scipy 1.16.2__cp313-cp313-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp313-win_arm64.lib +0 -0
- scipy/_cyutility.cp313-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp313-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp313-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp313-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp313-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp313-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp313-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp313-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp313-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp313-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp313-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp313-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp313-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp313-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp313-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp313-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp313-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp313-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp313-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp313-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp313-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp313-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp313-win_arm64.lib +0 -0
- scipy/signal/_spline.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp313-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp313-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp313-win_arm64.lib +0 -0
- scipy/special/_comb.cp313-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp313-win_arm64.lib +0 -0
- scipy/special/_specfun.cp313-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp313-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp313-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp313-win_arm64.lib +0 -0
- scipy/special/cython_special.cp313-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp313-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp313-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp313-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp313-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats.cp313-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,1454 @@
|
|
1
|
+
"""Functions to construct sparse matrices and arrays
|
2
|
+
"""
|
3
|
+
|
4
|
+
__docformat__ = "restructuredtext en"
|
5
|
+
|
6
|
+
__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
|
7
|
+
'hstack', 'vstack', 'bmat', 'rand', 'random', 'diags', 'block_diag',
|
8
|
+
'diags_array', 'block_array', 'eye_array', 'random_array']
|
9
|
+
|
10
|
+
import numbers
|
11
|
+
import math
|
12
|
+
import numpy as np
|
13
|
+
|
14
|
+
from scipy._lib._util import check_random_state, rng_integers, _transition_to_rng
|
15
|
+
from ._sputils import upcast, get_index_dtype, isscalarlike
|
16
|
+
|
17
|
+
from ._sparsetools import csr_hstack
|
18
|
+
from ._bsr import bsr_matrix, bsr_array
|
19
|
+
from ._coo import coo_matrix, coo_array
|
20
|
+
from ._csc import csc_matrix, csc_array
|
21
|
+
from ._csr import csr_matrix, csr_array
|
22
|
+
from ._dia import dia_matrix, dia_array
|
23
|
+
|
24
|
+
from ._base import issparse, sparray
|
25
|
+
|
26
|
+
|
27
|
+
def spdiags(data, diags, m=None, n=None, format=None):
|
28
|
+
"""
|
29
|
+
Return a sparse matrix from diagonals.
|
30
|
+
|
31
|
+
.. warning::
|
32
|
+
|
33
|
+
This function returns a sparse matrix -- not a sparse array.
|
34
|
+
You are encouraged to use `dia_array` to take advantage
|
35
|
+
of the sparse array functionality. (See Notes below.)
|
36
|
+
|
37
|
+
Parameters
|
38
|
+
----------
|
39
|
+
data : array_like
|
40
|
+
Matrix diagonals stored row-wise
|
41
|
+
diags : sequence of int or an int
|
42
|
+
Diagonals to set:
|
43
|
+
|
44
|
+
* k = 0 the main diagonal
|
45
|
+
* k > 0 the kth upper diagonal
|
46
|
+
* k < 0 the kth lower diagonal
|
47
|
+
m, n : int, tuple, optional
|
48
|
+
Shape of the result. If `n` is None and `m` is a given tuple,
|
49
|
+
the shape is this tuple. If omitted, the matrix is square and
|
50
|
+
its shape is ``len(data[0])``.
|
51
|
+
format : str, optional
|
52
|
+
Format of the result. By default (format=None) an appropriate sparse
|
53
|
+
matrix format is returned. This choice is subject to change.
|
54
|
+
|
55
|
+
Returns
|
56
|
+
-------
|
57
|
+
new_matrix : sparse matrix
|
58
|
+
`dia_matrix` format with values in ``data`` on diagonals from ``diags``.
|
59
|
+
|
60
|
+
Notes
|
61
|
+
-----
|
62
|
+
This function can be replaced by an equivalent call to `dia_matrix`
|
63
|
+
as::
|
64
|
+
|
65
|
+
dia_matrix((data, diags), shape=(m, n)).asformat(format)
|
66
|
+
|
67
|
+
See Also
|
68
|
+
--------
|
69
|
+
diags_array : more convenient form of this function
|
70
|
+
diags : matrix version of diags_array
|
71
|
+
dia_matrix : the sparse DIAgonal format.
|
72
|
+
|
73
|
+
Examples
|
74
|
+
--------
|
75
|
+
>>> import numpy as np
|
76
|
+
>>> from scipy.sparse import spdiags
|
77
|
+
>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
|
78
|
+
>>> diags = np.array([0, -1, 2])
|
79
|
+
>>> spdiags(data, diags, 4, 4).toarray()
|
80
|
+
array([[1, 0, 3, 0],
|
81
|
+
[1, 2, 0, 4],
|
82
|
+
[0, 2, 3, 0],
|
83
|
+
[0, 0, 3, 4]])
|
84
|
+
|
85
|
+
"""
|
86
|
+
if m is None and n is None:
|
87
|
+
m = n = len(data[0])
|
88
|
+
elif n is None:
|
89
|
+
m, n = m
|
90
|
+
return dia_matrix((data, diags), shape=(m, n)).asformat(format)
|
91
|
+
|
92
|
+
|
93
|
+
def diags_array(diagonals, /, *, offsets=0, shape=None, format=None, dtype=None):
|
94
|
+
"""
|
95
|
+
Construct a sparse array from diagonals.
|
96
|
+
|
97
|
+
Parameters
|
98
|
+
----------
|
99
|
+
diagonals : sequence of array_like
|
100
|
+
Sequence of arrays containing the array diagonals,
|
101
|
+
corresponding to `offsets`.
|
102
|
+
offsets : sequence of int or an int, optional
|
103
|
+
Diagonals to set (repeated offsets are not allowed):
|
104
|
+
- k = 0 the main diagonal (default)
|
105
|
+
- k > 0 the kth upper diagonal
|
106
|
+
- k < 0 the kth lower diagonal
|
107
|
+
shape : tuple of int, optional
|
108
|
+
Shape of the result. If omitted, a square array large enough
|
109
|
+
to contain the diagonals is returned.
|
110
|
+
format : {"dia", "csr", "csc", "lil", ...}, optional
|
111
|
+
Matrix format of the result. By default (format=None) an
|
112
|
+
appropriate sparse array format is returned. This choice is
|
113
|
+
subject to change.
|
114
|
+
dtype : dtype, optional
|
115
|
+
Data type of the array.
|
116
|
+
|
117
|
+
Returns
|
118
|
+
-------
|
119
|
+
new_array : dia_array
|
120
|
+
`dia_array` holding the values in `diagonals` offset from the main diagonal
|
121
|
+
as indicated in `offsets`.
|
122
|
+
|
123
|
+
Notes
|
124
|
+
-----
|
125
|
+
Repeated diagonal offsets are disallowed.
|
126
|
+
|
127
|
+
The result from ``diags_array`` is the sparse equivalent of::
|
128
|
+
|
129
|
+
np.diag(diagonals[0], offsets[0])
|
130
|
+
+ ...
|
131
|
+
+ np.diag(diagonals[k], offsets[k])
|
132
|
+
|
133
|
+
``diags_array`` differs from `dia_array` in the way it handles off-diagonals.
|
134
|
+
Specifically, `dia_array` assumes the data input includes padding
|
135
|
+
(ignored values) at the start/end of the rows for positive/negative
|
136
|
+
offset, while ``diags_array`` assumes the input data has no padding.
|
137
|
+
Each value in the input `diagonals` is used.
|
138
|
+
|
139
|
+
.. versionadded:: 1.11
|
140
|
+
|
141
|
+
See Also
|
142
|
+
--------
|
143
|
+
dia_array : constructor for the sparse DIAgonal format.
|
144
|
+
|
145
|
+
Examples
|
146
|
+
--------
|
147
|
+
>>> from scipy.sparse import diags_array
|
148
|
+
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
|
149
|
+
>>> diags_array(diagonals, offsets=[0, -1, 2]).toarray()
|
150
|
+
array([[1., 0., 1., 0.],
|
151
|
+
[1., 2., 0., 2.],
|
152
|
+
[0., 2., 3., 0.],
|
153
|
+
[0., 0., 3., 4.]])
|
154
|
+
|
155
|
+
Broadcasting of scalars is supported (but shape needs to be
|
156
|
+
specified):
|
157
|
+
|
158
|
+
>>> diags_array([1, -2, 1], offsets=[-1, 0, 1], shape=(4, 4)).toarray()
|
159
|
+
array([[-2., 1., 0., 0.],
|
160
|
+
[ 1., -2., 1., 0.],
|
161
|
+
[ 0., 1., -2., 1.],
|
162
|
+
[ 0., 0., 1., -2.]])
|
163
|
+
|
164
|
+
|
165
|
+
If only one diagonal is wanted (as in `numpy.diag`), the following
|
166
|
+
works as well:
|
167
|
+
|
168
|
+
>>> diags_array([1, 2, 3], offsets=1).toarray()
|
169
|
+
array([[ 0., 1., 0., 0.],
|
170
|
+
[ 0., 0., 2., 0.],
|
171
|
+
[ 0., 0., 0., 3.],
|
172
|
+
[ 0., 0., 0., 0.]])
|
173
|
+
|
174
|
+
"""
|
175
|
+
# if offsets is not a sequence, assume that there's only one diagonal
|
176
|
+
if isscalarlike(offsets):
|
177
|
+
# now check that there's actually only one diagonal
|
178
|
+
if len(diagonals) == 0 or isscalarlike(diagonals[0]):
|
179
|
+
diagonals = [np.atleast_1d(diagonals)]
|
180
|
+
else:
|
181
|
+
raise ValueError("Different number of diagonals and offsets.")
|
182
|
+
else:
|
183
|
+
diagonals = list(map(np.atleast_1d, diagonals))
|
184
|
+
|
185
|
+
offsets = np.atleast_1d(offsets)
|
186
|
+
|
187
|
+
# Basic check
|
188
|
+
if len(diagonals) != len(offsets):
|
189
|
+
raise ValueError("Different number of diagonals and offsets.")
|
190
|
+
|
191
|
+
# Determine shape, if omitted
|
192
|
+
if shape is None:
|
193
|
+
m = len(diagonals[0]) + abs(int(offsets[0]))
|
194
|
+
shape = (m, m)
|
195
|
+
|
196
|
+
# Determine data type, if omitted
|
197
|
+
if dtype is None:
|
198
|
+
dtype = np.common_type(*diagonals)
|
199
|
+
|
200
|
+
# Construct data array
|
201
|
+
m, n = shape
|
202
|
+
|
203
|
+
M = max([min(m + offset, n - offset) + max(0, offset)
|
204
|
+
for offset in offsets])
|
205
|
+
M = max(0, M)
|
206
|
+
data_arr = np.zeros((len(offsets), M), dtype=dtype)
|
207
|
+
|
208
|
+
K = min(m, n)
|
209
|
+
|
210
|
+
for j, diagonal in enumerate(diagonals):
|
211
|
+
offset = offsets[j]
|
212
|
+
k = max(0, offset)
|
213
|
+
length = min(m + offset, n - offset, K)
|
214
|
+
if length < 0:
|
215
|
+
raise ValueError(f"Offset {offset} (index {j}) out of bounds")
|
216
|
+
try:
|
217
|
+
data_arr[j, k:k+length] = diagonal[...,:length]
|
218
|
+
except ValueError as e:
|
219
|
+
if len(diagonal) != length and len(diagonal) != 1:
|
220
|
+
raise ValueError(
|
221
|
+
f"Diagonal length (index {j}: {len(diagonal)} at"
|
222
|
+
f" offset {offset}) does not agree with array size ({m}, {n})."
|
223
|
+
) from e
|
224
|
+
raise
|
225
|
+
|
226
|
+
return dia_array((data_arr, offsets), shape=(m, n)).asformat(format)
|
227
|
+
|
228
|
+
|
229
|
+
def diags(diagonals, offsets=0, shape=None, format=None, dtype=None):
|
230
|
+
"""
|
231
|
+
Construct a sparse matrix from diagonals.
|
232
|
+
|
233
|
+
.. warning::
|
234
|
+
|
235
|
+
This function returns a sparse matrix -- not a sparse array.
|
236
|
+
You are encouraged to use `diags_array` to take advantage
|
237
|
+
of the sparse array functionality.
|
238
|
+
|
239
|
+
Parameters
|
240
|
+
----------
|
241
|
+
diagonals : sequence of array_like
|
242
|
+
Sequence of arrays containing the matrix diagonals,
|
243
|
+
corresponding to `offsets`.
|
244
|
+
offsets : sequence of int or an int, optional
|
245
|
+
Diagonals to set (repeated offsets are not allowed):
|
246
|
+
- k = 0 the main diagonal (default)
|
247
|
+
- k > 0 the kth upper diagonal
|
248
|
+
- k < 0 the kth lower diagonal
|
249
|
+
shape : tuple of int, optional
|
250
|
+
Shape of the result. If omitted, a square matrix large enough
|
251
|
+
to contain the diagonals is returned.
|
252
|
+
format : {"dia", "csr", "csc", "lil", ...}, optional
|
253
|
+
Matrix format of the result. By default (format=None) an
|
254
|
+
appropriate sparse matrix format is returned. This choice is
|
255
|
+
subject to change.
|
256
|
+
dtype : dtype, optional
|
257
|
+
Data type of the matrix.
|
258
|
+
|
259
|
+
Returns
|
260
|
+
-------
|
261
|
+
new_matrix : dia_matrix
|
262
|
+
`dia_matrix` holding the values in `diagonals` offset from the main diagonal
|
263
|
+
as indicated in `offsets`.
|
264
|
+
|
265
|
+
Notes
|
266
|
+
-----
|
267
|
+
Repeated diagonal offsets are disallowed.
|
268
|
+
|
269
|
+
The result from ``diags`` is the sparse equivalent of::
|
270
|
+
|
271
|
+
np.diag(diagonals[0], offsets[0])
|
272
|
+
+ ...
|
273
|
+
+ np.diag(diagonals[k], offsets[k])
|
274
|
+
|
275
|
+
``diags`` differs from `dia_matrix` in the way it handles off-diagonals.
|
276
|
+
Specifically, `dia_matrix` assumes the data input includes padding
|
277
|
+
(ignored values) at the start/end of the rows for positive/negative
|
278
|
+
offset, while ``diags`` assumes the input data has no padding.
|
279
|
+
Each value in the input `diagonals` is used.
|
280
|
+
|
281
|
+
.. versionadded:: 0.11
|
282
|
+
|
283
|
+
See Also
|
284
|
+
--------
|
285
|
+
spdiags : construct matrix from diagonals
|
286
|
+
diags_array : construct sparse array instead of sparse matrix
|
287
|
+
|
288
|
+
Examples
|
289
|
+
--------
|
290
|
+
>>> from scipy.sparse import diags
|
291
|
+
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
|
292
|
+
>>> diags(diagonals, [0, -1, 2]).toarray()
|
293
|
+
array([[1., 0., 1., 0.],
|
294
|
+
[1., 2., 0., 2.],
|
295
|
+
[0., 2., 3., 0.],
|
296
|
+
[0., 0., 3., 4.]])
|
297
|
+
|
298
|
+
Broadcasting of scalars is supported (but shape needs to be
|
299
|
+
specified):
|
300
|
+
|
301
|
+
>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
|
302
|
+
array([[-2., 1., 0., 0.],
|
303
|
+
[ 1., -2., 1., 0.],
|
304
|
+
[ 0., 1., -2., 1.],
|
305
|
+
[ 0., 0., 1., -2.]])
|
306
|
+
|
307
|
+
|
308
|
+
If only one diagonal is wanted (as in `numpy.diag`), the following
|
309
|
+
works as well:
|
310
|
+
|
311
|
+
>>> diags([1, 2, 3], 1).toarray()
|
312
|
+
array([[ 0., 1., 0., 0.],
|
313
|
+
[ 0., 0., 2., 0.],
|
314
|
+
[ 0., 0., 0., 3.],
|
315
|
+
[ 0., 0., 0., 0.]])
|
316
|
+
|
317
|
+
"""
|
318
|
+
A = diags_array(diagonals, offsets=offsets, shape=shape, dtype=dtype)
|
319
|
+
return dia_matrix(A).asformat(format)
|
320
|
+
|
321
|
+
|
322
|
+
def identity(n, dtype='d', format=None):
|
323
|
+
"""Identity matrix in sparse format
|
324
|
+
|
325
|
+
Returns an identity matrix with shape ``(n, n)`` using a given
|
326
|
+
sparse format and dtype. This differs from `eye_array` in
|
327
|
+
that it has a square shape with ones only on the main diagonal.
|
328
|
+
It is thus the multiplicative identity. `eye_array` allows
|
329
|
+
rectangular shapes and the diagonal can be offset from the main one.
|
330
|
+
|
331
|
+
.. warning::
|
332
|
+
|
333
|
+
This function returns a sparse matrix -- not a sparse array.
|
334
|
+
You are encouraged to use `eye_array` to take advantage
|
335
|
+
of the sparse array functionality.
|
336
|
+
|
337
|
+
Parameters
|
338
|
+
----------
|
339
|
+
n : int
|
340
|
+
Shape of the identity matrix.
|
341
|
+
dtype : dtype, optional
|
342
|
+
Data type of the matrix
|
343
|
+
format : str, optional
|
344
|
+
Sparse format of the result, e.g., format="csr", etc.
|
345
|
+
|
346
|
+
Returns
|
347
|
+
-------
|
348
|
+
new_matrix : sparse matrix
|
349
|
+
A square sparse matrix with ones on the main diagonal and zeros elsewhere.
|
350
|
+
|
351
|
+
See Also
|
352
|
+
--------
|
353
|
+
eye_array : Sparse array of chosen shape with ones on a specified diagonal.
|
354
|
+
eye : Sparse matrix of chosen shape with ones on a specified diagonal.
|
355
|
+
|
356
|
+
Examples
|
357
|
+
--------
|
358
|
+
>>> import scipy as sp
|
359
|
+
>>> sp.sparse.identity(3).toarray()
|
360
|
+
array([[ 1., 0., 0.],
|
361
|
+
[ 0., 1., 0.],
|
362
|
+
[ 0., 0., 1.]])
|
363
|
+
>>> sp.sparse.identity(3, dtype='int8', format='dia')
|
364
|
+
<DIAgonal sparse matrix of dtype 'int8'
|
365
|
+
with 3 stored elements (1 diagonals) and shape (3, 3)>
|
366
|
+
>>> sp.sparse.eye_array(3, dtype='int8', format='dia')
|
367
|
+
<DIAgonal sparse array of dtype 'int8'
|
368
|
+
with 3 stored elements (1 diagonals) and shape (3, 3)>
|
369
|
+
|
370
|
+
"""
|
371
|
+
return eye(n, n, dtype=dtype, format=format)
|
372
|
+
|
373
|
+
|
374
|
+
def eye_array(m, n=None, *, k=0, dtype=float, format=None):
|
375
|
+
"""Sparse array of chosen shape with ones on the kth diagonal and zeros elsewhere.
|
376
|
+
|
377
|
+
Return a sparse array with ones on diagonal.
|
378
|
+
Specifically a sparse array (m x n) where the kth diagonal
|
379
|
+
is all ones and everything else is zeros.
|
380
|
+
|
381
|
+
Parameters
|
382
|
+
----------
|
383
|
+
m : int
|
384
|
+
Number of rows requested.
|
385
|
+
n : int, optional
|
386
|
+
Number of columns. Default: `m`.
|
387
|
+
k : int, optional
|
388
|
+
Diagonal to place ones on. Default: 0 (main diagonal).
|
389
|
+
dtype : dtype, optional
|
390
|
+
Data type of the array
|
391
|
+
format : str, optional (default: "dia")
|
392
|
+
Sparse format of the result, e.g., format="csr", etc.
|
393
|
+
|
394
|
+
Returns
|
395
|
+
-------
|
396
|
+
new_array : sparse array
|
397
|
+
Sparse array of chosen shape with ones on the kth diagonal and zeros elsewhere.
|
398
|
+
|
399
|
+
Examples
|
400
|
+
--------
|
401
|
+
>>> import numpy as np
|
402
|
+
>>> import scipy as sp
|
403
|
+
>>> sp.sparse.eye_array(3).toarray()
|
404
|
+
array([[ 1., 0., 0.],
|
405
|
+
[ 0., 1., 0.],
|
406
|
+
[ 0., 0., 1.]])
|
407
|
+
>>> sp.sparse.eye_array(3, dtype=np.int8)
|
408
|
+
<DIAgonal sparse array of dtype 'int8'
|
409
|
+
with 3 stored elements (1 diagonals) and shape (3, 3)>
|
410
|
+
|
411
|
+
"""
|
412
|
+
# TODO: delete next 15 lines [combine with _eye()] once spmatrix removed
|
413
|
+
return _eye(m, n, k, dtype, format)
|
414
|
+
|
415
|
+
|
416
|
+
def _eye(m, n, k, dtype, format, as_sparray=True):
|
417
|
+
if as_sparray:
|
418
|
+
csr_sparse = csr_array
|
419
|
+
csc_sparse = csc_array
|
420
|
+
coo_sparse = coo_array
|
421
|
+
diags_sparse = diags_array
|
422
|
+
else:
|
423
|
+
csr_sparse = csr_matrix
|
424
|
+
csc_sparse = csc_matrix
|
425
|
+
coo_sparse = coo_matrix
|
426
|
+
diags_sparse = diags
|
427
|
+
|
428
|
+
if n is None:
|
429
|
+
n = m
|
430
|
+
m, n = int(m), int(n)
|
431
|
+
|
432
|
+
if m == n and k == 0:
|
433
|
+
# fast branch for special formats
|
434
|
+
if format in ['csr', 'csc']:
|
435
|
+
idx_dtype = get_index_dtype(maxval=n)
|
436
|
+
indptr = np.arange(n+1, dtype=idx_dtype)
|
437
|
+
indices = np.arange(n, dtype=idx_dtype)
|
438
|
+
data = np.ones(n, dtype=dtype)
|
439
|
+
cls = {'csr': csr_sparse, 'csc': csc_sparse}[format]
|
440
|
+
return cls((data, indices, indptr), (n, n))
|
441
|
+
|
442
|
+
elif format == 'coo':
|
443
|
+
idx_dtype = get_index_dtype(maxval=n)
|
444
|
+
row = np.arange(n, dtype=idx_dtype)
|
445
|
+
col = np.arange(n, dtype=idx_dtype)
|
446
|
+
data = np.ones(n, dtype=dtype)
|
447
|
+
return coo_sparse((data, (row, col)), (n, n))
|
448
|
+
|
449
|
+
data = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
|
450
|
+
return diags_sparse(data, offsets=[k], shape=(m, n), dtype=dtype).asformat(format)
|
451
|
+
|
452
|
+
|
453
|
+
def eye(m, n=None, k=0, dtype=float, format=None):
|
454
|
+
"""Sparse matrix of chosen shape with ones on the kth diagonal and zeros elsewhere.
|
455
|
+
|
456
|
+
Returns a sparse matrix (m x n) where the kth diagonal
|
457
|
+
is all ones and everything else is zeros.
|
458
|
+
|
459
|
+
.. warning::
|
460
|
+
|
461
|
+
This function returns a sparse matrix -- not a sparse array.
|
462
|
+
You are encouraged to use `eye_array` to take advantage
|
463
|
+
of the sparse array functionality.
|
464
|
+
|
465
|
+
Parameters
|
466
|
+
----------
|
467
|
+
m : int
|
468
|
+
Number of rows in the matrix.
|
469
|
+
n : int, optional
|
470
|
+
Number of columns. Default: `m`.
|
471
|
+
k : int, optional
|
472
|
+
Diagonal to place ones on. Default: 0 (main diagonal).
|
473
|
+
dtype : dtype, optional
|
474
|
+
Data type of the matrix.
|
475
|
+
format : str, optional
|
476
|
+
Sparse format of the result, e.g., format="csr", etc.
|
477
|
+
|
478
|
+
Returns
|
479
|
+
-------
|
480
|
+
new_matrix : sparse matrix
|
481
|
+
Sparse matrix of chosen shape with ones on the kth diagonaland zeros elsewhere.
|
482
|
+
|
483
|
+
See Also
|
484
|
+
--------
|
485
|
+
eye_array : Sparse array of chosen shape with ones on a specified diagonal.
|
486
|
+
|
487
|
+
Examples
|
488
|
+
--------
|
489
|
+
>>> import numpy as np
|
490
|
+
>>> import scipy as sp
|
491
|
+
>>> sp.sparse.eye(3).toarray()
|
492
|
+
array([[ 1., 0., 0.],
|
493
|
+
[ 0., 1., 0.],
|
494
|
+
[ 0., 0., 1.]])
|
495
|
+
>>> sp.sparse.eye(3, dtype=np.int8)
|
496
|
+
<DIAgonal sparse matrix of dtype 'int8'
|
497
|
+
with 3 stored elements (1 diagonals) and shape (3, 3)>
|
498
|
+
|
499
|
+
"""
|
500
|
+
return _eye(m, n, k, dtype, format, False)
|
501
|
+
|
502
|
+
|
503
|
+
def kron(A, B, format=None):
|
504
|
+
"""kronecker product of sparse matrices A and B
|
505
|
+
|
506
|
+
Parameters
|
507
|
+
----------
|
508
|
+
A : sparse or dense matrix
|
509
|
+
first matrix of the product
|
510
|
+
B : sparse or dense matrix
|
511
|
+
second matrix of the product
|
512
|
+
format : str, optional (default: 'bsr' or 'coo')
|
513
|
+
format of the result (e.g. "csr")
|
514
|
+
If None, choose 'bsr' for relatively dense array and 'coo' for others
|
515
|
+
|
516
|
+
Returns
|
517
|
+
-------
|
518
|
+
kronecker product in a sparse format.
|
519
|
+
Returns a sparse matrix unless either A or B is a
|
520
|
+
sparse array in which case returns a sparse array.
|
521
|
+
|
522
|
+
Examples
|
523
|
+
--------
|
524
|
+
>>> import numpy as np
|
525
|
+
>>> import scipy as sp
|
526
|
+
>>> A = sp.sparse.csr_array(np.array([[0, 2], [5, 0]]))
|
527
|
+
>>> B = sp.sparse.csr_array(np.array([[1, 2], [3, 4]]))
|
528
|
+
>>> sp.sparse.kron(A, B).toarray()
|
529
|
+
array([[ 0, 0, 2, 4],
|
530
|
+
[ 0, 0, 6, 8],
|
531
|
+
[ 5, 10, 0, 0],
|
532
|
+
[15, 20, 0, 0]])
|
533
|
+
|
534
|
+
>>> sp.sparse.kron(A, [[1, 2], [3, 4]]).toarray()
|
535
|
+
array([[ 0, 0, 2, 4],
|
536
|
+
[ 0, 0, 6, 8],
|
537
|
+
[ 5, 10, 0, 0],
|
538
|
+
[15, 20, 0, 0]])
|
539
|
+
|
540
|
+
"""
|
541
|
+
# TODO: delete next 10 lines and replace _sparse with _array when spmatrix removed
|
542
|
+
if isinstance(A, sparray) or isinstance(B, sparray):
|
543
|
+
# convert to local variables
|
544
|
+
bsr_sparse = bsr_array
|
545
|
+
csr_sparse = csr_array
|
546
|
+
coo_sparse = coo_array
|
547
|
+
else: # use spmatrix
|
548
|
+
bsr_sparse = bsr_matrix
|
549
|
+
csr_sparse = csr_matrix
|
550
|
+
coo_sparse = coo_matrix
|
551
|
+
|
552
|
+
B = coo_sparse(B)
|
553
|
+
if B.ndim != 2:
|
554
|
+
raise ValueError(f"kron requires 2D input arrays. `B` is {B.ndim}D.")
|
555
|
+
|
556
|
+
# B is fairly dense, use BSR
|
557
|
+
if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
|
558
|
+
A = csr_sparse(A,copy=True)
|
559
|
+
if A.ndim != 2:
|
560
|
+
raise ValueError(f"kron requires 2D input arrays. `A` is {A.ndim}D.")
|
561
|
+
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
|
562
|
+
|
563
|
+
if A.nnz == 0 or B.nnz == 0:
|
564
|
+
# kronecker product is the zero matrix
|
565
|
+
return coo_sparse(output_shape).asformat(format)
|
566
|
+
|
567
|
+
B = B.toarray()
|
568
|
+
data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
|
569
|
+
data = data * B
|
570
|
+
|
571
|
+
return bsr_sparse((data,A.indices,A.indptr), shape=output_shape)
|
572
|
+
else:
|
573
|
+
# use COO
|
574
|
+
A = coo_sparse(A)
|
575
|
+
if A.ndim != 2:
|
576
|
+
raise ValueError(f"kron requires 2D input arrays. `A` is {A.ndim}D.")
|
577
|
+
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
|
578
|
+
|
579
|
+
if A.nnz == 0 or B.nnz == 0:
|
580
|
+
# kronecker product is the zero matrix
|
581
|
+
return coo_sparse(output_shape).asformat(format)
|
582
|
+
|
583
|
+
# expand entries of a into blocks
|
584
|
+
idx_dtype = get_index_dtype(A.coords, maxval=max(output_shape))
|
585
|
+
row = np.asarray(A.row, dtype=idx_dtype).repeat(B.nnz)
|
586
|
+
col = np.asarray(A.col, dtype=idx_dtype).repeat(B.nnz)
|
587
|
+
data = A.data.repeat(B.nnz)
|
588
|
+
|
589
|
+
row *= B.shape[0]
|
590
|
+
col *= B.shape[1]
|
591
|
+
|
592
|
+
# increment block indices
|
593
|
+
row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz)
|
594
|
+
row += B.row
|
595
|
+
col += B.col
|
596
|
+
row,col = row.reshape(-1),col.reshape(-1)
|
597
|
+
|
598
|
+
# compute block entries
|
599
|
+
data = data.reshape(-1,B.nnz) * B.data
|
600
|
+
data = data.reshape(-1)
|
601
|
+
|
602
|
+
return coo_sparse((data,(row,col)), shape=output_shape).asformat(format)
|
603
|
+
|
604
|
+
|
605
|
+
def kronsum(A, B, format=None):
|
606
|
+
"""kronecker sum of square sparse matrices A and B
|
607
|
+
|
608
|
+
Kronecker sum of two sparse matrices is a sum of two Kronecker
|
609
|
+
products kron(I_n,A) + kron(B,I_m) where A has shape (m,m)
|
610
|
+
and B has shape (n,n) and I_m and I_n are identity matrices
|
611
|
+
of shape (m,m) and (n,n), respectively.
|
612
|
+
|
613
|
+
Parameters
|
614
|
+
----------
|
615
|
+
A
|
616
|
+
square matrix
|
617
|
+
B
|
618
|
+
square matrix
|
619
|
+
format : str
|
620
|
+
format of the result (e.g. "csr")
|
621
|
+
|
622
|
+
Returns
|
623
|
+
-------
|
624
|
+
kronecker sum in a sparse matrix format
|
625
|
+
|
626
|
+
"""
|
627
|
+
# TODO: delete next 8 lines and replace _sparse with _array when spmatrix removed
|
628
|
+
if isinstance(A, sparray) or isinstance(B, sparray):
|
629
|
+
# convert to local variables
|
630
|
+
coo_sparse = coo_array
|
631
|
+
identity_sparse = eye_array
|
632
|
+
else:
|
633
|
+
coo_sparse = coo_matrix
|
634
|
+
identity_sparse = identity
|
635
|
+
|
636
|
+
A = coo_sparse(A)
|
637
|
+
B = coo_sparse(B)
|
638
|
+
|
639
|
+
if A.ndim != 2:
|
640
|
+
raise ValueError(f"kronsum requires 2D inputs. `A` is {A.ndim}D.")
|
641
|
+
if B.ndim != 2:
|
642
|
+
raise ValueError(f"kronsum requires 2D inputs. `B` is {B.ndim}D.")
|
643
|
+
if A.shape[0] != A.shape[1]:
|
644
|
+
raise ValueError('A is not square')
|
645
|
+
if B.shape[0] != B.shape[1]:
|
646
|
+
raise ValueError('B is not square')
|
647
|
+
|
648
|
+
dtype = upcast(A.dtype, B.dtype)
|
649
|
+
|
650
|
+
I_n = identity_sparse(A.shape[0], dtype=dtype)
|
651
|
+
I_m = identity_sparse(B.shape[0], dtype=dtype)
|
652
|
+
L = kron(I_m, A, format='coo')
|
653
|
+
R = kron(B, I_n, format='coo')
|
654
|
+
|
655
|
+
return (L + R).asformat(format)
|
656
|
+
|
657
|
+
|
658
|
+
def _compressed_sparse_stack(blocks, axis, return_spmatrix):
|
659
|
+
"""
|
660
|
+
Stacking fast path for CSR/CSC matrices or arrays
|
661
|
+
(i) vstack for CSR, (ii) hstack for CSC.
|
662
|
+
"""
|
663
|
+
other_axis = 1 if axis == 0 else 0
|
664
|
+
data = np.concatenate([b.data for b in blocks])
|
665
|
+
constant_dim = blocks[0]._shape_as_2d[other_axis]
|
666
|
+
idx_dtype = get_index_dtype(arrays=[b.indptr for b in blocks],
|
667
|
+
maxval=max(data.size, constant_dim))
|
668
|
+
indices = np.empty(data.size, dtype=idx_dtype)
|
669
|
+
indptr = np.empty(sum(b._shape_as_2d[axis] for b in blocks) + 1, dtype=idx_dtype)
|
670
|
+
last_indptr = idx_dtype(0)
|
671
|
+
sum_dim = 0
|
672
|
+
sum_indices = 0
|
673
|
+
for b in blocks:
|
674
|
+
if b._shape_as_2d[other_axis] != constant_dim:
|
675
|
+
raise ValueError(f'incompatible dimensions for axis {other_axis}')
|
676
|
+
indices[sum_indices:sum_indices+b.indices.size] = b.indices
|
677
|
+
sum_indices += b.indices.size
|
678
|
+
idxs = slice(sum_dim, sum_dim + b._shape_as_2d[axis])
|
679
|
+
indptr[idxs] = b.indptr[:-1]
|
680
|
+
indptr[idxs] += last_indptr
|
681
|
+
sum_dim += b._shape_as_2d[axis]
|
682
|
+
last_indptr += b.indptr[-1]
|
683
|
+
indptr[-1] = last_indptr
|
684
|
+
# TODO remove this if-structure when sparse matrices removed
|
685
|
+
if return_spmatrix:
|
686
|
+
if axis == 0:
|
687
|
+
return csr_matrix((data, indices, indptr),
|
688
|
+
shape=(sum_dim, constant_dim))
|
689
|
+
else:
|
690
|
+
return csc_matrix((data, indices, indptr),
|
691
|
+
shape=(constant_dim, sum_dim))
|
692
|
+
|
693
|
+
if axis == 0:
|
694
|
+
return csr_array((data, indices, indptr),
|
695
|
+
shape=(sum_dim, constant_dim))
|
696
|
+
else:
|
697
|
+
return csc_array((data, indices, indptr),
|
698
|
+
shape=(constant_dim, sum_dim))
|
699
|
+
|
700
|
+
|
701
|
+
def _stack_along_minor_axis(blocks, axis):
|
702
|
+
"""
|
703
|
+
Stacking fast path for CSR/CSC matrices along the minor axis
|
704
|
+
(i) hstack for CSR, (ii) vstack for CSC.
|
705
|
+
"""
|
706
|
+
n_blocks = len(blocks)
|
707
|
+
if n_blocks == 0:
|
708
|
+
raise ValueError('Missing block matrices')
|
709
|
+
|
710
|
+
if n_blocks == 1:
|
711
|
+
return blocks[0]
|
712
|
+
|
713
|
+
# check for incompatible dimensions
|
714
|
+
other_axis = 1 if axis == 0 else 0
|
715
|
+
other_axis_dims = {b._shape_as_2d[other_axis] for b in blocks}
|
716
|
+
if len(other_axis_dims) > 1:
|
717
|
+
raise ValueError(f'Mismatching dimensions along axis {other_axis}: '
|
718
|
+
f'{other_axis_dims}')
|
719
|
+
constant_dim, = other_axis_dims
|
720
|
+
|
721
|
+
# Do the stacking
|
722
|
+
indptr_list = [b.indptr for b in blocks]
|
723
|
+
data_cat = np.concatenate([b.data for b in blocks])
|
724
|
+
|
725
|
+
# Need to check if any indices/indptr, would be too large post-
|
726
|
+
# concatenation for np.int32:
|
727
|
+
# - The max value of indices is the output array's stacking-axis length - 1
|
728
|
+
# - The max value in indptr is the number of non-zero entries. This is
|
729
|
+
# exceedingly unlikely to require int64, but is checked out of an
|
730
|
+
# abundance of caution.
|
731
|
+
sum_dim = sum(b._shape_as_2d[axis] for b in blocks)
|
732
|
+
nnz = sum(len(b.indices) for b in blocks)
|
733
|
+
idx_dtype = get_index_dtype(indptr_list, maxval=max(sum_dim - 1, nnz))
|
734
|
+
stack_dim_cat = np.array([b._shape_as_2d[axis] for b in blocks], dtype=idx_dtype)
|
735
|
+
if data_cat.size > 0:
|
736
|
+
indptr_cat = np.concatenate(indptr_list, dtype=idx_dtype)
|
737
|
+
indices_cat = np.concatenate([b.indices for b in blocks], dtype=idx_dtype)
|
738
|
+
indptr = np.empty(constant_dim + 1, dtype=idx_dtype)
|
739
|
+
indices = np.empty_like(indices_cat)
|
740
|
+
data = np.empty_like(data_cat)
|
741
|
+
csr_hstack(n_blocks, constant_dim, stack_dim_cat,
|
742
|
+
indptr_cat, indices_cat, data_cat,
|
743
|
+
indptr, indices, data)
|
744
|
+
else:
|
745
|
+
indptr = np.zeros(constant_dim + 1, dtype=idx_dtype)
|
746
|
+
indices = np.empty(0, dtype=idx_dtype)
|
747
|
+
data = np.empty(0, dtype=data_cat.dtype)
|
748
|
+
|
749
|
+
if axis == 0:
|
750
|
+
return blocks[0]._csc_container((data, indices, indptr),
|
751
|
+
shape=(sum_dim, constant_dim))
|
752
|
+
else:
|
753
|
+
return blocks[0]._csr_container((data, indices, indptr),
|
754
|
+
shape=(constant_dim, sum_dim))
|
755
|
+
|
756
|
+
|
757
|
+
def hstack(blocks, format=None, dtype=None):
|
758
|
+
"""
|
759
|
+
Stack sparse matrices horizontally (column wise)
|
760
|
+
|
761
|
+
Parameters
|
762
|
+
----------
|
763
|
+
blocks
|
764
|
+
sequence of sparse matrices with compatible shapes
|
765
|
+
format : str
|
766
|
+
sparse format of the result (e.g., "csr")
|
767
|
+
by default an appropriate sparse matrix format is returned.
|
768
|
+
This choice is subject to change.
|
769
|
+
dtype : dtype, optional
|
770
|
+
The data-type of the output matrix. If not given, the dtype is
|
771
|
+
determined from that of `blocks`.
|
772
|
+
|
773
|
+
Returns
|
774
|
+
-------
|
775
|
+
new_array : sparse matrix or array
|
776
|
+
If any block in blocks is a sparse array, return a sparse array.
|
777
|
+
Otherwise return a sparse matrix.
|
778
|
+
|
779
|
+
If you want a sparse array built from blocks that are not sparse
|
780
|
+
arrays, use ``block(hstack(blocks))`` or convert one block
|
781
|
+
e.g. ``blocks[0] = csr_array(blocks[0])``.
|
782
|
+
|
783
|
+
See Also
|
784
|
+
--------
|
785
|
+
vstack : stack sparse matrices vertically (row wise)
|
786
|
+
|
787
|
+
Examples
|
788
|
+
--------
|
789
|
+
>>> from scipy.sparse import coo_matrix, hstack
|
790
|
+
>>> A = coo_matrix([[1, 2], [3, 4]])
|
791
|
+
>>> B = coo_matrix([[5], [6]])
|
792
|
+
>>> hstack([A,B]).toarray()
|
793
|
+
array([[1, 2, 5],
|
794
|
+
[3, 4, 6]])
|
795
|
+
|
796
|
+
"""
|
797
|
+
blocks = np.asarray(blocks, dtype='object')
|
798
|
+
if any(isinstance(b, sparray) for b in blocks.flat):
|
799
|
+
return _block([blocks], format, dtype)
|
800
|
+
else:
|
801
|
+
return _block([blocks], format, dtype, return_spmatrix=True)
|
802
|
+
|
803
|
+
|
804
|
+
def vstack(blocks, format=None, dtype=None):
|
805
|
+
"""
|
806
|
+
Stack sparse arrays vertically (row wise)
|
807
|
+
|
808
|
+
Parameters
|
809
|
+
----------
|
810
|
+
blocks
|
811
|
+
sequence of sparse arrays with compatible shapes
|
812
|
+
format : str, optional
|
813
|
+
sparse format of the result (e.g., "csr")
|
814
|
+
by default an appropriate sparse array format is returned.
|
815
|
+
This choice is subject to change.
|
816
|
+
dtype : dtype, optional
|
817
|
+
The data-type of the output array. If not given, the dtype is
|
818
|
+
determined from that of `blocks`.
|
819
|
+
|
820
|
+
Returns
|
821
|
+
-------
|
822
|
+
new_array : sparse matrix or array
|
823
|
+
If any block in blocks is a sparse array, return a sparse array.
|
824
|
+
Otherwise return a sparse matrix.
|
825
|
+
|
826
|
+
If you want a sparse array built from blocks that are not sparse
|
827
|
+
arrays, use ``block(vstack(blocks))`` or convert one block
|
828
|
+
e.g. ``blocks[0] = csr_array(blocks[0])``.
|
829
|
+
|
830
|
+
See Also
|
831
|
+
--------
|
832
|
+
hstack : stack sparse matrices horizontally (column wise)
|
833
|
+
|
834
|
+
Examples
|
835
|
+
--------
|
836
|
+
>>> from scipy.sparse import coo_array, vstack
|
837
|
+
>>> A = coo_array([[1, 2], [3, 4]])
|
838
|
+
>>> B = coo_array([[5, 6]])
|
839
|
+
>>> vstack([A, B]).toarray()
|
840
|
+
array([[1, 2],
|
841
|
+
[3, 4],
|
842
|
+
[5, 6]])
|
843
|
+
|
844
|
+
"""
|
845
|
+
blocks = np.asarray(blocks, dtype='object')
|
846
|
+
if any(isinstance(b, sparray) for b in blocks.flat):
|
847
|
+
return _block([[b] for b in blocks], format, dtype)
|
848
|
+
else:
|
849
|
+
return _block([[b] for b in blocks], format, dtype, return_spmatrix=True)
|
850
|
+
|
851
|
+
|
852
|
+
def bmat(blocks, format=None, dtype=None):
|
853
|
+
"""
|
854
|
+
Build a sparse array or matrix from sparse sub-blocks
|
855
|
+
|
856
|
+
Note: `block_array` is preferred over ``bmat``. They are the same function
|
857
|
+
except that ``bmat`` returns a deprecated sparse matrix when none of the
|
858
|
+
inputs are sparse arrays.
|
859
|
+
|
860
|
+
.. warning::
|
861
|
+
|
862
|
+
This function returns a sparse matrix when no inputs are sparse arrays.
|
863
|
+
You are encouraged to use `block_array` to take advantage
|
864
|
+
of the sparse array functionality.
|
865
|
+
|
866
|
+
Parameters
|
867
|
+
----------
|
868
|
+
blocks : array_like
|
869
|
+
Grid of sparse matrices with compatible shapes.
|
870
|
+
An entry of None implies an all-zero matrix.
|
871
|
+
format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
|
872
|
+
The sparse format of the result (e.g. "csr"). By default an
|
873
|
+
appropriate sparse matrix format is returned.
|
874
|
+
This choice is subject to change.
|
875
|
+
dtype : dtype, optional
|
876
|
+
The data-type of the output matrix. If not given, the dtype is
|
877
|
+
determined from that of `blocks`.
|
878
|
+
|
879
|
+
Returns
|
880
|
+
-------
|
881
|
+
bmat : sparse matrix or array
|
882
|
+
If any block in blocks is a sparse array, return a sparse array.
|
883
|
+
Otherwise return a sparse matrix.
|
884
|
+
|
885
|
+
If you want a sparse array built from blocks that are not sparse
|
886
|
+
arrays, use ``block_array()``.
|
887
|
+
|
888
|
+
See Also
|
889
|
+
--------
|
890
|
+
block_array
|
891
|
+
|
892
|
+
Examples
|
893
|
+
--------
|
894
|
+
>>> from scipy.sparse import coo_array, bmat
|
895
|
+
>>> A = coo_array([[1, 2], [3, 4]])
|
896
|
+
>>> B = coo_array([[5], [6]])
|
897
|
+
>>> C = coo_array([[7]])
|
898
|
+
>>> bmat([[A, B], [None, C]]).toarray()
|
899
|
+
array([[1, 2, 5],
|
900
|
+
[3, 4, 6],
|
901
|
+
[0, 0, 7]])
|
902
|
+
|
903
|
+
>>> bmat([[A, None], [None, C]]).toarray()
|
904
|
+
array([[1, 2, 0],
|
905
|
+
[3, 4, 0],
|
906
|
+
[0, 0, 7]])
|
907
|
+
|
908
|
+
"""
|
909
|
+
blocks = np.asarray(blocks, dtype='object')
|
910
|
+
if any(isinstance(b, sparray) for b in blocks.flat):
|
911
|
+
return _block(blocks, format, dtype)
|
912
|
+
else:
|
913
|
+
return _block(blocks, format, dtype, return_spmatrix=True)
|
914
|
+
|
915
|
+
|
916
|
+
def block_array(blocks, *, format=None, dtype=None):
|
917
|
+
"""
|
918
|
+
Build a sparse array from sparse sub-blocks
|
919
|
+
|
920
|
+
Parameters
|
921
|
+
----------
|
922
|
+
blocks : array_like
|
923
|
+
Grid of sparse arrays with compatible shapes.
|
924
|
+
An entry of None implies an all-zero array.
|
925
|
+
format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
|
926
|
+
The sparse format of the result (e.g. "csr"). By default an
|
927
|
+
appropriate sparse array format is returned.
|
928
|
+
This choice is subject to change.
|
929
|
+
dtype : dtype, optional
|
930
|
+
The data-type of the output array. If not given, the dtype is
|
931
|
+
determined from that of `blocks`.
|
932
|
+
|
933
|
+
Returns
|
934
|
+
-------
|
935
|
+
block : sparse array
|
936
|
+
|
937
|
+
See Also
|
938
|
+
--------
|
939
|
+
block_diag : specify blocks along the main diagonals
|
940
|
+
diags : specify (possibly offset) diagonals
|
941
|
+
|
942
|
+
Examples
|
943
|
+
--------
|
944
|
+
>>> from scipy.sparse import coo_array, block_array
|
945
|
+
>>> A = coo_array([[1, 2], [3, 4]])
|
946
|
+
>>> B = coo_array([[5], [6]])
|
947
|
+
>>> C = coo_array([[7]])
|
948
|
+
>>> block_array([[A, B], [None, C]]).toarray()
|
949
|
+
array([[1, 2, 5],
|
950
|
+
[3, 4, 6],
|
951
|
+
[0, 0, 7]])
|
952
|
+
|
953
|
+
>>> block_array([[A, None], [None, C]]).toarray()
|
954
|
+
array([[1, 2, 0],
|
955
|
+
[3, 4, 0],
|
956
|
+
[0, 0, 7]])
|
957
|
+
|
958
|
+
"""
|
959
|
+
return _block(blocks, format, dtype)
|
960
|
+
|
961
|
+
|
962
|
+
def _block(blocks, format, dtype, return_spmatrix=False):
|
963
|
+
blocks = np.asarray(blocks, dtype='object')
|
964
|
+
|
965
|
+
if blocks.ndim != 2:
|
966
|
+
raise ValueError('blocks must be 2-D')
|
967
|
+
|
968
|
+
M,N = blocks.shape
|
969
|
+
|
970
|
+
# check for fast path cases
|
971
|
+
if (format in (None, 'csr') and
|
972
|
+
all(issparse(b) and b.format == 'csr' for b in blocks.flat)
|
973
|
+
):
|
974
|
+
if N > 1:
|
975
|
+
# stack along columns (axis 1): must have shape (M, 1)
|
976
|
+
blocks = [[_stack_along_minor_axis(blocks[b, :], 1)] for b in range(M)]
|
977
|
+
blocks = np.asarray(blocks, dtype='object')
|
978
|
+
|
979
|
+
# stack along rows (axis 0):
|
980
|
+
A = _compressed_sparse_stack(blocks[:, 0], 0, return_spmatrix)
|
981
|
+
if dtype is not None:
|
982
|
+
A = A.astype(dtype, copy=False)
|
983
|
+
return A
|
984
|
+
elif (format in (None, 'csc') and
|
985
|
+
all(issparse(b) and b.format == 'csc' for b in blocks.flat)
|
986
|
+
):
|
987
|
+
if M > 1:
|
988
|
+
# stack along rows (axis 0): must have shape (1, N)
|
989
|
+
blocks = [[_stack_along_minor_axis(blocks[:, b], 0) for b in range(N)]]
|
990
|
+
blocks = np.asarray(blocks, dtype='object')
|
991
|
+
|
992
|
+
# stack along columns (axis 1):
|
993
|
+
A = _compressed_sparse_stack(blocks[0, :], 1, return_spmatrix)
|
994
|
+
if dtype is not None:
|
995
|
+
A = A.astype(dtype, copy=False)
|
996
|
+
return A
|
997
|
+
|
998
|
+
block_mask = np.zeros(blocks.shape, dtype=bool)
|
999
|
+
brow_lengths = np.zeros(M, dtype=np.int64)
|
1000
|
+
bcol_lengths = np.zeros(N, dtype=np.int64)
|
1001
|
+
|
1002
|
+
# convert everything to COO format
|
1003
|
+
for i in range(M):
|
1004
|
+
for j in range(N):
|
1005
|
+
if blocks[i,j] is not None:
|
1006
|
+
A = coo_array(blocks[i,j])
|
1007
|
+
blocks[i,j] = A
|
1008
|
+
block_mask[i,j] = True
|
1009
|
+
|
1010
|
+
if brow_lengths[i] == 0:
|
1011
|
+
brow_lengths[i] = A._shape_as_2d[0]
|
1012
|
+
elif brow_lengths[i] != A._shape_as_2d[0]:
|
1013
|
+
msg = (f'blocks[{i},:] has incompatible row dimensions. '
|
1014
|
+
f'Got blocks[{i},{j}].shape[0] == {A._shape_as_2d[0]}, '
|
1015
|
+
f'expected {brow_lengths[i]}.')
|
1016
|
+
raise ValueError(msg)
|
1017
|
+
|
1018
|
+
if bcol_lengths[j] == 0:
|
1019
|
+
bcol_lengths[j] = A._shape_as_2d[1]
|
1020
|
+
elif bcol_lengths[j] != A._shape_as_2d[1]:
|
1021
|
+
msg = (f'blocks[:,{j}] has incompatible column '
|
1022
|
+
f'dimensions. '
|
1023
|
+
f'Got blocks[{i},{j}].shape[1] == {A._shape_as_2d[1]}, '
|
1024
|
+
f'expected {bcol_lengths[j]}.')
|
1025
|
+
raise ValueError(msg)
|
1026
|
+
|
1027
|
+
nnz = sum(block.nnz for block in blocks[block_mask])
|
1028
|
+
if dtype is None:
|
1029
|
+
all_dtypes = [blk.dtype for blk in blocks[block_mask]]
|
1030
|
+
dtype = upcast(*all_dtypes) if all_dtypes else None
|
1031
|
+
|
1032
|
+
row_offsets = np.append(0, np.cumsum(brow_lengths))
|
1033
|
+
col_offsets = np.append(0, np.cumsum(bcol_lengths))
|
1034
|
+
|
1035
|
+
shape = (row_offsets[-1], col_offsets[-1])
|
1036
|
+
|
1037
|
+
data = np.empty(nnz, dtype=dtype)
|
1038
|
+
idx_dtype = get_index_dtype([b.coords[0] for b in blocks[block_mask]],
|
1039
|
+
maxval=max(shape))
|
1040
|
+
row = np.empty(nnz, dtype=idx_dtype)
|
1041
|
+
col = np.empty(nnz, dtype=idx_dtype)
|
1042
|
+
|
1043
|
+
nnz = 0
|
1044
|
+
ii, jj = np.nonzero(block_mask)
|
1045
|
+
for i, j in zip(ii, jj):
|
1046
|
+
B = blocks[i, j]
|
1047
|
+
idx = slice(nnz, nnz + B.nnz)
|
1048
|
+
data[idx] = B.data
|
1049
|
+
np.add(B.row, row_offsets[i], out=row[idx], dtype=idx_dtype)
|
1050
|
+
np.add(B.col, col_offsets[j], out=col[idx], dtype=idx_dtype)
|
1051
|
+
nnz += B.nnz
|
1052
|
+
|
1053
|
+
if return_spmatrix:
|
1054
|
+
return coo_matrix((data, (row, col)), shape=shape).asformat(format)
|
1055
|
+
return coo_array((data, (row, col)), shape=shape).asformat(format)
|
1056
|
+
|
1057
|
+
|
1058
|
+
def block_diag(mats, format=None, dtype=None):
|
1059
|
+
"""
|
1060
|
+
Build a block diagonal sparse matrix or array from provided matrices.
|
1061
|
+
|
1062
|
+
Parameters
|
1063
|
+
----------
|
1064
|
+
mats : sequence of matrices or arrays
|
1065
|
+
Input matrices or arrays.
|
1066
|
+
format : str, optional
|
1067
|
+
The sparse format of the result (e.g., "csr"). If not given, the result
|
1068
|
+
is returned in "coo" format.
|
1069
|
+
dtype : dtype specifier, optional
|
1070
|
+
The data-type of the output. If not given, the dtype is
|
1071
|
+
determined from that of `blocks`.
|
1072
|
+
|
1073
|
+
Returns
|
1074
|
+
-------
|
1075
|
+
res : sparse matrix or array
|
1076
|
+
If at least one input is a sparse array, the output is a sparse array.
|
1077
|
+
Otherwise the output is a sparse matrix.
|
1078
|
+
|
1079
|
+
Notes
|
1080
|
+
-----
|
1081
|
+
|
1082
|
+
.. versionadded:: 0.11.0
|
1083
|
+
|
1084
|
+
See Also
|
1085
|
+
--------
|
1086
|
+
block_array
|
1087
|
+
diags_array
|
1088
|
+
|
1089
|
+
Examples
|
1090
|
+
--------
|
1091
|
+
>>> from scipy.sparse import coo_array, block_diag
|
1092
|
+
>>> A = coo_array([[1, 2], [3, 4]])
|
1093
|
+
>>> B = coo_array([[5], [6]])
|
1094
|
+
>>> C = coo_array([[7]])
|
1095
|
+
>>> block_diag((A, B, C)).toarray()
|
1096
|
+
array([[1, 2, 0, 0],
|
1097
|
+
[3, 4, 0, 0],
|
1098
|
+
[0, 0, 5, 0],
|
1099
|
+
[0, 0, 6, 0],
|
1100
|
+
[0, 0, 0, 7]])
|
1101
|
+
|
1102
|
+
"""
|
1103
|
+
if any(isinstance(a, sparray) for a in mats):
|
1104
|
+
container = coo_array
|
1105
|
+
else:
|
1106
|
+
container = coo_matrix
|
1107
|
+
|
1108
|
+
row = []
|
1109
|
+
col = []
|
1110
|
+
data = []
|
1111
|
+
idx_arrays = [] # track idx_dtype of incoming sparse arrays
|
1112
|
+
r_idx = 0
|
1113
|
+
c_idx = 0
|
1114
|
+
for a in mats:
|
1115
|
+
if isinstance(a, (list | numbers.Number)):
|
1116
|
+
a = coo_array(np.atleast_2d(a))
|
1117
|
+
if issparse(a):
|
1118
|
+
a = a.tocoo()
|
1119
|
+
if not idx_arrays and a.coords[0].dtype == np.int64:
|
1120
|
+
idx_arrays.append(a.coords[0])
|
1121
|
+
nrows, ncols = a._shape_as_2d
|
1122
|
+
row.append(a.row + r_idx)
|
1123
|
+
col.append(a.col + c_idx)
|
1124
|
+
data.append(a.data)
|
1125
|
+
else:
|
1126
|
+
nrows, ncols = a.shape
|
1127
|
+
a_row, a_col = np.divmod(np.arange(nrows*ncols), ncols)
|
1128
|
+
row.append(a_row + r_idx)
|
1129
|
+
col.append(a_col + c_idx)
|
1130
|
+
data.append(a.ravel())
|
1131
|
+
r_idx += nrows
|
1132
|
+
c_idx += ncols
|
1133
|
+
idx_dtype = get_index_dtype(idx_arrays, maxval=max(r_idx, c_idx))
|
1134
|
+
row = np.concatenate(row, dtype=idx_dtype)
|
1135
|
+
col = np.concatenate(col, dtype=idx_dtype)
|
1136
|
+
data = np.concatenate(data)
|
1137
|
+
new_shape = (r_idx, c_idx)
|
1138
|
+
|
1139
|
+
return container((data, (row, col)), shape=new_shape, dtype=dtype).asformat(format)
|
1140
|
+
|
1141
|
+
|
1142
|
+
@_transition_to_rng("random_state")
|
1143
|
+
def random_array(shape, *, density=0.01, format='coo', dtype=None,
|
1144
|
+
rng=None, data_sampler=None):
|
1145
|
+
"""Return a sparse array of uniformly random numbers in [0, 1)
|
1146
|
+
|
1147
|
+
Returns a sparse array with the given shape and density
|
1148
|
+
where values are generated uniformly randomly in the range [0, 1).
|
1149
|
+
|
1150
|
+
Parameters
|
1151
|
+
----------
|
1152
|
+
shape : int or tuple of ints
|
1153
|
+
shape of the array
|
1154
|
+
density : real, optional (default: 0.01)
|
1155
|
+
density of the generated matrix: density equal to one means a full
|
1156
|
+
matrix, density of 0 means a matrix with no non-zero items.
|
1157
|
+
format : str, optional (default: 'coo')
|
1158
|
+
sparse matrix format.
|
1159
|
+
dtype : dtype, optional (default: np.float64)
|
1160
|
+
type of the returned matrix values.
|
1161
|
+
rng : `numpy.random.Generator`, optional
|
1162
|
+
Pseudorandom number generator state. When `rng` is None, a new
|
1163
|
+
`numpy.random.Generator` is created using entropy from the
|
1164
|
+
operating system. Types other than `numpy.random.Generator` are
|
1165
|
+
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
|
1166
|
+
|
1167
|
+
This random state will be used for sampling ``indices`` (the sparsity
|
1168
|
+
structure), and by default for the data values too (see `data_sampler`).
|
1169
|
+
data_sampler : callable, optional (default depends on dtype)
|
1170
|
+
Sampler of random data values with keyword arg ``size``.
|
1171
|
+
This function should take a single keyword argument ``size`` specifying
|
1172
|
+
the length of its returned ndarray. It is used to generate the nonzero
|
1173
|
+
values in the matrix after the locations of those values are chosen.
|
1174
|
+
By default, uniform [0, 1) random values are used unless `dtype` is
|
1175
|
+
an integer (default uniform integers from that dtype) or
|
1176
|
+
complex (default uniform over the unit square in the complex plane).
|
1177
|
+
For these, the `rng` is used e.g. ``rng.uniform(size=size)``.
|
1178
|
+
|
1179
|
+
Returns
|
1180
|
+
-------
|
1181
|
+
res : sparse array
|
1182
|
+
|
1183
|
+
Examples
|
1184
|
+
--------
|
1185
|
+
|
1186
|
+
Passing a ``np.random.Generator`` instance for better performance:
|
1187
|
+
|
1188
|
+
>>> import numpy as np
|
1189
|
+
>>> import scipy as sp
|
1190
|
+
>>> rng = np.random.default_rng()
|
1191
|
+
|
1192
|
+
Default sampling uniformly from [0, 1):
|
1193
|
+
|
1194
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25, rng=rng)
|
1195
|
+
|
1196
|
+
Providing a sampler for the values:
|
1197
|
+
|
1198
|
+
>>> rvs = sp.stats.poisson(25, loc=10).rvs
|
1199
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25,
|
1200
|
+
... rng=rng, data_sampler=rvs)
|
1201
|
+
>>> S.toarray()
|
1202
|
+
array([[ 36., 0., 33., 0.], # random
|
1203
|
+
[ 0., 0., 0., 0.],
|
1204
|
+
[ 0., 0., 36., 0.]])
|
1205
|
+
|
1206
|
+
Providing a sampler for uint values:
|
1207
|
+
|
1208
|
+
>>> def random_uint32_to_100(size=None):
|
1209
|
+
... return rng.integers(100, size=size, dtype=np.uint32)
|
1210
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25, rng=rng,
|
1211
|
+
... data_sampler=random_uint32_to_100)
|
1212
|
+
|
1213
|
+
Building a custom distribution.
|
1214
|
+
This example builds a squared normal from np.random:
|
1215
|
+
|
1216
|
+
>>> def np_normal_squared(size=None, rng=rng):
|
1217
|
+
... return rng.standard_normal(size) ** 2
|
1218
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25, rng=rng,
|
1219
|
+
... data_sampler=np_normal_squared)
|
1220
|
+
|
1221
|
+
Or we can build it from sp.stats style rvs functions:
|
1222
|
+
|
1223
|
+
>>> def sp_stats_normal_squared(size=None, rng=rng):
|
1224
|
+
... std_normal = sp.stats.distributions.norm_gen().rvs
|
1225
|
+
... return std_normal(size=size, random_state=rng) ** 2
|
1226
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25, rng=rng,
|
1227
|
+
... data_sampler=sp_stats_normal_squared)
|
1228
|
+
|
1229
|
+
Or we can subclass sp.stats rv_continuous or rv_discrete:
|
1230
|
+
|
1231
|
+
>>> class NormalSquared(sp.stats.rv_continuous):
|
1232
|
+
... def _rvs(self, size=None, random_state=rng):
|
1233
|
+
... return rng.standard_normal(size) ** 2
|
1234
|
+
>>> X = NormalSquared()
|
1235
|
+
>>> Y = X().rvs
|
1236
|
+
>>> S = sp.sparse.random_array((3, 4), density=0.25,
|
1237
|
+
... rng=rng, data_sampler=Y)
|
1238
|
+
"""
|
1239
|
+
data, ind = _random(shape, density, format, dtype, rng, data_sampler)
|
1240
|
+
|
1241
|
+
# downcast, if safe, before calling coo_constructor
|
1242
|
+
idx_dtype = get_index_dtype(maxval=max(shape))
|
1243
|
+
ind = tuple(np.asarray(co, dtype=idx_dtype) for co in ind)
|
1244
|
+
return coo_array((data, ind), shape=shape).asformat(format)
|
1245
|
+
|
1246
|
+
|
1247
|
+
def _random(shape, density=0.01, format=None, dtype=None,
|
1248
|
+
rng=None, data_sampler=None):
|
1249
|
+
if density < 0 or density > 1:
|
1250
|
+
raise ValueError("density expected to be 0 <= density <= 1")
|
1251
|
+
|
1252
|
+
tot_prod = math.prod(shape) # use `math` for when prod is >= 2**64
|
1253
|
+
|
1254
|
+
# Number of non zero values
|
1255
|
+
size = int(round(density * tot_prod))
|
1256
|
+
|
1257
|
+
rng = check_random_state(rng)
|
1258
|
+
|
1259
|
+
if data_sampler is None:
|
1260
|
+
if np.issubdtype(dtype, np.integer):
|
1261
|
+
def data_sampler(size):
|
1262
|
+
return rng_integers(rng,
|
1263
|
+
np.iinfo(dtype).min,
|
1264
|
+
np.iinfo(dtype).max,
|
1265
|
+
size,
|
1266
|
+
dtype=dtype)
|
1267
|
+
elif np.issubdtype(dtype, np.complexfloating):
|
1268
|
+
def data_sampler(size):
|
1269
|
+
return (rng.uniform(size=size) +
|
1270
|
+
rng.uniform(size=size) * 1j)
|
1271
|
+
else:
|
1272
|
+
data_sampler = rng.uniform
|
1273
|
+
|
1274
|
+
idx_dtype = get_index_dtype(maxval=max(shape))
|
1275
|
+
# rng.choice uses int64 if first arg is an int
|
1276
|
+
if tot_prod <= np.iinfo(np.int64).max:
|
1277
|
+
raveled_ind = rng.choice(tot_prod, size=size, replace=False)
|
1278
|
+
ind = np.unravel_index(raveled_ind, shape=shape, order='F')
|
1279
|
+
ind = tuple(np.asarray(co, idx_dtype) for co in ind)
|
1280
|
+
else:
|
1281
|
+
# for ravel indices bigger than dtype max, use sets to remove duplicates
|
1282
|
+
ndim = len(shape)
|
1283
|
+
seen = set()
|
1284
|
+
while len(seen) < size:
|
1285
|
+
dsize = size - len(seen)
|
1286
|
+
seen.update(map(tuple, rng_integers(rng, shape, size=(dsize, ndim))))
|
1287
|
+
ind = tuple(np.array(list(seen), dtype=idx_dtype).T)
|
1288
|
+
|
1289
|
+
# size kwarg allows eg data_sampler=partial(np.random.poisson, lam=5)
|
1290
|
+
vals = data_sampler(size=size).astype(dtype, copy=False)
|
1291
|
+
return vals, ind
|
1292
|
+
|
1293
|
+
|
1294
|
+
@_transition_to_rng("random_state", position_num=5)
|
1295
|
+
def random(m, n, density=0.01, format='coo', dtype=None,
|
1296
|
+
rng=None, data_rvs=None):
|
1297
|
+
"""Generate a sparse matrix of the given shape and density with randomly
|
1298
|
+
distributed values.
|
1299
|
+
|
1300
|
+
.. warning::
|
1301
|
+
|
1302
|
+
This function returns a sparse matrix -- not a sparse array.
|
1303
|
+
You are encouraged to use `random_array` to take advantage of the
|
1304
|
+
sparse array functionality.
|
1305
|
+
|
1306
|
+
Parameters
|
1307
|
+
----------
|
1308
|
+
m, n : int
|
1309
|
+
shape of the matrix
|
1310
|
+
density : real, optional
|
1311
|
+
density of the generated matrix: density equal to one means a full
|
1312
|
+
matrix, density of 0 means a matrix with no non-zero items.
|
1313
|
+
format : str, optional
|
1314
|
+
sparse matrix format.
|
1315
|
+
dtype : dtype, optional
|
1316
|
+
type of the returned matrix values.
|
1317
|
+
rng : `numpy.random.Generator`, optional
|
1318
|
+
Pseudorandom number generator state. When `rng` is None, a new
|
1319
|
+
`numpy.random.Generator` is created using entropy from the
|
1320
|
+
operating system. Types other than `numpy.random.Generator` are
|
1321
|
+
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
|
1322
|
+
|
1323
|
+
This random state will be used for sampling the sparsity structure, but
|
1324
|
+
not necessarily for sampling the values of the structurally nonzero
|
1325
|
+
entries of the matrix.
|
1326
|
+
data_rvs : callable, optional
|
1327
|
+
Samples a requested number of random values.
|
1328
|
+
This function should take a single argument specifying the length
|
1329
|
+
of the ndarray that it will return. The structurally nonzero entries
|
1330
|
+
of the sparse random matrix will be taken from the array sampled
|
1331
|
+
by this function. By default, uniform [0, 1) random values will be
|
1332
|
+
sampled using the same random state as is used for sampling
|
1333
|
+
the sparsity structure.
|
1334
|
+
|
1335
|
+
Returns
|
1336
|
+
-------
|
1337
|
+
res : sparse matrix
|
1338
|
+
|
1339
|
+
See Also
|
1340
|
+
--------
|
1341
|
+
random_array : constructs sparse arrays instead of sparse matrices
|
1342
|
+
|
1343
|
+
Examples
|
1344
|
+
--------
|
1345
|
+
|
1346
|
+
Passing a ``np.random.Generator`` instance for better performance:
|
1347
|
+
|
1348
|
+
>>> import scipy as sp
|
1349
|
+
>>> import numpy as np
|
1350
|
+
>>> rng = np.random.default_rng()
|
1351
|
+
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng)
|
1352
|
+
|
1353
|
+
Providing a sampler for the values:
|
1354
|
+
|
1355
|
+
>>> rvs = sp.stats.poisson(25, loc=10).rvs
|
1356
|
+
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng, data_rvs=rvs)
|
1357
|
+
>>> S.toarray()
|
1358
|
+
array([[ 36., 0., 33., 0.], # random
|
1359
|
+
[ 0., 0., 0., 0.],
|
1360
|
+
[ 0., 0., 36., 0.]])
|
1361
|
+
|
1362
|
+
Building a custom distribution.
|
1363
|
+
This example builds a squared normal from np.random:
|
1364
|
+
|
1365
|
+
>>> def np_normal_squared(size=None, rng=rng):
|
1366
|
+
... return rng.standard_normal(size) ** 2
|
1367
|
+
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng,
|
1368
|
+
... data_rvs=np_normal_squared)
|
1369
|
+
|
1370
|
+
Or we can build it from sp.stats style rvs functions:
|
1371
|
+
|
1372
|
+
>>> def sp_stats_normal_squared(size=None, rng=rng):
|
1373
|
+
... std_normal = sp.stats.distributions.norm_gen().rvs
|
1374
|
+
... return std_normal(size=size, random_state=rng) ** 2
|
1375
|
+
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng,
|
1376
|
+
... data_rvs=sp_stats_normal_squared)
|
1377
|
+
|
1378
|
+
Or we can subclass sp.stats rv_continuous or rv_discrete:
|
1379
|
+
|
1380
|
+
>>> class NormalSquared(sp.stats.rv_continuous):
|
1381
|
+
... def _rvs(self, size=None, random_state=rng):
|
1382
|
+
... return rng.standard_normal(size) ** 2
|
1383
|
+
>>> X = NormalSquared()
|
1384
|
+
>>> Y = X() # get a frozen version of the distribution
|
1385
|
+
>>> S = sp.sparse.random(3, 4, density=0.25, rng=rng, data_rvs=Y.rvs)
|
1386
|
+
"""
|
1387
|
+
if n is None:
|
1388
|
+
n = m
|
1389
|
+
m, n = int(m), int(n)
|
1390
|
+
# make keyword syntax work for data_rvs e.g. data_rvs(size=7)
|
1391
|
+
if data_rvs is not None:
|
1392
|
+
def data_rvs_kw(size):
|
1393
|
+
return data_rvs(size)
|
1394
|
+
else:
|
1395
|
+
data_rvs_kw = None
|
1396
|
+
vals, ind = _random((m, n), density, format, dtype, rng, data_rvs_kw)
|
1397
|
+
return coo_matrix((vals, ind), shape=(m, n)).asformat(format)
|
1398
|
+
|
1399
|
+
|
1400
|
+
@_transition_to_rng("random_state", position_num=5)
|
1401
|
+
def rand(m, n, density=0.01, format="coo", dtype=None, rng=None):
|
1402
|
+
"""Generate a sparse matrix of the given shape and density with uniformly
|
1403
|
+
distributed values.
|
1404
|
+
|
1405
|
+
.. warning::
|
1406
|
+
|
1407
|
+
This function returns a sparse matrix -- not a sparse array.
|
1408
|
+
You are encouraged to use `random_array` to take advantage
|
1409
|
+
of the sparse array functionality.
|
1410
|
+
|
1411
|
+
Parameters
|
1412
|
+
----------
|
1413
|
+
m, n : int
|
1414
|
+
shape of the matrix
|
1415
|
+
density : real, optional
|
1416
|
+
density of the generated matrix: density equal to one means a full
|
1417
|
+
matrix, density of 0 means a matrix with no non-zero items.
|
1418
|
+
format : str, optional
|
1419
|
+
sparse matrix format.
|
1420
|
+
dtype : dtype, optional
|
1421
|
+
type of the returned matrix values.
|
1422
|
+
rng : `numpy.random.Generator`, optional
|
1423
|
+
Pseudorandom number generator state. When `rng` is None, a new
|
1424
|
+
`numpy.random.Generator` is created using entropy from the
|
1425
|
+
operating system. Types other than `numpy.random.Generator` are
|
1426
|
+
passed to `numpy.random.default_rng` to instantiate a ``Generator``.
|
1427
|
+
|
1428
|
+
Returns
|
1429
|
+
-------
|
1430
|
+
res : sparse matrix
|
1431
|
+
|
1432
|
+
Notes
|
1433
|
+
-----
|
1434
|
+
Only float types are supported for now.
|
1435
|
+
|
1436
|
+
See Also
|
1437
|
+
--------
|
1438
|
+
random : Similar function allowing a custom random data sampler
|
1439
|
+
random_array : Similar to random() but returns a sparse array
|
1440
|
+
|
1441
|
+
Examples
|
1442
|
+
--------
|
1443
|
+
>>> from scipy.sparse import rand
|
1444
|
+
>>> matrix = rand(3, 4, density=0.25, format="csr", rng=42)
|
1445
|
+
>>> matrix
|
1446
|
+
<Compressed Sparse Row sparse matrix of dtype 'float64'
|
1447
|
+
with 3 stored elements and shape (3, 4)>
|
1448
|
+
>>> matrix.toarray()
|
1449
|
+
array([[0.05641158, 0. , 0. , 0.65088847], # random
|
1450
|
+
[0. , 0. , 0. , 0.14286682],
|
1451
|
+
[0. , 0. , 0. , 0. ]])
|
1452
|
+
|
1453
|
+
"""
|
1454
|
+
return random(m, n, density, format, dtype, rng)
|