scipy 1.16.2__cp313-cp313-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp313-win_arm64.lib +0 -0
- scipy/_cyutility.cp313-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp313-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp313-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp313-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp313-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp313-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp313-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp313-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp313-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp313-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp313-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp313-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp313-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp313-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp313-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp313-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp313-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp313-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp313-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp313-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp313-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp313-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp313-win_arm64.lib +0 -0
- scipy/signal/_spline.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp313-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp313-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp313-win_arm64.lib +0 -0
- scipy/special/_comb.cp313-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp313-win_arm64.lib +0 -0
- scipy/special/_specfun.cp313-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp313-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp313-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp313-win_arm64.lib +0 -0
- scipy/special/cython_special.cp313-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp313-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp313-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp313-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp313-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats.cp313-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,3147 @@
|
|
1
|
+
"""
|
2
|
+
Distance computations (:mod:`scipy.spatial.distance`)
|
3
|
+
=====================================================
|
4
|
+
|
5
|
+
.. sectionauthor:: Damian Eads
|
6
|
+
|
7
|
+
Function reference
|
8
|
+
------------------
|
9
|
+
|
10
|
+
Distance matrix computation from a collection of raw observation vectors
|
11
|
+
stored in a rectangular array.
|
12
|
+
|
13
|
+
.. autosummary::
|
14
|
+
:toctree: generated/
|
15
|
+
|
16
|
+
pdist -- pairwise distances between observation vectors.
|
17
|
+
cdist -- distances between two collections of observation vectors
|
18
|
+
squareform -- convert distance matrix to a condensed one and vice versa
|
19
|
+
directed_hausdorff -- directed Hausdorff distance between arrays
|
20
|
+
|
21
|
+
Predicates for checking the validity of distance matrices, both
|
22
|
+
condensed and redundant. Also contained in this module are functions
|
23
|
+
for computing the number of observations in a distance matrix.
|
24
|
+
|
25
|
+
.. autosummary::
|
26
|
+
:toctree: generated/
|
27
|
+
|
28
|
+
is_valid_dm -- checks for a valid distance matrix
|
29
|
+
is_valid_y -- checks for a valid condensed distance matrix
|
30
|
+
num_obs_dm -- # of observations in a distance matrix
|
31
|
+
num_obs_y -- # of observations in a condensed distance matrix
|
32
|
+
|
33
|
+
Distance functions between two numeric vectors ``u`` and ``v``. Computing
|
34
|
+
distances over a large collection of vectors is inefficient for these
|
35
|
+
functions. Use ``pdist`` for this purpose.
|
36
|
+
|
37
|
+
.. autosummary::
|
38
|
+
:toctree: generated/
|
39
|
+
|
40
|
+
braycurtis -- the Bray-Curtis distance.
|
41
|
+
canberra -- the Canberra distance.
|
42
|
+
chebyshev -- the Chebyshev distance.
|
43
|
+
cityblock -- the Manhattan distance.
|
44
|
+
correlation -- the Correlation distance.
|
45
|
+
cosine -- the Cosine distance.
|
46
|
+
euclidean -- the Euclidean distance.
|
47
|
+
jensenshannon -- the Jensen-Shannon distance.
|
48
|
+
mahalanobis -- the Mahalanobis distance.
|
49
|
+
minkowski -- the Minkowski distance.
|
50
|
+
seuclidean -- the normalized Euclidean distance.
|
51
|
+
sqeuclidean -- the squared Euclidean distance.
|
52
|
+
|
53
|
+
Distance functions between two boolean vectors (representing sets) ``u`` and
|
54
|
+
``v``. As in the case of numerical vectors, ``pdist`` is more efficient for
|
55
|
+
computing the distances between all pairs.
|
56
|
+
|
57
|
+
.. autosummary::
|
58
|
+
:toctree: generated/
|
59
|
+
|
60
|
+
dice -- the Dice dissimilarity.
|
61
|
+
hamming -- the Hamming distance.
|
62
|
+
jaccard -- the Jaccard distance.
|
63
|
+
kulczynski1 -- the Kulczynski 1 distance.
|
64
|
+
rogerstanimoto -- the Rogers-Tanimoto dissimilarity.
|
65
|
+
russellrao -- the Russell-Rao dissimilarity.
|
66
|
+
sokalmichener -- the Sokal-Michener dissimilarity.
|
67
|
+
sokalsneath -- the Sokal-Sneath dissimilarity.
|
68
|
+
yule -- the Yule dissimilarity.
|
69
|
+
|
70
|
+
:func:`hamming` also operates over discrete numerical vectors.
|
71
|
+
"""
|
72
|
+
|
73
|
+
# Copyright (C) Damian Eads, 2007-2008. New BSD License.
|
74
|
+
|
75
|
+
__all__ = [
|
76
|
+
'braycurtis',
|
77
|
+
'canberra',
|
78
|
+
'cdist',
|
79
|
+
'chebyshev',
|
80
|
+
'cityblock',
|
81
|
+
'correlation',
|
82
|
+
'cosine',
|
83
|
+
'dice',
|
84
|
+
'directed_hausdorff',
|
85
|
+
'euclidean',
|
86
|
+
'hamming',
|
87
|
+
'is_valid_dm',
|
88
|
+
'is_valid_y',
|
89
|
+
'jaccard',
|
90
|
+
'jensenshannon',
|
91
|
+
'kulczynski1',
|
92
|
+
'mahalanobis',
|
93
|
+
'minkowski',
|
94
|
+
'num_obs_dm',
|
95
|
+
'num_obs_y',
|
96
|
+
'pdist',
|
97
|
+
'rogerstanimoto',
|
98
|
+
'russellrao',
|
99
|
+
'seuclidean',
|
100
|
+
'sokalmichener',
|
101
|
+
'sokalsneath',
|
102
|
+
'sqeuclidean',
|
103
|
+
'squareform',
|
104
|
+
'yule'
|
105
|
+
]
|
106
|
+
|
107
|
+
|
108
|
+
import math
|
109
|
+
import warnings
|
110
|
+
import dataclasses
|
111
|
+
from collections.abc import Callable
|
112
|
+
from functools import partial
|
113
|
+
|
114
|
+
import numpy as np
|
115
|
+
|
116
|
+
from scipy._lib._array_api import _asarray
|
117
|
+
from scipy._lib._util import _asarray_validated, _transition_to_rng
|
118
|
+
from scipy._lib import array_api_extra as xpx
|
119
|
+
from scipy._lib.deprecation import _deprecated
|
120
|
+
from scipy.linalg import norm
|
121
|
+
from scipy.special import rel_entr
|
122
|
+
from . import _hausdorff, _distance_pybind, _distance_wrap
|
123
|
+
|
124
|
+
|
125
|
+
def _copy_array_if_base_present(a):
|
126
|
+
"""Copy the array if its base points to a parent array."""
|
127
|
+
if a.base is not None:
|
128
|
+
return a.copy()
|
129
|
+
return a
|
130
|
+
|
131
|
+
|
132
|
+
def _correlation_cdist_wrap(XA, XB, dm, **kwargs):
|
133
|
+
XA = XA - XA.mean(axis=1, keepdims=True)
|
134
|
+
XB = XB - XB.mean(axis=1, keepdims=True)
|
135
|
+
_distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs)
|
136
|
+
|
137
|
+
|
138
|
+
def _correlation_pdist_wrap(X, dm, **kwargs):
|
139
|
+
X2 = X - X.mean(axis=1, keepdims=True)
|
140
|
+
_distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs)
|
141
|
+
|
142
|
+
|
143
|
+
def _convert_to_type(X, out_type):
|
144
|
+
return np.ascontiguousarray(X, dtype=out_type)
|
145
|
+
|
146
|
+
|
147
|
+
def _nbool_correspond_all(u, v, w=None):
|
148
|
+
if u.dtype == v.dtype == bool and w is None:
|
149
|
+
not_u = ~u
|
150
|
+
not_v = ~v
|
151
|
+
nff = (not_u & not_v).sum()
|
152
|
+
nft = (not_u & v).sum()
|
153
|
+
ntf = (u & not_v).sum()
|
154
|
+
ntt = (u & v).sum()
|
155
|
+
else:
|
156
|
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
157
|
+
u = u.astype(dtype)
|
158
|
+
v = v.astype(dtype)
|
159
|
+
not_u = 1.0 - u
|
160
|
+
not_v = 1.0 - v
|
161
|
+
if w is not None:
|
162
|
+
not_u = w * not_u
|
163
|
+
u = w * u
|
164
|
+
nff = (not_u * not_v).sum()
|
165
|
+
nft = (not_u * v).sum()
|
166
|
+
ntf = (u * not_v).sum()
|
167
|
+
ntt = (u * v).sum()
|
168
|
+
return (nff, nft, ntf, ntt)
|
169
|
+
|
170
|
+
|
171
|
+
def _nbool_correspond_ft_tf(u, v, w=None):
|
172
|
+
if u.dtype == v.dtype == bool and w is None:
|
173
|
+
not_u = ~u
|
174
|
+
not_v = ~v
|
175
|
+
nft = (not_u & v).sum()
|
176
|
+
ntf = (u & not_v).sum()
|
177
|
+
else:
|
178
|
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
179
|
+
u = u.astype(dtype)
|
180
|
+
v = v.astype(dtype)
|
181
|
+
not_u = 1.0 - u
|
182
|
+
not_v = 1.0 - v
|
183
|
+
if w is not None:
|
184
|
+
not_u = w * not_u
|
185
|
+
u = w * u
|
186
|
+
nft = (not_u * v).sum()
|
187
|
+
ntf = (u * not_v).sum()
|
188
|
+
return (nft, ntf)
|
189
|
+
|
190
|
+
|
191
|
+
def _validate_cdist_input(XA, XB, mA, mB, n, metric_info, **kwargs):
|
192
|
+
# get supported types
|
193
|
+
types = metric_info.types
|
194
|
+
# choose best type
|
195
|
+
typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0]
|
196
|
+
# validate data
|
197
|
+
XA = _convert_to_type(XA, out_type=typ)
|
198
|
+
XB = _convert_to_type(XB, out_type=typ)
|
199
|
+
|
200
|
+
# validate kwargs
|
201
|
+
_validate_kwargs = metric_info.validator
|
202
|
+
if _validate_kwargs:
|
203
|
+
kwargs = _validate_kwargs((XA, XB), mA + mB, n, **kwargs)
|
204
|
+
return XA, XB, typ, kwargs
|
205
|
+
|
206
|
+
|
207
|
+
def _validate_weight_with_size(X, m, n, **kwargs):
|
208
|
+
w = kwargs.pop('w', None)
|
209
|
+
if w is None:
|
210
|
+
return kwargs
|
211
|
+
|
212
|
+
if w.ndim != 1 or w.shape[0] != n:
|
213
|
+
raise ValueError("Weights must have same size as input vector. "
|
214
|
+
f"{w.shape[0]} vs. {n}")
|
215
|
+
|
216
|
+
kwargs['w'] = _validate_weights(w)
|
217
|
+
return kwargs
|
218
|
+
|
219
|
+
|
220
|
+
def _validate_hamming_kwargs(X, m, n, **kwargs):
|
221
|
+
w = kwargs.get('w', np.ones((n,), dtype='double'))
|
222
|
+
|
223
|
+
if w.ndim != 1 or w.shape[0] != n:
|
224
|
+
raise ValueError(f"Weights must have same size as input vector. "
|
225
|
+
f"{w.shape[0]} vs. {n}")
|
226
|
+
|
227
|
+
kwargs['w'] = _validate_weights(w)
|
228
|
+
return kwargs
|
229
|
+
|
230
|
+
|
231
|
+
def _validate_mahalanobis_kwargs(X, m, n, **kwargs):
|
232
|
+
VI = kwargs.pop('VI', None)
|
233
|
+
if VI is None:
|
234
|
+
if m <= n:
|
235
|
+
# There are fewer observations than the dimension of
|
236
|
+
# the observations.
|
237
|
+
raise ValueError(
|
238
|
+
f"The number of observations ({m}) is too small; "
|
239
|
+
f"the covariance matrix is singular. For observations "
|
240
|
+
f"with {n} dimensions, at least {n + 1} observations are required.")
|
241
|
+
if isinstance(X, tuple):
|
242
|
+
X = np.vstack(X)
|
243
|
+
CV = np.atleast_2d(np.cov(X.astype(np.float64, copy=False).T))
|
244
|
+
VI = np.linalg.inv(CV).T.copy()
|
245
|
+
kwargs["VI"] = _convert_to_double(VI)
|
246
|
+
return kwargs
|
247
|
+
|
248
|
+
|
249
|
+
def _validate_minkowski_kwargs(X, m, n, **kwargs):
|
250
|
+
kwargs = _validate_weight_with_size(X, m, n, **kwargs)
|
251
|
+
if 'p' not in kwargs:
|
252
|
+
kwargs['p'] = 2.
|
253
|
+
else:
|
254
|
+
if kwargs['p'] <= 0:
|
255
|
+
raise ValueError("p must be greater than 0")
|
256
|
+
|
257
|
+
return kwargs
|
258
|
+
|
259
|
+
|
260
|
+
def _validate_pdist_input(X, m, n, metric_info, **kwargs):
|
261
|
+
# get supported types
|
262
|
+
types = metric_info.types
|
263
|
+
# choose best type
|
264
|
+
typ = types[types.index(X.dtype)] if X.dtype in types else types[0]
|
265
|
+
# validate data
|
266
|
+
X = _convert_to_type(X, out_type=typ)
|
267
|
+
|
268
|
+
# validate kwargs
|
269
|
+
_validate_kwargs = metric_info.validator
|
270
|
+
if _validate_kwargs:
|
271
|
+
kwargs = _validate_kwargs(X, m, n, **kwargs)
|
272
|
+
return X, typ, kwargs
|
273
|
+
|
274
|
+
|
275
|
+
def _validate_seuclidean_kwargs(X, m, n, **kwargs):
|
276
|
+
V = kwargs.pop('V', None)
|
277
|
+
if V is None:
|
278
|
+
if isinstance(X, tuple):
|
279
|
+
X = np.vstack(X)
|
280
|
+
V = np.var(X.astype(np.float64, copy=False), axis=0, ddof=1)
|
281
|
+
else:
|
282
|
+
V = np.asarray(V, order='c')
|
283
|
+
if len(V.shape) != 1:
|
284
|
+
raise ValueError('Variance vector V must '
|
285
|
+
'be one-dimensional.')
|
286
|
+
if V.shape[0] != n:
|
287
|
+
raise ValueError('Variance vector V must be of the same '
|
288
|
+
'dimension as the vectors on which the distances '
|
289
|
+
'are computed.')
|
290
|
+
kwargs['V'] = _convert_to_double(V)
|
291
|
+
return kwargs
|
292
|
+
|
293
|
+
|
294
|
+
def _validate_vector(u, dtype=None):
|
295
|
+
# XXX Is order='c' really necessary?
|
296
|
+
u = np.asarray(u, dtype=dtype, order='c')
|
297
|
+
if u.ndim == 1:
|
298
|
+
return u
|
299
|
+
raise ValueError("Input vector should be 1-D.")
|
300
|
+
|
301
|
+
|
302
|
+
def _validate_weights(w, dtype=np.float64):
|
303
|
+
w = _validate_vector(w, dtype=dtype)
|
304
|
+
if np.any(w < 0):
|
305
|
+
raise ValueError("Input weights should be all non-negative")
|
306
|
+
return w
|
307
|
+
|
308
|
+
|
309
|
+
@_transition_to_rng('seed', position_num=2, replace_doc=False)
|
310
|
+
def directed_hausdorff(u, v, rng=0):
|
311
|
+
"""
|
312
|
+
Compute the directed Hausdorff distance between two 2-D arrays.
|
313
|
+
|
314
|
+
Distances between pairs are calculated using a Euclidean metric.
|
315
|
+
|
316
|
+
Parameters
|
317
|
+
----------
|
318
|
+
u : (M,N) array_like
|
319
|
+
Input array with M points in N dimensions.
|
320
|
+
v : (O,N) array_like
|
321
|
+
Input array with O points in N dimensions.
|
322
|
+
rng : int or `numpy.random.Generator` or None, optional
|
323
|
+
Pseudorandom number generator state. Default is 0 so the
|
324
|
+
shuffling of `u` and `v` is reproducible.
|
325
|
+
|
326
|
+
If `rng` is passed by keyword, types other than `numpy.random.Generator` are
|
327
|
+
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
|
328
|
+
If `rng` is already a ``Generator`` instance, then the provided instance is
|
329
|
+
used.
|
330
|
+
|
331
|
+
If this argument is passed by position or `seed` is passed by keyword,
|
332
|
+
legacy behavior for the argument `seed` applies:
|
333
|
+
|
334
|
+
- If `seed` is None, a new ``RandomState`` instance is used. The state is
|
335
|
+
initialized using data from ``/dev/urandom`` (or the Windows analogue)
|
336
|
+
if available or from the system clock otherwise.
|
337
|
+
- If `seed` is an int, a new ``RandomState`` instance is used,
|
338
|
+
seeded with `seed`.
|
339
|
+
- If `seed` is already a ``Generator`` or ``RandomState`` instance, then
|
340
|
+
that instance is used.
|
341
|
+
|
342
|
+
.. versionchanged:: 1.15.0
|
343
|
+
As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
|
344
|
+
transition from use of `numpy.random.RandomState` to
|
345
|
+
`numpy.random.Generator`, this keyword was changed from `seed` to `rng`.
|
346
|
+
For an interim period, both keywords will continue to work, although only
|
347
|
+
one may be specified at a time. After the interim period, function calls
|
348
|
+
using the `seed` keyword will emit warnings. The behavior of both `seed`
|
349
|
+
and `rng` are outlined above, but only the `rng` keyword should be used in
|
350
|
+
new code.
|
351
|
+
|
352
|
+
Returns
|
353
|
+
-------
|
354
|
+
d : double
|
355
|
+
The directed Hausdorff distance between arrays `u` and `v`,
|
356
|
+
|
357
|
+
index_1 : int
|
358
|
+
index of point contributing to Hausdorff pair in `u`
|
359
|
+
|
360
|
+
index_2 : int
|
361
|
+
index of point contributing to Hausdorff pair in `v`
|
362
|
+
|
363
|
+
Raises
|
364
|
+
------
|
365
|
+
ValueError
|
366
|
+
An exception is thrown if `u` and `v` do not have
|
367
|
+
the same number of columns.
|
368
|
+
|
369
|
+
See Also
|
370
|
+
--------
|
371
|
+
scipy.spatial.procrustes : Another similarity test for two data sets
|
372
|
+
|
373
|
+
Notes
|
374
|
+
-----
|
375
|
+
Uses the early break technique and the random sampling approach
|
376
|
+
described by [1]_. Although worst-case performance is ``O(m * o)``
|
377
|
+
(as with the brute force algorithm), this is unlikely in practice
|
378
|
+
as the input data would have to require the algorithm to explore
|
379
|
+
every single point interaction, and after the algorithm shuffles
|
380
|
+
the input points at that. The best case performance is O(m), which
|
381
|
+
is satisfied by selecting an inner loop distance that is less than
|
382
|
+
cmax and leads to an early break as often as possible. The authors
|
383
|
+
have formally shown that the average runtime is closer to O(m).
|
384
|
+
|
385
|
+
.. versionadded:: 0.19.0
|
386
|
+
|
387
|
+
References
|
388
|
+
----------
|
389
|
+
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for
|
390
|
+
calculating the exact Hausdorff distance." IEEE Transactions On
|
391
|
+
Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63,
|
392
|
+
2015.
|
393
|
+
|
394
|
+
Examples
|
395
|
+
--------
|
396
|
+
Find the directed Hausdorff distance between two 2-D arrays of
|
397
|
+
coordinates:
|
398
|
+
|
399
|
+
>>> from scipy.spatial.distance import directed_hausdorff
|
400
|
+
>>> import numpy as np
|
401
|
+
>>> u = np.array([(1.0, 0.0),
|
402
|
+
... (0.0, 1.0),
|
403
|
+
... (-1.0, 0.0),
|
404
|
+
... (0.0, -1.0)])
|
405
|
+
>>> v = np.array([(2.0, 0.0),
|
406
|
+
... (0.0, 2.0),
|
407
|
+
... (-2.0, 0.0),
|
408
|
+
... (0.0, -4.0)])
|
409
|
+
|
410
|
+
>>> directed_hausdorff(u, v)[0]
|
411
|
+
2.23606797749979
|
412
|
+
>>> directed_hausdorff(v, u)[0]
|
413
|
+
3.0
|
414
|
+
|
415
|
+
Find the general (symmetric) Hausdorff distance between two 2-D
|
416
|
+
arrays of coordinates:
|
417
|
+
|
418
|
+
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
|
419
|
+
3.0
|
420
|
+
|
421
|
+
Find the indices of the points that generate the Hausdorff distance
|
422
|
+
(the Hausdorff pair):
|
423
|
+
|
424
|
+
>>> directed_hausdorff(v, u)[1:]
|
425
|
+
(3, 3)
|
426
|
+
|
427
|
+
"""
|
428
|
+
u = np.asarray(u, dtype=np.float64, order='c')
|
429
|
+
v = np.asarray(v, dtype=np.float64, order='c')
|
430
|
+
if u.shape[1] != v.shape[1]:
|
431
|
+
raise ValueError('u and v need to have the same '
|
432
|
+
'number of columns')
|
433
|
+
result = _hausdorff.directed_hausdorff(u, v, rng)
|
434
|
+
return result
|
435
|
+
|
436
|
+
|
437
|
+
def minkowski(u, v, p=2, w=None):
|
438
|
+
"""
|
439
|
+
Compute the Minkowski distance between two 1-D arrays.
|
440
|
+
|
441
|
+
The Minkowski distance between 1-D arrays `u` and `v`,
|
442
|
+
is defined as
|
443
|
+
|
444
|
+
.. math::
|
445
|
+
|
446
|
+
{\\|u-v\\|}_p = (\\sum{|u_i - v_i|^p})^{1/p}.
|
447
|
+
|
448
|
+
|
449
|
+
\\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}.
|
450
|
+
|
451
|
+
Parameters
|
452
|
+
----------
|
453
|
+
u : (N,) array_like
|
454
|
+
Input array.
|
455
|
+
v : (N,) array_like
|
456
|
+
Input array.
|
457
|
+
p : scalar
|
458
|
+
The order of the norm of the difference :math:`{\\|u-v\\|}_p`. Note
|
459
|
+
that for :math:`0 < p < 1`, the triangle inequality only holds with
|
460
|
+
an additional multiplicative factor, i.e. it is only a quasi-metric.
|
461
|
+
w : (N,) array_like, optional
|
462
|
+
The weights for each value in `u` and `v`. Default is None,
|
463
|
+
which gives each value a weight of 1.0
|
464
|
+
|
465
|
+
Returns
|
466
|
+
-------
|
467
|
+
minkowski : double
|
468
|
+
The Minkowski distance between vectors `u` and `v`.
|
469
|
+
|
470
|
+
Examples
|
471
|
+
--------
|
472
|
+
>>> from scipy.spatial import distance
|
473
|
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
|
474
|
+
2.0
|
475
|
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
|
476
|
+
1.4142135623730951
|
477
|
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
|
478
|
+
1.2599210498948732
|
479
|
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
|
480
|
+
1.0
|
481
|
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
|
482
|
+
1.0
|
483
|
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
|
484
|
+
1.0
|
485
|
+
|
486
|
+
"""
|
487
|
+
u = _validate_vector(u)
|
488
|
+
v = _validate_vector(v)
|
489
|
+
if p <= 0:
|
490
|
+
raise ValueError("p must be greater than 0")
|
491
|
+
u_v = u - v
|
492
|
+
if w is not None:
|
493
|
+
w = _validate_weights(w)
|
494
|
+
if p == 1:
|
495
|
+
root_w = w
|
496
|
+
elif p == 2:
|
497
|
+
# better precision and speed
|
498
|
+
root_w = np.sqrt(w)
|
499
|
+
elif p == np.inf:
|
500
|
+
root_w = (w != 0)
|
501
|
+
else:
|
502
|
+
root_w = np.power(w, 1/p)
|
503
|
+
u_v = root_w * u_v
|
504
|
+
dist = norm(u_v, ord=p)
|
505
|
+
return dist
|
506
|
+
|
507
|
+
|
508
|
+
def euclidean(u, v, w=None):
|
509
|
+
"""
|
510
|
+
Computes the Euclidean distance between two 1-D arrays.
|
511
|
+
|
512
|
+
The Euclidean distance between 1-D arrays `u` and `v`, is defined as
|
513
|
+
|
514
|
+
.. math::
|
515
|
+
|
516
|
+
{\\|u-v\\|}_2
|
517
|
+
|
518
|
+
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2}
|
519
|
+
|
520
|
+
Parameters
|
521
|
+
----------
|
522
|
+
u : (N,) array_like
|
523
|
+
Input array.
|
524
|
+
v : (N,) array_like
|
525
|
+
Input array.
|
526
|
+
w : (N,) array_like, optional
|
527
|
+
The weights for each value in `u` and `v`. Default is None,
|
528
|
+
which gives each value a weight of 1.0
|
529
|
+
|
530
|
+
Returns
|
531
|
+
-------
|
532
|
+
euclidean : double
|
533
|
+
The Euclidean distance between vectors `u` and `v`.
|
534
|
+
|
535
|
+
Examples
|
536
|
+
--------
|
537
|
+
>>> from scipy.spatial import distance
|
538
|
+
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
|
539
|
+
1.4142135623730951
|
540
|
+
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
|
541
|
+
1.0
|
542
|
+
|
543
|
+
"""
|
544
|
+
return minkowski(u, v, p=2, w=w)
|
545
|
+
|
546
|
+
|
547
|
+
def sqeuclidean(u, v, w=None):
|
548
|
+
"""
|
549
|
+
Compute the squared Euclidean distance between two 1-D arrays.
|
550
|
+
|
551
|
+
The squared Euclidean distance between `u` and `v` is defined as
|
552
|
+
|
553
|
+
.. math::
|
554
|
+
|
555
|
+
\\sum_i{w_i |u_i - v_i|^2}
|
556
|
+
|
557
|
+
Parameters
|
558
|
+
----------
|
559
|
+
u : (N,) array_like
|
560
|
+
Input array.
|
561
|
+
v : (N,) array_like
|
562
|
+
Input array.
|
563
|
+
w : (N,) array_like, optional
|
564
|
+
The weights for each value in `u` and `v`. Default is None,
|
565
|
+
which gives each value a weight of 1.0
|
566
|
+
|
567
|
+
Returns
|
568
|
+
-------
|
569
|
+
sqeuclidean : double
|
570
|
+
The squared Euclidean distance between vectors `u` and `v`.
|
571
|
+
|
572
|
+
Examples
|
573
|
+
--------
|
574
|
+
>>> from scipy.spatial import distance
|
575
|
+
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
|
576
|
+
2.0
|
577
|
+
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
|
578
|
+
1.0
|
579
|
+
|
580
|
+
"""
|
581
|
+
# Preserve float dtypes, but convert everything else to np.float64
|
582
|
+
# for stability.
|
583
|
+
utype, vtype = None, None
|
584
|
+
if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)):
|
585
|
+
utype = np.float64
|
586
|
+
if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)):
|
587
|
+
vtype = np.float64
|
588
|
+
|
589
|
+
u = _validate_vector(u, dtype=utype)
|
590
|
+
v = _validate_vector(v, dtype=vtype)
|
591
|
+
u_v = u - v
|
592
|
+
u_v_w = u_v # only want weights applied once
|
593
|
+
if w is not None:
|
594
|
+
w = _validate_weights(w)
|
595
|
+
u_v_w = w * u_v
|
596
|
+
return np.dot(u_v, u_v_w)
|
597
|
+
|
598
|
+
|
599
|
+
def correlation(u, v, w=None, centered=True):
|
600
|
+
"""
|
601
|
+
Compute the correlation distance between two 1-D arrays.
|
602
|
+
|
603
|
+
The correlation distance between `u` and `v`, is
|
604
|
+
defined as
|
605
|
+
|
606
|
+
.. math::
|
607
|
+
|
608
|
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
609
|
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
610
|
+
|
611
|
+
where :math:`\\bar{u}` is the mean of the elements of `u`
|
612
|
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
613
|
+
|
614
|
+
Parameters
|
615
|
+
----------
|
616
|
+
u : (N,) array_like of floats
|
617
|
+
Input array.
|
618
|
+
|
619
|
+
.. deprecated:: 1.15.0
|
620
|
+
Complex `u` is deprecated and will raise an error in SciPy 1.17.0
|
621
|
+
v : (N,) array_like of floats
|
622
|
+
Input array.
|
623
|
+
|
624
|
+
.. deprecated:: 1.15.0
|
625
|
+
Complex `v` is deprecated and will raise an error in SciPy 1.17.0
|
626
|
+
w : (N,) array_like of floats, optional
|
627
|
+
The weights for each value in `u` and `v`. Default is None,
|
628
|
+
which gives each value a weight of 1.0
|
629
|
+
centered : bool, optional
|
630
|
+
If True, `u` and `v` will be centered. Default is True.
|
631
|
+
|
632
|
+
Returns
|
633
|
+
-------
|
634
|
+
correlation : double
|
635
|
+
The correlation distance between 1-D array `u` and `v`.
|
636
|
+
|
637
|
+
Examples
|
638
|
+
--------
|
639
|
+
Find the correlation between two arrays.
|
640
|
+
|
641
|
+
>>> from scipy.spatial.distance import correlation
|
642
|
+
>>> correlation([1, 0, 1], [1, 1, 0])
|
643
|
+
1.5
|
644
|
+
|
645
|
+
Using a weighting array, the correlation can be calculated as:
|
646
|
+
|
647
|
+
>>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1])
|
648
|
+
1.1
|
649
|
+
|
650
|
+
If centering is not needed, the correlation can be calculated as:
|
651
|
+
|
652
|
+
>>> correlation([1, 0, 1], [1, 1, 0], centered=False)
|
653
|
+
0.5
|
654
|
+
"""
|
655
|
+
u = _validate_vector(u)
|
656
|
+
v = _validate_vector(v)
|
657
|
+
if np.iscomplexobj(u) or np.iscomplexobj(v):
|
658
|
+
message = (
|
659
|
+
"Complex `u` and `v` are deprecated and will raise an error in "
|
660
|
+
"SciPy 1.17.0.")
|
661
|
+
warnings.warn(message, DeprecationWarning, stacklevel=2)
|
662
|
+
if w is not None:
|
663
|
+
w = _validate_weights(w)
|
664
|
+
w = w / w.sum()
|
665
|
+
if centered:
|
666
|
+
if w is not None:
|
667
|
+
umu = np.dot(u, w)
|
668
|
+
vmu = np.dot(v, w)
|
669
|
+
else:
|
670
|
+
umu = np.mean(u)
|
671
|
+
vmu = np.mean(v)
|
672
|
+
u = u - umu
|
673
|
+
v = v - vmu
|
674
|
+
if w is not None:
|
675
|
+
vw = v * w
|
676
|
+
uw = u * w
|
677
|
+
else:
|
678
|
+
vw, uw = v, u
|
679
|
+
uv = np.dot(u, vw)
|
680
|
+
uu = np.dot(u, uw)
|
681
|
+
vv = np.dot(v, vw)
|
682
|
+
dist = 1.0 - uv / math.sqrt(uu * vv)
|
683
|
+
# Clip the result to avoid rounding error
|
684
|
+
return np.clip(dist, 0.0, 2.0)
|
685
|
+
|
686
|
+
|
687
|
+
def cosine(u, v, w=None):
|
688
|
+
"""
|
689
|
+
Compute the Cosine distance between 1-D arrays.
|
690
|
+
|
691
|
+
The Cosine distance between `u` and `v`, is defined as
|
692
|
+
|
693
|
+
.. math::
|
694
|
+
|
695
|
+
1 - \\frac{u \\cdot v}
|
696
|
+
{\\|u\\|_2 \\|v\\|_2}.
|
697
|
+
|
698
|
+
where :math:`u \\cdot v` is the dot product of :math:`u` and
|
699
|
+
:math:`v`.
|
700
|
+
|
701
|
+
Parameters
|
702
|
+
----------
|
703
|
+
u : (N,) array_like of floats
|
704
|
+
Input array.
|
705
|
+
|
706
|
+
.. deprecated:: 1.15.0
|
707
|
+
Complex `u` is deprecated and will raise an error in SciPy 1.17.0
|
708
|
+
v : (N,) array_like of floats
|
709
|
+
Input array.
|
710
|
+
|
711
|
+
.. deprecated:: 1.15.0
|
712
|
+
Complex `v` is deprecated and will raise an error in SciPy 1.17.0
|
713
|
+
w : (N,) array_like of floats, optional
|
714
|
+
The weights for each value in `u` and `v`. Default is None,
|
715
|
+
which gives each value a weight of 1.0
|
716
|
+
|
717
|
+
Returns
|
718
|
+
-------
|
719
|
+
cosine : double
|
720
|
+
The Cosine distance between vectors `u` and `v`.
|
721
|
+
|
722
|
+
Examples
|
723
|
+
--------
|
724
|
+
>>> from scipy.spatial import distance
|
725
|
+
>>> distance.cosine([1, 0, 0], [0, 1, 0])
|
726
|
+
1.0
|
727
|
+
>>> distance.cosine([100, 0, 0], [0, 1, 0])
|
728
|
+
1.0
|
729
|
+
>>> distance.cosine([1, 1, 0], [0, 1, 0])
|
730
|
+
0.29289321881345254
|
731
|
+
|
732
|
+
"""
|
733
|
+
# cosine distance is also referred to as 'uncentered correlation',
|
734
|
+
# or 'reflective correlation'
|
735
|
+
return correlation(u, v, w=w, centered=False)
|
736
|
+
|
737
|
+
|
738
|
+
def hamming(u, v, w=None):
|
739
|
+
"""
|
740
|
+
Compute the Hamming distance between two 1-D arrays.
|
741
|
+
|
742
|
+
The Hamming distance between 1-D arrays `u` and `v`, is simply the
|
743
|
+
proportion of disagreeing components in `u` and `v`. If `u` and `v` are
|
744
|
+
boolean vectors, the Hamming distance is
|
745
|
+
|
746
|
+
.. math::
|
747
|
+
|
748
|
+
\\frac{c_{01} + c_{10}}{n}
|
749
|
+
|
750
|
+
where :math:`c_{ij}` is the number of occurrences of
|
751
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
752
|
+
:math:`k < n`.
|
753
|
+
|
754
|
+
Parameters
|
755
|
+
----------
|
756
|
+
u : (N,) array_like
|
757
|
+
Input array.
|
758
|
+
v : (N,) array_like
|
759
|
+
Input array.
|
760
|
+
w : (N,) array_like, optional
|
761
|
+
The weights for each value in `u` and `v`. Default is None,
|
762
|
+
which gives each value a weight of 1.0
|
763
|
+
|
764
|
+
Returns
|
765
|
+
-------
|
766
|
+
hamming : double
|
767
|
+
The Hamming distance between vectors `u` and `v`.
|
768
|
+
|
769
|
+
Examples
|
770
|
+
--------
|
771
|
+
>>> from scipy.spatial import distance
|
772
|
+
>>> distance.hamming([1, 0, 0], [0, 1, 0])
|
773
|
+
0.66666666666666663
|
774
|
+
>>> distance.hamming([1, 0, 0], [1, 1, 0])
|
775
|
+
0.33333333333333331
|
776
|
+
>>> distance.hamming([1, 0, 0], [2, 0, 0])
|
777
|
+
0.33333333333333331
|
778
|
+
>>> distance.hamming([1, 0, 0], [3, 0, 0])
|
779
|
+
0.33333333333333331
|
780
|
+
|
781
|
+
"""
|
782
|
+
u = _validate_vector(u)
|
783
|
+
v = _validate_vector(v)
|
784
|
+
if u.shape != v.shape:
|
785
|
+
raise ValueError('The 1d arrays must have equal lengths.')
|
786
|
+
u_ne_v = u != v
|
787
|
+
if w is not None:
|
788
|
+
w = _validate_weights(w)
|
789
|
+
if w.shape != u.shape:
|
790
|
+
raise ValueError("'w' should have the same length as 'u' and 'v'.")
|
791
|
+
w = w / w.sum()
|
792
|
+
return np.dot(u_ne_v, w)
|
793
|
+
return np.mean(u_ne_v)
|
794
|
+
|
795
|
+
|
796
|
+
def jaccard(u, v, w=None):
|
797
|
+
r"""
|
798
|
+
Compute the Jaccard dissimilarity between two boolean vectors.
|
799
|
+
|
800
|
+
Given boolean vectors :math:`u \equiv (u_1, \cdots, u_n)`
|
801
|
+
and :math:`v \equiv (v_1, \cdots, v_n)` that are not both zero,
|
802
|
+
their *Jaccard dissimilarity* is defined as ([1]_, p. 26)
|
803
|
+
|
804
|
+
.. math::
|
805
|
+
|
806
|
+
d_\textrm{jaccard}(u, v) := \frac{c_{10} + c_{01}}
|
807
|
+
{c_{11} + c_{10} + c_{01}}
|
808
|
+
|
809
|
+
where
|
810
|
+
|
811
|
+
.. math::
|
812
|
+
|
813
|
+
c_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} 1
|
814
|
+
|
815
|
+
for :math:`i, j \in \{ 0, 1\}`. If :math:`u` and :math:`v` are both zero,
|
816
|
+
their Jaccard dissimilarity is defined to be zero. [2]_
|
817
|
+
|
818
|
+
If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
|
819
|
+
is supplied, the *weighted Jaccard dissimilarity* is defined similarly
|
820
|
+
but with :math:`c_{ij}` replaced by
|
821
|
+
|
822
|
+
.. math::
|
823
|
+
|
824
|
+
\tilde{c}_{ij} := \sum_{1 \le k \le n, u_k=i, v_k=j} w_k
|
825
|
+
|
826
|
+
Parameters
|
827
|
+
----------
|
828
|
+
u : (N,) array_like of bools
|
829
|
+
Input vector.
|
830
|
+
v : (N,) array_like of bools
|
831
|
+
Input vector.
|
832
|
+
w : (N,) array_like of floats, optional
|
833
|
+
Weights for each pair of :math:`(u_k, v_k)`. Default is ``None``,
|
834
|
+
which gives each pair a weight of ``1.0``.
|
835
|
+
|
836
|
+
Returns
|
837
|
+
-------
|
838
|
+
jaccard : float
|
839
|
+
The Jaccard dissimilarity between vectors `u` and `v`, optionally
|
840
|
+
weighted by `w` if supplied.
|
841
|
+
|
842
|
+
Notes
|
843
|
+
-----
|
844
|
+
The Jaccard dissimilarity satisfies the triangle inequality and is
|
845
|
+
qualified as a metric. [2]_
|
846
|
+
|
847
|
+
The *Jaccard index*, or *Jaccard similarity coefficient*, is equal to
|
848
|
+
one minus the Jaccard dissimilarity. [3]_
|
849
|
+
|
850
|
+
The dissimilarity between general (finite) sets may be computed by
|
851
|
+
encoding them as boolean vectors and computing the dissimilarity
|
852
|
+
between the encoded vectors.
|
853
|
+
For example, subsets :math:`A,B` of :math:`\{ 1, 2, ..., n \}` may be
|
854
|
+
encoded into boolean vectors :math:`u, v` by setting
|
855
|
+
:math:`u_k := 1_{k \in A}`, :math:`v_k := 1_{k \in B}`
|
856
|
+
for :math:`k = 1,2,\cdots,n`.
|
857
|
+
|
858
|
+
.. versionchanged:: 1.2.0
|
859
|
+
Previously, if all (positively weighted) elements in `u` and `v` are
|
860
|
+
zero, the function would return ``nan``. This was changed to return
|
861
|
+
``0`` instead.
|
862
|
+
|
863
|
+
.. versionchanged:: 1.15.0
|
864
|
+
Non-0/1 numeric input used to produce an ad hoc result. Since 1.15.0,
|
865
|
+
numeric input is converted to Boolean before computation.
|
866
|
+
|
867
|
+
References
|
868
|
+
----------
|
869
|
+
.. [1] Kaufman, L. and Rousseeuw, P. J. (1990). "Finding Groups in Data:
|
870
|
+
An Introduction to Cluster Analysis." John Wiley & Sons, Inc.
|
871
|
+
.. [2] Kosub, S. (2019). "A note on the triangle inequality for the
|
872
|
+
Jaccard distance." *Pattern Recognition Letters*, 120:36-38.
|
873
|
+
.. [3] https://en.wikipedia.org/wiki/Jaccard_index
|
874
|
+
|
875
|
+
Examples
|
876
|
+
--------
|
877
|
+
>>> from scipy.spatial import distance
|
878
|
+
|
879
|
+
Non-zero vectors with no matching 1s have dissimilarity of 1.0:
|
880
|
+
|
881
|
+
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
|
882
|
+
1.0
|
883
|
+
|
884
|
+
Vectors with some matching 1s have dissimilarity less than 1.0:
|
885
|
+
|
886
|
+
>>> distance.jaccard([1, 0, 0, 0], [1, 1, 1, 0])
|
887
|
+
0.6666666666666666
|
888
|
+
|
889
|
+
Identical vectors, including zero vectors, have dissimilarity of 0.0:
|
890
|
+
|
891
|
+
>>> distance.jaccard([1, 0, 0], [1, 0, 0])
|
892
|
+
0.0
|
893
|
+
>>> distance.jaccard([0, 0, 0], [0, 0, 0])
|
894
|
+
0.0
|
895
|
+
|
896
|
+
The following example computes the dissimilarity from a confusion matrix
|
897
|
+
directly by setting the weight vector to the frequency of True Positive,
|
898
|
+
False Negative, False Positive, and True Negative:
|
899
|
+
|
900
|
+
>>> distance.jaccard([1, 1, 0, 0], [1, 0, 1, 0], [31, 41, 59, 26])
|
901
|
+
0.7633587786259542 # (41+59)/(31+41+59)
|
902
|
+
|
903
|
+
"""
|
904
|
+
u = _validate_vector(u)
|
905
|
+
v = _validate_vector(v)
|
906
|
+
|
907
|
+
unequal = np.bitwise_xor(u != 0, v != 0)
|
908
|
+
nonzero = np.bitwise_or(u != 0, v != 0)
|
909
|
+
if w is not None:
|
910
|
+
w = _validate_weights(w)
|
911
|
+
unequal = w * unequal
|
912
|
+
nonzero = w * nonzero
|
913
|
+
a = np.float64(unequal.sum())
|
914
|
+
b = np.float64(nonzero.sum())
|
915
|
+
return (a / b) if b != 0 else np.float64(0)
|
916
|
+
|
917
|
+
|
918
|
+
_deprecated_kulczynski1 = _deprecated(
|
919
|
+
"The kulczynski1 metric is deprecated since SciPy 1.15.0 and will be "
|
920
|
+
"removed in SciPy 1.17.0. Replace usage of 'kulczynski1(u, v)' with "
|
921
|
+
"'1/jaccard(u, v) - 1'."
|
922
|
+
)
|
923
|
+
|
924
|
+
|
925
|
+
@_deprecated_kulczynski1
|
926
|
+
def kulczynski1(u, v, *, w=None):
|
927
|
+
"""
|
928
|
+
Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.
|
929
|
+
|
930
|
+
.. deprecated:: 1.15.0
|
931
|
+
This function is deprecated and will be removed in SciPy 1.17.0.
|
932
|
+
Replace usage of ``kulczynski1(u, v)`` with ``1/jaccard(u, v) - 1``.
|
933
|
+
|
934
|
+
The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v`
|
935
|
+
of length ``n``, is defined as
|
936
|
+
|
937
|
+
.. math::
|
938
|
+
|
939
|
+
\\frac{c_{11}}
|
940
|
+
{c_{01} + c_{10}}
|
941
|
+
|
942
|
+
where :math:`c_{ij}` is the number of occurrences of
|
943
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
944
|
+
:math:`k \\in {0, 1, ..., n-1}`.
|
945
|
+
|
946
|
+
Parameters
|
947
|
+
----------
|
948
|
+
u : (N,) array_like, bool
|
949
|
+
Input array.
|
950
|
+
v : (N,) array_like, bool
|
951
|
+
Input array.
|
952
|
+
w : (N,) array_like, optional
|
953
|
+
The weights for each value in `u` and `v`. Default is None,
|
954
|
+
which gives each value a weight of 1.0
|
955
|
+
|
956
|
+
Returns
|
957
|
+
-------
|
958
|
+
kulczynski1 : float
|
959
|
+
The Kulczynski 1 distance between vectors `u` and `v`.
|
960
|
+
|
961
|
+
Notes
|
962
|
+
-----
|
963
|
+
This measure has a minimum value of 0 and no upper limit.
|
964
|
+
It is un-defined when there are no non-matches.
|
965
|
+
|
966
|
+
.. versionadded:: 1.8.0
|
967
|
+
|
968
|
+
References
|
969
|
+
----------
|
970
|
+
.. [1] Kulczynski S. et al. Bulletin
|
971
|
+
International de l'Academie Polonaise des Sciences
|
972
|
+
et des Lettres, Classe des Sciences Mathematiques
|
973
|
+
et Naturelles, Serie B (Sciences Naturelles). 1927;
|
974
|
+
Supplement II: 57-203.
|
975
|
+
|
976
|
+
Examples
|
977
|
+
--------
|
978
|
+
>>> from scipy.spatial import distance
|
979
|
+
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0])
|
980
|
+
0.0
|
981
|
+
>>> distance.kulczynski1([True, False, False], [True, True, False])
|
982
|
+
1.0
|
983
|
+
>>> distance.kulczynski1([True, False, False], [True])
|
984
|
+
0.5
|
985
|
+
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0])
|
986
|
+
-3.0
|
987
|
+
|
988
|
+
"""
|
989
|
+
u = _validate_vector(u)
|
990
|
+
v = _validate_vector(v)
|
991
|
+
if w is not None:
|
992
|
+
w = _validate_weights(w)
|
993
|
+
(_, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
994
|
+
|
995
|
+
return ntt / (ntf + nft)
|
996
|
+
|
997
|
+
|
998
|
+
def seuclidean(u, v, V):
|
999
|
+
"""
|
1000
|
+
Return the standardized Euclidean distance between two 1-D arrays.
|
1001
|
+
|
1002
|
+
The standardized Euclidean distance between two n-vectors `u` and `v` is
|
1003
|
+
|
1004
|
+
.. math::
|
1005
|
+
|
1006
|
+
\\sqrt{\\sum\\limits_i \\frac{1}{V_i} \\left(u_i-v_i \\right)^2}
|
1007
|
+
|
1008
|
+
``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th
|
1009
|
+
components of the points. If not passed, it is automatically computed.
|
1010
|
+
|
1011
|
+
Parameters
|
1012
|
+
----------
|
1013
|
+
u : (N,) array_like
|
1014
|
+
Input array.
|
1015
|
+
v : (N,) array_like
|
1016
|
+
Input array.
|
1017
|
+
V : (N,) array_like
|
1018
|
+
`V` is an 1-D array of component variances. It is usually computed
|
1019
|
+
among a larger collection of vectors.
|
1020
|
+
|
1021
|
+
Returns
|
1022
|
+
-------
|
1023
|
+
seuclidean : double
|
1024
|
+
The standardized Euclidean distance between vectors `u` and `v`.
|
1025
|
+
|
1026
|
+
Examples
|
1027
|
+
--------
|
1028
|
+
>>> from scipy.spatial import distance
|
1029
|
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
|
1030
|
+
4.4721359549995796
|
1031
|
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
|
1032
|
+
3.3166247903553998
|
1033
|
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
|
1034
|
+
3.1780497164141406
|
1035
|
+
|
1036
|
+
"""
|
1037
|
+
u = _validate_vector(u)
|
1038
|
+
v = _validate_vector(v)
|
1039
|
+
V = _validate_vector(V, dtype=np.float64)
|
1040
|
+
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
|
1041
|
+
raise TypeError('V must be a 1-D array of the same dimension '
|
1042
|
+
'as u and v.')
|
1043
|
+
return euclidean(u, v, w=1/V)
|
1044
|
+
|
1045
|
+
|
1046
|
+
def cityblock(u, v, w=None):
|
1047
|
+
"""
|
1048
|
+
Compute the City Block (Manhattan) distance.
|
1049
|
+
|
1050
|
+
Computes the Manhattan distance between two 1-D arrays `u` and `v`,
|
1051
|
+
which is defined as
|
1052
|
+
|
1053
|
+
.. math::
|
1054
|
+
|
1055
|
+
\\sum_i {\\left| u_i - v_i \\right|}.
|
1056
|
+
|
1057
|
+
Parameters
|
1058
|
+
----------
|
1059
|
+
u : (N,) array_like
|
1060
|
+
Input array.
|
1061
|
+
v : (N,) array_like
|
1062
|
+
Input array.
|
1063
|
+
w : (N,) array_like, optional
|
1064
|
+
The weights for each value in `u` and `v`. Default is None,
|
1065
|
+
which gives each value a weight of 1.0
|
1066
|
+
|
1067
|
+
Returns
|
1068
|
+
-------
|
1069
|
+
cityblock : double
|
1070
|
+
The City Block (Manhattan) distance between vectors `u` and `v`.
|
1071
|
+
|
1072
|
+
Examples
|
1073
|
+
--------
|
1074
|
+
>>> from scipy.spatial import distance
|
1075
|
+
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
|
1076
|
+
2
|
1077
|
+
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
|
1078
|
+
3
|
1079
|
+
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
|
1080
|
+
1
|
1081
|
+
|
1082
|
+
"""
|
1083
|
+
u = _validate_vector(u)
|
1084
|
+
v = _validate_vector(v)
|
1085
|
+
l1_diff = abs(u - v)
|
1086
|
+
if w is not None:
|
1087
|
+
w = _validate_weights(w)
|
1088
|
+
l1_diff = w * l1_diff
|
1089
|
+
return l1_diff.sum()
|
1090
|
+
|
1091
|
+
|
1092
|
+
def mahalanobis(u, v, VI):
|
1093
|
+
"""
|
1094
|
+
Compute the Mahalanobis distance between two 1-D arrays.
|
1095
|
+
|
1096
|
+
The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as
|
1097
|
+
|
1098
|
+
.. math::
|
1099
|
+
|
1100
|
+
\\sqrt{ (u-v) V^{-1} (u-v)^T }
|
1101
|
+
|
1102
|
+
where ``V`` is the covariance matrix. Note that the argument `VI`
|
1103
|
+
is the inverse of ``V``.
|
1104
|
+
|
1105
|
+
Parameters
|
1106
|
+
----------
|
1107
|
+
u : (N,) array_like
|
1108
|
+
Input array.
|
1109
|
+
v : (N,) array_like
|
1110
|
+
Input array.
|
1111
|
+
VI : array_like
|
1112
|
+
The inverse of the covariance matrix.
|
1113
|
+
|
1114
|
+
Returns
|
1115
|
+
-------
|
1116
|
+
mahalanobis : double
|
1117
|
+
The Mahalanobis distance between vectors `u` and `v`.
|
1118
|
+
|
1119
|
+
Examples
|
1120
|
+
--------
|
1121
|
+
>>> from scipy.spatial import distance
|
1122
|
+
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
|
1123
|
+
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
|
1124
|
+
1.0
|
1125
|
+
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
|
1126
|
+
1.0
|
1127
|
+
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
|
1128
|
+
1.7320508075688772
|
1129
|
+
|
1130
|
+
"""
|
1131
|
+
u = _validate_vector(u)
|
1132
|
+
v = _validate_vector(v)
|
1133
|
+
VI = np.atleast_2d(VI)
|
1134
|
+
delta = u - v
|
1135
|
+
m = np.dot(np.dot(delta, VI), delta)
|
1136
|
+
return np.sqrt(m)
|
1137
|
+
|
1138
|
+
|
1139
|
+
def chebyshev(u, v, w=None):
|
1140
|
+
r"""
|
1141
|
+
Compute the Chebyshev distance.
|
1142
|
+
|
1143
|
+
The *Chebyshev distance* between real vectors
|
1144
|
+
:math:`u \equiv (u_1, \cdots, u_n)` and
|
1145
|
+
:math:`v \equiv (v_1, \cdots, v_n)` is defined as [1]_
|
1146
|
+
|
1147
|
+
.. math::
|
1148
|
+
|
1149
|
+
d_\textrm{chebyshev}(u,v) := \max_{1 \le i \le n} |u_i-v_i|
|
1150
|
+
|
1151
|
+
If a (non-negative) weight vector :math:`w \equiv (w_1, \cdots, w_n)`
|
1152
|
+
is supplied, the *weighted Chebyshev distance* is defined to be the
|
1153
|
+
weighted Minkowski distance of infinite order; that is,
|
1154
|
+
|
1155
|
+
.. math::
|
1156
|
+
|
1157
|
+
\begin{align}
|
1158
|
+
d_\textrm{chebyshev}(u,v;w) &:= \lim_{p\rightarrow \infty}
|
1159
|
+
\left( \sum_{i=1}^n w_i | u_i-v_i |^p \right)^\frac{1}{p} \\
|
1160
|
+
&= \max_{1 \le i \le n} 1_{w_i > 0} | u_i - v_i |
|
1161
|
+
\end{align}
|
1162
|
+
|
1163
|
+
Parameters
|
1164
|
+
----------
|
1165
|
+
u : (N,) array_like of floats
|
1166
|
+
Input vector.
|
1167
|
+
v : (N,) array_like of floats
|
1168
|
+
Input vector.
|
1169
|
+
w : (N,) array_like of floats, optional
|
1170
|
+
Weight vector. Default is ``None``, which gives all pairs
|
1171
|
+
:math:`(u_i, v_i)` the same weight ``1.0``.
|
1172
|
+
|
1173
|
+
Returns
|
1174
|
+
-------
|
1175
|
+
chebyshev : float
|
1176
|
+
The Chebyshev distance between vectors `u` and `v`, optionally weighted
|
1177
|
+
by `w`.
|
1178
|
+
|
1179
|
+
References
|
1180
|
+
----------
|
1181
|
+
.. [1] https://en.wikipedia.org/wiki/Chebyshev_distance
|
1182
|
+
|
1183
|
+
Examples
|
1184
|
+
--------
|
1185
|
+
>>> from scipy.spatial import distance
|
1186
|
+
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
|
1187
|
+
1
|
1188
|
+
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
|
1189
|
+
1
|
1190
|
+
|
1191
|
+
"""
|
1192
|
+
u = _validate_vector(u)
|
1193
|
+
v = _validate_vector(v)
|
1194
|
+
if w is not None:
|
1195
|
+
w = _validate_weights(w)
|
1196
|
+
return max((w > 0) * abs(u - v))
|
1197
|
+
return max(abs(u - v))
|
1198
|
+
|
1199
|
+
|
1200
|
+
def braycurtis(u, v, w=None):
|
1201
|
+
"""
|
1202
|
+
Compute the Bray-Curtis distance between two 1-D arrays.
|
1203
|
+
|
1204
|
+
Bray-Curtis distance is defined as
|
1205
|
+
|
1206
|
+
.. math::
|
1207
|
+
|
1208
|
+
\\sum{|u_i-v_i|} / \\sum{|u_i+v_i|}
|
1209
|
+
|
1210
|
+
The Bray-Curtis distance is in the range [0, 1] if all coordinates are
|
1211
|
+
positive, and is undefined if the inputs are of length zero.
|
1212
|
+
|
1213
|
+
Parameters
|
1214
|
+
----------
|
1215
|
+
u : (N,) array_like
|
1216
|
+
Input array.
|
1217
|
+
v : (N,) array_like
|
1218
|
+
Input array.
|
1219
|
+
w : (N,) array_like, optional
|
1220
|
+
The weights for each value in `u` and `v`. Default is None,
|
1221
|
+
which gives each value a weight of 1.0
|
1222
|
+
|
1223
|
+
Returns
|
1224
|
+
-------
|
1225
|
+
braycurtis : double
|
1226
|
+
The Bray-Curtis distance between 1-D arrays `u` and `v`.
|
1227
|
+
|
1228
|
+
Examples
|
1229
|
+
--------
|
1230
|
+
>>> from scipy.spatial import distance
|
1231
|
+
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
|
1232
|
+
1.0
|
1233
|
+
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
|
1234
|
+
0.33333333333333331
|
1235
|
+
|
1236
|
+
"""
|
1237
|
+
u = _validate_vector(u)
|
1238
|
+
v = _validate_vector(v, dtype=np.float64)
|
1239
|
+
l1_diff = abs(u - v)
|
1240
|
+
l1_sum = abs(u + v)
|
1241
|
+
if w is not None:
|
1242
|
+
w = _validate_weights(w)
|
1243
|
+
l1_diff = w * l1_diff
|
1244
|
+
l1_sum = w * l1_sum
|
1245
|
+
return l1_diff.sum() / l1_sum.sum()
|
1246
|
+
|
1247
|
+
|
1248
|
+
def canberra(u, v, w=None):
|
1249
|
+
"""
|
1250
|
+
Compute the Canberra distance between two 1-D arrays.
|
1251
|
+
|
1252
|
+
The Canberra distance is defined as
|
1253
|
+
|
1254
|
+
.. math::
|
1255
|
+
|
1256
|
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
1257
|
+
{|u_i|+|v_i|}.
|
1258
|
+
|
1259
|
+
Parameters
|
1260
|
+
----------
|
1261
|
+
u : (N,) array_like
|
1262
|
+
Input array.
|
1263
|
+
v : (N,) array_like
|
1264
|
+
Input array.
|
1265
|
+
w : (N,) array_like, optional
|
1266
|
+
The weights for each value in `u` and `v`. Default is None,
|
1267
|
+
which gives each value a weight of 1.0
|
1268
|
+
|
1269
|
+
Returns
|
1270
|
+
-------
|
1271
|
+
canberra : double
|
1272
|
+
The Canberra distance between vectors `u` and `v`.
|
1273
|
+
|
1274
|
+
Notes
|
1275
|
+
-----
|
1276
|
+
When ``u[i]`` and ``v[i]`` are 0 for given i, then the fraction 0/0 = 0 is
|
1277
|
+
used in the calculation.
|
1278
|
+
|
1279
|
+
Examples
|
1280
|
+
--------
|
1281
|
+
>>> from scipy.spatial import distance
|
1282
|
+
>>> distance.canberra([1, 0, 0], [0, 1, 0])
|
1283
|
+
2.0
|
1284
|
+
>>> distance.canberra([1, 1, 0], [0, 1, 0])
|
1285
|
+
1.0
|
1286
|
+
|
1287
|
+
"""
|
1288
|
+
u = _validate_vector(u)
|
1289
|
+
v = _validate_vector(v, dtype=np.float64)
|
1290
|
+
if w is not None:
|
1291
|
+
w = _validate_weights(w)
|
1292
|
+
with np.errstate(invalid='ignore'):
|
1293
|
+
abs_uv = abs(u - v)
|
1294
|
+
abs_u = abs(u)
|
1295
|
+
abs_v = abs(v)
|
1296
|
+
d = abs_uv / (abs_u + abs_v)
|
1297
|
+
if w is not None:
|
1298
|
+
d = w * d
|
1299
|
+
d = np.nansum(d)
|
1300
|
+
return d
|
1301
|
+
|
1302
|
+
|
1303
|
+
def jensenshannon(p, q, base=None, *, axis=0, keepdims=False):
|
1304
|
+
"""
|
1305
|
+
Compute the Jensen-Shannon distance (metric) between
|
1306
|
+
two probability arrays. This is the square root
|
1307
|
+
of the Jensen-Shannon divergence.
|
1308
|
+
|
1309
|
+
The Jensen-Shannon distance between two probability
|
1310
|
+
vectors `p` and `q` is defined as,
|
1311
|
+
|
1312
|
+
.. math::
|
1313
|
+
|
1314
|
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
1315
|
+
|
1316
|
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
1317
|
+
and :math:`D` is the Kullback-Leibler divergence.
|
1318
|
+
|
1319
|
+
This routine will normalize `p` and `q` if they don't sum to 1.0.
|
1320
|
+
|
1321
|
+
Parameters
|
1322
|
+
----------
|
1323
|
+
p : (N,) array_like
|
1324
|
+
left probability vector
|
1325
|
+
q : (N,) array_like
|
1326
|
+
right probability vector
|
1327
|
+
base : double, optional
|
1328
|
+
the base of the logarithm used to compute the output
|
1329
|
+
if not given, then the routine uses the default base of
|
1330
|
+
scipy.stats.entropy.
|
1331
|
+
axis : int, optional
|
1332
|
+
Axis along which the Jensen-Shannon distances are computed. The default
|
1333
|
+
is 0.
|
1334
|
+
|
1335
|
+
.. versionadded:: 1.7.0
|
1336
|
+
keepdims : bool, optional
|
1337
|
+
If this is set to `True`, the reduced axes are left in the
|
1338
|
+
result as dimensions with size one. With this option,
|
1339
|
+
the result will broadcast correctly against the input array.
|
1340
|
+
Default is False.
|
1341
|
+
|
1342
|
+
.. versionadded:: 1.7.0
|
1343
|
+
|
1344
|
+
Returns
|
1345
|
+
-------
|
1346
|
+
js : double or ndarray
|
1347
|
+
The Jensen-Shannon distances between `p` and `q` along the `axis`.
|
1348
|
+
|
1349
|
+
Notes
|
1350
|
+
-----
|
1351
|
+
|
1352
|
+
.. versionadded:: 1.2.0
|
1353
|
+
|
1354
|
+
Examples
|
1355
|
+
--------
|
1356
|
+
>>> from scipy.spatial import distance
|
1357
|
+
>>> import numpy as np
|
1358
|
+
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
|
1359
|
+
1.0
|
1360
|
+
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
|
1361
|
+
0.46450140402245893
|
1362
|
+
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
|
1363
|
+
0.0
|
1364
|
+
>>> a = np.array([[1, 2, 3, 4],
|
1365
|
+
... [5, 6, 7, 8],
|
1366
|
+
... [9, 10, 11, 12]])
|
1367
|
+
>>> b = np.array([[13, 14, 15, 16],
|
1368
|
+
... [17, 18, 19, 20],
|
1369
|
+
... [21, 22, 23, 24]])
|
1370
|
+
>>> distance.jensenshannon(a, b, axis=0)
|
1371
|
+
array([0.1954288, 0.1447697, 0.1138377, 0.0927636])
|
1372
|
+
>>> distance.jensenshannon(a, b, axis=1)
|
1373
|
+
array([0.1402339, 0.0399106, 0.0201815])
|
1374
|
+
|
1375
|
+
"""
|
1376
|
+
p = np.asarray(p)
|
1377
|
+
q = np.asarray(q)
|
1378
|
+
p = p / np.sum(p, axis=axis, keepdims=True)
|
1379
|
+
q = q / np.sum(q, axis=axis, keepdims=True)
|
1380
|
+
m = (p + q) / 2.0
|
1381
|
+
left = rel_entr(p, m)
|
1382
|
+
right = rel_entr(q, m)
|
1383
|
+
left_sum = np.sum(left, axis=axis, keepdims=keepdims)
|
1384
|
+
right_sum = np.sum(right, axis=axis, keepdims=keepdims)
|
1385
|
+
js = left_sum + right_sum
|
1386
|
+
if base is not None:
|
1387
|
+
js /= np.log(base)
|
1388
|
+
return np.sqrt(js / 2.0)
|
1389
|
+
|
1390
|
+
|
1391
|
+
def yule(u, v, w=None):
|
1392
|
+
"""
|
1393
|
+
Compute the Yule dissimilarity between two boolean 1-D arrays.
|
1394
|
+
|
1395
|
+
The Yule dissimilarity is defined as
|
1396
|
+
|
1397
|
+
.. math::
|
1398
|
+
|
1399
|
+
\\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}}
|
1400
|
+
|
1401
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1402
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1403
|
+
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.
|
1404
|
+
|
1405
|
+
Parameters
|
1406
|
+
----------
|
1407
|
+
u : (N,) array_like, bool
|
1408
|
+
Input array.
|
1409
|
+
v : (N,) array_like, bool
|
1410
|
+
Input array.
|
1411
|
+
w : (N,) array_like, optional
|
1412
|
+
The weights for each value in `u` and `v`. Default is None,
|
1413
|
+
which gives each value a weight of 1.0
|
1414
|
+
|
1415
|
+
Returns
|
1416
|
+
-------
|
1417
|
+
yule : double
|
1418
|
+
The Yule dissimilarity between vectors `u` and `v`.
|
1419
|
+
|
1420
|
+
Examples
|
1421
|
+
--------
|
1422
|
+
>>> from scipy.spatial import distance
|
1423
|
+
>>> distance.yule([1, 0, 0], [0, 1, 0])
|
1424
|
+
2.0
|
1425
|
+
>>> distance.yule([1, 1, 0], [0, 1, 0])
|
1426
|
+
0.0
|
1427
|
+
|
1428
|
+
"""
|
1429
|
+
u = _validate_vector(u)
|
1430
|
+
v = _validate_vector(v)
|
1431
|
+
if w is not None:
|
1432
|
+
w = _validate_weights(w)
|
1433
|
+
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
1434
|
+
half_R = ntf * nft
|
1435
|
+
if half_R == 0:
|
1436
|
+
return 0.0
|
1437
|
+
else:
|
1438
|
+
return float(2.0 * half_R / (ntt * nff + half_R))
|
1439
|
+
|
1440
|
+
|
1441
|
+
def dice(u, v, w=None):
|
1442
|
+
"""
|
1443
|
+
Compute the Dice dissimilarity between two boolean 1-D arrays.
|
1444
|
+
|
1445
|
+
The Dice dissimilarity between `u` and `v`, is
|
1446
|
+
|
1447
|
+
.. math::
|
1448
|
+
|
1449
|
+
\\frac{c_{TF} + c_{FT}}
|
1450
|
+
{2c_{TT} + c_{FT} + c_{TF}}
|
1451
|
+
|
1452
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1453
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1454
|
+
:math:`k < n`.
|
1455
|
+
|
1456
|
+
Parameters
|
1457
|
+
----------
|
1458
|
+
u : (N,) array_like, bool
|
1459
|
+
Input 1-D array.
|
1460
|
+
v : (N,) array_like, bool
|
1461
|
+
Input 1-D array.
|
1462
|
+
w : (N,) array_like, optional
|
1463
|
+
The weights for each value in `u` and `v`. Default is None,
|
1464
|
+
which gives each value a weight of 1.0
|
1465
|
+
|
1466
|
+
Returns
|
1467
|
+
-------
|
1468
|
+
dice : double
|
1469
|
+
The Dice dissimilarity between 1-D arrays `u` and `v`.
|
1470
|
+
|
1471
|
+
Notes
|
1472
|
+
-----
|
1473
|
+
This function computes the Dice dissimilarity index. To compute the
|
1474
|
+
Dice similarity index, convert one to the other with similarity =
|
1475
|
+
1 - dissimilarity.
|
1476
|
+
|
1477
|
+
Examples
|
1478
|
+
--------
|
1479
|
+
>>> from scipy.spatial import distance
|
1480
|
+
>>> distance.dice([1, 0, 0], [0, 1, 0])
|
1481
|
+
1.0
|
1482
|
+
>>> distance.dice([1, 0, 0], [1, 1, 0])
|
1483
|
+
0.3333333333333333
|
1484
|
+
>>> distance.dice([1, 0, 0], [2, 0, 0])
|
1485
|
+
-0.3333333333333333
|
1486
|
+
|
1487
|
+
"""
|
1488
|
+
u = _validate_vector(u)
|
1489
|
+
v = _validate_vector(v)
|
1490
|
+
if w is not None:
|
1491
|
+
w = _validate_weights(w)
|
1492
|
+
if u.dtype == v.dtype == bool and w is None:
|
1493
|
+
ntt = (u & v).sum()
|
1494
|
+
else:
|
1495
|
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
1496
|
+
u = u.astype(dtype)
|
1497
|
+
v = v.astype(dtype)
|
1498
|
+
if w is None:
|
1499
|
+
ntt = (u * v).sum()
|
1500
|
+
else:
|
1501
|
+
ntt = (u * v * w).sum()
|
1502
|
+
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
1503
|
+
return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft))
|
1504
|
+
|
1505
|
+
|
1506
|
+
def rogerstanimoto(u, v, w=None):
|
1507
|
+
"""
|
1508
|
+
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
|
1509
|
+
|
1510
|
+
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
|
1511
|
+
`u` and `v`, is defined as
|
1512
|
+
|
1513
|
+
.. math::
|
1514
|
+
\\frac{R}
|
1515
|
+
{c_{TT} + c_{FF} + R}
|
1516
|
+
|
1517
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1518
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1519
|
+
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
1520
|
+
|
1521
|
+
Parameters
|
1522
|
+
----------
|
1523
|
+
u : (N,) array_like, bool
|
1524
|
+
Input array.
|
1525
|
+
v : (N,) array_like, bool
|
1526
|
+
Input array.
|
1527
|
+
w : (N,) array_like, optional
|
1528
|
+
The weights for each value in `u` and `v`. Default is None,
|
1529
|
+
which gives each value a weight of 1.0
|
1530
|
+
|
1531
|
+
Returns
|
1532
|
+
-------
|
1533
|
+
rogerstanimoto : double
|
1534
|
+
The Rogers-Tanimoto dissimilarity between vectors
|
1535
|
+
`u` and `v`.
|
1536
|
+
|
1537
|
+
Examples
|
1538
|
+
--------
|
1539
|
+
>>> from scipy.spatial import distance
|
1540
|
+
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
|
1541
|
+
0.8
|
1542
|
+
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
|
1543
|
+
0.5
|
1544
|
+
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
|
1545
|
+
-1.0
|
1546
|
+
|
1547
|
+
"""
|
1548
|
+
u = _validate_vector(u)
|
1549
|
+
v = _validate_vector(v)
|
1550
|
+
if w is not None:
|
1551
|
+
w = _validate_weights(w)
|
1552
|
+
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
1553
|
+
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))
|
1554
|
+
|
1555
|
+
|
1556
|
+
def russellrao(u, v, w=None):
|
1557
|
+
"""
|
1558
|
+
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.
|
1559
|
+
|
1560
|
+
The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
|
1561
|
+
`v`, is defined as
|
1562
|
+
|
1563
|
+
.. math::
|
1564
|
+
|
1565
|
+
\\frac{n - c_{TT}}
|
1566
|
+
{n}
|
1567
|
+
|
1568
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1569
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1570
|
+
:math:`k < n`.
|
1571
|
+
|
1572
|
+
Parameters
|
1573
|
+
----------
|
1574
|
+
u : (N,) array_like, bool
|
1575
|
+
Input array.
|
1576
|
+
v : (N,) array_like, bool
|
1577
|
+
Input array.
|
1578
|
+
w : (N,) array_like, optional
|
1579
|
+
The weights for each value in `u` and `v`. Default is None,
|
1580
|
+
which gives each value a weight of 1.0
|
1581
|
+
|
1582
|
+
Returns
|
1583
|
+
-------
|
1584
|
+
russellrao : double
|
1585
|
+
The Russell-Rao dissimilarity between vectors `u` and `v`.
|
1586
|
+
|
1587
|
+
Examples
|
1588
|
+
--------
|
1589
|
+
>>> from scipy.spatial import distance
|
1590
|
+
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
|
1591
|
+
1.0
|
1592
|
+
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
|
1593
|
+
0.6666666666666666
|
1594
|
+
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
|
1595
|
+
0.3333333333333333
|
1596
|
+
|
1597
|
+
"""
|
1598
|
+
u = _validate_vector(u)
|
1599
|
+
v = _validate_vector(v)
|
1600
|
+
if u.dtype == v.dtype == bool and w is None:
|
1601
|
+
ntt = (u & v).sum()
|
1602
|
+
n = float(len(u))
|
1603
|
+
elif w is None:
|
1604
|
+
ntt = (u * v).sum()
|
1605
|
+
n = float(len(u))
|
1606
|
+
else:
|
1607
|
+
w = _validate_weights(w)
|
1608
|
+
ntt = (u * v * w).sum()
|
1609
|
+
n = w.sum()
|
1610
|
+
return float(n - ntt) / n
|
1611
|
+
|
1612
|
+
|
1613
|
+
_deprecated_sokalmichener = _deprecated(
|
1614
|
+
"The sokalmichener metric is deprecated since SciPy 1.15.0 and will be "
|
1615
|
+
"removed in SciPy 1.17.0. Replace usage of 'sokalmichener(u, v)' with "
|
1616
|
+
"'rogerstanimoto(u, v)'."
|
1617
|
+
)
|
1618
|
+
|
1619
|
+
|
1620
|
+
@_deprecated_sokalmichener
|
1621
|
+
def sokalmichener(u, v, w=None):
|
1622
|
+
"""
|
1623
|
+
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.
|
1624
|
+
|
1625
|
+
.. deprecated:: 1.15.0
|
1626
|
+
This function is deprecated and will be removed in SciPy 1.17.0.
|
1627
|
+
Replace usage of ``sokalmichener(u, v)`` with ``rogerstanimoto(u, v)``.
|
1628
|
+
|
1629
|
+
The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
|
1630
|
+
is defined as
|
1631
|
+
|
1632
|
+
.. math::
|
1633
|
+
|
1634
|
+
\\frac{R}
|
1635
|
+
{S + R}
|
1636
|
+
|
1637
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1638
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1639
|
+
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
|
1640
|
+
:math:`S = c_{FF} + c_{TT}`.
|
1641
|
+
|
1642
|
+
Parameters
|
1643
|
+
----------
|
1644
|
+
u : (N,) array_like, bool
|
1645
|
+
Input array.
|
1646
|
+
v : (N,) array_like, bool
|
1647
|
+
Input array.
|
1648
|
+
w : (N,) array_like, optional
|
1649
|
+
The weights for each value in `u` and `v`. Default is None,
|
1650
|
+
which gives each value a weight of 1.0
|
1651
|
+
|
1652
|
+
Returns
|
1653
|
+
-------
|
1654
|
+
sokalmichener : double
|
1655
|
+
The Sokal-Michener dissimilarity between vectors `u` and `v`.
|
1656
|
+
|
1657
|
+
Examples
|
1658
|
+
--------
|
1659
|
+
>>> from scipy.spatial import distance
|
1660
|
+
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
|
1661
|
+
0.8
|
1662
|
+
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
|
1663
|
+
0.5
|
1664
|
+
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
|
1665
|
+
-1.0
|
1666
|
+
|
1667
|
+
"""
|
1668
|
+
u = _validate_vector(u)
|
1669
|
+
v = _validate_vector(v)
|
1670
|
+
if w is not None:
|
1671
|
+
w = _validate_weights(w)
|
1672
|
+
nff, nft, ntf, ntt = _nbool_correspond_all(u, v, w=w)
|
1673
|
+
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
|
1674
|
+
|
1675
|
+
|
1676
|
+
def sokalsneath(u, v, w=None):
|
1677
|
+
"""
|
1678
|
+
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
|
1679
|
+
|
1680
|
+
The Sokal-Sneath dissimilarity between `u` and `v`,
|
1681
|
+
|
1682
|
+
.. math::
|
1683
|
+
|
1684
|
+
\\frac{R}
|
1685
|
+
{c_{TT} + R}
|
1686
|
+
|
1687
|
+
where :math:`c_{ij}` is the number of occurrences of
|
1688
|
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1689
|
+
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
1690
|
+
|
1691
|
+
Parameters
|
1692
|
+
----------
|
1693
|
+
u : (N,) array_like, bool
|
1694
|
+
Input array.
|
1695
|
+
v : (N,) array_like, bool
|
1696
|
+
Input array.
|
1697
|
+
w : (N,) array_like, optional
|
1698
|
+
The weights for each value in `u` and `v`. Default is None,
|
1699
|
+
which gives each value a weight of 1.0
|
1700
|
+
|
1701
|
+
Returns
|
1702
|
+
-------
|
1703
|
+
sokalsneath : double
|
1704
|
+
The Sokal-Sneath dissimilarity between vectors `u` and `v`.
|
1705
|
+
|
1706
|
+
Examples
|
1707
|
+
--------
|
1708
|
+
>>> from scipy.spatial import distance
|
1709
|
+
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
|
1710
|
+
1.0
|
1711
|
+
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
|
1712
|
+
0.66666666666666663
|
1713
|
+
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
|
1714
|
+
0.0
|
1715
|
+
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
|
1716
|
+
-2.0
|
1717
|
+
|
1718
|
+
"""
|
1719
|
+
u = _validate_vector(u)
|
1720
|
+
v = _validate_vector(v)
|
1721
|
+
if u.dtype == v.dtype == bool and w is None:
|
1722
|
+
ntt = (u & v).sum()
|
1723
|
+
elif w is None:
|
1724
|
+
ntt = (u * v).sum()
|
1725
|
+
else:
|
1726
|
+
w = _validate_weights(w)
|
1727
|
+
ntt = (u * v * w).sum()
|
1728
|
+
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
1729
|
+
denom = np.array(ntt + 2.0 * (ntf + nft))
|
1730
|
+
if not denom.any():
|
1731
|
+
raise ValueError('Sokal-Sneath dissimilarity is not defined for '
|
1732
|
+
'vectors that are entirely false.')
|
1733
|
+
return float(2.0 * (ntf + nft)) / denom
|
1734
|
+
|
1735
|
+
|
1736
|
+
_convert_to_double = partial(_convert_to_type, out_type=np.float64)
|
1737
|
+
_convert_to_bool = partial(_convert_to_type, out_type=bool)
|
1738
|
+
|
1739
|
+
# adding python-only wrappers to _distance_wrap module
|
1740
|
+
_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap
|
1741
|
+
_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap
|
1742
|
+
|
1743
|
+
|
1744
|
+
@dataclasses.dataclass(frozen=True)
|
1745
|
+
class CDistMetricWrapper:
|
1746
|
+
metric_name: str
|
1747
|
+
|
1748
|
+
def __call__(self, XA, XB, *, out=None, **kwargs):
|
1749
|
+
XA = np.ascontiguousarray(XA)
|
1750
|
+
XB = np.ascontiguousarray(XB)
|
1751
|
+
mA, n = XA.shape
|
1752
|
+
mB, _ = XB.shape
|
1753
|
+
metric_name = self.metric_name
|
1754
|
+
metric_info = _METRICS[metric_name]
|
1755
|
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
1756
|
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
1757
|
+
|
1758
|
+
w = kwargs.pop('w', None)
|
1759
|
+
if w is not None:
|
1760
|
+
metric = metric_info.dist_func
|
1761
|
+
return _cdist_callable(
|
1762
|
+
XA, XB, metric=metric, out=out, w=w, **kwargs)
|
1763
|
+
|
1764
|
+
dm = _prepare_out_argument(out, np.float64, (mA, mB))
|
1765
|
+
# get cdist wrapper
|
1766
|
+
cdist_fn = getattr(_distance_wrap, f'cdist_{metric_name}_{typ}_wrap')
|
1767
|
+
cdist_fn(XA, XB, dm, **kwargs)
|
1768
|
+
return dm
|
1769
|
+
|
1770
|
+
|
1771
|
+
@dataclasses.dataclass(frozen=True)
|
1772
|
+
class PDistMetricWrapper:
|
1773
|
+
metric_name: str
|
1774
|
+
|
1775
|
+
def __call__(self, X, *, out=None, **kwargs):
|
1776
|
+
X = np.ascontiguousarray(X)
|
1777
|
+
m, n = X.shape
|
1778
|
+
metric_name = self.metric_name
|
1779
|
+
metric_info = _METRICS[metric_name]
|
1780
|
+
X, typ, kwargs = _validate_pdist_input(
|
1781
|
+
X, m, n, metric_info, **kwargs)
|
1782
|
+
out_size = (m * (m - 1)) // 2
|
1783
|
+
w = kwargs.pop('w', None)
|
1784
|
+
if w is not None:
|
1785
|
+
metric = metric_info.dist_func
|
1786
|
+
return _pdist_callable(
|
1787
|
+
X, metric=metric, out=out, w=w, **kwargs)
|
1788
|
+
|
1789
|
+
dm = _prepare_out_argument(out, np.float64, (out_size,))
|
1790
|
+
# get pdist wrapper
|
1791
|
+
pdist_fn = getattr(_distance_wrap, f'pdist_{metric_name}_{typ}_wrap')
|
1792
|
+
pdist_fn(X, dm, **kwargs)
|
1793
|
+
return dm
|
1794
|
+
|
1795
|
+
|
1796
|
+
@dataclasses.dataclass(frozen=True)
|
1797
|
+
class MetricInfo:
|
1798
|
+
# Name of python distance function
|
1799
|
+
canonical_name: str
|
1800
|
+
# All aliases, including canonical_name
|
1801
|
+
aka: set[str]
|
1802
|
+
# unvectorized distance function
|
1803
|
+
dist_func: Callable
|
1804
|
+
# Optimized cdist function
|
1805
|
+
cdist_func: Callable
|
1806
|
+
# Optimized pdist function
|
1807
|
+
pdist_func: Callable
|
1808
|
+
# function that checks kwargs and computes default values:
|
1809
|
+
# f(X, m, n, **kwargs)
|
1810
|
+
validator: Callable | None = None
|
1811
|
+
# list of supported types:
|
1812
|
+
# X (pdist) and XA (cdist) are used to choose the type. if there is no
|
1813
|
+
# match the first type is used. Default double
|
1814
|
+
types: list[str] = dataclasses.field(default_factory=lambda: ['double'])
|
1815
|
+
# true if out array must be C-contiguous
|
1816
|
+
requires_contiguous_out: bool = True
|
1817
|
+
|
1818
|
+
|
1819
|
+
# Registry of implemented metrics:
|
1820
|
+
_METRIC_INFOS = [
|
1821
|
+
MetricInfo(
|
1822
|
+
canonical_name='braycurtis',
|
1823
|
+
aka={'braycurtis'},
|
1824
|
+
dist_func=braycurtis,
|
1825
|
+
cdist_func=_distance_pybind.cdist_braycurtis,
|
1826
|
+
pdist_func=_distance_pybind.pdist_braycurtis,
|
1827
|
+
),
|
1828
|
+
MetricInfo(
|
1829
|
+
canonical_name='canberra',
|
1830
|
+
aka={'canberra'},
|
1831
|
+
dist_func=canberra,
|
1832
|
+
cdist_func=_distance_pybind.cdist_canberra,
|
1833
|
+
pdist_func=_distance_pybind.pdist_canberra,
|
1834
|
+
),
|
1835
|
+
MetricInfo(
|
1836
|
+
canonical_name='chebyshev',
|
1837
|
+
aka={'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'},
|
1838
|
+
dist_func=chebyshev,
|
1839
|
+
cdist_func=_distance_pybind.cdist_chebyshev,
|
1840
|
+
pdist_func=_distance_pybind.pdist_chebyshev,
|
1841
|
+
),
|
1842
|
+
MetricInfo(
|
1843
|
+
canonical_name='cityblock',
|
1844
|
+
aka={'cityblock', 'cblock', 'cb', 'c'},
|
1845
|
+
dist_func=cityblock,
|
1846
|
+
cdist_func=_distance_pybind.cdist_cityblock,
|
1847
|
+
pdist_func=_distance_pybind.pdist_cityblock,
|
1848
|
+
),
|
1849
|
+
MetricInfo(
|
1850
|
+
canonical_name='correlation',
|
1851
|
+
aka={'correlation', 'co'},
|
1852
|
+
dist_func=correlation,
|
1853
|
+
cdist_func=CDistMetricWrapper('correlation'),
|
1854
|
+
pdist_func=PDistMetricWrapper('correlation'),
|
1855
|
+
),
|
1856
|
+
MetricInfo(
|
1857
|
+
canonical_name='cosine',
|
1858
|
+
aka={'cosine', 'cos'},
|
1859
|
+
dist_func=cosine,
|
1860
|
+
cdist_func=CDistMetricWrapper('cosine'),
|
1861
|
+
pdist_func=PDistMetricWrapper('cosine'),
|
1862
|
+
),
|
1863
|
+
MetricInfo(
|
1864
|
+
canonical_name='dice',
|
1865
|
+
aka={'dice'},
|
1866
|
+
types=['bool'],
|
1867
|
+
dist_func=dice,
|
1868
|
+
cdist_func=_distance_pybind.cdist_dice,
|
1869
|
+
pdist_func=_distance_pybind.pdist_dice,
|
1870
|
+
),
|
1871
|
+
MetricInfo(
|
1872
|
+
canonical_name='euclidean',
|
1873
|
+
aka={'euclidean', 'euclid', 'eu', 'e'},
|
1874
|
+
dist_func=euclidean,
|
1875
|
+
cdist_func=_distance_pybind.cdist_euclidean,
|
1876
|
+
pdist_func=_distance_pybind.pdist_euclidean,
|
1877
|
+
),
|
1878
|
+
MetricInfo(
|
1879
|
+
canonical_name='hamming',
|
1880
|
+
aka={'matching', 'hamming', 'hamm', 'ha', 'h'},
|
1881
|
+
types=['double', 'bool'],
|
1882
|
+
validator=_validate_hamming_kwargs,
|
1883
|
+
dist_func=hamming,
|
1884
|
+
cdist_func=_distance_pybind.cdist_hamming,
|
1885
|
+
pdist_func=_distance_pybind.pdist_hamming,
|
1886
|
+
),
|
1887
|
+
MetricInfo(
|
1888
|
+
canonical_name='jaccard',
|
1889
|
+
aka={'jaccard', 'jacc', 'ja', 'j'},
|
1890
|
+
types=['double', 'bool'],
|
1891
|
+
dist_func=jaccard,
|
1892
|
+
cdist_func=_distance_pybind.cdist_jaccard,
|
1893
|
+
pdist_func=_distance_pybind.pdist_jaccard,
|
1894
|
+
),
|
1895
|
+
MetricInfo(
|
1896
|
+
canonical_name='jensenshannon',
|
1897
|
+
aka={'jensenshannon', 'js'},
|
1898
|
+
dist_func=jensenshannon,
|
1899
|
+
cdist_func=CDistMetricWrapper('jensenshannon'),
|
1900
|
+
pdist_func=PDistMetricWrapper('jensenshannon'),
|
1901
|
+
),
|
1902
|
+
MetricInfo(
|
1903
|
+
canonical_name='kulczynski1',
|
1904
|
+
aka={'kulczynski1'},
|
1905
|
+
types=['bool'],
|
1906
|
+
dist_func=kulczynski1,
|
1907
|
+
cdist_func=_deprecated_kulczynski1(_distance_pybind.cdist_kulczynski1),
|
1908
|
+
pdist_func=_deprecated_kulczynski1(_distance_pybind.pdist_kulczynski1),
|
1909
|
+
),
|
1910
|
+
MetricInfo(
|
1911
|
+
canonical_name='mahalanobis',
|
1912
|
+
aka={'mahalanobis', 'mahal', 'mah'},
|
1913
|
+
validator=_validate_mahalanobis_kwargs,
|
1914
|
+
dist_func=mahalanobis,
|
1915
|
+
cdist_func=CDistMetricWrapper('mahalanobis'),
|
1916
|
+
pdist_func=PDistMetricWrapper('mahalanobis'),
|
1917
|
+
),
|
1918
|
+
MetricInfo(
|
1919
|
+
canonical_name='minkowski',
|
1920
|
+
aka={'minkowski', 'mi', 'm', 'pnorm'},
|
1921
|
+
validator=_validate_minkowski_kwargs,
|
1922
|
+
dist_func=minkowski,
|
1923
|
+
cdist_func=_distance_pybind.cdist_minkowski,
|
1924
|
+
pdist_func=_distance_pybind.pdist_minkowski,
|
1925
|
+
),
|
1926
|
+
MetricInfo(
|
1927
|
+
canonical_name='rogerstanimoto',
|
1928
|
+
aka={'rogerstanimoto'},
|
1929
|
+
types=['bool'],
|
1930
|
+
dist_func=rogerstanimoto,
|
1931
|
+
cdist_func=_distance_pybind.cdist_rogerstanimoto,
|
1932
|
+
pdist_func=_distance_pybind.pdist_rogerstanimoto,
|
1933
|
+
),
|
1934
|
+
MetricInfo(
|
1935
|
+
canonical_name='russellrao',
|
1936
|
+
aka={'russellrao'},
|
1937
|
+
types=['bool'],
|
1938
|
+
dist_func=russellrao,
|
1939
|
+
cdist_func=_distance_pybind.cdist_russellrao,
|
1940
|
+
pdist_func=_distance_pybind.pdist_russellrao,
|
1941
|
+
),
|
1942
|
+
MetricInfo(
|
1943
|
+
canonical_name='seuclidean',
|
1944
|
+
aka={'seuclidean', 'se', 's'},
|
1945
|
+
validator=_validate_seuclidean_kwargs,
|
1946
|
+
dist_func=seuclidean,
|
1947
|
+
cdist_func=CDistMetricWrapper('seuclidean'),
|
1948
|
+
pdist_func=PDistMetricWrapper('seuclidean'),
|
1949
|
+
),
|
1950
|
+
MetricInfo(
|
1951
|
+
canonical_name='sokalmichener',
|
1952
|
+
aka={'sokalmichener'},
|
1953
|
+
types=['bool'],
|
1954
|
+
dist_func=sokalmichener,
|
1955
|
+
cdist_func=_deprecated_sokalmichener(_distance_pybind.cdist_sokalmichener),
|
1956
|
+
pdist_func=_deprecated_sokalmichener(_distance_pybind.pdist_sokalmichener),
|
1957
|
+
),
|
1958
|
+
MetricInfo(
|
1959
|
+
canonical_name='sokalsneath',
|
1960
|
+
aka={'sokalsneath'},
|
1961
|
+
types=['bool'],
|
1962
|
+
dist_func=sokalsneath,
|
1963
|
+
cdist_func=_distance_pybind.cdist_sokalsneath,
|
1964
|
+
pdist_func=_distance_pybind.pdist_sokalsneath,
|
1965
|
+
),
|
1966
|
+
MetricInfo(
|
1967
|
+
canonical_name='sqeuclidean',
|
1968
|
+
aka={'sqeuclidean', 'sqe', 'sqeuclid'},
|
1969
|
+
dist_func=sqeuclidean,
|
1970
|
+
cdist_func=_distance_pybind.cdist_sqeuclidean,
|
1971
|
+
pdist_func=_distance_pybind.pdist_sqeuclidean,
|
1972
|
+
),
|
1973
|
+
MetricInfo(
|
1974
|
+
canonical_name='yule',
|
1975
|
+
aka={'yule'},
|
1976
|
+
types=['bool'],
|
1977
|
+
dist_func=yule,
|
1978
|
+
cdist_func=_distance_pybind.cdist_yule,
|
1979
|
+
pdist_func=_distance_pybind.pdist_yule,
|
1980
|
+
),
|
1981
|
+
]
|
1982
|
+
|
1983
|
+
_METRICS = {info.canonical_name: info for info in _METRIC_INFOS}
|
1984
|
+
_METRIC_ALIAS = {alias: info
|
1985
|
+
for info in _METRIC_INFOS
|
1986
|
+
for alias in info.aka}
|
1987
|
+
|
1988
|
+
_METRICS_NAMES = list(_METRICS.keys())
|
1989
|
+
|
1990
|
+
_TEST_METRICS = {'test_' + info.canonical_name: info for info in _METRIC_INFOS}
|
1991
|
+
|
1992
|
+
|
1993
|
+
def pdist(X, metric='euclidean', *, out=None, **kwargs):
|
1994
|
+
"""
|
1995
|
+
Pairwise distances between observations in n-dimensional space.
|
1996
|
+
|
1997
|
+
See Notes for common calling conventions.
|
1998
|
+
|
1999
|
+
Parameters
|
2000
|
+
----------
|
2001
|
+
X : array_like
|
2002
|
+
An m by n array of m original observations in an
|
2003
|
+
n-dimensional space.
|
2004
|
+
metric : str or function, optional
|
2005
|
+
The distance metric to use. The distance function can
|
2006
|
+
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
|
2007
|
+
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
|
2008
|
+
'jaccard', 'jensenshannon', 'kulczynski1',
|
2009
|
+
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
|
2010
|
+
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
|
2011
|
+
'sqeuclidean', 'yule'.
|
2012
|
+
out : ndarray, optional
|
2013
|
+
The output array.
|
2014
|
+
If not None, condensed distance matrix Y is stored in this array.
|
2015
|
+
**kwargs : dict, optional
|
2016
|
+
Extra arguments to `metric`: refer to each metric documentation for a
|
2017
|
+
list of all possible arguments.
|
2018
|
+
|
2019
|
+
Some possible arguments:
|
2020
|
+
|
2021
|
+
p : scalar
|
2022
|
+
The p-norm to apply for Minkowski, weighted and unweighted.
|
2023
|
+
Default: 2.
|
2024
|
+
|
2025
|
+
w : ndarray
|
2026
|
+
The weight vector for metrics that support weights (e.g., Minkowski).
|
2027
|
+
|
2028
|
+
V : ndarray
|
2029
|
+
The variance vector for standardized Euclidean.
|
2030
|
+
Default: var(X, axis=0, ddof=1)
|
2031
|
+
|
2032
|
+
VI : ndarray
|
2033
|
+
The inverse of the covariance matrix for Mahalanobis.
|
2034
|
+
Default: inv(cov(X.T)).T
|
2035
|
+
|
2036
|
+
Returns
|
2037
|
+
-------
|
2038
|
+
Y : ndarray
|
2039
|
+
Returns a condensed distance matrix Y. For each :math:`i` and :math:`j`
|
2040
|
+
(where :math:`i<j<m`),where m is the number of original observations.
|
2041
|
+
The metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``m
|
2042
|
+
* i + j - ((i + 2) * (i + 1)) // 2``.
|
2043
|
+
|
2044
|
+
See Also
|
2045
|
+
--------
|
2046
|
+
squareform : converts between condensed distance matrices and
|
2047
|
+
square distance matrices.
|
2048
|
+
|
2049
|
+
Notes
|
2050
|
+
-----
|
2051
|
+
See ``squareform`` for information on how to calculate the index of
|
2052
|
+
this entry or to convert the condensed distance matrix to a
|
2053
|
+
redundant square matrix.
|
2054
|
+
|
2055
|
+
The following are common calling conventions.
|
2056
|
+
|
2057
|
+
1. ``Y = pdist(X, 'euclidean')``
|
2058
|
+
|
2059
|
+
Computes the distance between m points using Euclidean distance
|
2060
|
+
(2-norm) as the distance metric between the points. The points
|
2061
|
+
are arranged as m n-dimensional row vectors in the matrix X.
|
2062
|
+
|
2063
|
+
2. ``Y = pdist(X, 'minkowski', p=2.)``
|
2064
|
+
|
2065
|
+
Computes the distances using the Minkowski distance
|
2066
|
+
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
|
2067
|
+
that this is only a quasi-metric if :math:`0 < p < 1`).
|
2068
|
+
|
2069
|
+
3. ``Y = pdist(X, 'cityblock')``
|
2070
|
+
|
2071
|
+
Computes the city block or Manhattan distance between the
|
2072
|
+
points.
|
2073
|
+
|
2074
|
+
4. ``Y = pdist(X, 'seuclidean', V=None)``
|
2075
|
+
|
2076
|
+
Computes the standardized Euclidean distance. The standardized
|
2077
|
+
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
2078
|
+
|
2079
|
+
.. math::
|
2080
|
+
|
2081
|
+
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}
|
2082
|
+
|
2083
|
+
|
2084
|
+
V is the variance vector; V[i] is the variance computed over all
|
2085
|
+
the i'th components of the points. If not passed, it is
|
2086
|
+
automatically computed.
|
2087
|
+
|
2088
|
+
5. ``Y = pdist(X, 'sqeuclidean')``
|
2089
|
+
|
2090
|
+
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
|
2091
|
+
the vectors.
|
2092
|
+
|
2093
|
+
6. ``Y = pdist(X, 'cosine')``
|
2094
|
+
|
2095
|
+
Computes the cosine distance between vectors u and v,
|
2096
|
+
|
2097
|
+
.. math::
|
2098
|
+
|
2099
|
+
1 - \\frac{u \\cdot v}
|
2100
|
+
{{\\|u\\|}_2 {\\|v\\|}_2}
|
2101
|
+
|
2102
|
+
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
|
2103
|
+
:math:`u \\cdot v` is the dot product of ``u`` and ``v``.
|
2104
|
+
|
2105
|
+
7. ``Y = pdist(X, 'correlation')``
|
2106
|
+
|
2107
|
+
Computes the correlation distance between vectors u and v. This is
|
2108
|
+
|
2109
|
+
.. math::
|
2110
|
+
|
2111
|
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
2112
|
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
2113
|
+
|
2114
|
+
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
2115
|
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
2116
|
+
|
2117
|
+
8. ``Y = pdist(X, 'hamming')``
|
2118
|
+
|
2119
|
+
Computes the normalized Hamming distance, or the proportion of
|
2120
|
+
those vector elements between two n-vectors ``u`` and ``v``
|
2121
|
+
which disagree. To save memory, the matrix ``X`` can be of type
|
2122
|
+
boolean.
|
2123
|
+
|
2124
|
+
9. ``Y = pdist(X, 'jaccard')``
|
2125
|
+
|
2126
|
+
Computes the Jaccard distance between the points. Given two
|
2127
|
+
vectors, ``u`` and ``v``, the Jaccard distance is the
|
2128
|
+
proportion of those elements ``u[i]`` and ``v[i]`` that
|
2129
|
+
disagree.
|
2130
|
+
|
2131
|
+
10. ``Y = pdist(X, 'jensenshannon')``
|
2132
|
+
|
2133
|
+
Computes the Jensen-Shannon distance between two probability arrays.
|
2134
|
+
Given two probability vectors, :math:`p` and :math:`q`, the
|
2135
|
+
Jensen-Shannon distance is
|
2136
|
+
|
2137
|
+
.. math::
|
2138
|
+
|
2139
|
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
2140
|
+
|
2141
|
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
2142
|
+
and :math:`D` is the Kullback-Leibler divergence.
|
2143
|
+
|
2144
|
+
11. ``Y = pdist(X, 'chebyshev')``
|
2145
|
+
|
2146
|
+
Computes the Chebyshev distance between the points. The
|
2147
|
+
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
2148
|
+
maximum norm-1 distance between their respective elements. More
|
2149
|
+
precisely, the distance is given by
|
2150
|
+
|
2151
|
+
.. math::
|
2152
|
+
|
2153
|
+
d(u,v) = \\max_i {|u_i-v_i|}
|
2154
|
+
|
2155
|
+
12. ``Y = pdist(X, 'canberra')``
|
2156
|
+
|
2157
|
+
Computes the Canberra distance between the points. The
|
2158
|
+
Canberra distance between two points ``u`` and ``v`` is
|
2159
|
+
|
2160
|
+
.. math::
|
2161
|
+
|
2162
|
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
2163
|
+
{|u_i|+|v_i|}
|
2164
|
+
|
2165
|
+
|
2166
|
+
13. ``Y = pdist(X, 'braycurtis')``
|
2167
|
+
|
2168
|
+
Computes the Bray-Curtis distance between the points. The
|
2169
|
+
Bray-Curtis distance between two points ``u`` and ``v`` is
|
2170
|
+
|
2171
|
+
|
2172
|
+
.. math::
|
2173
|
+
|
2174
|
+
d(u,v) = \\frac{\\sum_i {|u_i-v_i|}}
|
2175
|
+
{\\sum_i {|u_i+v_i|}}
|
2176
|
+
|
2177
|
+
14. ``Y = pdist(X, 'mahalanobis', VI=None)``
|
2178
|
+
|
2179
|
+
Computes the Mahalanobis distance between the points. The
|
2180
|
+
Mahalanobis distance between two points ``u`` and ``v`` is
|
2181
|
+
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
2182
|
+
variable) is the inverse covariance. If ``VI`` is not None,
|
2183
|
+
``VI`` will be used as the inverse covariance matrix.
|
2184
|
+
|
2185
|
+
15. ``Y = pdist(X, 'yule')``
|
2186
|
+
|
2187
|
+
Computes the Yule distance between each pair of boolean
|
2188
|
+
vectors. (see yule function documentation)
|
2189
|
+
|
2190
|
+
16. ``Y = pdist(X, 'matching')``
|
2191
|
+
|
2192
|
+
Synonym for 'hamming'.
|
2193
|
+
|
2194
|
+
17. ``Y = pdist(X, 'dice')``
|
2195
|
+
|
2196
|
+
Computes the Dice distance between each pair of boolean
|
2197
|
+
vectors. (see dice function documentation)
|
2198
|
+
|
2199
|
+
18. ``Y = pdist(X, 'kulczynski1')``
|
2200
|
+
|
2201
|
+
Computes the kulczynski1 distance between each pair of
|
2202
|
+
boolean vectors. (see kulczynski1 function documentation)
|
2203
|
+
|
2204
|
+
.. deprecated:: 1.15.0
|
2205
|
+
This metric is deprecated and will be removed in SciPy 1.17.0.
|
2206
|
+
Replace usage of ``pdist(X, 'kulczynski1')`` with
|
2207
|
+
``1 / pdist(X, 'jaccard') - 1``.
|
2208
|
+
|
2209
|
+
19. ``Y = pdist(X, 'rogerstanimoto')``
|
2210
|
+
|
2211
|
+
Computes the Rogers-Tanimoto distance between each pair of
|
2212
|
+
boolean vectors. (see rogerstanimoto function documentation)
|
2213
|
+
|
2214
|
+
20. ``Y = pdist(X, 'russellrao')``
|
2215
|
+
|
2216
|
+
Computes the Russell-Rao distance between each pair of
|
2217
|
+
boolean vectors. (see russellrao function documentation)
|
2218
|
+
|
2219
|
+
21. ``Y = pdist(X, 'sokalmichener')``
|
2220
|
+
|
2221
|
+
Computes the Sokal-Michener distance between each pair of
|
2222
|
+
boolean vectors. (see sokalmichener function documentation)
|
2223
|
+
|
2224
|
+
.. deprecated:: 1.15.0
|
2225
|
+
This metric is deprecated and will be removed in SciPy 1.17.0.
|
2226
|
+
Replace usage of ``pdist(X, 'sokalmichener')`` with
|
2227
|
+
``pdist(X, 'rogerstanimoto')``.
|
2228
|
+
|
2229
|
+
22. ``Y = pdist(X, 'sokalsneath')``
|
2230
|
+
|
2231
|
+
Computes the Sokal-Sneath distance between each pair of
|
2232
|
+
boolean vectors. (see sokalsneath function documentation)
|
2233
|
+
|
2234
|
+
23. ``Y = pdist(X, 'kulczynski1')``
|
2235
|
+
|
2236
|
+
Computes the Kulczynski 1 distance between each pair of
|
2237
|
+
boolean vectors. (see kulczynski1 function documentation)
|
2238
|
+
|
2239
|
+
24. ``Y = pdist(X, f)``
|
2240
|
+
|
2241
|
+
Computes the distance between all pairs of vectors in X
|
2242
|
+
using the user supplied 2-arity function f. For example,
|
2243
|
+
Euclidean distance between the vectors could be computed
|
2244
|
+
as follows::
|
2245
|
+
|
2246
|
+
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
2247
|
+
|
2248
|
+
Note that you should avoid passing a reference to one of
|
2249
|
+
the distance functions defined in this library. For example,::
|
2250
|
+
|
2251
|
+
dm = pdist(X, sokalsneath)
|
2252
|
+
|
2253
|
+
would calculate the pair-wise distances between the vectors in
|
2254
|
+
X using the Python function sokalsneath. This would result in
|
2255
|
+
sokalsneath being called :math:`{n \\choose 2}` times, which
|
2256
|
+
is inefficient. Instead, the optimized C version is more
|
2257
|
+
efficient, and we call it using the following syntax.::
|
2258
|
+
|
2259
|
+
dm = pdist(X, 'sokalsneath')
|
2260
|
+
|
2261
|
+
Examples
|
2262
|
+
--------
|
2263
|
+
>>> import numpy as np
|
2264
|
+
>>> from scipy.spatial.distance import pdist
|
2265
|
+
|
2266
|
+
``x`` is an array of five points in three-dimensional space.
|
2267
|
+
|
2268
|
+
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
|
2269
|
+
|
2270
|
+
``pdist(x)`` with no additional arguments computes the 10 pairwise
|
2271
|
+
Euclidean distances:
|
2272
|
+
|
2273
|
+
>>> pdist(x)
|
2274
|
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2275
|
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2276
|
+
|
2277
|
+
The following computes the pairwise Minkowski distances with ``p = 3.5``:
|
2278
|
+
|
2279
|
+
>>> pdist(x, metric='minkowski', p=3.5)
|
2280
|
+
array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714,
|
2281
|
+
6.03956994, 1. , 4.45128103, 4.10636143, 5.0619695 ])
|
2282
|
+
|
2283
|
+
The pairwise city block or Manhattan distances:
|
2284
|
+
|
2285
|
+
>>> pdist(x, metric='cityblock')
|
2286
|
+
array([ 3., 11., 10., 4., 8., 9., 1., 9., 7., 8.])
|
2287
|
+
|
2288
|
+
"""
|
2289
|
+
# You can also call this as:
|
2290
|
+
# Y = pdist(X, 'test_abc')
|
2291
|
+
# where 'abc' is the metric being tested. This computes the distance
|
2292
|
+
# between all pairs of vectors in X using the distance metric 'abc' but
|
2293
|
+
# with a more succinct, verifiable, but less efficient implementation.
|
2294
|
+
|
2295
|
+
X = _asarray(X)
|
2296
|
+
if X.ndim != 2:
|
2297
|
+
raise ValueError(f'A 2-dimensional array must be passed. (Shape was {X.shape}).')
|
2298
|
+
|
2299
|
+
n = X.shape[0]
|
2300
|
+
return xpx.lazy_apply(_np_pdist, X, out,
|
2301
|
+
# lazy_apply doesn't support Array kwargs
|
2302
|
+
kwargs.pop('w', None),
|
2303
|
+
kwargs.pop('V', None),
|
2304
|
+
kwargs.pop('VI', None),
|
2305
|
+
# See src/distance_pybind.cpp::pdist
|
2306
|
+
shape=((n * (n - 1)) // 2, ), dtype=X.dtype,
|
2307
|
+
as_numpy=True, metric=metric, **kwargs)
|
2308
|
+
|
2309
|
+
|
2310
|
+
def _np_pdist(X, out, w, V, VI, metric='euclidean', **kwargs):
|
2311
|
+
|
2312
|
+
X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True,
|
2313
|
+
check_finite=False)
|
2314
|
+
m, n = X.shape
|
2315
|
+
|
2316
|
+
if w is not None:
|
2317
|
+
kwargs["w"] = w
|
2318
|
+
if V is not None:
|
2319
|
+
kwargs["V"] = V
|
2320
|
+
if VI is not None:
|
2321
|
+
kwargs["VI"] = VI
|
2322
|
+
|
2323
|
+
if callable(metric):
|
2324
|
+
mstr = getattr(metric, '__name__', 'UnknownCustomMetric')
|
2325
|
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2326
|
+
|
2327
|
+
if metric_info is not None:
|
2328
|
+
X, typ, kwargs = _validate_pdist_input(
|
2329
|
+
X, m, n, metric_info, **kwargs)
|
2330
|
+
|
2331
|
+
return _pdist_callable(X, metric=metric, out=out, **kwargs)
|
2332
|
+
elif isinstance(metric, str):
|
2333
|
+
mstr = metric.lower()
|
2334
|
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2335
|
+
|
2336
|
+
if metric_info is not None:
|
2337
|
+
pdist_fn = metric_info.pdist_func
|
2338
|
+
return pdist_fn(X, out=out, **kwargs)
|
2339
|
+
elif mstr.startswith("test_"):
|
2340
|
+
metric_info = _TEST_METRICS.get(mstr, None)
|
2341
|
+
if metric_info is None:
|
2342
|
+
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
|
2343
|
+
X, typ, kwargs = _validate_pdist_input(
|
2344
|
+
X, m, n, metric_info, **kwargs)
|
2345
|
+
return _pdist_callable(
|
2346
|
+
X, metric=metric_info.dist_func, out=out, **kwargs)
|
2347
|
+
else:
|
2348
|
+
raise ValueError(f'Unknown Distance Metric: {mstr}')
|
2349
|
+
else:
|
2350
|
+
raise TypeError('2nd argument metric must be a string identifier '
|
2351
|
+
'or a function.')
|
2352
|
+
|
2353
|
+
|
2354
|
+
def squareform(X, force="no", checks=True):
|
2355
|
+
"""
|
2356
|
+
Convert a vector-form distance vector to a square-form distance
|
2357
|
+
matrix, and vice-versa.
|
2358
|
+
|
2359
|
+
Parameters
|
2360
|
+
----------
|
2361
|
+
X : array_like
|
2362
|
+
Either a condensed or redundant distance matrix.
|
2363
|
+
force : str, optional
|
2364
|
+
As with MATLAB(TM), if force is equal to ``'tovector'`` or
|
2365
|
+
``'tomatrix'``, the input will be treated as a distance matrix or
|
2366
|
+
distance vector respectively.
|
2367
|
+
checks : bool, optional
|
2368
|
+
If set to False, no checks will be made for matrix
|
2369
|
+
symmetry nor zero diagonals. This is useful if it is known that
|
2370
|
+
``X - X.T1`` is small and ``diag(X)`` is close to zero.
|
2371
|
+
These values are ignored any way so they do not disrupt the
|
2372
|
+
squareform transformation.
|
2373
|
+
|
2374
|
+
Returns
|
2375
|
+
-------
|
2376
|
+
Y : ndarray
|
2377
|
+
If a condensed distance matrix is passed, a redundant one is
|
2378
|
+
returned, or if a redundant one is passed, a condensed distance
|
2379
|
+
matrix is returned.
|
2380
|
+
|
2381
|
+
Notes
|
2382
|
+
-----
|
2383
|
+
1. ``v = squareform(X)``
|
2384
|
+
|
2385
|
+
Given a square n-by-n symmetric distance matrix ``X``,
|
2386
|
+
``v = squareform(X)`` returns a ``n * (n-1) / 2``
|
2387
|
+
(i.e. binomial coefficient n choose 2) sized vector `v`
|
2388
|
+
where :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
|
2389
|
+
is the distance between distinct points ``i`` and ``j``.
|
2390
|
+
If ``X`` is non-square or asymmetric, an error is raised.
|
2391
|
+
|
2392
|
+
2. ``X = squareform(v)``
|
2393
|
+
|
2394
|
+
Given a ``n * (n-1) / 2`` sized vector ``v``
|
2395
|
+
for some integer ``n >= 1`` encoding distances as described,
|
2396
|
+
``X = squareform(v)`` returns a n-by-n distance matrix ``X``.
|
2397
|
+
The ``X[i, j]`` and ``X[j, i]`` values are set to
|
2398
|
+
:math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
|
2399
|
+
and all diagonal elements are zero.
|
2400
|
+
|
2401
|
+
In SciPy 0.19.0, ``squareform`` stopped casting all input types to
|
2402
|
+
float64, and started returning arrays of the same dtype as the input.
|
2403
|
+
|
2404
|
+
Examples
|
2405
|
+
--------
|
2406
|
+
>>> import numpy as np
|
2407
|
+
>>> from scipy.spatial.distance import pdist, squareform
|
2408
|
+
|
2409
|
+
``x`` is an array of five points in three-dimensional space.
|
2410
|
+
|
2411
|
+
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
|
2412
|
+
|
2413
|
+
``pdist(x)`` computes the Euclidean distances between each pair of
|
2414
|
+
points in ``x``. The distances are returned in a one-dimensional
|
2415
|
+
array with length ``5*(5 - 1)/2 = 10``.
|
2416
|
+
|
2417
|
+
>>> distvec = pdist(x)
|
2418
|
+
>>> distvec
|
2419
|
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2420
|
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2421
|
+
|
2422
|
+
``squareform(distvec)`` returns the 5x5 distance matrix.
|
2423
|
+
|
2424
|
+
>>> m = squareform(distvec)
|
2425
|
+
>>> m
|
2426
|
+
array([[0. , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
|
2427
|
+
[2.23606798, 0. , 4.89897949, 6.40312424, 1. ],
|
2428
|
+
[6.40312424, 4.89897949, 0. , 5.38516481, 4.58257569],
|
2429
|
+
[7.34846923, 6.40312424, 5.38516481, 0. , 5.47722558],
|
2430
|
+
[2.82842712, 1. , 4.58257569, 5.47722558, 0. ]])
|
2431
|
+
|
2432
|
+
When given a square distance matrix ``m``, ``squareform(m)`` returns
|
2433
|
+
the one-dimensional condensed distance vector associated with the
|
2434
|
+
matrix. In this case, we recover ``distvec``.
|
2435
|
+
|
2436
|
+
>>> squareform(m)
|
2437
|
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2438
|
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2439
|
+
"""
|
2440
|
+
X = np.ascontiguousarray(X)
|
2441
|
+
|
2442
|
+
s = X.shape
|
2443
|
+
|
2444
|
+
if force.lower() == 'tomatrix':
|
2445
|
+
if len(s) != 1:
|
2446
|
+
raise ValueError("Forcing 'tomatrix' but input X is not a "
|
2447
|
+
"distance vector.")
|
2448
|
+
elif force.lower() == 'tovector':
|
2449
|
+
if len(s) != 2:
|
2450
|
+
raise ValueError("Forcing 'tovector' but input X is not a "
|
2451
|
+
"distance matrix.")
|
2452
|
+
|
2453
|
+
# X = squareform(v)
|
2454
|
+
if len(s) == 1:
|
2455
|
+
if s[0] == 0:
|
2456
|
+
return np.zeros((1, 1), dtype=X.dtype)
|
2457
|
+
|
2458
|
+
# Grab the closest value to the square root of the number
|
2459
|
+
# of elements times 2 to see if the number of elements
|
2460
|
+
# is indeed a binomial coefficient.
|
2461
|
+
d = int(np.ceil(np.sqrt(s[0] * 2)))
|
2462
|
+
|
2463
|
+
# Check that v is of valid dimensions.
|
2464
|
+
if d * (d - 1) != s[0] * 2:
|
2465
|
+
raise ValueError('Incompatible vector size. It must be a binomial '
|
2466
|
+
'coefficient n choose 2 for some integer n >= 2.')
|
2467
|
+
|
2468
|
+
# Allocate memory for the distance matrix.
|
2469
|
+
M = np.zeros((d, d), dtype=X.dtype)
|
2470
|
+
|
2471
|
+
# Since the C code does not support striding using strides.
|
2472
|
+
# The dimensions are used instead.
|
2473
|
+
X = _copy_array_if_base_present(X)
|
2474
|
+
|
2475
|
+
# Fill in the values of the distance matrix.
|
2476
|
+
_distance_wrap.to_squareform_from_vector_wrap(M, X)
|
2477
|
+
|
2478
|
+
# Return the distance matrix.
|
2479
|
+
return M
|
2480
|
+
elif len(s) == 2:
|
2481
|
+
if s[0] != s[1]:
|
2482
|
+
raise ValueError('The matrix argument must be square.')
|
2483
|
+
if checks:
|
2484
|
+
is_valid_dm(X, throw=True, name='X')
|
2485
|
+
|
2486
|
+
# One-side of the dimensions is set here.
|
2487
|
+
d = s[0]
|
2488
|
+
|
2489
|
+
if d <= 1:
|
2490
|
+
return np.array([], dtype=X.dtype)
|
2491
|
+
|
2492
|
+
# Create a vector.
|
2493
|
+
v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype)
|
2494
|
+
|
2495
|
+
# Since the C code does not support striding using strides.
|
2496
|
+
# The dimensions are used instead.
|
2497
|
+
X = _copy_array_if_base_present(X)
|
2498
|
+
|
2499
|
+
# Convert the vector to squareform.
|
2500
|
+
_distance_wrap.to_vector_from_squareform_wrap(X, v)
|
2501
|
+
return v
|
2502
|
+
else:
|
2503
|
+
raise ValueError("The first argument must be one or two dimensional "
|
2504
|
+
f"array. A {len(s)}-dimensional array is not permitted")
|
2505
|
+
|
2506
|
+
|
2507
|
+
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
|
2508
|
+
"""
|
2509
|
+
Return True if input array is a valid distance matrix.
|
2510
|
+
|
2511
|
+
Distance matrices must be 2-dimensional numpy arrays.
|
2512
|
+
They must have a zero-diagonal, and they must be symmetric.
|
2513
|
+
|
2514
|
+
Parameters
|
2515
|
+
----------
|
2516
|
+
D : array_like
|
2517
|
+
The candidate object to test for validity.
|
2518
|
+
tol : float, optional
|
2519
|
+
The distance matrix should be symmetric. `tol` is the maximum
|
2520
|
+
difference between entries ``ij`` and ``ji`` for the distance
|
2521
|
+
metric to be considered symmetric.
|
2522
|
+
throw : bool, optional
|
2523
|
+
An exception is thrown if the distance matrix passed is not valid.
|
2524
|
+
name : str, optional
|
2525
|
+
The name of the variable to checked. This is useful if
|
2526
|
+
throw is set to True so the offending variable can be identified
|
2527
|
+
in the exception message when an exception is thrown.
|
2528
|
+
warning : bool, optional
|
2529
|
+
Instead of throwing an exception, a warning message is
|
2530
|
+
raised.
|
2531
|
+
|
2532
|
+
Returns
|
2533
|
+
-------
|
2534
|
+
valid : bool
|
2535
|
+
True if the variable `D` passed is a valid distance matrix.
|
2536
|
+
|
2537
|
+
Notes
|
2538
|
+
-----
|
2539
|
+
Small numerical differences in `D` and `D.T` and non-zeroness of
|
2540
|
+
the diagonal are ignored if they are within the tolerance specified
|
2541
|
+
by `tol`.
|
2542
|
+
|
2543
|
+
Examples
|
2544
|
+
--------
|
2545
|
+
>>> import numpy as np
|
2546
|
+
>>> from scipy.spatial.distance import is_valid_dm
|
2547
|
+
|
2548
|
+
This matrix is a valid distance matrix.
|
2549
|
+
|
2550
|
+
>>> d = np.array([[0.0, 1.1, 1.2, 1.3],
|
2551
|
+
... [1.1, 0.0, 1.0, 1.4],
|
2552
|
+
... [1.2, 1.0, 0.0, 1.5],
|
2553
|
+
... [1.3, 1.4, 1.5, 0.0]])
|
2554
|
+
>>> is_valid_dm(d)
|
2555
|
+
True
|
2556
|
+
|
2557
|
+
In the following examples, the input is not a valid distance matrix.
|
2558
|
+
|
2559
|
+
Not square:
|
2560
|
+
|
2561
|
+
>>> is_valid_dm([[0, 2, 2], [2, 0, 2]])
|
2562
|
+
False
|
2563
|
+
|
2564
|
+
Nonzero diagonal element:
|
2565
|
+
|
2566
|
+
>>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]])
|
2567
|
+
False
|
2568
|
+
|
2569
|
+
Not symmetric:
|
2570
|
+
|
2571
|
+
>>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]])
|
2572
|
+
False
|
2573
|
+
|
2574
|
+
"""
|
2575
|
+
D = np.asarray(D, order='c')
|
2576
|
+
valid = True
|
2577
|
+
try:
|
2578
|
+
s = D.shape
|
2579
|
+
if len(D.shape) != 2:
|
2580
|
+
if name:
|
2581
|
+
raise ValueError(f"Distance matrix '{name}' must have shape=2 "
|
2582
|
+
"(i.e. be two-dimensional).")
|
2583
|
+
else:
|
2584
|
+
raise ValueError('Distance matrix must have shape=2 (i.e. '
|
2585
|
+
'be two-dimensional).')
|
2586
|
+
if tol == 0.0:
|
2587
|
+
if not (D == D.T).all():
|
2588
|
+
if name:
|
2589
|
+
raise ValueError(f"Distance matrix '{name}' must be symmetric.")
|
2590
|
+
else:
|
2591
|
+
raise ValueError('Distance matrix must be symmetric.')
|
2592
|
+
if not (D[range(0, s[0]), range(0, s[0])] == 0).all():
|
2593
|
+
if name:
|
2594
|
+
raise ValueError(f"Distance matrix '{name}' diagonal must be zero.")
|
2595
|
+
else:
|
2596
|
+
raise ValueError('Distance matrix diagonal must be zero.')
|
2597
|
+
else:
|
2598
|
+
if not (D - D.T <= tol).all():
|
2599
|
+
if name:
|
2600
|
+
raise ValueError(f'Distance matrix \'{name}\' must be '
|
2601
|
+
f'symmetric within tolerance {tol:5.5f}.')
|
2602
|
+
else:
|
2603
|
+
raise ValueError('Distance matrix must be symmetric within '
|
2604
|
+
f'tolerance {tol:5.5f}.')
|
2605
|
+
if not (D[range(0, s[0]), range(0, s[0])] <= tol).all():
|
2606
|
+
if name:
|
2607
|
+
raise ValueError(f'Distance matrix \'{name}\' diagonal must be '
|
2608
|
+
f'close to zero within tolerance {tol:5.5f}.')
|
2609
|
+
else:
|
2610
|
+
raise ValueError(('Distance matrix \'{}\' diagonal must be close '
|
2611
|
+
'to zero within tolerance {:5.5f}.').format(*tol))
|
2612
|
+
except Exception as e:
|
2613
|
+
if throw:
|
2614
|
+
raise
|
2615
|
+
if warning:
|
2616
|
+
warnings.warn(str(e), stacklevel=2)
|
2617
|
+
valid = False
|
2618
|
+
return valid
|
2619
|
+
|
2620
|
+
|
2621
|
+
def is_valid_y(y, warning=False, throw=False, name=None):
|
2622
|
+
"""
|
2623
|
+
Return True if the input array is a valid condensed distance matrix.
|
2624
|
+
|
2625
|
+
Condensed distance matrices must be 1-dimensional numpy arrays.
|
2626
|
+
Their length must be a binomial coefficient :math:`{n \\choose 2}`
|
2627
|
+
for some positive integer n.
|
2628
|
+
|
2629
|
+
Parameters
|
2630
|
+
----------
|
2631
|
+
y : array_like
|
2632
|
+
The condensed distance matrix.
|
2633
|
+
warning : bool, optional
|
2634
|
+
Invokes a warning if the variable passed is not a valid
|
2635
|
+
condensed distance matrix. The warning message explains why
|
2636
|
+
the distance matrix is not valid. `name` is used when
|
2637
|
+
referencing the offending variable.
|
2638
|
+
throw : bool, optional
|
2639
|
+
Throws an exception if the variable passed is not a valid
|
2640
|
+
condensed distance matrix.
|
2641
|
+
name : str, optional
|
2642
|
+
Used when referencing the offending variable in the
|
2643
|
+
warning or exception message.
|
2644
|
+
|
2645
|
+
Returns
|
2646
|
+
-------
|
2647
|
+
bool
|
2648
|
+
True if the input array is a valid condensed distance matrix,
|
2649
|
+
False otherwise.
|
2650
|
+
|
2651
|
+
Examples
|
2652
|
+
--------
|
2653
|
+
>>> from scipy.spatial.distance import is_valid_y
|
2654
|
+
|
2655
|
+
This vector is a valid condensed distance matrix. The length is 6,
|
2656
|
+
which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6.
|
2657
|
+
|
2658
|
+
>>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9]
|
2659
|
+
>>> is_valid_y(v)
|
2660
|
+
True
|
2661
|
+
|
2662
|
+
An input vector with length, say, 7, is not a valid condensed distance
|
2663
|
+
matrix.
|
2664
|
+
|
2665
|
+
>>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7])
|
2666
|
+
False
|
2667
|
+
|
2668
|
+
"""
|
2669
|
+
y = _asarray(y)
|
2670
|
+
name_str = f"'{name}' " if name else ""
|
2671
|
+
try:
|
2672
|
+
if len(y.shape) != 1:
|
2673
|
+
raise ValueError(f"Condensed distance matrix {name_str}must "
|
2674
|
+
"have shape=1 (i.e. be one-dimensional).")
|
2675
|
+
n = y.shape[0]
|
2676
|
+
d = int(np.ceil(np.sqrt(n * 2)))
|
2677
|
+
if (d * (d - 1) / 2) != n:
|
2678
|
+
raise ValueError(f"Length n of condensed distance matrix {name_str}"
|
2679
|
+
"must be a binomial coefficient, i.e. "
|
2680
|
+
"there must be a k such that (k \\choose 2)=n)!")
|
2681
|
+
except Exception as e:
|
2682
|
+
if throw:
|
2683
|
+
raise
|
2684
|
+
if warning:
|
2685
|
+
warnings.warn(str(e), stacklevel=2)
|
2686
|
+
return False
|
2687
|
+
return True
|
2688
|
+
|
2689
|
+
|
2690
|
+
def num_obs_dm(d):
|
2691
|
+
"""
|
2692
|
+
Return the number of original observations that correspond to a
|
2693
|
+
square, redundant distance matrix.
|
2694
|
+
|
2695
|
+
Parameters
|
2696
|
+
----------
|
2697
|
+
d : array_like
|
2698
|
+
The target distance matrix.
|
2699
|
+
|
2700
|
+
Returns
|
2701
|
+
-------
|
2702
|
+
num_obs_dm : int
|
2703
|
+
The number of observations in the redundant distance matrix.
|
2704
|
+
|
2705
|
+
Examples
|
2706
|
+
--------
|
2707
|
+
Find the number of original observations corresponding
|
2708
|
+
to a square redundant distance matrix d.
|
2709
|
+
|
2710
|
+
>>> from scipy.spatial.distance import num_obs_dm
|
2711
|
+
>>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]]
|
2712
|
+
>>> num_obs_dm(d)
|
2713
|
+
3
|
2714
|
+
"""
|
2715
|
+
d = np.asarray(d, order='c')
|
2716
|
+
is_valid_dm(d, tol=np.inf, throw=True, name='d')
|
2717
|
+
return d.shape[0]
|
2718
|
+
|
2719
|
+
|
2720
|
+
def num_obs_y(Y):
|
2721
|
+
"""
|
2722
|
+
Return the number of original observations that correspond to a
|
2723
|
+
condensed distance matrix.
|
2724
|
+
|
2725
|
+
Parameters
|
2726
|
+
----------
|
2727
|
+
Y : array_like
|
2728
|
+
Condensed distance matrix.
|
2729
|
+
|
2730
|
+
Returns
|
2731
|
+
-------
|
2732
|
+
n : int
|
2733
|
+
The number of observations in the condensed distance matrix `Y`.
|
2734
|
+
|
2735
|
+
Examples
|
2736
|
+
--------
|
2737
|
+
Find the number of original observations corresponding to a
|
2738
|
+
condensed distance matrix Y.
|
2739
|
+
|
2740
|
+
>>> from scipy.spatial.distance import num_obs_y
|
2741
|
+
>>> Y = [1, 2, 3.5, 7, 10, 4]
|
2742
|
+
>>> num_obs_y(Y)
|
2743
|
+
4
|
2744
|
+
"""
|
2745
|
+
Y = _asarray(Y)
|
2746
|
+
is_valid_y(Y, throw=True, name='Y')
|
2747
|
+
k = Y.shape[0]
|
2748
|
+
if k == 0:
|
2749
|
+
raise ValueError("The number of observations cannot be determined on "
|
2750
|
+
"an empty distance matrix.")
|
2751
|
+
d = int(np.ceil(np.sqrt(k * 2)))
|
2752
|
+
if (d * (d - 1) / 2) != k:
|
2753
|
+
raise ValueError("Invalid condensed distance matrix passed. Must be "
|
2754
|
+
"some k where k=(n choose 2) for some n >= 2.")
|
2755
|
+
return d
|
2756
|
+
|
2757
|
+
|
2758
|
+
def _prepare_out_argument(out, dtype, expected_shape):
|
2759
|
+
if out is None:
|
2760
|
+
return np.empty(expected_shape, dtype=dtype)
|
2761
|
+
|
2762
|
+
if out.shape != expected_shape:
|
2763
|
+
raise ValueError("Output array has incorrect shape.")
|
2764
|
+
if not out.flags.c_contiguous:
|
2765
|
+
raise ValueError("Output array must be C-contiguous.")
|
2766
|
+
if out.dtype != np.float64:
|
2767
|
+
raise ValueError("Output array must be double type.")
|
2768
|
+
return out
|
2769
|
+
|
2770
|
+
|
2771
|
+
def _pdist_callable(X, *, out, metric, **kwargs):
|
2772
|
+
n = X.shape[0]
|
2773
|
+
out_size = (n * (n - 1)) // 2
|
2774
|
+
dm = _prepare_out_argument(out, np.float64, (out_size,))
|
2775
|
+
k = 0
|
2776
|
+
for i in range(X.shape[0] - 1):
|
2777
|
+
for j in range(i + 1, X.shape[0]):
|
2778
|
+
dm[k] = metric(X[i], X[j], **kwargs)
|
2779
|
+
k += 1
|
2780
|
+
return dm
|
2781
|
+
|
2782
|
+
|
2783
|
+
def _cdist_callable(XA, XB, *, out, metric, **kwargs):
|
2784
|
+
mA = XA.shape[0]
|
2785
|
+
mB = XB.shape[0]
|
2786
|
+
dm = _prepare_out_argument(out, np.float64, (mA, mB))
|
2787
|
+
for i in range(mA):
|
2788
|
+
for j in range(mB):
|
2789
|
+
dm[i, j] = metric(XA[i], XB[j], **kwargs)
|
2790
|
+
return dm
|
2791
|
+
|
2792
|
+
|
2793
|
+
def cdist(XA, XB, metric='euclidean', *, out=None, **kwargs):
|
2794
|
+
"""
|
2795
|
+
Compute distance between each pair of the two collections of inputs.
|
2796
|
+
|
2797
|
+
See Notes for common calling conventions.
|
2798
|
+
|
2799
|
+
Parameters
|
2800
|
+
----------
|
2801
|
+
XA : array_like
|
2802
|
+
An :math:`m_A` by :math:`n` array of :math:`m_A`
|
2803
|
+
original observations in an :math:`n`-dimensional space.
|
2804
|
+
Inputs are converted to float type.
|
2805
|
+
XB : array_like
|
2806
|
+
An :math:`m_B` by :math:`n` array of :math:`m_B`
|
2807
|
+
original observations in an :math:`n`-dimensional space.
|
2808
|
+
Inputs are converted to float type.
|
2809
|
+
metric : str or callable, optional
|
2810
|
+
The distance metric to use. If a string, the distance function can be
|
2811
|
+
'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
|
2812
|
+
'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon',
|
2813
|
+
'kulczynski1', 'mahalanobis', 'matching', 'minkowski',
|
2814
|
+
'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener',
|
2815
|
+
'sokalsneath', 'sqeuclidean', 'yule'.
|
2816
|
+
**kwargs : dict, optional
|
2817
|
+
Extra arguments to `metric`: refer to each metric documentation for a
|
2818
|
+
list of all possible arguments.
|
2819
|
+
|
2820
|
+
Some possible arguments:
|
2821
|
+
|
2822
|
+
p : scalar
|
2823
|
+
The p-norm to apply for Minkowski, weighted and unweighted.
|
2824
|
+
Default: 2.
|
2825
|
+
|
2826
|
+
w : array_like
|
2827
|
+
The weight vector for metrics that support weights (e.g., Minkowski).
|
2828
|
+
|
2829
|
+
V : array_like
|
2830
|
+
The variance vector for standardized Euclidean.
|
2831
|
+
Default: var(vstack([XA, XB]), axis=0, ddof=1)
|
2832
|
+
|
2833
|
+
VI : array_like
|
2834
|
+
The inverse of the covariance matrix for Mahalanobis.
|
2835
|
+
Default: inv(cov(vstack([XA, XB].T))).T
|
2836
|
+
|
2837
|
+
out : ndarray
|
2838
|
+
The output array
|
2839
|
+
If not None, the distance matrix Y is stored in this array.
|
2840
|
+
|
2841
|
+
Returns
|
2842
|
+
-------
|
2843
|
+
Y : ndarray
|
2844
|
+
A :math:`m_A` by :math:`m_B` distance matrix is returned.
|
2845
|
+
For each :math:`i` and :math:`j`, the metric
|
2846
|
+
``dist(u=XA[i], v=XB[j])`` is computed and stored in the
|
2847
|
+
:math:`ij` th entry.
|
2848
|
+
|
2849
|
+
Raises
|
2850
|
+
------
|
2851
|
+
ValueError
|
2852
|
+
An exception is thrown if `XA` and `XB` do not have
|
2853
|
+
the same number of columns.
|
2854
|
+
|
2855
|
+
Notes
|
2856
|
+
-----
|
2857
|
+
The following are common calling conventions:
|
2858
|
+
|
2859
|
+
1. ``Y = cdist(XA, XB, 'euclidean')``
|
2860
|
+
|
2861
|
+
Computes the distance between :math:`m` points using
|
2862
|
+
Euclidean distance (2-norm) as the distance metric between the
|
2863
|
+
points. The points are arranged as :math:`m`
|
2864
|
+
:math:`n`-dimensional row vectors in the matrix X.
|
2865
|
+
|
2866
|
+
2. ``Y = cdist(XA, XB, 'minkowski', p=2.)``
|
2867
|
+
|
2868
|
+
Computes the distances using the Minkowski distance
|
2869
|
+
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
|
2870
|
+
that this is only a quasi-metric if :math:`0 < p < 1`).
|
2871
|
+
|
2872
|
+
3. ``Y = cdist(XA, XB, 'cityblock')``
|
2873
|
+
|
2874
|
+
Computes the city block or Manhattan distance between the
|
2875
|
+
points.
|
2876
|
+
|
2877
|
+
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``
|
2878
|
+
|
2879
|
+
Computes the standardized Euclidean distance. The standardized
|
2880
|
+
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
2881
|
+
|
2882
|
+
.. math::
|
2883
|
+
|
2884
|
+
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.
|
2885
|
+
|
2886
|
+
V is the variance vector; V[i] is the variance computed over all
|
2887
|
+
the i'th components of the points. If not passed, it is
|
2888
|
+
automatically computed.
|
2889
|
+
|
2890
|
+
5. ``Y = cdist(XA, XB, 'sqeuclidean')``
|
2891
|
+
|
2892
|
+
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
|
2893
|
+
the vectors.
|
2894
|
+
|
2895
|
+
6. ``Y = cdist(XA, XB, 'cosine')``
|
2896
|
+
|
2897
|
+
Computes the cosine distance between vectors u and v,
|
2898
|
+
|
2899
|
+
.. math::
|
2900
|
+
|
2901
|
+
1 - \\frac{u \\cdot v}
|
2902
|
+
{{\\|u\\|}_2 {\\|v\\|}_2}
|
2903
|
+
|
2904
|
+
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
|
2905
|
+
:math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.
|
2906
|
+
|
2907
|
+
7. ``Y = cdist(XA, XB, 'correlation')``
|
2908
|
+
|
2909
|
+
Computes the correlation distance between vectors u and v. This is
|
2910
|
+
|
2911
|
+
.. math::
|
2912
|
+
|
2913
|
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
2914
|
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
2915
|
+
|
2916
|
+
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
2917
|
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
2918
|
+
|
2919
|
+
|
2920
|
+
8. ``Y = cdist(XA, XB, 'hamming')``
|
2921
|
+
|
2922
|
+
Computes the normalized Hamming distance, or the proportion of
|
2923
|
+
those vector elements between two n-vectors ``u`` and ``v``
|
2924
|
+
which disagree. To save memory, the matrix ``X`` can be of type
|
2925
|
+
boolean.
|
2926
|
+
|
2927
|
+
9. ``Y = cdist(XA, XB, 'jaccard')``
|
2928
|
+
|
2929
|
+
Computes the Jaccard distance between the points. Given two
|
2930
|
+
vectors, ``u`` and ``v``, the Jaccard distance is the
|
2931
|
+
proportion of those elements ``u[i]`` and ``v[i]`` that
|
2932
|
+
disagree where at least one of them is non-zero.
|
2933
|
+
|
2934
|
+
10. ``Y = cdist(XA, XB, 'jensenshannon')``
|
2935
|
+
|
2936
|
+
Computes the Jensen-Shannon distance between two probability arrays.
|
2937
|
+
Given two probability vectors, :math:`p` and :math:`q`, the
|
2938
|
+
Jensen-Shannon distance is
|
2939
|
+
|
2940
|
+
.. math::
|
2941
|
+
|
2942
|
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
2943
|
+
|
2944
|
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
2945
|
+
and :math:`D` is the Kullback-Leibler divergence.
|
2946
|
+
|
2947
|
+
11. ``Y = cdist(XA, XB, 'chebyshev')``
|
2948
|
+
|
2949
|
+
Computes the Chebyshev distance between the points. The
|
2950
|
+
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
2951
|
+
maximum norm-1 distance between their respective elements. More
|
2952
|
+
precisely, the distance is given by
|
2953
|
+
|
2954
|
+
.. math::
|
2955
|
+
|
2956
|
+
d(u,v) = \\max_i {|u_i-v_i|}.
|
2957
|
+
|
2958
|
+
12. ``Y = cdist(XA, XB, 'canberra')``
|
2959
|
+
|
2960
|
+
Computes the Canberra distance between the points. The
|
2961
|
+
Canberra distance between two points ``u`` and ``v`` is
|
2962
|
+
|
2963
|
+
.. math::
|
2964
|
+
|
2965
|
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
2966
|
+
{|u_i|+|v_i|}.
|
2967
|
+
|
2968
|
+
13. ``Y = cdist(XA, XB, 'braycurtis')``
|
2969
|
+
|
2970
|
+
Computes the Bray-Curtis distance between the points. The
|
2971
|
+
Bray-Curtis distance between two points ``u`` and ``v`` is
|
2972
|
+
|
2973
|
+
|
2974
|
+
.. math::
|
2975
|
+
|
2976
|
+
d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
|
2977
|
+
{\\sum_i (|u_i+v_i|)}
|
2978
|
+
|
2979
|
+
14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``
|
2980
|
+
|
2981
|
+
Computes the Mahalanobis distance between the points. The
|
2982
|
+
Mahalanobis distance between two points ``u`` and ``v`` is
|
2983
|
+
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
2984
|
+
variable) is the inverse covariance. If ``VI`` is not None,
|
2985
|
+
``VI`` will be used as the inverse covariance matrix.
|
2986
|
+
|
2987
|
+
15. ``Y = cdist(XA, XB, 'yule')``
|
2988
|
+
|
2989
|
+
Computes the Yule distance between the boolean
|
2990
|
+
vectors. (see `yule` function documentation)
|
2991
|
+
|
2992
|
+
16. ``Y = cdist(XA, XB, 'matching')``
|
2993
|
+
|
2994
|
+
Synonym for 'hamming'.
|
2995
|
+
|
2996
|
+
17. ``Y = cdist(XA, XB, 'dice')``
|
2997
|
+
|
2998
|
+
Computes the Dice distance between the boolean vectors. (see
|
2999
|
+
`dice` function documentation)
|
3000
|
+
|
3001
|
+
18. ``Y = cdist(XA, XB, 'kulczynski1')``
|
3002
|
+
|
3003
|
+
Computes the kulczynski distance between the boolean
|
3004
|
+
vectors. (see `kulczynski1` function documentation)
|
3005
|
+
|
3006
|
+
.. deprecated:: 1.15.0
|
3007
|
+
This metric is deprecated and will be removed in SciPy 1.17.0.
|
3008
|
+
Replace usage of ``cdist(XA, XB, 'kulczynski1')`` with
|
3009
|
+
``1 / cdist(XA, XB, 'jaccard') - 1``.
|
3010
|
+
|
3011
|
+
19. ``Y = cdist(XA, XB, 'rogerstanimoto')``
|
3012
|
+
|
3013
|
+
Computes the Rogers-Tanimoto distance between the boolean
|
3014
|
+
vectors. (see `rogerstanimoto` function documentation)
|
3015
|
+
|
3016
|
+
20. ``Y = cdist(XA, XB, 'russellrao')``
|
3017
|
+
|
3018
|
+
Computes the Russell-Rao distance between the boolean
|
3019
|
+
vectors. (see `russellrao` function documentation)
|
3020
|
+
|
3021
|
+
21. ``Y = cdist(XA, XB, 'sokalmichener')``
|
3022
|
+
|
3023
|
+
Computes the Sokal-Michener distance between the boolean
|
3024
|
+
vectors. (see `sokalmichener` function documentation)
|
3025
|
+
|
3026
|
+
.. deprecated:: 1.15.0
|
3027
|
+
This metric is deprecated and will be removed in SciPy 1.17.0.
|
3028
|
+
Replace usage of ``cdist(XA, XB, 'sokalmichener')`` with
|
3029
|
+
``cdist(XA, XB, 'rogerstanimoto')``.
|
3030
|
+
|
3031
|
+
22. ``Y = cdist(XA, XB, 'sokalsneath')``
|
3032
|
+
|
3033
|
+
Computes the Sokal-Sneath distance between the vectors. (see
|
3034
|
+
`sokalsneath` function documentation)
|
3035
|
+
|
3036
|
+
23. ``Y = cdist(XA, XB, f)``
|
3037
|
+
|
3038
|
+
Computes the distance between all pairs of vectors in X
|
3039
|
+
using the user supplied 2-arity function f. For example,
|
3040
|
+
Euclidean distance between the vectors could be computed
|
3041
|
+
as follows::
|
3042
|
+
|
3043
|
+
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
3044
|
+
|
3045
|
+
Note that you should avoid passing a reference to one of
|
3046
|
+
the distance functions defined in this library. For example,::
|
3047
|
+
|
3048
|
+
dm = cdist(XA, XB, sokalsneath)
|
3049
|
+
|
3050
|
+
would calculate the pair-wise distances between the vectors in
|
3051
|
+
X using the Python function `sokalsneath`. This would result in
|
3052
|
+
sokalsneath being called :math:`{n \\choose 2}` times, which
|
3053
|
+
is inefficient. Instead, the optimized C version is more
|
3054
|
+
efficient, and we call it using the following syntax::
|
3055
|
+
|
3056
|
+
dm = cdist(XA, XB, 'sokalsneath')
|
3057
|
+
|
3058
|
+
Examples
|
3059
|
+
--------
|
3060
|
+
Find the Euclidean distances between four 2-D coordinates:
|
3061
|
+
|
3062
|
+
>>> from scipy.spatial import distance
|
3063
|
+
>>> import numpy as np
|
3064
|
+
>>> coords = [(35.0456, -85.2672),
|
3065
|
+
... (35.1174, -89.9711),
|
3066
|
+
... (35.9728, -83.9422),
|
3067
|
+
... (36.1667, -86.7833)]
|
3068
|
+
>>> distance.cdist(coords, coords, 'euclidean')
|
3069
|
+
array([[ 0. , 4.7044, 1.6172, 1.8856],
|
3070
|
+
[ 4.7044, 0. , 6.0893, 3.3561],
|
3071
|
+
[ 1.6172, 6.0893, 0. , 2.8477],
|
3072
|
+
[ 1.8856, 3.3561, 2.8477, 0. ]])
|
3073
|
+
|
3074
|
+
|
3075
|
+
Find the Manhattan distance from a 3-D point to the corners of the unit
|
3076
|
+
cube:
|
3077
|
+
|
3078
|
+
>>> a = np.array([[0, 0, 0],
|
3079
|
+
... [0, 0, 1],
|
3080
|
+
... [0, 1, 0],
|
3081
|
+
... [0, 1, 1],
|
3082
|
+
... [1, 0, 0],
|
3083
|
+
... [1, 0, 1],
|
3084
|
+
... [1, 1, 0],
|
3085
|
+
... [1, 1, 1]])
|
3086
|
+
>>> b = np.array([[ 0.1, 0.2, 0.4]])
|
3087
|
+
>>> distance.cdist(a, b, 'cityblock')
|
3088
|
+
array([[ 0.7],
|
3089
|
+
[ 0.9],
|
3090
|
+
[ 1.3],
|
3091
|
+
[ 1.5],
|
3092
|
+
[ 1.5],
|
3093
|
+
[ 1.7],
|
3094
|
+
[ 2.1],
|
3095
|
+
[ 2.3]])
|
3096
|
+
|
3097
|
+
"""
|
3098
|
+
# You can also call this as:
|
3099
|
+
# Y = cdist(XA, XB, 'test_abc')
|
3100
|
+
# where 'abc' is the metric being tested. This computes the distance
|
3101
|
+
# between all pairs of vectors in XA and XB using the distance metric 'abc'
|
3102
|
+
# but with a more succinct, verifiable, but less efficient implementation.
|
3103
|
+
|
3104
|
+
XA = np.asarray(XA)
|
3105
|
+
XB = np.asarray(XB)
|
3106
|
+
|
3107
|
+
s = XA.shape
|
3108
|
+
sB = XB.shape
|
3109
|
+
|
3110
|
+
if len(s) != 2:
|
3111
|
+
raise ValueError('XA must be a 2-dimensional array.')
|
3112
|
+
if len(sB) != 2:
|
3113
|
+
raise ValueError('XB must be a 2-dimensional array.')
|
3114
|
+
if s[1] != sB[1]:
|
3115
|
+
raise ValueError('XA and XB must have the same number of columns '
|
3116
|
+
'(i.e. feature dimension.)')
|
3117
|
+
|
3118
|
+
mA = s[0]
|
3119
|
+
mB = sB[0]
|
3120
|
+
n = s[1]
|
3121
|
+
|
3122
|
+
if callable(metric):
|
3123
|
+
mstr = getattr(metric, '__name__', 'Unknown')
|
3124
|
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
3125
|
+
if metric_info is not None:
|
3126
|
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
3127
|
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
3128
|
+
return _cdist_callable(XA, XB, metric=metric, out=out, **kwargs)
|
3129
|
+
elif isinstance(metric, str):
|
3130
|
+
mstr = metric.lower()
|
3131
|
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
3132
|
+
if metric_info is not None:
|
3133
|
+
cdist_fn = metric_info.cdist_func
|
3134
|
+
return cdist_fn(XA, XB, out=out, **kwargs)
|
3135
|
+
elif mstr.startswith("test_"):
|
3136
|
+
metric_info = _TEST_METRICS.get(mstr, None)
|
3137
|
+
if metric_info is None:
|
3138
|
+
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
|
3139
|
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
3140
|
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
3141
|
+
return _cdist_callable(
|
3142
|
+
XA, XB, metric=metric_info.dist_func, out=out, **kwargs)
|
3143
|
+
else:
|
3144
|
+
raise ValueError(f'Unknown Distance Metric: {mstr}')
|
3145
|
+
else:
|
3146
|
+
raise TypeError('2nd argument metric must be a string identifier '
|
3147
|
+
'or a function.')
|