union
162
- {
163
- IndexType degree_next ; /* next column, if col is in a degree list */
164
- IndexType hash_next ; /* next column, if col is in a hash list */
165
- } shared4 ;
166
-
167
- inline bool is_dead() const { return start < Alive; }
168
-
169
- inline bool is_alive() const { return start >= Alive; }
170
-
171
- inline bool is_dead_principal() const { return start == DeadPrincipal; }
172
-
173
- inline void kill_principal() { start = DeadPrincipal; }
174
-
175
- inline void kill_non_principal() { start = DeadNonPrincipal; }
176
-
177
- };
178
-
179
- template <typename IndexType>
180
- struct RowStructure
181
- {
182
- IndexType start ; /* index for A of first col in this row */
183
- IndexType length ; /* number of principal columns in this row */
184
- union
185
- {
186
- IndexType degree ; /* number of principal & non-principal columns in row */
187
- IndexType p ; /* used as a row pointer in init_rows_cols () */
188
- } shared1 ;
189
- union
190
- {
191
- IndexType mark ; /* for computing set differences and marking dead rows*/
192
- IndexType first_column ;/* first column in row (used in garbage collection) */
193
- } shared2 ;
194
-
195
- inline bool is_dead() const { return shared2.mark < Alive; }
196
-
197
- inline bool is_alive() const { return shared2.mark >= Alive; }
198
-
199
- inline void kill() { shared2.mark = Dead; }
200
-
201
- };
202
-
203
- /* ========================================================================== */
204
- /* === Colamd recommended memory size ======================================= */
205
- /* ========================================================================== */
206
-
207
- /*
208
- The recommended length Alen of the array A passed to colamd is given by
209
- the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any
210
- argument is negative. 2*nnz space is required for the row and column
211
- indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
212
- required for the Col and Row arrays, respectively, which are internal to
213
- colamd. An additional n_col space is the minimal amount of "elbow room",
214
- and nnz/5 more space is recommended for run time efficiency.
215
-
216
- This macro is not needed when using symamd.
217
-
218
- Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid
219
- gcc -pedantic warning messages.
220
- */
221
- template <typename IndexType>
222
- inline IndexType colamd_c(IndexType n_col)
223
- { return IndexType( ((n_col) + 1) * sizeof (ColStructure<IndexType>) / sizeof (IndexType) ) ; }
224
-
225
- template <typename IndexType>
226
- inline IndexType colamd_r(IndexType n_row)
227
- { return IndexType(((n_row) + 1) * sizeof (RowStructure<IndexType>) / sizeof (IndexType)); }
228
-
229
- // Prototypes of non-user callable routines
230
- template <typename IndexType>
231
- static IndexType init_rows_cols (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[NStats] );
232
-
233
- template <typename IndexType>
234
- static void init_scoring (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType head [], double knobs[NKnobs], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg);
235
-
236
- template <typename IndexType>
237
- static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree);
238
-
239
- template <typename IndexType>
240
- static void order_children (IndexType n_col, ColStructure<IndexType> Col [], IndexType p []);
241
-
242
- template <typename IndexType>
243
- static void detect_super_cols (ColStructure<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ;
244
-
245
- template <typename IndexType>
246
- static IndexType garbage_collection (IndexType n_row, IndexType n_col, RowStructure<IndexType> Row [], ColStructure<IndexType> Col [], IndexType A [], IndexType *pfree) ;
247
-
248
- template <typename IndexType>
249
- static inline IndexType clear_mark (IndexType n_row, RowStructure<IndexType> Row [] ) ;
250
-
251
- /* === No debugging ========================================================= */
252
-
253
- #define COLAMD_DEBUG0(params) ;
254
- #define COLAMD_DEBUG1(params) ;
255
- #define COLAMD_DEBUG2(params) ;
256
- #define COLAMD_DEBUG3(params) ;
257
- #define COLAMD_DEBUG4(params) ;
258
-
259
- #define COLAMD_ASSERT(expression) ((void) 0)
260
-
261
-
262
- /**
263
- * \brief Returns the recommended value of Alen
264
- *
265
- * Returns recommended value of Alen for use by colamd.
266
- * Returns -1 if any input argument is negative.
267
- * The use of this routine or macro is optional.
268
- * Note that the macro uses its arguments more than once,
269
- * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.
270
- *
271
- * \param nnz nonzeros in A
272
- * \param n_row number of rows in A
273
- * \param n_col number of columns in A
274
- * \return recommended value of Alen for use by colamd
275
- */
276
- template <typename IndexType>
277
- inline IndexType recommended ( IndexType nnz, IndexType n_row, IndexType n_col)
278
- {
279
- if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
280
- return (-1);
281
- else
282
- return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5));
283
- }
284
-
285
- /**
286
- * \brief set default parameters The use of this routine is optional.
287
- *
288
- * Colamd: rows with more than (knobs [DenseRow] * n_col)
289
- * entries are removed prior to ordering. Columns with more than
290
- * (knobs [DenseCol] * n_row) entries are removed prior to
291
- * ordering, and placed last in the output column ordering.
292
- *
293
- * DenseRow and DenseCol are defined as 0 and 1,
294
- * respectively, in colamd.h. Default values of these two knobs
295
- * are both 0.5. Currently, only knobs [0] and knobs [1] are
296
- * used, but future versions may use more knobs. If so, they will
297
- * be properly set to their defaults by the future version of
298
- * colamd_set_defaults, so that the code that calls colamd will
299
- * not need to change, assuming that you either use
300
- * colamd_set_defaults, or pass a (double *) NULL pointer as the
301
- * knobs array to colamd or symamd.
302
- *
303
- * \param knobs parameter settings for colamd
304
- */
305
-
306
- static inline void set_defaults(double knobs[NKnobs])
307
- {
308
- /* === Local variables ================================================== */
309
-
310
- int i ;
311
-
312
- if (!knobs)
313
- {
314
- return ; /* no knobs to initialize */
315
- }
316
- for (i = 0 ; i < NKnobs ; i++)
317
- {
318
- knobs [i] = 0 ;
319
- }
320
- knobs [Colamd::DenseRow] = 0.5 ; /* ignore rows over 50% dense */
321
- knobs [Colamd::DenseCol] = 0.5 ; /* ignore columns over 50% dense */
322
- }
323
-
324
- /**
325
- * \brief Computes a column ordering using the column approximate minimum degree ordering
326
- *
327
- * Computes a column ordering (Q) of A such that P(AQ)=LU or
328
- * (AQ)'AQ=LL' have less fill-in and require fewer floating point
329
- * operations than factorizing the unpermuted matrix A or A'A,
330
- * respectively.
331
- *
332
- *
333
- * \param n_row number of rows in A
334
- * \param n_col number of columns in A
335
- * \param Alen, size of the array A
336
- * \param A row indices of the matrix, of size ALen
337
- * \param p column pointers of A, of size n_col+1
338
- * \param knobs parameter settings for colamd
339
- * \param stats colamd output statistics and error codes
340
- */
341
- template <typename IndexType>
342
- static bool compute_ordering(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[NKnobs], IndexType stats[NStats])
343
- {
344
- /* === Local variables ================================================== */
345
-
346
- IndexType i ; /* loop index */
347
- IndexType nnz ; /* nonzeros in A */
348
- IndexType Row_size ; /* size of Row [], in integers */
349
- IndexType Col_size ; /* size of Col [], in integers */
350
- IndexType need ; /* minimum required length of A */
351
- Colamd::RowStructure<IndexType> *Row ; /* pointer into A of Row [0..n_row] array */
352
- Colamd::ColStructure<IndexType> *Col ; /* pointer into A of Col [0..n_col] array */
353
- IndexType n_col2 ; /* number of non-dense, non-empty columns */
354
- IndexType n_row2 ; /* number of non-dense, non-empty rows */
355
- IndexType ngarbage ; /* number of garbage collections performed */
356
- IndexType max_deg ; /* maximum row degree */
357
- double default_knobs [NKnobs] ; /* default knobs array */
358
-
359
-
360
- /* === Check the input arguments ======================================== */
361
-
362
- if (!stats)
363
- {
364
- COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
365
- return (false) ;
366
- }
367
- for (i = 0 ; i < NStats ; i++)
368
- {
369
- stats [i] = 0 ;
370
- }
371
- stats [Colamd::Status] = Colamd::Ok ;
372
- stats [Colamd::Info1] = -1 ;
373
- stats [Colamd::Info2] = -1 ;
374
-
375
- if (!A) /* A is not present */
376
- {
377
- stats [Colamd::Status] = Colamd::ErrorANotPresent ;
378
- COLAMD_DEBUG0 (("colamd: A not present\n")) ;
379
- return (false) ;
380
- }
381
-
382
- if (!p) /* p is not present */
383
- {
384
- stats [Colamd::Status] = Colamd::ErrorPNotPresent ;
385
- COLAMD_DEBUG0 (("colamd: p not present\n")) ;
386
- return (false) ;
387
- }
388
-
389
- if (n_row < 0) /* n_row must be >= 0 */
390
- {
391
- stats [Colamd::Status] = Colamd::ErrorNrowNegative ;
392
- stats [Colamd::Info1] = n_row ;
393
- COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
394
- return (false) ;
395
- }
396
-
397
- if (n_col < 0) /* n_col must be >= 0 */
398
- {
399
- stats [Colamd::Status] = Colamd::ErrorNcolNegative ;
400
- stats [Colamd::Info1] = n_col ;
401
- COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
402
- return (false) ;
403
- }
404
-
405
- nnz = p [n_col] ;
406
- if (nnz < 0) /* nnz must be >= 0 */
407
- {
408
- stats [Colamd::Status] = Colamd::ErrorNnzNegative ;
409
- stats [Colamd::Info1] = nnz ;
410
- COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
411
- return (false) ;
412
- }
413
-
414
- if (p [0] != 0)
415
- {
416
- stats [Colamd::Status] = Colamd::ErrorP0Nonzero ;
417
- stats [Colamd::Info1] = p [0] ;
418
- COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
419
- return (false) ;
420
- }
421
-
422
- /* === If no knobs, set default knobs =================================== */
423
-
424
- if (!knobs)
425
- {
426
- set_defaults (default_knobs) ;
427
- knobs = default_knobs ;
428
- }
429
-
430
- /* === Allocate the Row and Col arrays from array A ===================== */
431
-
432
- Col_size = colamd_c (n_col) ;
433
- Row_size = colamd_r (n_row) ;
434
- need = 2*nnz + n_col + Col_size + Row_size ;
435
-
436
- if (need > Alen)
437
- {
438
- /* not enough space in array A to perform the ordering */
439
- stats [Colamd::Status] = Colamd::ErrorATooSmall ;
440
- stats [Colamd::Info1] = need ;
441
- stats [Colamd::Info2] = Alen ;
442
- COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
443
- return (false) ;
444
- }
445
-
446
- Alen -= Col_size + Row_size ;
447
- Col = (ColStructure<IndexType> *) &A [Alen] ;
448
- Row = (RowStructure<IndexType> *) &A [Alen + Col_size] ;
449
-
450
- /* === Construct the row and column data structures ===================== */
451
-
452
- if (!Colamd::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
453
- {
454
- /* input matrix is invalid */
455
- COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
456
- return (false) ;
457
- }
458
-
459
- /* === Initialize scores, kill dense rows/columns ======================= */
460
-
461
- Colamd::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
462
- &n_row2, &n_col2, &max_deg) ;
463
-
464
- /* === Order the supercolumns =========================================== */
465
-
466
- ngarbage = Colamd::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
467
- n_col2, max_deg, 2*nnz) ;
468
-
469
- /* === Order the non-principal columns ================================== */
470
-
471
- Colamd::order_children (n_col, Col, p) ;
472
-
473
- /* === Return statistics in stats ======================================= */
474
-
475
- stats [Colamd::DenseRow] = n_row - n_row2 ;
476
- stats [Colamd::DenseCol] = n_col - n_col2 ;
477
- stats [Colamd::DefragCount] = ngarbage ;
478
- COLAMD_DEBUG0 (("colamd: done.\n")) ;
479
- return (true) ;
480
- }
481
-
482
- /* ========================================================================== */
483
- /* === NON-USER-CALLABLE ROUTINES: ========================================== */
484
- /* ========================================================================== */
485
-
486
- /* There are no user-callable routines beyond this point in the file */
487
-
488
- /* ========================================================================== */
489
- /* === init_rows_cols ======================================================= */
490
- /* ========================================================================== */
491
-
492
- /*
493
- Takes the column form of the matrix in A and creates the row form of the
494
- matrix. Also, row and column attributes are stored in the Col and Row
495
- structs. If the columns are un-sorted or contain duplicate row indices,
496
- this routine will also sort and remove duplicate row indices from the
497
- column form of the matrix. Returns false if the matrix is invalid,
498
- true otherwise. Not user-callable.
499
- */
500
- template <typename IndexType>
501
- static IndexType init_rows_cols /* returns true if OK, or false otherwise */
502
- (
503
- /* === Parameters ======================================================= */
504
-
505
- IndexType n_row, /* number of rows of A */
506
- IndexType n_col, /* number of columns of A */
507
- RowStructure<IndexType> Row [], /* of size n_row+1 */
508
- ColStructure<IndexType> Col [], /* of size n_col+1 */
509
- IndexType A [], /* row indices of A, of size Alen */
510
- IndexType p [], /* pointers to columns in A, of size n_col+1 */
511
- IndexType stats [NStats] /* colamd statistics */
512
- )
513
- {
514
- /* === Local variables ================================================== */
515
-
516
- IndexType col ; /* a column index */
517
- IndexType row ; /* a row index */
518
- IndexType *cp ; /* a column pointer */
519
- IndexType *cp_end ; /* a pointer to the end of a column */
520
- IndexType *rp ; /* a row pointer */
521
- IndexType *rp_end ; /* a pointer to the end of a row */
522
- IndexType last_row ; /* previous row */
523
-
524
- /* === Initialize columns, and check column pointers ==================== */
525
-
526
- for (col = 0 ; col < n_col ; col++)
527
- {
528
- Col [col].start = p [col] ;
529
- Col [col].length = p [col+1] - p [col] ;
530
-
531
- if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200
532
- {
533
- /* column pointers must be non-decreasing */
534
- stats [Colamd::Status] = Colamd::ErrorColLengthNegative ;
535
- stats [Colamd::Info1] = col ;
536
- stats [Colamd::Info2] = Col [col].length ;
537
- COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
538
- return (false) ;
539
- }
540
-
541
- Col [col].shared1.thickness = 1 ;
542
- Col [col].shared2.score = 0 ;
543
- Col [col].shared3.prev = Empty ;
544
- Col [col].shared4.degree_next = Empty ;
545
- }
546
-
547
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
548
-
549
- /* === Scan columns, compute row degrees, and check row indices ========= */
550
-
551
- stats [Info3] = 0 ; /* number of duplicate or unsorted row indices*/
552
-
553
- for (row = 0 ; row < n_row ; row++)
554
- {
555
- Row [row].length = 0 ;
556
- Row [row].shared2.mark = -1 ;
557
- }
558
-
559
- for (col = 0 ; col < n_col ; col++)
560
- {
561
- last_row = -1 ;
562
-
563
- cp = &A [p [col]] ;
564
- cp_end = &A [p [col+1]] ;
565
-
566
- while (cp < cp_end)
567
- {
568
- row = *cp++ ;
569
-
570
- /* make sure row indices within range */
571
- if (row < 0 || row >= n_row)
572
- {
573
- stats [Colamd::Status] = Colamd::ErrorRowIndexOutOfBounds ;
574
- stats [Colamd::Info1] = col ;
575
- stats [Colamd::Info2] = row ;
576
- stats [Colamd::Info3] = n_row ;
577
- COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
578
- return (false) ;
579
- }
580
-
581
- if (row <= last_row || Row [row].shared2.mark == col)
582
- {
583
- /* row index are unsorted or repeated (or both), thus col */
584
- /* is jumbled. This is a notice, not an error condition. */
585
- stats [Colamd::Status] = Colamd::OkButJumbled ;
586
- stats [Colamd::Info1] = col ;
587
- stats [Colamd::Info2] = row ;
588
- (stats [Colamd::Info3]) ++ ;
589
- COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
590
- }
591
-
592
- if (Row [row].shared2.mark != col)
593
- {
594
- Row [row].length++ ;
595
- }
596
- else
597
- {
598
- /* this is a repeated entry in the column, */
599
- /* it will be removed */
600
- Col [col].length-- ;
601
- }
602
-
603
- /* mark the row as having been seen in this column */
604
- Row [row].shared2.mark = col ;
605
-
606
- last_row = row ;
607
- }
608
- }
609
-
610
- /* === Compute row pointers ============================================= */
611
-
612
- /* row form of the matrix starts directly after the column */
613
- /* form of matrix in A */
614
- Row [0].start = p [n_col] ;
615
- Row [0].shared1.p = Row [0].start ;
616
- Row [0].shared2.mark = -1 ;
617
- for (row = 1 ; row < n_row ; row++)
618
- {
619
- Row [row].start = Row [row-1].start + Row [row-1].length ;
620
- Row [row].shared1.p = Row [row].start ;
621
- Row [row].shared2.mark = -1 ;
622
- }
623
-
624
- /* === Create row form ================================================== */
625
-
626
- if (stats [Status] == OkButJumbled)
627
- {
628
- /* if cols jumbled, watch for repeated row indices */
629
- for (col = 0 ; col < n_col ; col++)
630
- {
631
- cp = &A [p [col]] ;
632
- cp_end = &A [p [col+1]] ;
633
- while (cp < cp_end)
634
- {
635
- row = *cp++ ;
636
- if (Row [row].shared2.mark != col)
637
- {
638
- A [(Row [row].shared1.p)++] = col ;
639
- Row [row].shared2.mark = col ;
640
- }
641
- }
642
- }
643
- }
644
- else
645
- {
646
- /* if cols not jumbled, we don't need the mark (this is faster) */
647
- for (col = 0 ; col < n_col ; col++)
648
- {
649
- cp = &A [p [col]] ;
650
- cp_end = &A [p [col+1]] ;
651
- while (cp < cp_end)
652
- {
653
- A [(Row [*cp++].shared1.p)++] = col ;
654
- }
655
- }
656
- }
657
-
658
- /* === Clear the row marks and set row degrees ========================== */
659
-
660
- for (row = 0 ; row < n_row ; row++)
661
- {
662
- Row [row].shared2.mark = 0 ;
663
- Row [row].shared1.degree = Row [row].length ;
664
- }
665
-
666
- /* === See if we need to re-create columns ============================== */
667
-
668
- if (stats [Status] == OkButJumbled)
669
- {
670
- COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
671
-
672
-
673
- /* === Compute col pointers ========================================= */
674
-
675
- /* col form of the matrix starts at A [0]. */
676
- /* Note, we may have a gap between the col form and the row */
677
- /* form if there were duplicate entries, if so, it will be */
678
- /* removed upon the first garbage collection */
679
- Col [0].start = 0 ;
680
- p [0] = Col [0].start ;
681
- for (col = 1 ; col < n_col ; col++)
682
- {
683
- /* note that the lengths here are for pruned columns, i.e. */
684
- /* no duplicate row indices will exist for these columns */
685
- Col [col].start = Col [col-1].start + Col [col-1].length ;
686
- p [col] = Col [col].start ;
687
- }
688
-
689
- /* === Re-create col form =========================================== */
690
-
691
- for (row = 0 ; row < n_row ; row++)
692
- {
693
- rp = &A [Row [row].start] ;
694
- rp_end = rp + Row [row].length ;
695
- while (rp < rp_end)
696
- {
697
- A [(p [*rp++])++] = row ;
698
- }
699
- }
700
- }
701
-
702
- /* === Done. Matrix is not (or no longer) jumbled ====================== */
703
-
704
- return (true) ;
705
- }
706
-
707
-
708
- /* ========================================================================== */
709
- /* === init_scoring ========================================================= */
710
- /* ========================================================================== */
711
-
712
- /*
713
- Kills dense or empty columns and rows, calculates an initial score for
714
- each column, and places all columns in the degree lists. Not user-callable.
715
- */
716
- template <typename IndexType>
717
- static void init_scoring
718
- (
719
- /* === Parameters ======================================================= */
720
-
721
- IndexType n_row, /* number of rows of A */
722
- IndexType n_col, /* number of columns of A */
723
- RowStructure<IndexType> Row [], /* of size n_row+1 */
724
- ColStructure<IndexType> Col [], /* of size n_col+1 */
725
- IndexType A [], /* column form and row form of A */
726
- IndexType head [], /* of size n_col+1 */
727
- double knobs [NKnobs],/* parameters */
728
- IndexType *p_n_row2, /* number of non-dense, non-empty rows */
729
- IndexType *p_n_col2, /* number of non-dense, non-empty columns */
730
- IndexType *p_max_deg /* maximum row degree */
731
- )
732
- {
733
- /* === Local variables ================================================== */
734
-
735
- IndexType c ; /* a column index */
736
- IndexType r, row ; /* a row index */
737
- IndexType *cp ; /* a column pointer */
738
- IndexType deg ; /* degree of a row or column */
739
- IndexType *cp_end ; /* a pointer to the end of a column */
740
- IndexType *new_cp ; /* new column pointer */
741
- IndexType col_length ; /* length of pruned column */
742
- IndexType score ; /* current column score */
743
- IndexType n_col2 ; /* number of non-dense, non-empty columns */
744
- IndexType n_row2 ; /* number of non-dense, non-empty rows */
745
- IndexType dense_row_count ; /* remove rows with more entries than this */
746
- IndexType dense_col_count ; /* remove cols with more entries than this */
747
- IndexType min_score ; /* smallest column score */
748
- IndexType max_deg ; /* maximum row degree */
749
- IndexType next_col ; /* Used to add to degree list.*/
750
-
751
-
752
- /* === Extract knobs ==================================================== */
753
-
754
- dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseRow] * n_col), n_col)) ;
755
- dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [Colamd::DenseCol] * n_row), n_row)) ;
756
- COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
757
- max_deg = 0 ;
758
- n_col2 = n_col ;
759
- n_row2 = n_row ;
760
-
761
- /* === Kill empty columns =============================================== */
762
-
763
- /* Put the empty columns at the end in their natural order, so that LU */
764
- /* factorization can proceed as far as possible. */
765
- for (c = n_col-1 ; c >= 0 ; c--)
766
- {
767
- deg = Col [c].length ;
768
- if (deg == 0)
769
- {
770
- /* this is a empty column, kill and order it last */
771
- Col [c].shared2.order = --n_col2 ;
772
- Col[c].kill_principal() ;
773
- }
774
- }
775
- COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
776
-
777
- /* === Kill dense columns =============================================== */
778
-
779
- /* Put the dense columns at the end, in their natural order */
780
- for (c = n_col-1 ; c >= 0 ; c--)
781
- {
782
- /* skip any dead columns */
783
- if (Col[c].is_dead())
784
- {
785
- continue ;
786
- }
787
- deg = Col [c].length ;
788
- if (deg > dense_col_count)
789
- {
790
- /* this is a dense column, kill and order it last */
791
- Col [c].shared2.order = --n_col2 ;
792
- /* decrement the row degrees */
793
- cp = &A [Col [c].start] ;
794
- cp_end = cp + Col [c].length ;
795
- while (cp < cp_end)
796
- {
797
- Row [*cp++].shared1.degree-- ;
798
- }
799
- Col[c].kill_principal() ;
800
- }
801
- }
802
- COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
803
-
804
- /* === Kill dense and empty rows ======================================== */
805
-
806
- for (r = 0 ; r < n_row ; r++)
807
- {
808
- deg = Row [r].shared1.degree ;
809
- COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
810
- if (deg > dense_row_count || deg == 0)
811
- {
812
- /* kill a dense or empty row */
813
- Row[r].kill() ;
814
- --n_row2 ;
815
- }
816
- else
817
- {
818
- /* keep track of max degree of remaining rows */
819
- max_deg = numext::maxi(max_deg, deg) ;
820
- }
821
- }
822
- COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
823
-
824
- /* === Compute initial column scores ==================================== */
825
-
826
- /* At this point the row degrees are accurate. They reflect the number */
827
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
828
- /* Some "live" columns may contain only dead rows, however. These are */
829
- /* pruned in the code below. */
830
-
831
- /* now find the initial matlab score for each column */
832
- for (c = n_col-1 ; c >= 0 ; c--)
833
- {
834
- /* skip dead column */
835
- if (Col[c].is_dead())
836
- {
837
- continue ;
838
- }
839
- score = 0 ;
840
- cp = &A [Col [c].start] ;
841
- new_cp = cp ;
842
- cp_end = cp + Col [c].length ;
843
- while (cp < cp_end)
844
- {
845
- /* get a row */
846
- row = *cp++ ;
847
- /* skip if dead */
848
- if (Row[row].is_dead())
849
- {
850
- continue ;
851
- }
852
- /* compact the column */
853
- *new_cp++ = row ;
854
- /* add row's external degree */
855
- score += Row [row].shared1.degree - 1 ;
856
- /* guard against integer overflow */
857
- score = numext::mini(score, n_col) ;
858
- }
859
- /* determine pruned column length */
860
- col_length = (IndexType) (new_cp - &A [Col [c].start]) ;
861
- if (col_length == 0)
862
- {
863
- /* a newly-made null column (all rows in this col are "dense" */
864
- /* and have already been killed) */
865
- COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
866
- Col [c].shared2.order = --n_col2 ;
867
- Col[c].kill_principal() ;
868
- }
869
- else
870
- {
871
- /* set column length and set score */
872
- COLAMD_ASSERT (score >= 0) ;
873
- COLAMD_ASSERT (score <= n_col) ;
874
- Col [c].length = col_length ;
875
- Col [c].shared2.score = score ;
876
- }
877
- }
878
- COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
879
- n_col-n_col2)) ;
880
-
881
- /* At this point, all empty rows and columns are dead. All live columns */
882
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
883
- /* yet). Rows may contain dead columns, but all live rows contain at */
884
- /* least one live column. */
885
-
886
- /* === Initialize degree lists ========================================== */
887
-
888
-
889
- /* clear the hash buckets */
890
- for (c = 0 ; c <= n_col ; c++)
891
- {
892
- head [c] = Empty ;
893
- }
894
- min_score = n_col ;
895
- /* place in reverse order, so low column indices are at the front */
896
- /* of the lists. This is to encourage natural tie-breaking */
897
- for (c = n_col-1 ; c >= 0 ; c--)
898
- {
899
- /* only add principal columns to degree lists */
900
- if (Col[c].is_alive())
901
- {
902
- COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
903
- c, Col [c].shared2.score, min_score, n_col)) ;
904
-
905
- /* === Add columns score to DList =============================== */
906
-
907
- score = Col [c].shared2.score ;
908
-
909
- COLAMD_ASSERT (min_score >= 0) ;
910
- COLAMD_ASSERT (min_score <= n_col) ;
911
- COLAMD_ASSERT (score >= 0) ;
912
- COLAMD_ASSERT (score <= n_col) ;
913
- COLAMD_ASSERT (head [score] >= Empty) ;
914
-
915
- /* now add this column to dList at proper score location */
916
- next_col = head [score] ;
917
- Col [c].shared3.prev = Empty ;
918
- Col [c].shared4.degree_next = next_col ;
919
-
920
- /* if there already was a column with the same score, set its */
921
- /* previous pointer to this new column */
922
- if (next_col != Empty)
923
- {
924
- Col [next_col].shared3.prev = c ;
925
- }
926
- head [score] = c ;
927
-
928
- /* see if this score is less than current min */
929
- min_score = numext::mini(min_score, score) ;
930
-
931
-
932
- }
933
- }
934
-
935
-
936
- /* === Return number of remaining columns, and max row degree =========== */
937
-
938
- *p_n_col2 = n_col2 ;
939
- *p_n_row2 = n_row2 ;
940
- *p_max_deg = max_deg ;
941
- }
942
-
943
-
944
- /* ========================================================================== */
945
- /* === find_ordering ======================================================== */
946
- /* ========================================================================== */
947
-
948
- /*
949
- Order the principal columns of the supercolumn form of the matrix
950
- (no supercolumns on input). Uses a minimum approximate column minimum
951
- degree ordering method. Not user-callable.
952
- */
953
- template <typename IndexType>
954
- static IndexType find_ordering /* return the number of garbage collections */
955
- (
956
- /* === Parameters ======================================================= */
957
-
958
- IndexType n_row, /* number of rows of A */
959
- IndexType n_col, /* number of columns of A */
960
- IndexType Alen, /* size of A, 2*nnz + n_col or larger */
961
- RowStructure<IndexType> Row [], /* of size n_row+1 */
962
- ColStructure<IndexType> Col [], /* of size n_col+1 */
963
- IndexType A [], /* column form and row form of A */
964
- IndexType head [], /* of size n_col+1 */
965
- IndexType n_col2, /* Remaining columns to order */
966
- IndexType max_deg, /* Maximum row degree */
967
- IndexType pfree /* index of first free slot (2*nnz on entry) */
968
- )
969
- {
970
- /* === Local variables ================================================== */
971
-
972
- IndexType k ; /* current pivot ordering step */
973
- IndexType pivot_col ; /* current pivot column */
974
- IndexType *cp ; /* a column pointer */
975
- IndexType *rp ; /* a row pointer */
976
- IndexType pivot_row ; /* current pivot row */
977
- IndexType *new_cp ; /* modified column pointer */
978
- IndexType *new_rp ; /* modified row pointer */
979
- IndexType pivot_row_start ; /* pointer to start of pivot row */
980
- IndexType pivot_row_degree ; /* number of columns in pivot row */
981
- IndexType pivot_row_length ; /* number of supercolumns in pivot row */
982
- IndexType pivot_col_score ; /* score of pivot column */
983
- IndexType needed_memory ; /* free space needed for pivot row */
984
- IndexType *cp_end ; /* pointer to the end of a column */
985
- IndexType *rp_end ; /* pointer to the end of a row */
986
- IndexType row ; /* a row index */
987
- IndexType col ; /* a column index */
988
- IndexType max_score ; /* maximum possible score */
989
- IndexType cur_score ; /* score of current column */
990
- unsigned int hash ; /* hash value for supernode detection */
991
- IndexType head_column ; /* head of hash bucket */
992
- IndexType first_col ; /* first column in hash bucket */
993
- IndexType tag_mark ; /* marker value for mark array */
994
- IndexType row_mark ; /* Row [row].shared2.mark */
995
- IndexType set_difference ; /* set difference size of row with pivot row */
996
- IndexType min_score ; /* smallest column score */
997
- IndexType col_thickness ; /* "thickness" (no. of columns in a supercol) */
998
- IndexType max_mark ; /* maximum value of tag_mark */
999
- IndexType pivot_col_thickness ; /* number of columns represented by pivot col */
1000
- IndexType prev_col ; /* Used by Dlist operations. */
1001
- IndexType next_col ; /* Used by Dlist operations. */
1002
- IndexType ngarbage ; /* number of garbage collections performed */
1003
-
1004
-
1005
- /* === Initialization and clear mark ==================================== */
1006
-
1007
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
1008
- tag_mark = Colamd::clear_mark (n_row, Row) ;
1009
- min_score = 0 ;
1010
- ngarbage = 0 ;
1011
- COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
1012
-
1013
- /* === Order the columns ================================================ */
1014
-
1015
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
1016
- {
1017
-
1018
- /* === Select pivot column, and order it ============================ */
1019
-
1020
- /* make sure degree list isn't empty */
1021
- COLAMD_ASSERT (min_score >= 0) ;
1022
- COLAMD_ASSERT (min_score <= n_col) ;
1023
- COLAMD_ASSERT (head [min_score] >= Empty) ;
1024
-
1025
- /* get pivot column from head of minimum degree list */
1026
- while (min_score < n_col && head [min_score] == Empty)
1027
- {
1028
- min_score++ ;
1029
- }
1030
- pivot_col = head [min_score] ;
1031
- COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
1032
- next_col = Col [pivot_col].shared4.degree_next ;
1033
- head [min_score] = next_col ;
1034
- if (next_col != Empty)
1035
- {
1036
- Col [next_col].shared3.prev = Empty ;
1037
- }
1038
-
1039
- COLAMD_ASSERT (Col[pivot_col].is_alive()) ;
1040
- COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
1041
-
1042
- /* remember score for defrag check */
1043
- pivot_col_score = Col [pivot_col].shared2.score ;
1044
-
1045
- /* the pivot column is the kth column in the pivot order */
1046
- Col [pivot_col].shared2.order = k ;
1047
-
1048
- /* increment order count by column thickness */
1049
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
1050
- k += pivot_col_thickness ;
1051
- COLAMD_ASSERT (pivot_col_thickness > 0) ;
1052
-
1053
- /* === Garbage_collection, if necessary ============================= */
1054
-
1055
- needed_memory = numext::mini(pivot_col_score, n_col - k) ;
1056
- if (pfree + needed_memory >= Alen)
1057
- {
1058
- pfree = Colamd::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
1059
- ngarbage++ ;
1060
- /* after garbage collection we will have enough */
1061
- COLAMD_ASSERT (pfree + needed_memory < Alen) ;
1062
- /* garbage collection has wiped out the Row[].shared2.mark array */
1063
- tag_mark = Colamd::clear_mark (n_row, Row) ;
1064
-
1065
- }
1066
-
1067
- /* === Compute pivot row pattern ==================================== */
1068
-
1069
- /* get starting location for this new merged row */
1070
- pivot_row_start = pfree ;
1071
-
1072
- /* initialize new row counts to zero */
1073
- pivot_row_degree = 0 ;
1074
-
1075
- /* tag pivot column as having been visited so it isn't included */
1076
- /* in merged pivot row */
1077
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
1078
-
1079
- /* pivot row is the union of all rows in the pivot column pattern */
1080
- cp = &A [Col [pivot_col].start] ;
1081
- cp_end = cp + Col [pivot_col].length ;
1082
- while (cp < cp_end)
1083
- {
1084
- /* get a row */
1085
- row = *cp++ ;
1086
- COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", Row[row].is_alive(), row)) ;
1087
- /* skip if row is dead */
1088
- if (Row[row].is_dead())
1089
- {
1090
- continue ;
1091
- }
1092
- rp = &A [Row [row].start] ;
1093
- rp_end = rp + Row [row].length ;
1094
- while (rp < rp_end)
1095
- {
1096
- /* get a column */
1097
- col = *rp++ ;
1098
- /* add the column, if alive and untagged */
1099
- col_thickness = Col [col].shared1.thickness ;
1100
- if (col_thickness > 0 && Col[col].is_alive())
1101
- {
1102
- /* tag column in pivot row */
1103
- Col [col].shared1.thickness = -col_thickness ;
1104
- COLAMD_ASSERT (pfree < Alen) ;
1105
- /* place column in pivot row */
1106
- A [pfree++] = col ;
1107
- pivot_row_degree += col_thickness ;
1108
- }
1109
- }
1110
- }
1111
-
1112
- /* clear tag on pivot column */
1113
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
1114
- max_deg = numext::maxi(max_deg, pivot_row_degree) ;
1115
-
1116
-
1117
- /* === Kill all rows used to construct pivot row ==================== */
1118
-
1119
- /* also kill pivot row, temporarily */
1120
- cp = &A [Col [pivot_col].start] ;
1121
- cp_end = cp + Col [pivot_col].length ;
1122
- while (cp < cp_end)
1123
- {
1124
- /* may be killing an already dead row */
1125
- row = *cp++ ;
1126
- COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
1127
- Row[row].kill() ;
1128
- }
1129
-
1130
- /* === Select a row index to use as the new pivot row =============== */
1131
-
1132
- pivot_row_length = pfree - pivot_row_start ;
1133
- if (pivot_row_length > 0)
1134
- {
1135
- /* pick the "pivot" row arbitrarily (first row in col) */
1136
- pivot_row = A [Col [pivot_col].start] ;
1137
- COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
1138
- }
1139
- else
1140
- {
1141
- /* there is no pivot row, since it is of zero length */
1142
- pivot_row = Empty ;
1143
- COLAMD_ASSERT (pivot_row_length == 0) ;
1144
- }
1145
- COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
1146
-
1147
- /* === Approximate degree computation =============================== */
1148
-
1149
- /* Here begins the computation of the approximate degree. The column */
1150
- /* score is the sum of the pivot row "length", plus the size of the */
1151
- /* set differences of each row in the column minus the pattern of the */
1152
- /* pivot row itself. The column ("thickness") itself is also */
1153
- /* excluded from the column score (we thus use an approximate */
1154
- /* external degree). */
1155
-
1156
- /* The time taken by the following code (compute set differences, and */
1157
- /* add them up) is proportional to the size of the data structure */
1158
- /* being scanned - that is, the sum of the sizes of each column in */
1159
- /* the pivot row. Thus, the amortized time to compute a column score */
1160
- /* is proportional to the size of that column (where size, in this */
1161
- /* context, is the column "length", or the number of row indices */
1162
- /* in that column). The number of row indices in a column is */
1163
- /* monotonically non-decreasing, from the length of the original */
1164
- /* column on input to colamd. */
1165
-
1166
- /* === Compute set differences ====================================== */
1167
-
1168
- COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;
1169
-
1170
- /* pivot row is currently dead - it will be revived later. */
1171
-
1172
- COLAMD_DEBUG3 (("Pivot row: ")) ;
1173
- /* for each column in pivot row */
1174
- rp = &A [pivot_row_start] ;
1175
- rp_end = rp + pivot_row_length ;
1176
- while (rp < rp_end)
1177
- {
1178
- col = *rp++ ;
1179
- COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ;
1180
- COLAMD_DEBUG3 (("Col: %d\n", col)) ;
1181
-
1182
- /* clear tags used to construct pivot row pattern */
1183
- col_thickness = -Col [col].shared1.thickness ;
1184
- COLAMD_ASSERT (col_thickness > 0) ;
1185
- Col [col].shared1.thickness = col_thickness ;
1186
-
1187
- /* === Remove column from degree list =========================== */
1188
-
1189
- cur_score = Col [col].shared2.score ;
1190
- prev_col = Col [col].shared3.prev ;
1191
- next_col = Col [col].shared4.degree_next ;
1192
- COLAMD_ASSERT (cur_score >= 0) ;
1193
- COLAMD_ASSERT (cur_score <= n_col) ;
1194
- COLAMD_ASSERT (cur_score >= Empty) ;
1195
- if (prev_col == Empty)
1196
- {
1197
- head [cur_score] = next_col ;
1198
- }
1199
- else
1200
- {
1201
- Col [prev_col].shared4.degree_next = next_col ;
1202
- }
1203
- if (next_col != Empty)
1204
- {
1205
- Col [next_col].shared3.prev = prev_col ;
1206
- }
1207
-
1208
- /* === Scan the column ========================================== */
1209
-
1210
- cp = &A [Col [col].start] ;
1211
- cp_end = cp + Col [col].length ;
1212
- while (cp < cp_end)
1213
- {
1214
- /* get a row */
1215
- row = *cp++ ;
1216
- /* skip if dead */
1217
- if (Row[row].is_dead())
1218
- {
1219
- continue ;
1220
- }
1221
- row_mark = Row [row].shared2.mark ;
1222
- COLAMD_ASSERT (row != pivot_row) ;
1223
- set_difference = row_mark - tag_mark ;
1224
- /* check if the row has been seen yet */
1225
- if (set_difference < 0)
1226
- {
1227
- COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
1228
- set_difference = Row [row].shared1.degree ;
1229
- }
1230
- /* subtract column thickness from this row's set difference */
1231
- set_difference -= col_thickness ;
1232
- COLAMD_ASSERT (set_difference >= 0) ;
1233
- /* absorb this row if the set difference becomes zero */
1234
- if (set_difference == 0)
1235
- {
1236
- COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
1237
- Row[row].kill() ;
1238
- }
1239
- else
1240
- {
1241
- /* save the new mark */
1242
- Row [row].shared2.mark = set_difference + tag_mark ;
1243
- }
1244
- }
1245
- }
1246
-
1247
-
1248
- /* === Add up set differences for each column ======================= */
1249
-
1250
- COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;
1251
-
1252
- /* for each column in pivot row */
1253
- rp = &A [pivot_row_start] ;
1254
- rp_end = rp + pivot_row_length ;
1255
- while (rp < rp_end)
1256
- {
1257
- /* get a column */
1258
- col = *rp++ ;
1259
- COLAMD_ASSERT (Col[col].is_alive() && col != pivot_col) ;
1260
- hash = 0 ;
1261
- cur_score = 0 ;
1262
- cp = &A [Col [col].start] ;
1263
- /* compact the column */
1264
- new_cp = cp ;
1265
- cp_end = cp + Col [col].length ;
1266
-
1267
- COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
1268
-
1269
- while (cp < cp_end)
1270
- {
1271
- /* get a row */
1272
- row = *cp++ ;
1273
- COLAMD_ASSERT(row >= 0 && row < n_row) ;
1274
- /* skip if dead */
1275
- if (Row [row].is_dead())
1276
- {
1277
- continue ;
1278
- }
1279
- row_mark = Row [row].shared2.mark ;
1280
- COLAMD_ASSERT (row_mark > tag_mark) ;
1281
- /* compact the column */
1282
- *new_cp++ = row ;
1283
- /* compute hash function */
1284
- hash += row ;
1285
- /* add set difference */
1286
- cur_score += row_mark - tag_mark ;
1287
- /* integer overflow... */
1288
- cur_score = numext::mini(cur_score, n_col) ;
1289
- }
1290
-
1291
- /* recompute the column's length */
1292
- Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ;
1293
-
1294
- /* === Further mass elimination ================================= */
1295
-
1296
- if (Col [col].length == 0)
1297
- {
1298
- COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
1299
- /* nothing left but the pivot row in this column */
1300
- Col[col].kill_principal() ;
1301
- pivot_row_degree -= Col [col].shared1.thickness ;
1302
- COLAMD_ASSERT (pivot_row_degree >= 0) ;
1303
- /* order it */
1304
- Col [col].shared2.order = k ;
1305
- /* increment order count by column thickness */
1306
- k += Col [col].shared1.thickness ;
1307
- }
1308
- else
1309
- {
1310
- /* === Prepare for supercolumn detection ==================== */
1311
-
1312
- COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
1313
-
1314
- /* save score so far */
1315
- Col [col].shared2.score = cur_score ;
1316
-
1317
- /* add column to hash table, for supercolumn detection */
1318
- hash %= n_col + 1 ;
1319
-
1320
- COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
1321
- COLAMD_ASSERT (hash <= n_col) ;
1322
-
1323
- head_column = head [hash] ;
1324
- if (head_column > Empty)
1325
- {
1326
- /* degree list "hash" is non-empty, use prev (shared3) of */
1327
- /* first column in degree list as head of hash bucket */
1328
- first_col = Col [head_column].shared3.headhash ;
1329
- Col [head_column].shared3.headhash = col ;
1330
- }
1331
- else
1332
- {
1333
- /* degree list "hash" is empty, use head as hash bucket */
1334
- first_col = - (head_column + 2) ;
1335
- head [hash] = - (col + 2) ;
1336
- }
1337
- Col [col].shared4.hash_next = first_col ;
1338
-
1339
- /* save hash function in Col [col].shared3.hash */
1340
- Col [col].shared3.hash = (IndexType) hash ;
1341
- COLAMD_ASSERT (Col[col].is_alive()) ;
1342
- }
1343
- }
1344
-
1345
- /* The approximate external column degree is now computed. */
1346
-
1347
- /* === Supercolumn detection ======================================== */
1348
-
1349
- COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;
1350
-
1351
- Colamd::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;
1352
-
1353
- /* === Kill the pivotal column ====================================== */
1354
-
1355
- Col[pivot_col].kill_principal() ;
1356
-
1357
- /* === Clear mark =================================================== */
1358
-
1359
- tag_mark += (max_deg + 1) ;
1360
- if (tag_mark >= max_mark)
1361
- {
1362
- COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
1363
- tag_mark = Colamd::clear_mark (n_row, Row) ;
1364
- }
1365
-
1366
- /* === Finalize the new pivot row, and column scores ================ */
1367
-
1368
- COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;
1369
-
1370
- /* for each column in pivot row */
1371
- rp = &A [pivot_row_start] ;
1372
- /* compact the pivot row */
1373
- new_rp = rp ;
1374
- rp_end = rp + pivot_row_length ;
1375
- while (rp < rp_end)
1376
- {
1377
- col = *rp++ ;
1378
- /* skip dead columns */
1379
- if (Col[col].is_dead())
1380
- {
1381
- continue ;
1382
- }
1383
- *new_rp++ = col ;
1384
- /* add new pivot row to column */
1385
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
1386
-
1387
- /* retrieve score so far and add on pivot row's degree. */
1388
- /* (we wait until here for this in case the pivot */
1389
- /* row's degree was reduced due to mass elimination). */
1390
- cur_score = Col [col].shared2.score + pivot_row_degree ;
1391
-
1392
- /* calculate the max possible score as the number of */
1393
- /* external columns minus the 'k' value minus the */
1394
- /* columns thickness */
1395
- max_score = n_col - k - Col [col].shared1.thickness ;
1396
-
1397
- /* make the score the external degree of the union-of-rows */
1398
- cur_score -= Col [col].shared1.thickness ;
1399
-
1400
- /* make sure score is less or equal than the max score */
1401
- cur_score = numext::mini(cur_score, max_score) ;
1402
- COLAMD_ASSERT (cur_score >= 0) ;
1403
-
1404
- /* store updated score */
1405
- Col [col].shared2.score = cur_score ;
1406
-
1407
- /* === Place column back in degree list ========================= */
1408
-
1409
- COLAMD_ASSERT (min_score >= 0) ;
1410
- COLAMD_ASSERT (min_score <= n_col) ;
1411
- COLAMD_ASSERT (cur_score >= 0) ;
1412
- COLAMD_ASSERT (cur_score <= n_col) ;
1413
- COLAMD_ASSERT (head [cur_score] >= Empty) ;
1414
- next_col = head [cur_score] ;
1415
- Col [col].shared4.degree_next = next_col ;
1416
- Col [col].shared3.prev = Empty ;
1417
- if (next_col != Empty)
1418
- {
1419
- Col [next_col].shared3.prev = col ;
1420
- }
1421
- head [cur_score] = col ;
1422
-
1423
- /* see if this score is less than current min */
1424
- min_score = numext::mini(min_score, cur_score) ;
1425
-
1426
- }
1427
-
1428
- /* === Resurrect the new pivot row ================================== */
1429
-
1430
- if (pivot_row_degree > 0)
1431
- {
1432
- /* update pivot row length to reflect any cols that were killed */
1433
- /* during super-col detection and mass elimination */
1434
- Row [pivot_row].start = pivot_row_start ;
1435
- Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ;
1436
- Row [pivot_row].shared1.degree = pivot_row_degree ;
1437
- Row [pivot_row].shared2.mark = 0 ;
1438
- /* pivot row is no longer dead */
1439
- }
1440
- }
1441
-
1442
- /* === All principal columns have now been ordered ====================== */
1443
-
1444
- return (ngarbage) ;
1445
- }
1446
-
1447
-
1448
- /* ========================================================================== */
1449
- /* === order_children ======================================================= */
1450
- /* ========================================================================== */
1451
-
1452
- /*
1453
- The find_ordering routine has ordered all of the principal columns (the
1454
- representatives of the supercolumns). The non-principal columns have not
1455
- yet been ordered. This routine orders those columns by walking up the
1456
- parent tree (a column is a child of the column which absorbed it). The
1457
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
1458
- being the first column, and p [n_col-1] being the last. It doesn't look
1459
- like it at first glance, but be assured that this routine takes time linear
1460
- in the number of columns. Although not immediately obvious, the time
1461
- taken by this routine is O (n_col), that is, linear in the number of
1462
- columns. Not user-callable.
1463
- */
1464
- template <typename IndexType>
1465
- static inline void order_children
1466
- (
1467
- /* === Parameters ======================================================= */
1468
-
1469
- IndexType n_col, /* number of columns of A */
1470
- ColStructure<IndexType> Col [], /* of size n_col+1 */
1471
- IndexType p [] /* p [0 ... n_col-1] is the column permutation*/
1472
- )
1473
- {
1474
- /* === Local variables ================================================== */
1475
-
1476
- IndexType i ; /* loop counter for all columns */
1477
- IndexType c ; /* column index */
1478
- IndexType parent ; /* index of column's parent */
1479
- IndexType order ; /* column's order */
1480
-
1481
- /* === Order each non-principal column ================================== */
1482
-
1483
- for (i = 0 ; i < n_col ; i++)
1484
- {
1485
- /* find an un-ordered non-principal column */
1486
- COLAMD_ASSERT (col_is_dead(Col, i)) ;
1487
- if (!Col[i].is_dead_principal() && Col [i].shared2.order == Empty)
1488
- {
1489
- parent = i ;
1490
- /* once found, find its principal parent */
1491
- do
1492
- {
1493
- parent = Col [parent].shared1.parent ;
1494
- } while (!Col[parent].is_dead_principal()) ;
1495
-
1496
- /* now, order all un-ordered non-principal columns along path */
1497
- /* to this parent. collapse tree at the same time */
1498
- c = i ;
1499
- /* get order of parent */
1500
- order = Col [parent].shared2.order ;
1501
-
1502
- do
1503
- {
1504
- COLAMD_ASSERT (Col [c].shared2.order == Empty) ;
1505
-
1506
- /* order this column */
1507
- Col [c].shared2.order = order++ ;
1508
- /* collaps tree */
1509
- Col [c].shared1.parent = parent ;
1510
-
1511
- /* get immediate parent of this column */
1512
- c = Col [c].shared1.parent ;
1513
-
1514
- /* continue until we hit an ordered column. There are */
1515
- /* guaranteed not to be anymore unordered columns */
1516
- /* above an ordered column */
1517
- } while (Col [c].shared2.order == Empty) ;
1518
-
1519
- /* re-order the super_col parent to largest order for this group */
1520
- Col [parent].shared2.order = order ;
1521
- }
1522
- }
1523
-
1524
- /* === Generate the permutation ========================================= */
1525
-
1526
- for (c = 0 ; c < n_col ; c++)
1527
- {
1528
- p [Col [c].shared2.order] = c ;
1529
- }
1530
- }
1531
-
1532
-
1533
- /* ========================================================================== */
1534
- /* === detect_super_cols ==================================================== */
1535
- /* ========================================================================== */
1536
-
1537
- /*
1538
- Detects supercolumns by finding matches between columns in the hash buckets.
1539
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
1540
- The columns under consideration are currently *not* in the degree lists,
1541
- and have already been placed in the hash buckets.
1542
-
1543
- The hash bucket for columns whose hash function is equal to h is stored
1544
- as follows:
1545
-
1546
- if head [h] is >= 0, then head [h] contains a degree list, so:
1547
-
1548
- head [h] is the first column in degree bucket h.
1549
- Col [head [h]].headhash gives the first column in hash bucket h.
1550
-
1551
- otherwise, the degree list is empty, and:
1552
-
1553
- -(head [h] + 2) is the first column in hash bucket h.
1554
-
1555
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
1556
- column" pointer. Col [c].shared3.hash is used instead as the hash number
1557
- for that column. The value of Col [c].shared4.hash_next is the next column
1558
- in the same hash bucket.
1559
-
1560
- Assuming no, or "few" hash collisions, the time taken by this routine is
1561
- linear in the sum of the sizes (lengths) of each column whose score has
1562
- just been computed in the approximate degree computation.
1563
- Not user-callable.
1564
- */
1565
- template <typename IndexType>
1566
- static void detect_super_cols
1567
- (
1568
- /* === Parameters ======================================================= */
1569
-
1570
- ColStructure<IndexType> Col [], /* of size n_col+1 */
1571
- IndexType A [], /* row indices of A */
1572
- IndexType head [], /* head of degree lists and hash buckets */
1573
- IndexType row_start, /* pointer to set of columns to check */
1574
- IndexType row_length /* number of columns to check */
1575
- )
1576
- {
1577
- /* === Local variables ================================================== */
1578
-
1579
- IndexType hash ; /* hash value for a column */
1580
- IndexType *rp ; /* pointer to a row */
1581
- IndexType c ; /* a column index */
1582
- IndexType super_c ; /* column index of the column to absorb into */
1583
- IndexType *cp1 ; /* column pointer for column super_c */
1584
- IndexType *cp2 ; /* column pointer for column c */
1585
- IndexType length ; /* length of column super_c */
1586
- IndexType prev_c ; /* column preceding c in hash bucket */
1587
- IndexType i ; /* loop counter */
1588
- IndexType *rp_end ; /* pointer to the end of the row */
1589
- IndexType col ; /* a column index in the row to check */
1590
- IndexType head_column ; /* first column in hash bucket or degree list */
1591
- IndexType first_col ; /* first column in hash bucket */
1592
-
1593
- /* === Consider each column in the row ================================== */
1594
-
1595
- rp = &A [row_start] ;
1596
- rp_end = rp + row_length ;
1597
- while (rp < rp_end)
1598
- {
1599
- col = *rp++ ;
1600
- if (Col[col].is_dead())
1601
- {
1602
- continue ;
1603
- }
1604
-
1605
- /* get hash number for this column */
1606
- hash = Col [col].shared3.hash ;
1607
- COLAMD_ASSERT (hash <= n_col) ;
1608
-
1609
- /* === Get the first column in this hash bucket ===================== */
1610
-
1611
- head_column = head [hash] ;
1612
- if (head_column > Empty)
1613
- {
1614
- first_col = Col [head_column].shared3.headhash ;
1615
- }
1616
- else
1617
- {
1618
- first_col = - (head_column + 2) ;
1619
- }
1620
-
1621
- /* === Consider each column in the hash bucket ====================== */
1622
-
1623
- for (super_c = first_col ; super_c != Empty ;
1624
- super_c = Col [super_c].shared4.hash_next)
1625
- {
1626
- COLAMD_ASSERT (Col [super_c].is_alive()) ;
1627
- COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
1628
- length = Col [super_c].length ;
1629
-
1630
- /* prev_c is the column preceding column c in the hash bucket */
1631
- prev_c = super_c ;
1632
-
1633
- /* === Compare super_c with all columns after it ================ */
1634
-
1635
- for (c = Col [super_c].shared4.hash_next ;
1636
- c != Empty ; c = Col [c].shared4.hash_next)
1637
- {
1638
- COLAMD_ASSERT (c != super_c) ;
1639
- COLAMD_ASSERT (Col[c].is_alive()) ;
1640
- COLAMD_ASSERT (Col [c].shared3.hash == hash) ;
1641
-
1642
- /* not identical if lengths or scores are different */
1643
- if (Col [c].length != length ||
1644
- Col [c].shared2.score != Col [super_c].shared2.score)
1645
- {
1646
- prev_c = c ;
1647
- continue ;
1648
- }
1649
-
1650
- /* compare the two columns */
1651
- cp1 = &A [Col [super_c].start] ;
1652
- cp2 = &A [Col [c].start] ;
1653
-
1654
- for (i = 0 ; i < length ; i++)
1655
- {
1656
- /* the columns are "clean" (no dead rows) */
1657
- COLAMD_ASSERT ( cp1->is_alive() );
1658
- COLAMD_ASSERT ( cp2->is_alive() );
1659
- /* row indices will same order for both supercols, */
1660
- /* no gather scatter necessary */
1661
- if (*cp1++ != *cp2++)
1662
- {
1663
- break ;
1664
- }
1665
- }
1666
-
1667
- /* the two columns are different if the for-loop "broke" */
1668
- if (i != length)
1669
- {
1670
- prev_c = c ;
1671
- continue ;
1672
- }
1673
-
1674
- /* === Got it! two columns are identical =================== */
1675
-
1676
- COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
1677
-
1678
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
1679
- Col [c].shared1.parent = super_c ;
1680
- Col[c].kill_non_principal() ;
1681
- /* order c later, in order_children() */
1682
- Col [c].shared2.order = Empty ;
1683
- /* remove c from hash bucket */
1684
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
1685
- }
1686
- }
1687
-
1688
- /* === Empty this hash bucket ======================================= */
1689
-
1690
- if (head_column > Empty)
1691
- {
1692
- /* corresponding degree list "hash" is not empty */
1693
- Col [head_column].shared3.headhash = Empty ;
1694
- }
1695
- else
1696
- {
1697
- /* corresponding degree list "hash" is empty */
1698
- head [hash] = Empty ;
1699
- }
1700
- }
1701
- }
1702
-
1703
-
1704
- /* ========================================================================== */
1705
- /* === garbage_collection =================================================== */
1706
- /* ========================================================================== */
1707
-
1708
- /*
1709
- Defragments and compacts columns and rows in the workspace A. Used when
1710
- all available memory has been used while performing row merging. Returns
1711
- the index of the first free position in A, after garbage collection. The
1712
- time taken by this routine is linear is the size of the array A, which is
1713
- itself linear in the number of nonzeros in the input matrix.
1714
- Not user-callable.
1715
- */
1716
- template <typename IndexType>
1717
- static IndexType garbage_collection /* returns the new value of pfree */
1718
- (
1719
- /* === Parameters ======================================================= */
1720
-
1721
- IndexType n_row, /* number of rows */
1722
- IndexType n_col, /* number of columns */
1723
- RowStructure<IndexType> Row [], /* row info */
1724
- ColStructure<IndexType> Col [], /* column info */
1725
- IndexType A [], /* A [0 ... Alen-1] holds the matrix */
1726
- IndexType *pfree /* &A [0] ... pfree is in use */
1727
- )
1728
- {
1729
- /* === Local variables ================================================== */
1730
-
1731
- IndexType *psrc ; /* source pointer */
1732
- IndexType *pdest ; /* destination pointer */
1733
- IndexType j ; /* counter */
1734
- IndexType r ; /* a row index */
1735
- IndexType c ; /* a column index */
1736
- IndexType length ; /* length of a row or column */
1737
-
1738
- /* === Defragment the columns =========================================== */
1739
-
1740
- pdest = &A[0] ;
1741
- for (c = 0 ; c < n_col ; c++)
1742
- {
1743
- if (Col[c].is_alive())
1744
- {
1745
- psrc = &A [Col [c].start] ;
1746
-
1747
- /* move and compact the column */
1748
- COLAMD_ASSERT (pdest <= psrc) ;
1749
- Col [c].start = (IndexType) (pdest - &A [0]) ;
1750
- length = Col [c].length ;
1751
- for (j = 0 ; j < length ; j++)
1752
- {
1753
- r = *psrc++ ;
1754
- if (Row[r].is_alive())
1755
- {
1756
- *pdest++ = r ;
1757
- }
1758
- }
1759
- Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ;
1760
- }
1761
- }
1762
-
1763
- /* === Prepare to defragment the rows =================================== */
1764
-
1765
- for (r = 0 ; r < n_row ; r++)
1766
- {
1767
- if (Row[r].is_alive())
1768
- {
1769
- if (Row [r].length == 0)
1770
- {
1771
- /* this row is of zero length. cannot compact it, so kill it */
1772
- COLAMD_DEBUG3 (("Defrag row kill\n")) ;
1773
- Row[r].kill() ;
1774
- }
1775
- else
1776
- {
1777
- /* save first column index in Row [r].shared2.first_column */
1778
- psrc = &A [Row [r].start] ;
1779
- Row [r].shared2.first_column = *psrc ;
1780
- COLAMD_ASSERT (Row[r].is_alive()) ;
1781
- /* flag the start of the row with the one's complement of row */
1782
- *psrc = ones_complement(r) ;
1783
-
1784
- }
1785
- }
1786
- }
1787
-
1788
- /* === Defragment the rows ============================================== */
1789
-
1790
- psrc = pdest ;
1791
- while (psrc < pfree)
1792
- {
1793
- /* find a negative number ... the start of a row */
1794
- if (*psrc++ < 0)
1795
- {
1796
- psrc-- ;
1797
- /* get the row index */
1798
- r = ones_complement(*psrc) ;
1799
- COLAMD_ASSERT (r >= 0 && r < n_row) ;
1800
- /* restore first column index */
1801
- *psrc = Row [r].shared2.first_column ;
1802
- COLAMD_ASSERT (Row[r].is_alive()) ;
1803
-
1804
- /* move and compact the row */
1805
- COLAMD_ASSERT (pdest <= psrc) ;
1806
- Row [r].start = (IndexType) (pdest - &A [0]) ;
1807
- length = Row [r].length ;
1808
- for (j = 0 ; j < length ; j++)
1809
- {
1810
- c = *psrc++ ;
1811
- if (Col[c].is_alive())
1812
- {
1813
- *pdest++ = c ;
1814
- }
1815
- }
1816
- Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ;
1817
-
1818
- }
1819
- }
1820
- /* ensure we found all the rows */
1821
- COLAMD_ASSERT (debug_rows == 0) ;
1822
-
1823
- /* === Return the new value of pfree ==================================== */
1824
-
1825
- return ((IndexType) (pdest - &A [0])) ;
1826
- }
1827
-
1828
-
1829
- /* ========================================================================== */
1830
- /* === clear_mark =========================================================== */
1831
- /* ========================================================================== */
1832
-
1833
- /*
1834
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
1835
- Return value is the new tag_mark. Not user-callable.
1836
- */
1837
- template <typename IndexType>
1838
- static inline IndexType clear_mark /* return the new value for tag_mark */
1839
- (
1840
- /* === Parameters ======================================================= */
1841
-
1842
- IndexType n_row, /* number of rows in A */
1843
- RowStructure<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
1844
- )
1845
- {
1846
- /* === Local variables ================================================== */
1847
-
1848
- IndexType r ;
1849
-
1850
- for (r = 0 ; r < n_row ; r++)
1851
- {
1852
- if (Row[r].is_alive())
1853
- {
1854
- Row [r].shared2.mark = 0 ;
1855
- }
1856
- }
1857
- return (1) ;
1858
- }
1859
-
1860
- } // namespace Colamd
1861
-
1862
- } // namespace internal
1863
- #endif