sequenzo 0.1.18__cp310-cp310-win_amd64.whl → 0.1.19__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (396) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp310-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp310-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +107 -5
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp310-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp310-win_amd64.pyd +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  13. sequenzo/dissimilarity_measures/utils/seqconc.cp310-win_amd64.pyd +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  15. sequenzo/dissimilarity_measures/utils/seqdss.cp310-win_amd64.pyd +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  17. sequenzo/dissimilarity_measures/utils/seqdur.cp310-win_amd64.pyd +0 -0
  18. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  19. sequenzo/dissimilarity_measures/utils/seqlength.cp310-win_amd64.pyd +0 -0
  20. sequenzo/multidomain/cat.py +0 -53
  21. sequenzo/multidomain/idcd.py +0 -1
  22. sequenzo/openmp_setup.py +233 -0
  23. sequenzo/visualization/plot_transition_matrix.py +21 -22
  24. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  25. sequenzo-0.1.19.dist-info/RECORD +272 -0
  26. sequenzo/dissimilarity_measures/setup.py +0 -35
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  169. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  171. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  172. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  173. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  174. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  175. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  176. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  177. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  178. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  179. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  180. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  181. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  182. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  183. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  184. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  185. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  186. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  187. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  188. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  189. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  190. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  191. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  192. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  197. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  198. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  199. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  200. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  201. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  202. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  203. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  206. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  207. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  208. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  209. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  210. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  211. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  212. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  213. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  214. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  215. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  216. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  217. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  218. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  219. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  220. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  221. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  222. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  223. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  393. sequenzo-0.1.18.dist-info/RECORD +0 -638
  394. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  395. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  396. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1959 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_BESSEL_FUNCTIONS_H
11
- #define EIGEN_BESSEL_FUNCTIONS_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
- // Parts of this code are based on the Cephes Math Library.
17
- //
18
- // Cephes Math Library Release 2.8: June, 2000
19
- // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20
- //
21
- // Permission has been kindly provided by the original author
22
- // to incorporate the Cephes software into the Eigen codebase:
23
- //
24
- // From: Stephen Moshier
25
- // To: Eugene Brevdo
26
- // Subject: Re: Permission to wrap several cephes functions in Eigen
27
- //
28
- // Hello Eugene,
29
- //
30
- // Thank you for writing.
31
- //
32
- // If your licensing is similar to BSD, the formal way that has been
33
- // handled is simply to add a statement to the effect that you are incorporating
34
- // the Cephes software by permission of the author.
35
- //
36
- // Good luck with your project,
37
- // Steve
38
-
39
-
40
- /****************************************************************************
41
- * Implementation of Bessel function, based on Cephes *
42
- ****************************************************************************/
43
-
44
- template <typename Scalar>
45
- struct bessel_i0e_retval {
46
- typedef Scalar type;
47
- };
48
-
49
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50
- struct generic_i0e {
51
- EIGEN_DEVICE_FUNC
52
- static EIGEN_STRONG_INLINE T run(const T&) {
53
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54
- THIS_TYPE_IS_NOT_SUPPORTED);
55
- return ScalarType(0);
56
- }
57
- };
58
-
59
- template <typename T>
60
- struct generic_i0e<T, float> {
61
- EIGEN_DEVICE_FUNC
62
- static EIGEN_STRONG_INLINE T run(const T& x) {
63
- /* i0ef.c
64
- *
65
- * Modified Bessel function of order zero,
66
- * exponentially scaled
67
- *
68
- *
69
- *
70
- * SYNOPSIS:
71
- *
72
- * float x, y, i0ef();
73
- *
74
- * y = i0ef( x );
75
- *
76
- *
77
- *
78
- * DESCRIPTION:
79
- *
80
- * Returns exponentially scaled modified Bessel function
81
- * of order zero of the argument.
82
- *
83
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84
- *
85
- *
86
- *
87
- * ACCURACY:
88
- *
89
- * Relative error:
90
- * arithmetic domain # trials peak rms
91
- * IEEE 0,30 100000 3.7e-7 7.0e-8
92
- * See i0f().
93
- *
94
- */
95
-
96
- const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97
- -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98
- -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99
- -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100
- -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101
- -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102
- -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103
- -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104
- -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
-
106
- const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107
- 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108
- 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109
- 8.04490411014108831608E-1f};
110
- T y = pabs(x);
111
- T y_le_eight = internal::pchebevl<T, 18>::run(
112
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113
- T y_gt_eight = pmul(
114
- internal::pchebevl<T, 7>::run(
115
- psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116
- prsqrt(y));
117
- // TODO: Perhaps instead check whether all packet elements are in
118
- // [-8, 8] and evaluate a branch based off of that. It's possible
119
- // in practice most elements are in this region.
120
- return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121
- }
122
- };
123
-
124
- template <typename T>
125
- struct generic_i0e<T, double> {
126
- EIGEN_DEVICE_FUNC
127
- static EIGEN_STRONG_INLINE T run(const T& x) {
128
- /* i0e.c
129
- *
130
- * Modified Bessel function of order zero,
131
- * exponentially scaled
132
- *
133
- *
134
- *
135
- * SYNOPSIS:
136
- *
137
- * double x, y, i0e();
138
- *
139
- * y = i0e( x );
140
- *
141
- *
142
- *
143
- * DESCRIPTION:
144
- *
145
- * Returns exponentially scaled modified Bessel function
146
- * of order zero of the argument.
147
- *
148
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149
- *
150
- *
151
- *
152
- * ACCURACY:
153
- *
154
- * Relative error:
155
- * arithmetic domain # trials peak rms
156
- * IEEE 0,30 30000 5.4e-16 1.2e-16
157
- * See i0().
158
- *
159
- */
160
-
161
- const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176
- const double B[] = {
177
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189
- 8.04490411014108831608E-1};
190
- T y = pabs(x);
191
- T y_le_eight = internal::pchebevl<T, 30>::run(
192
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193
- T y_gt_eight = pmul(
194
- internal::pchebevl<T, 25>::run(
195
- psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196
- prsqrt(y));
197
- // TODO: Perhaps instead check whether all packet elements are in
198
- // [-8, 8] and evaluate a branch based off of that. It's possible
199
- // in practice most elements are in this region.
200
- return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201
- }
202
- };
203
-
204
- template <typename T>
205
- struct bessel_i0e_impl {
206
- EIGEN_DEVICE_FUNC
207
- static EIGEN_STRONG_INLINE T run(const T x) {
208
- return generic_i0e<T>::run(x);
209
- }
210
- };
211
-
212
- template <typename Scalar>
213
- struct bessel_i0_retval {
214
- typedef Scalar type;
215
- };
216
-
217
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218
- struct generic_i0 {
219
- EIGEN_DEVICE_FUNC
220
- static EIGEN_STRONG_INLINE T run(const T& x) {
221
- return pmul(
222
- pexp(pabs(x)),
223
- generic_i0e<T, ScalarType>::run(x));
224
- }
225
- };
226
-
227
- template <typename T>
228
- struct bessel_i0_impl {
229
- EIGEN_DEVICE_FUNC
230
- static EIGEN_STRONG_INLINE T run(const T x) {
231
- return generic_i0<T>::run(x);
232
- }
233
- };
234
-
235
- template <typename Scalar>
236
- struct bessel_i1e_retval {
237
- typedef Scalar type;
238
- };
239
-
240
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241
- struct generic_i1e {
242
- EIGEN_DEVICE_FUNC
243
- static EIGEN_STRONG_INLINE T run(const T&) {
244
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245
- THIS_TYPE_IS_NOT_SUPPORTED);
246
- return ScalarType(0);
247
- }
248
- };
249
-
250
- template <typename T>
251
- struct generic_i1e<T, float> {
252
- EIGEN_DEVICE_FUNC
253
- static EIGEN_STRONG_INLINE T run(const T& x) {
254
- /* i1ef.c
255
- *
256
- * Modified Bessel function of order one,
257
- * exponentially scaled
258
- *
259
- *
260
- *
261
- * SYNOPSIS:
262
- *
263
- * float x, y, i1ef();
264
- *
265
- * y = i1ef( x );
266
- *
267
- *
268
- *
269
- * DESCRIPTION:
270
- *
271
- * Returns exponentially scaled modified Bessel function
272
- * of order one of the argument.
273
- *
274
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275
- *
276
- *
277
- *
278
- * ACCURACY:
279
- *
280
- * Relative error:
281
- * arithmetic domain # trials peak rms
282
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
283
- * See i1().
284
- *
285
- */
286
- const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287
- 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288
- 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289
- 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290
- 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291
- 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292
- 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293
- 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294
- 2.52587186443633654823E-1f};
295
-
296
- const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297
- -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298
- -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299
- 7.78576235018280120474E-1f};
300
-
301
-
302
- T y = pabs(x);
303
- T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305
- T y_gt_eight = pmul(
306
- internal::pchebevl<T, 7>::run(
307
- psub(pdiv(pset1<T>(32.0f), y),
308
- pset1<T>(2.0f)), B),
309
- prsqrt(y));
310
- // TODO: Perhaps instead check whether all packet elements are in
311
- // [-8, 8] and evaluate a branch based off of that. It's possible
312
- // in practice most elements are in this region.
313
- y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314
- return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315
- }
316
- };
317
-
318
- template <typename T>
319
- struct generic_i1e<T, double> {
320
- EIGEN_DEVICE_FUNC
321
- static EIGEN_STRONG_INLINE T run(const T& x) {
322
- /* i1e.c
323
- *
324
- * Modified Bessel function of order one,
325
- * exponentially scaled
326
- *
327
- *
328
- *
329
- * SYNOPSIS:
330
- *
331
- * double x, y, i1e();
332
- *
333
- * y = i1e( x );
334
- *
335
- *
336
- *
337
- * DESCRIPTION:
338
- *
339
- * Returns exponentially scaled modified Bessel function
340
- * of order one of the argument.
341
- *
342
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343
- *
344
- *
345
- *
346
- * ACCURACY:
347
- *
348
- * Relative error:
349
- * arithmetic domain # trials peak rms
350
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
351
- * See i1().
352
- *
353
- */
354
- const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368
- 2.52587186443633654823E-1};
369
- const double B[] = {
370
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382
- 7.78576235018280120474E-1};
383
- T y = pabs(x);
384
- T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386
- T y_gt_eight = pmul(
387
- internal::pchebevl<T, 25>::run(
388
- psub(pdiv(pset1<T>(32.0), y),
389
- pset1<T>(2.0)), B),
390
- prsqrt(y));
391
- // TODO: Perhaps instead check whether all packet elements are in
392
- // [-8, 8] and evaluate a branch based off of that. It's possible
393
- // in practice most elements are in this region.
394
- y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395
- return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396
- }
397
- };
398
-
399
- template <typename T>
400
- struct bessel_i1e_impl {
401
- EIGEN_DEVICE_FUNC
402
- static EIGEN_STRONG_INLINE T run(const T x) {
403
- return generic_i1e<T>::run(x);
404
- }
405
- };
406
-
407
- template <typename T>
408
- struct bessel_i1_retval {
409
- typedef T type;
410
- };
411
-
412
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413
- struct generic_i1 {
414
- EIGEN_DEVICE_FUNC
415
- static EIGEN_STRONG_INLINE T run(const T& x) {
416
- return pmul(
417
- pexp(pabs(x)),
418
- generic_i1e<T, ScalarType>::run(x));
419
- }
420
- };
421
-
422
- template <typename T>
423
- struct bessel_i1_impl {
424
- EIGEN_DEVICE_FUNC
425
- static EIGEN_STRONG_INLINE T run(const T x) {
426
- return generic_i1<T>::run(x);
427
- }
428
- };
429
-
430
- template <typename T>
431
- struct bessel_k0e_retval {
432
- typedef T type;
433
- };
434
-
435
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436
- struct generic_k0e {
437
- EIGEN_DEVICE_FUNC
438
- static EIGEN_STRONG_INLINE T run(const T&) {
439
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440
- THIS_TYPE_IS_NOT_SUPPORTED);
441
- return ScalarType(0);
442
- }
443
- };
444
-
445
- template <typename T>
446
- struct generic_k0e<T, float> {
447
- EIGEN_DEVICE_FUNC
448
- static EIGEN_STRONG_INLINE T run(const T& x) {
449
- /* k0ef.c
450
- * Modified Bessel function, third kind, order zero,
451
- * exponentially scaled
452
- *
453
- *
454
- *
455
- * SYNOPSIS:
456
- *
457
- * float x, y, k0ef();
458
- *
459
- * y = k0ef( x );
460
- *
461
- *
462
- *
463
- * DESCRIPTION:
464
- *
465
- * Returns exponentially scaled modified Bessel function
466
- * of the third kind of order zero of the argument.
467
- *
468
- *
469
- *
470
- * ACCURACY:
471
- *
472
- * Relative error:
473
- * arithmetic domain # trials peak rms
474
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
475
- * See k0().
476
- *
477
- */
478
-
479
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482
- -5.35327393233902768720E-1f};
483
-
484
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490
- const T two = pset1<T>(2.0);
491
- T x_le_two = internal::pchebevl<T, 7>::run(
492
- pmadd(x, x, pset1<T>(-2.0)), A);
493
- x_le_two = pmadd(
494
- generic_i0<T, float>::run(x), pnegate(
495
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
496
- x_le_two = pmul(pexp(x), x_le_two);
497
- T x_gt_two = pmul(
498
- internal::pchebevl<T, 10>::run(
499
- psub(pdiv(pset1<T>(8.0), x), two), B),
500
- prsqrt(x));
501
- return pselect(
502
- pcmp_le(x, pset1<T>(0.0)),
503
- MAXNUM,
504
- pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505
- }
506
- };
507
-
508
- template <typename T>
509
- struct generic_k0e<T, double> {
510
- EIGEN_DEVICE_FUNC
511
- static EIGEN_STRONG_INLINE T run(const T& x) {
512
- /* k0e.c
513
- * Modified Bessel function, third kind, order zero,
514
- * exponentially scaled
515
- *
516
- *
517
- *
518
- * SYNOPSIS:
519
- *
520
- * double x, y, k0e();
521
- *
522
- * y = k0e( x );
523
- *
524
- *
525
- *
526
- * DESCRIPTION:
527
- *
528
- * Returns exponentially scaled modified Bessel function
529
- * of the third kind of order zero of the argument.
530
- *
531
- *
532
- *
533
- * ACCURACY:
534
- *
535
- * Relative error:
536
- * arithmetic domain # trials peak rms
537
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
538
- * See k0().
539
- *
540
- */
541
-
542
- const double A[] = {
543
- 1.37446543561352307156E-16,
544
- 4.25981614279661018399E-14,
545
- 1.03496952576338420167E-11,
546
- 1.90451637722020886025E-9,
547
- 2.53479107902614945675E-7,
548
- 2.28621210311945178607E-5,
549
- 1.26461541144692592338E-3,
550
- 3.59799365153615016266E-2,
551
- 3.44289899924628486886E-1,
552
- -5.35327393233902768720E-1};
553
- const double B[] = {
554
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566
- 2.44030308206595545468E0
567
- };
568
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569
- const T two = pset1<T>(2.0);
570
- T x_le_two = internal::pchebevl<T, 10>::run(
571
- pmadd(x, x, pset1<T>(-2.0)), A);
572
- x_le_two = pmadd(
573
- generic_i0<T, double>::run(x), pmul(
574
- pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575
- x_le_two = pmul(pexp(x), x_le_two);
576
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577
- T x_gt_two = pmul(
578
- internal::pchebevl<T, 25>::run(
579
- psub(pdiv(pset1<T>(8.0), x), two), B),
580
- prsqrt(x));
581
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582
- }
583
- };
584
-
585
- template <typename T>
586
- struct bessel_k0e_impl {
587
- EIGEN_DEVICE_FUNC
588
- static EIGEN_STRONG_INLINE T run(const T x) {
589
- return generic_k0e<T>::run(x);
590
- }
591
- };
592
-
593
- template <typename T>
594
- struct bessel_k0_retval {
595
- typedef T type;
596
- };
597
-
598
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599
- struct generic_k0 {
600
- EIGEN_DEVICE_FUNC
601
- static EIGEN_STRONG_INLINE T run(const T&) {
602
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603
- THIS_TYPE_IS_NOT_SUPPORTED);
604
- return ScalarType(0);
605
- }
606
- };
607
-
608
- template <typename T>
609
- struct generic_k0<T, float> {
610
- EIGEN_DEVICE_FUNC
611
- static EIGEN_STRONG_INLINE T run(const T& x) {
612
- /* k0f.c
613
- * Modified Bessel function, third kind, order zero
614
- *
615
- *
616
- *
617
- * SYNOPSIS:
618
- *
619
- * float x, y, k0f();
620
- *
621
- * y = k0f( x );
622
- *
623
- *
624
- *
625
- * DESCRIPTION:
626
- *
627
- * Returns modified Bessel function of the third kind
628
- * of order zero of the argument.
629
- *
630
- * The range is partitioned into the two intervals [0,8] and
631
- * (8, infinity). Chebyshev polynomial expansions are employed
632
- * in each interval.
633
- *
634
- *
635
- *
636
- * ACCURACY:
637
- *
638
- * Tested at 2000 random points between 0 and 8. Peak absolute
639
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640
- * Relative error:
641
- * arithmetic domain # trials peak rms
642
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
643
- *
644
- * ERROR MESSAGES:
645
- *
646
- * message condition value returned
647
- * K0 domain x <= 0 MAXNUM
648
- *
649
- */
650
-
651
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654
- -5.35327393233902768720E-1f};
655
-
656
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662
- const T two = pset1<T>(2.0);
663
- T x_le_two = internal::pchebevl<T, 7>::run(
664
- pmadd(x, x, pset1<T>(-2.0)), A);
665
- x_le_two = pmadd(
666
- generic_i0<T, float>::run(x), pnegate(
667
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
668
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669
- T x_gt_two = pmul(
670
- pmul(
671
- pexp(pnegate(x)),
672
- internal::pchebevl<T, 10>::run(
673
- psub(pdiv(pset1<T>(8.0), x), two), B)),
674
- prsqrt(x));
675
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676
- }
677
- };
678
-
679
- template <typename T>
680
- struct generic_k0<T, double> {
681
- EIGEN_DEVICE_FUNC
682
- static EIGEN_STRONG_INLINE T run(const T& x) {
683
- /*
684
- *
685
- * Modified Bessel function, third kind, order zero,
686
- * exponentially scaled
687
- *
688
- *
689
- *
690
- * SYNOPSIS:
691
- *
692
- * double x, y, k0();
693
- *
694
- * y = k0( x );
695
- *
696
- *
697
- *
698
- * DESCRIPTION:
699
- *
700
- * Returns exponentially scaled modified Bessel function
701
- * of the third kind of order zero of the argument.
702
- *
703
- *
704
- *
705
- * ACCURACY:
706
- *
707
- * Relative error:
708
- * arithmetic domain # trials peak rms
709
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
710
- * See k0().
711
- *
712
- */
713
- const double A[] = {
714
- 1.37446543561352307156E-16,
715
- 4.25981614279661018399E-14,
716
- 1.03496952576338420167E-11,
717
- 1.90451637722020886025E-9,
718
- 2.53479107902614945675E-7,
719
- 2.28621210311945178607E-5,
720
- 1.26461541144692592338E-3,
721
- 3.59799365153615016266E-2,
722
- 3.44289899924628486886E-1,
723
- -5.35327393233902768720E-1};
724
- const double B[] = {
725
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737
- 2.44030308206595545468E0
738
- };
739
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740
- const T two = pset1<T>(2.0);
741
- T x_le_two = internal::pchebevl<T, 10>::run(
742
- pmadd(x, x, pset1<T>(-2.0)), A);
743
- x_le_two = pmadd(
744
- generic_i0<T, double>::run(x), pnegate(
745
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
746
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747
- T x_gt_two = pmul(
748
- pmul(
749
- pexp(-x),
750
- internal::pchebevl<T, 25>::run(
751
- psub(pdiv(pset1<T>(8.0), x), two), B)),
752
- prsqrt(x));
753
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754
- }
755
- };
756
-
757
- template <typename T>
758
- struct bessel_k0_impl {
759
- EIGEN_DEVICE_FUNC
760
- static EIGEN_STRONG_INLINE T run(const T x) {
761
- return generic_k0<T>::run(x);
762
- }
763
- };
764
-
765
- template <typename T>
766
- struct bessel_k1e_retval {
767
- typedef T type;
768
- };
769
-
770
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771
- struct generic_k1e {
772
- EIGEN_DEVICE_FUNC
773
- static EIGEN_STRONG_INLINE T run(const T&) {
774
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775
- THIS_TYPE_IS_NOT_SUPPORTED);
776
- return ScalarType(0);
777
- }
778
- };
779
-
780
- template <typename T>
781
- struct generic_k1e<T, float> {
782
- EIGEN_DEVICE_FUNC
783
- static EIGEN_STRONG_INLINE T run(const T& x) {
784
- /* k1ef.c
785
- *
786
- * Modified Bessel function, third kind, order one,
787
- * exponentially scaled
788
- *
789
- *
790
- *
791
- * SYNOPSIS:
792
- *
793
- * float x, y, k1ef();
794
- *
795
- * y = k1ef( x );
796
- *
797
- *
798
- *
799
- * DESCRIPTION:
800
- *
801
- * Returns exponentially scaled modified Bessel function
802
- * of the third kind of order one of the argument:
803
- *
804
- * k1e(x) = exp(x) * k1(x).
805
- *
806
- *
807
- *
808
- * ACCURACY:
809
- *
810
- * Relative error:
811
- * arithmetic domain # trials peak rms
812
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
813
- * See k1().
814
- *
815
- */
816
-
817
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820
- 1.52530022733894777053E0f};
821
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827
- const T two = pset1<T>(2.0);
828
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829
- pmadd(x, x, pset1<T>(-2.0)), A), x);
830
- x_le_two = pmadd(
831
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832
- x_le_two = pmul(x_le_two, pexp(x));
833
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834
- T x_gt_two = pmul(
835
- internal::pchebevl<T, 10>::run(
836
- psub(pdiv(pset1<T>(8.0), x), two), B),
837
- prsqrt(x));
838
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839
- }
840
- };
841
-
842
- template <typename T>
843
- struct generic_k1e<T, double> {
844
- EIGEN_DEVICE_FUNC
845
- static EIGEN_STRONG_INLINE T run(const T& x) {
846
- /* k1e.c
847
- *
848
- * Modified Bessel function, third kind, order one,
849
- * exponentially scaled
850
- *
851
- *
852
- *
853
- * SYNOPSIS:
854
- *
855
- * double x, y, k1e();
856
- *
857
- * y = k1e( x );
858
- *
859
- *
860
- *
861
- * DESCRIPTION:
862
- *
863
- * Returns exponentially scaled modified Bessel function
864
- * of the third kind of order one of the argument:
865
- *
866
- * k1e(x) = exp(x) * k1(x).
867
- *
868
- *
869
- *
870
- * ACCURACY:
871
- *
872
- * Relative error:
873
- * arithmetic domain # trials peak rms
874
- * IEEE 0, 30 30000 7.8e-16 1.2e-16
875
- * See k1().
876
- *
877
- */
878
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883
- 1.52530022733894777053E0};
884
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896
- 2.72062619048444266945E0};
897
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898
- const T two = pset1<T>(2.0);
899
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900
- pmadd(x, x, pset1<T>(-2.0)), A), x);
901
- x_le_two = pmadd(
902
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903
- x_le_two = pmul(x_le_two, pexp(x));
904
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905
- T x_gt_two = pmul(
906
- internal::pchebevl<T, 25>::run(
907
- psub(pdiv(pset1<T>(8.0), x), two), B),
908
- prsqrt(x));
909
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910
- }
911
- };
912
-
913
- template <typename T>
914
- struct bessel_k1e_impl {
915
- EIGEN_DEVICE_FUNC
916
- static EIGEN_STRONG_INLINE T run(const T x) {
917
- return generic_k1e<T>::run(x);
918
- }
919
- };
920
-
921
- template <typename T>
922
- struct bessel_k1_retval {
923
- typedef T type;
924
- };
925
-
926
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927
- struct generic_k1 {
928
- EIGEN_DEVICE_FUNC
929
- static EIGEN_STRONG_INLINE T run(const T&) {
930
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931
- THIS_TYPE_IS_NOT_SUPPORTED);
932
- return ScalarType(0);
933
- }
934
- };
935
-
936
- template <typename T>
937
- struct generic_k1<T, float> {
938
- EIGEN_DEVICE_FUNC
939
- static EIGEN_STRONG_INLINE T run(const T& x) {
940
- /* k1f.c
941
- * Modified Bessel function, third kind, order one
942
- *
943
- *
944
- *
945
- * SYNOPSIS:
946
- *
947
- * float x, y, k1f();
948
- *
949
- * y = k1f( x );
950
- *
951
- *
952
- *
953
- * DESCRIPTION:
954
- *
955
- * Computes the modified Bessel function of the third kind
956
- * of order one of the argument.
957
- *
958
- * The range is partitioned into the two intervals [0,2] and
959
- * (2, infinity). Chebyshev polynomial expansions are employed
960
- * in each interval.
961
- *
962
- *
963
- *
964
- * ACCURACY:
965
- *
966
- * Relative error:
967
- * arithmetic domain # trials peak rms
968
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
969
- *
970
- * ERROR MESSAGES:
971
- *
972
- * message condition value returned
973
- * k1 domain x <= 0 MAXNUM
974
- *
975
- */
976
-
977
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980
- 1.52530022733894777053E0f};
981
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987
- const T two = pset1<T>(2.0);
988
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989
- pmadd(x, x, pset1<T>(-2.0)), A), x);
990
- x_le_two = pmadd(
991
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993
- T x_gt_two = pmul(
994
- pexp(pnegate(x)),
995
- pmul(
996
- internal::pchebevl<T, 10>::run(
997
- psub(pdiv(pset1<T>(8.0), x), two), B),
998
- prsqrt(x)));
999
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000
- }
1001
- };
1002
-
1003
- template <typename T>
1004
- struct generic_k1<T, double> {
1005
- EIGEN_DEVICE_FUNC
1006
- static EIGEN_STRONG_INLINE T run(const T& x) {
1007
- /* k1.c
1008
- * Modified Bessel function, third kind, order one
1009
- *
1010
- *
1011
- *
1012
- * SYNOPSIS:
1013
- *
1014
- * float x, y, k1f();
1015
- *
1016
- * y = k1f( x );
1017
- *
1018
- *
1019
- *
1020
- * DESCRIPTION:
1021
- *
1022
- * Computes the modified Bessel function of the third kind
1023
- * of order one of the argument.
1024
- *
1025
- * The range is partitioned into the two intervals [0,2] and
1026
- * (2, infinity). Chebyshev polynomial expansions are employed
1027
- * in each interval.
1028
- *
1029
- *
1030
- *
1031
- * ACCURACY:
1032
- *
1033
- * Relative error:
1034
- * arithmetic domain # trials peak rms
1035
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036
- *
1037
- * ERROR MESSAGES:
1038
- *
1039
- * message condition value returned
1040
- * k1 domain x <= 0 MAXNUM
1041
- *
1042
- */
1043
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048
- 1.52530022733894777053E0};
1049
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061
- 2.72062619048444266945E0};
1062
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063
- const T two = pset1<T>(2.0);
1064
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065
- pmadd(x, x, pset1<T>(-2.0)), A), x);
1066
- x_le_two = pmadd(
1067
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069
- T x_gt_two = pmul(
1070
- pexp(-x),
1071
- pmul(
1072
- internal::pchebevl<T, 25>::run(
1073
- psub(pdiv(pset1<T>(8.0), x), two), B),
1074
- prsqrt(x)));
1075
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076
- }
1077
- };
1078
-
1079
- template <typename T>
1080
- struct bessel_k1_impl {
1081
- EIGEN_DEVICE_FUNC
1082
- static EIGEN_STRONG_INLINE T run(const T x) {
1083
- return generic_k1<T>::run(x);
1084
- }
1085
- };
1086
-
1087
- template <typename T>
1088
- struct bessel_j0_retval {
1089
- typedef T type;
1090
- };
1091
-
1092
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093
- struct generic_j0 {
1094
- EIGEN_DEVICE_FUNC
1095
- static EIGEN_STRONG_INLINE T run(const T&) {
1096
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097
- THIS_TYPE_IS_NOT_SUPPORTED);
1098
- return ScalarType(0);
1099
- }
1100
- };
1101
-
1102
- template <typename T>
1103
- struct generic_j0<T, float> {
1104
- EIGEN_DEVICE_FUNC
1105
- static EIGEN_STRONG_INLINE T run(const T& x) {
1106
- /* j0f.c
1107
- * Bessel function of order zero
1108
- *
1109
- *
1110
- *
1111
- * SYNOPSIS:
1112
- *
1113
- * float x, y, j0f();
1114
- *
1115
- * y = j0f( x );
1116
- *
1117
- *
1118
- *
1119
- * DESCRIPTION:
1120
- *
1121
- * Returns Bessel function of order zero of the argument.
1122
- *
1123
- * The domain is divided into the intervals [0, 2] and
1124
- * (2, infinity). In the first interval the following polynomial
1125
- * approximation is used:
1126
- *
1127
- *
1128
- * 2 2 2
1129
- * (w - r ) (w - r ) (w - r ) P(w)
1130
- * 1 2 3
1131
- *
1132
- * 2
1133
- * where w = x and the three r's are zeros of the function.
1134
- *
1135
- * In the second interval, the modulus and phase are approximated
1136
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138
- *
1139
- * j0(x) = Modulus(x) cos( Phase(x) ).
1140
- *
1141
- *
1142
- *
1143
- * ACCURACY:
1144
- *
1145
- * Absolute error:
1146
- * arithmetic domain # trials peak rms
1147
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149
- *
1150
- */
1151
-
1152
- const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153
- -3.969646342510940E-004f, 1.332913422519003E-002f,
1154
- -1.729150680240724E-001f};
1155
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1157
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1158
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1159
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1161
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1162
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1163
- const T DR1 = pset1<T>(5.78318596294678452118f);
1164
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165
- T y = pabs(x);
1166
- T z = pmul(y, y);
1167
- T y_le_two = pselect(
1168
- pcmp_lt(y, pset1<T>(1.0e-3f)),
1169
- pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170
- pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171
- T q = pdiv(pset1<T>(1.0f), y);
1172
- T w = prsqrt(y);
1173
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174
- w = pmul(q, q);
1175
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177
- return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178
- }
1179
- };
1180
-
1181
- template <typename T>
1182
- struct generic_j0<T, double> {
1183
- EIGEN_DEVICE_FUNC
1184
- static EIGEN_STRONG_INLINE T run(const T& x) {
1185
- /* j0.c
1186
- * Bessel function of order zero
1187
- *
1188
- *
1189
- *
1190
- * SYNOPSIS:
1191
- *
1192
- * double x, y, j0();
1193
- *
1194
- * y = j0( x );
1195
- *
1196
- *
1197
- *
1198
- * DESCRIPTION:
1199
- *
1200
- * Returns Bessel function of order zero of the argument.
1201
- *
1202
- * The domain is divided into the intervals [0, 5] and
1203
- * (5, infinity). In the first interval the following rational
1204
- * approximation is used:
1205
- *
1206
- *
1207
- * 2 2
1208
- * (w - r ) (w - r ) P (w) / Q (w)
1209
- * 1 2 3 8
1210
- *
1211
- * 2
1212
- * where w = x and the two r's are zeros of the function.
1213
- *
1214
- * In the second interval, the Hankel asymptotic expansion
1215
- * is employed with two rational functions of degree 6/6
1216
- * and 7/7.
1217
- *
1218
- *
1219
- *
1220
- * ACCURACY:
1221
- *
1222
- * Absolute error:
1223
- * arithmetic domain # trials peak rms
1224
- * DEC 0, 30 10000 4.4e-17 6.3e-18
1225
- * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226
- *
1227
- */
1228
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1230
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1231
- 9.99999999999999997821E-1};
1232
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1234
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1235
- 1.00000000000000000218E0};
1236
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1238
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1239
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1240
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1242
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1243
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1244
- const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245
- -2.49248344360967716204E14, 9.70862251047306323952E15};
1246
- const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247
- 1.73785401676374683123E5, 4.84409658339962045305E7,
1248
- 1.11855537045356834862E10, 2.11277520115489217587E12,
1249
- 3.10518229857422583814E14, 3.18121955943204943306E16,
1250
- 1.71086294081043136091E18};
1251
- const T DR1 = pset1<T>(5.78318596294678452118E0);
1252
- const T DR2 = pset1<T>(3.04712623436620863991E1);
1253
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
-
1256
- T y = pabs(x);
1257
- T z = pmul(y, y);
1258
- T y_le_five = pselect(
1259
- pcmp_lt(y, pset1<T>(1.0e-5)),
1260
- pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261
- pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262
- pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263
- internal::ppolevl<T, 8>::run(z, RQ))));
1264
- T s = pdiv(pset1<T>(25.0), z);
1265
- T p = pdiv(
1266
- internal::ppolevl<T, 6>::run(s, PP),
1267
- internal::ppolevl<T, 6>::run(s, PQ));
1268
- T q = pdiv(
1269
- internal::ppolevl<T, 7>::run(s, QP),
1270
- internal::ppolevl<T, 7>::run(s, QQ));
1271
- T yn = padd(y, NEG_PIO4);
1272
- T w = pdiv(pset1<T>(-5.0), y);
1273
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276
- }
1277
- };
1278
-
1279
- template <typename T>
1280
- struct bessel_j0_impl {
1281
- EIGEN_DEVICE_FUNC
1282
- static EIGEN_STRONG_INLINE T run(const T x) {
1283
- return generic_j0<T>::run(x);
1284
- }
1285
- };
1286
-
1287
- template <typename T>
1288
- struct bessel_y0_retval {
1289
- typedef T type;
1290
- };
1291
-
1292
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293
- struct generic_y0 {
1294
- EIGEN_DEVICE_FUNC
1295
- static EIGEN_STRONG_INLINE T run(const T&) {
1296
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297
- THIS_TYPE_IS_NOT_SUPPORTED);
1298
- return ScalarType(0);
1299
- }
1300
- };
1301
-
1302
- template <typename T>
1303
- struct generic_y0<T, float> {
1304
- EIGEN_DEVICE_FUNC
1305
- static EIGEN_STRONG_INLINE T run(const T& x) {
1306
- /* j0f.c
1307
- * Bessel function of the second kind, order zero
1308
- *
1309
- *
1310
- *
1311
- * SYNOPSIS:
1312
- *
1313
- * float x, y, y0f();
1314
- *
1315
- * y = y0f( x );
1316
- *
1317
- *
1318
- *
1319
- * DESCRIPTION:
1320
- *
1321
- * Returns Bessel function of the second kind, of order
1322
- * zero, of the argument.
1323
- *
1324
- * The domain is divided into the intervals [0, 2] and
1325
- * (2, infinity). In the first interval a rational approximation
1326
- * R(x) is employed to compute
1327
- *
1328
- * 2 2 2
1329
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330
- * 1 2 3
1331
- *
1332
- * Thus a call to j0() is required. The three zeros are removed
1333
- * from R(x) to improve its numerical stability.
1334
- *
1335
- * In the second interval, the modulus and phase are approximated
1336
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338
- *
1339
- * y0(x) = Modulus(x) sin( Phase(x) ).
1340
- *
1341
- *
1342
- *
1343
- *
1344
- * ACCURACY:
1345
- *
1346
- * Absolute error, when y0(x) < 1; else relative error:
1347
- *
1348
- * arithmetic domain # trials peak rms
1349
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351
- *
1352
- */
1353
-
1354
- const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355
- 5.344486707214273E-004f, -1.584289289821316E-002f,
1356
- 1.707584643733568E-001f};
1357
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1359
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1360
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1361
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1363
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1364
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1365
- const T YZ1 = pset1<T>(0.43221455686510834878f);
1366
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369
- T z = pmul(x, x);
1370
- T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371
- x_le_two = pmadd(
1372
- psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374
- T q = pdiv(pset1<T>(1.0), x);
1375
- T w = prsqrt(x);
1376
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377
- T u = pmul(q, q);
1378
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1380
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381
- }
1382
- };
1383
-
1384
- template <typename T>
1385
- struct generic_y0<T, double> {
1386
- EIGEN_DEVICE_FUNC
1387
- static EIGEN_STRONG_INLINE T run(const T& x) {
1388
- /* j0.c
1389
- * Bessel function of the second kind, order zero
1390
- *
1391
- *
1392
- *
1393
- * SYNOPSIS:
1394
- *
1395
- * double x, y, y0();
1396
- *
1397
- * y = y0( x );
1398
- *
1399
- *
1400
- *
1401
- * DESCRIPTION:
1402
- *
1403
- * Returns Bessel function of the second kind, of order
1404
- * zero, of the argument.
1405
- *
1406
- * The domain is divided into the intervals [0, 5] and
1407
- * (5, infinity). In the first interval a rational approximation
1408
- * R(x) is employed to compute
1409
- * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410
- * Thus a call to j0() is required.
1411
- *
1412
- * In the second interval, the Hankel asymptotic expansion
1413
- * is employed with two rational functions of degree 6/6
1414
- * and 7/7.
1415
- *
1416
- *
1417
- *
1418
- * ACCURACY:
1419
- *
1420
- * Absolute error, when y0(x) < 1; else relative error:
1421
- *
1422
- * arithmetic domain # trials peak rms
1423
- * DEC 0, 30 9400 7.0e-17 7.9e-18
1424
- * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425
- *
1426
- */
1427
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1429
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1430
- 9.99999999999999997821E-1};
1431
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1433
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1434
- 1.00000000000000000218E0};
1435
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1437
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1438
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1439
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1441
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1442
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1443
- const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444
- 5.43526477051876500413E9, -9.82136065717911466409E11,
1445
- 8.75906394395366999549E13, -3.46628303384729719441E15,
1446
- 4.42733268572569800351E16, -1.84950800436986690637E16};
1447
- const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448
- 6.26107330137134956842E5, 2.68919633393814121987E8,
1449
- 8.64002487103935000337E10, 2.02979612750105546709E13,
1450
- 3.17157752842975028269E15, 2.50596256172653059228E17};
1451
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
-
1456
- T z = pmul(x, x);
1457
- T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458
- internal::ppolevl<T, 7>::run(z, YQ));
1459
- x_le_five = pmadd(
1460
- pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462
- T s = pdiv(pset1<T>(25.0), z);
1463
- T p = pdiv(
1464
- internal::ppolevl<T, 6>::run(s, PP),
1465
- internal::ppolevl<T, 6>::run(s, PQ));
1466
- T q = pdiv(
1467
- internal::ppolevl<T, 7>::run(s, QP),
1468
- internal::ppolevl<T, 7>::run(s, QQ));
1469
- T xn = padd(x, NEG_PIO4);
1470
- T w = pdiv(pset1<T>(5.0), x);
1471
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474
- }
1475
- };
1476
-
1477
- template <typename T>
1478
- struct bessel_y0_impl {
1479
- EIGEN_DEVICE_FUNC
1480
- static EIGEN_STRONG_INLINE T run(const T x) {
1481
- return generic_y0<T>::run(x);
1482
- }
1483
- };
1484
-
1485
- template <typename T>
1486
- struct bessel_j1_retval {
1487
- typedef T type;
1488
- };
1489
-
1490
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491
- struct generic_j1 {
1492
- EIGEN_DEVICE_FUNC
1493
- static EIGEN_STRONG_INLINE T run(const T&) {
1494
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495
- THIS_TYPE_IS_NOT_SUPPORTED);
1496
- return ScalarType(0);
1497
- }
1498
- };
1499
-
1500
- template <typename T>
1501
- struct generic_j1<T, float> {
1502
- EIGEN_DEVICE_FUNC
1503
- static EIGEN_STRONG_INLINE T run(const T& x) {
1504
- /* j1f.c
1505
- * Bessel function of order one
1506
- *
1507
- *
1508
- *
1509
- * SYNOPSIS:
1510
- *
1511
- * float x, y, j1f();
1512
- *
1513
- * y = j1f( x );
1514
- *
1515
- *
1516
- *
1517
- * DESCRIPTION:
1518
- *
1519
- * Returns Bessel function of order one of the argument.
1520
- *
1521
- * The domain is divided into the intervals [0, 2] and
1522
- * (2, infinity). In the first interval a polynomial approximation
1523
- * 2
1524
- * (w - r ) x P(w)
1525
- * 1
1526
- * 2
1527
- * is used, where w = x and r is the first zero of the function.
1528
- *
1529
- * In the second interval, the modulus and phase are approximated
1530
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532
- *
1533
- * j0(x) = Modulus(x) cos( Phase(x) ).
1534
- *
1535
- *
1536
- *
1537
- * ACCURACY:
1538
- *
1539
- * Absolute error:
1540
- * arithmetic domain # trials peak rms
1541
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543
- *
1544
- *
1545
- */
1546
-
1547
- const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548
- -4.541343896997497E-005f, 1.937383947804541E-003f,
1549
- -3.405537384615824E-002f};
1550
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1552
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1553
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1554
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1556
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1557
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1558
- const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
-
1561
- T y = pabs(x);
1562
- T z = pmul(y, y);
1563
- T y_le_two = pmul(
1564
- psub(z, Z1),
1565
- pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566
- T q = pdiv(pset1<T>(1.0f), y);
1567
- T w = prsqrt(y);
1568
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569
- w = pmul(q, q);
1570
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572
- // j1 is an odd function. This implementation differs from cephes to
1573
- // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574
- y_gt_two = pselect(
1575
- pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576
- return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577
- }
1578
- };
1579
-
1580
- template <typename T>
1581
- struct generic_j1<T, double> {
1582
- EIGEN_DEVICE_FUNC
1583
- static EIGEN_STRONG_INLINE T run(const T& x) {
1584
- /* j1.c
1585
- * Bessel function of order one
1586
- *
1587
- *
1588
- *
1589
- * SYNOPSIS:
1590
- *
1591
- * double x, y, j1();
1592
- *
1593
- * y = j1( x );
1594
- *
1595
- *
1596
- *
1597
- * DESCRIPTION:
1598
- *
1599
- * Returns Bessel function of order one of the argument.
1600
- *
1601
- * The domain is divided into the intervals [0, 8] and
1602
- * (8, infinity). In the first interval a 24 term Chebyshev
1603
- * expansion is used. In the second, the asymptotic
1604
- * trigonometric representation is employed using two
1605
- * rational functions of degree 5/5.
1606
- *
1607
- *
1608
- *
1609
- * ACCURACY:
1610
- *
1611
- * Absolute error:
1612
- * arithmetic domain # trials peak rms
1613
- * DEC 0, 30 10000 4.0e-17 1.1e-17
1614
- * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615
- *
1616
- */
1617
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1619
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1620
- 1.00000000000000000254E0};
1621
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1623
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1624
- 9.99999999999999997461E-1};
1625
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1627
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1628
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1629
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1631
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1632
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1633
- const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634
- -7.27494245221818276015E13, 3.68295732863852883286E15};
1635
- const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636
- 2.56987256757748830383E5, 8.35146791431949253037E7,
1637
- 2.21511595479792499675E10, 4.74914122079991414898E12,
1638
- 7.84369607876235854894E14, 8.95222336184627338078E16,
1639
- 5.32278620332680085395E18};
1640
- const T Z1 = pset1<T>(1.46819706421238932572E1);
1641
- const T Z2 = pset1<T>(4.92184563216946036703E1);
1642
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644
- T y = pabs(x);
1645
- T z = pmul(y, y);
1646
- T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647
- internal::ppolevl<T, 8>::run(z, RQ));
1648
- y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649
- T s = pdiv(pset1<T>(25.0), z);
1650
- T p = pdiv(
1651
- internal::ppolevl<T, 6>::run(s, PP),
1652
- internal::ppolevl<T, 6>::run(s, PQ));
1653
- T q = pdiv(
1654
- internal::ppolevl<T, 7>::run(s, QP),
1655
- internal::ppolevl<T, 7>::run(s, QQ));
1656
- T yn = padd(y, NEG_THPIO4);
1657
- T w = pdiv(pset1<T>(-5.0), y);
1658
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660
- // j1 is an odd function. This implementation differs from cephes to
1661
- // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662
- y_gt_five = pselect(
1663
- pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665
- }
1666
- };
1667
-
1668
- template <typename T>
1669
- struct bessel_j1_impl {
1670
- EIGEN_DEVICE_FUNC
1671
- static EIGEN_STRONG_INLINE T run(const T x) {
1672
- return generic_j1<T>::run(x);
1673
- }
1674
- };
1675
-
1676
- template <typename T>
1677
- struct bessel_y1_retval {
1678
- typedef T type;
1679
- };
1680
-
1681
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682
- struct generic_y1 {
1683
- EIGEN_DEVICE_FUNC
1684
- static EIGEN_STRONG_INLINE T run(const T&) {
1685
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686
- THIS_TYPE_IS_NOT_SUPPORTED);
1687
- return ScalarType(0);
1688
- }
1689
- };
1690
-
1691
- template <typename T>
1692
- struct generic_y1<T, float> {
1693
- EIGEN_DEVICE_FUNC
1694
- static EIGEN_STRONG_INLINE T run(const T& x) {
1695
- /* j1f.c
1696
- * Bessel function of second kind of order one
1697
- *
1698
- *
1699
- *
1700
- * SYNOPSIS:
1701
- *
1702
- * double x, y, y1();
1703
- *
1704
- * y = y1( x );
1705
- *
1706
- *
1707
- *
1708
- * DESCRIPTION:
1709
- *
1710
- * Returns Bessel function of the second kind of order one
1711
- * of the argument.
1712
- *
1713
- * The domain is divided into the intervals [0, 2] and
1714
- * (2, infinity). In the first interval a rational approximation
1715
- * R(x) is employed to compute
1716
- *
1717
- * 2
1718
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719
- * 1
1720
- *
1721
- * Thus a call to j1() is required.
1722
- *
1723
- * In the second interval, the modulus and phase are approximated
1724
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726
- *
1727
- * y0(x) = Modulus(x) sin( Phase(x) ).
1728
- *
1729
- *
1730
- *
1731
- *
1732
- * ACCURACY:
1733
- *
1734
- * Absolute error:
1735
- * arithmetic domain # trials peak rms
1736
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738
- *
1739
- * (error criterion relative when |y1| > 1).
1740
- *
1741
- */
1742
-
1743
- const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744
- 6.719543806674249E-005f, -2.641785726447862E-003f,
1745
- 4.202369946500099E-002f};
1746
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1748
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1749
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1750
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1752
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1753
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1754
- const T YO1 = pset1<T>(4.66539330185668857532f);
1755
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
-
1759
- T z = pmul(x, x);
1760
- T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761
- x_le_two = pmadd(
1762
- x_le_two, x,
1763
- pmul(TWOOPI, pmadd(
1764
- generic_j1<T, float>::run(x), plog(x),
1765
- pdiv(pset1<T>(-1.0f), x))));
1766
- x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
-
1768
- T q = pdiv(pset1<T>(1.0), x);
1769
- T w = prsqrt(x);
1770
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771
- w = pmul(q, q);
1772
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1774
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775
- }
1776
- };
1777
-
1778
- template <typename T>
1779
- struct generic_y1<T, double> {
1780
- EIGEN_DEVICE_FUNC
1781
- static EIGEN_STRONG_INLINE T run(const T& x) {
1782
- /* j1.c
1783
- * Bessel function of second kind of order one
1784
- *
1785
- *
1786
- *
1787
- * SYNOPSIS:
1788
- *
1789
- * double x, y, y1();
1790
- *
1791
- * y = y1( x );
1792
- *
1793
- *
1794
- *
1795
- * DESCRIPTION:
1796
- *
1797
- * Returns Bessel function of the second kind of order one
1798
- * of the argument.
1799
- *
1800
- * The domain is divided into the intervals [0, 8] and
1801
- * (8, infinity). In the first interval a 25 term Chebyshev
1802
- * expansion is used, and a call to j1() is required.
1803
- * In the second, the asymptotic trigonometric representation
1804
- * is employed using two rational functions of degree 5/5.
1805
- *
1806
- *
1807
- *
1808
- * ACCURACY:
1809
- *
1810
- * Absolute error:
1811
- * arithmetic domain # trials peak rms
1812
- * DEC 0, 30 10000 8.6e-17 1.3e-17
1813
- * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814
- *
1815
- * (error criterion relative when |y1| > 1).
1816
- *
1817
- */
1818
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1820
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1821
- 1.00000000000000000254E0};
1822
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1824
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1825
- 9.99999999999999997461E-1};
1826
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1828
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1829
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1830
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1832
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1833
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1834
- const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835
- 1.14509511541823727583E14, -8.12770255501325109621E15,
1836
- 2.02439475713594898196E17, -7.78877196265950026825E17};
1837
- const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838
- 2.35564092943068577943E5, 7.34811944459721705660E7,
1839
- 1.87601316108706159478E10, 3.88231277496238566008E12,
1840
- 6.20557727146953693363E14, 6.87141087355300489866E16,
1841
- 3.97270608116560655612E18};
1842
- const T SQ2OPI = pset1<T>(.79788456080286535588);
1843
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
-
1847
- T z = pmul(x, x);
1848
- T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849
- internal::ppolevl<T, 8>::run(z, YQ));
1850
- x_le_five = pmadd(
1851
- x_le_five, x, pmul(
1852
- TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853
- pdiv(pset1<T>(-1.0), x))));
1854
-
1855
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856
- T s = pdiv(pset1<T>(25.0), z);
1857
- T p = pdiv(
1858
- internal::ppolevl<T, 6>::run(s, PP),
1859
- internal::ppolevl<T, 6>::run(s, PQ));
1860
- T q = pdiv(
1861
- internal::ppolevl<T, 7>::run(s, QP),
1862
- internal::ppolevl<T, 7>::run(s, QQ));
1863
- T xn = padd(x, NEG_THPIO4);
1864
- T w = pdiv(pset1<T>(5.0), x);
1865
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868
- }
1869
- };
1870
-
1871
- template <typename T>
1872
- struct bessel_y1_impl {
1873
- EIGEN_DEVICE_FUNC
1874
- static EIGEN_STRONG_INLINE T run(const T x) {
1875
- return generic_y1<T>::run(x);
1876
- }
1877
- };
1878
-
1879
- } // end namespace internal
1880
-
1881
- namespace numext {
1882
-
1883
- template <typename Scalar>
1884
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885
- bessel_i0(const Scalar& x) {
1886
- return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887
- }
1888
-
1889
- template <typename Scalar>
1890
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891
- bessel_i0e(const Scalar& x) {
1892
- return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893
- }
1894
-
1895
- template <typename Scalar>
1896
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897
- bessel_i1(const Scalar& x) {
1898
- return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899
- }
1900
-
1901
- template <typename Scalar>
1902
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903
- bessel_i1e(const Scalar& x) {
1904
- return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905
- }
1906
-
1907
- template <typename Scalar>
1908
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909
- bessel_k0(const Scalar& x) {
1910
- return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911
- }
1912
-
1913
- template <typename Scalar>
1914
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915
- bessel_k0e(const Scalar& x) {
1916
- return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917
- }
1918
-
1919
- template <typename Scalar>
1920
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921
- bessel_k1(const Scalar& x) {
1922
- return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923
- }
1924
-
1925
- template <typename Scalar>
1926
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927
- bessel_k1e(const Scalar& x) {
1928
- return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929
- }
1930
-
1931
- template <typename Scalar>
1932
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933
- bessel_j0(const Scalar& x) {
1934
- return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935
- }
1936
-
1937
- template <typename Scalar>
1938
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939
- bessel_y0(const Scalar& x) {
1940
- return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941
- }
1942
-
1943
- template <typename Scalar>
1944
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945
- bessel_j1(const Scalar& x) {
1946
- return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947
- }
1948
-
1949
- template <typename Scalar>
1950
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951
- bessel_y1(const Scalar& x) {
1952
- return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953
- }
1954
-
1955
- } // end namespace numext
1956
-
1957
- } // end namespace Eigen
1958
-
1959
- #endif // EIGEN_BESSEL_FUNCTIONS_H