scipy 1.16.2__cp313-cp313-win_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scipy/__config__.py +161 -0
- scipy/__init__.py +150 -0
- scipy/_cyutility.cp313-win_arm64.lib +0 -0
- scipy/_cyutility.cp313-win_arm64.pyd +0 -0
- scipy/_distributor_init.py +18 -0
- scipy/_lib/__init__.py +14 -0
- scipy/_lib/_array_api.py +931 -0
- scipy/_lib/_array_api_compat_vendor.py +9 -0
- scipy/_lib/_array_api_no_0d.py +103 -0
- scipy/_lib/_bunch.py +229 -0
- scipy/_lib/_ccallback.py +251 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.lib +0 -0
- scipy/_lib/_ccallback_c.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_disjoint_set.py +254 -0
- scipy/_lib/_docscrape.py +761 -0
- scipy/_lib/_elementwise_iterative_method.py +346 -0
- scipy/_lib/_fpumode.cp313-win_arm64.lib +0 -0
- scipy/_lib/_fpumode.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_gcutils.py +105 -0
- scipy/_lib/_pep440.py +487 -0
- scipy/_lib/_sparse.py +41 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_ccallback.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_call.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.lib +0 -0
- scipy/_lib/_test_deprecation_def.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_testutils.py +373 -0
- scipy/_lib/_threadsafety.py +58 -0
- scipy/_lib/_tmpdirs.py +86 -0
- scipy/_lib/_uarray/LICENSE +29 -0
- scipy/_lib/_uarray/__init__.py +116 -0
- scipy/_lib/_uarray/_backend.py +707 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.lib +0 -0
- scipy/_lib/_uarray/_uarray.cp313-win_arm64.pyd +0 -0
- scipy/_lib/_util.py +1283 -0
- scipy/_lib/array_api_compat/__init__.py +22 -0
- scipy/_lib/array_api_compat/_internal.py +59 -0
- scipy/_lib/array_api_compat/common/__init__.py +1 -0
- scipy/_lib/array_api_compat/common/_aliases.py +727 -0
- scipy/_lib/array_api_compat/common/_fft.py +213 -0
- scipy/_lib/array_api_compat/common/_helpers.py +1058 -0
- scipy/_lib/array_api_compat/common/_linalg.py +232 -0
- scipy/_lib/array_api_compat/common/_typing.py +192 -0
- scipy/_lib/array_api_compat/cupy/__init__.py +13 -0
- scipy/_lib/array_api_compat/cupy/_aliases.py +156 -0
- scipy/_lib/array_api_compat/cupy/_info.py +336 -0
- scipy/_lib/array_api_compat/cupy/_typing.py +31 -0
- scipy/_lib/array_api_compat/cupy/fft.py +36 -0
- scipy/_lib/array_api_compat/cupy/linalg.py +49 -0
- scipy/_lib/array_api_compat/dask/__init__.py +0 -0
- scipy/_lib/array_api_compat/dask/array/__init__.py +12 -0
- scipy/_lib/array_api_compat/dask/array/_aliases.py +376 -0
- scipy/_lib/array_api_compat/dask/array/_info.py +416 -0
- scipy/_lib/array_api_compat/dask/array/fft.py +21 -0
- scipy/_lib/array_api_compat/dask/array/linalg.py +72 -0
- scipy/_lib/array_api_compat/numpy/__init__.py +28 -0
- scipy/_lib/array_api_compat/numpy/_aliases.py +190 -0
- scipy/_lib/array_api_compat/numpy/_info.py +366 -0
- scipy/_lib/array_api_compat/numpy/_typing.py +30 -0
- scipy/_lib/array_api_compat/numpy/fft.py +35 -0
- scipy/_lib/array_api_compat/numpy/linalg.py +143 -0
- scipy/_lib/array_api_compat/torch/__init__.py +22 -0
- scipy/_lib/array_api_compat/torch/_aliases.py +855 -0
- scipy/_lib/array_api_compat/torch/_info.py +369 -0
- scipy/_lib/array_api_compat/torch/_typing.py +3 -0
- scipy/_lib/array_api_compat/torch/fft.py +85 -0
- scipy/_lib/array_api_compat/torch/linalg.py +121 -0
- scipy/_lib/array_api_extra/__init__.py +38 -0
- scipy/_lib/array_api_extra/_delegation.py +171 -0
- scipy/_lib/array_api_extra/_lib/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_at.py +463 -0
- scipy/_lib/array_api_extra/_lib/_backends.py +46 -0
- scipy/_lib/array_api_extra/_lib/_funcs.py +937 -0
- scipy/_lib/array_api_extra/_lib/_lazy.py +357 -0
- scipy/_lib/array_api_extra/_lib/_testing.py +278 -0
- scipy/_lib/array_api_extra/_lib/_utils/__init__.py +1 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.py +74 -0
- scipy/_lib/array_api_extra/_lib/_utils/_compat.pyi +45 -0
- scipy/_lib/array_api_extra/_lib/_utils/_helpers.py +559 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.py +10 -0
- scipy/_lib/array_api_extra/_lib/_utils/_typing.pyi +105 -0
- scipy/_lib/array_api_extra/testing.py +359 -0
- scipy/_lib/cobyqa/__init__.py +20 -0
- scipy/_lib/cobyqa/framework.py +1240 -0
- scipy/_lib/cobyqa/main.py +1506 -0
- scipy/_lib/cobyqa/models.py +1529 -0
- scipy/_lib/cobyqa/problem.py +1296 -0
- scipy/_lib/cobyqa/settings.py +132 -0
- scipy/_lib/cobyqa/subsolvers/__init__.py +14 -0
- scipy/_lib/cobyqa/subsolvers/geometry.py +387 -0
- scipy/_lib/cobyqa/subsolvers/optim.py +1203 -0
- scipy/_lib/cobyqa/utils/__init__.py +18 -0
- scipy/_lib/cobyqa/utils/exceptions.py +22 -0
- scipy/_lib/cobyqa/utils/math.py +77 -0
- scipy/_lib/cobyqa/utils/versions.py +67 -0
- scipy/_lib/decorator.py +399 -0
- scipy/_lib/deprecation.py +274 -0
- scipy/_lib/doccer.py +366 -0
- scipy/_lib/messagestream.cp313-win_arm64.lib +0 -0
- scipy/_lib/messagestream.cp313-win_arm64.pyd +0 -0
- scipy/_lib/pyprima/__init__.py +212 -0
- scipy/_lib/pyprima/cobyla/__init__.py +0 -0
- scipy/_lib/pyprima/cobyla/cobyla.py +559 -0
- scipy/_lib/pyprima/cobyla/cobylb.py +714 -0
- scipy/_lib/pyprima/cobyla/geometry.py +226 -0
- scipy/_lib/pyprima/cobyla/initialize.py +215 -0
- scipy/_lib/pyprima/cobyla/trustregion.py +492 -0
- scipy/_lib/pyprima/cobyla/update.py +289 -0
- scipy/_lib/pyprima/common/__init__.py +0 -0
- scipy/_lib/pyprima/common/_bounds.py +34 -0
- scipy/_lib/pyprima/common/_linear_constraints.py +46 -0
- scipy/_lib/pyprima/common/_nonlinear_constraints.py +54 -0
- scipy/_lib/pyprima/common/_project.py +173 -0
- scipy/_lib/pyprima/common/checkbreak.py +93 -0
- scipy/_lib/pyprima/common/consts.py +47 -0
- scipy/_lib/pyprima/common/evaluate.py +99 -0
- scipy/_lib/pyprima/common/history.py +38 -0
- scipy/_lib/pyprima/common/infos.py +30 -0
- scipy/_lib/pyprima/common/linalg.py +435 -0
- scipy/_lib/pyprima/common/message.py +290 -0
- scipy/_lib/pyprima/common/powalg.py +131 -0
- scipy/_lib/pyprima/common/preproc.py +277 -0
- scipy/_lib/pyprima/common/present.py +5 -0
- scipy/_lib/pyprima/common/ratio.py +54 -0
- scipy/_lib/pyprima/common/redrho.py +47 -0
- scipy/_lib/pyprima/common/selectx.py +296 -0
- scipy/_lib/tests/__init__.py +0 -0
- scipy/_lib/tests/test__gcutils.py +110 -0
- scipy/_lib/tests/test__pep440.py +67 -0
- scipy/_lib/tests/test__testutils.py +32 -0
- scipy/_lib/tests/test__threadsafety.py +51 -0
- scipy/_lib/tests/test__util.py +641 -0
- scipy/_lib/tests/test_array_api.py +322 -0
- scipy/_lib/tests/test_bunch.py +169 -0
- scipy/_lib/tests/test_ccallback.py +196 -0
- scipy/_lib/tests/test_config.py +45 -0
- scipy/_lib/tests/test_deprecation.py +10 -0
- scipy/_lib/tests/test_doccer.py +143 -0
- scipy/_lib/tests/test_import_cycles.py +18 -0
- scipy/_lib/tests/test_public_api.py +482 -0
- scipy/_lib/tests/test_scipy_version.py +28 -0
- scipy/_lib/tests/test_tmpdirs.py +48 -0
- scipy/_lib/tests/test_warnings.py +137 -0
- scipy/_lib/uarray.py +31 -0
- scipy/cluster/__init__.py +31 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.lib +0 -0
- scipy/cluster/_hierarchy.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.lib +0 -0
- scipy/cluster/_optimal_leaf_ordering.cp313-win_arm64.pyd +0 -0
- scipy/cluster/_vq.cp313-win_arm64.lib +0 -0
- scipy/cluster/_vq.cp313-win_arm64.pyd +0 -0
- scipy/cluster/hierarchy.py +4348 -0
- scipy/cluster/tests/__init__.py +0 -0
- scipy/cluster/tests/hierarchy_test_data.py +145 -0
- scipy/cluster/tests/test_disjoint_set.py +202 -0
- scipy/cluster/tests/test_hierarchy.py +1238 -0
- scipy/cluster/tests/test_vq.py +434 -0
- scipy/cluster/vq.py +832 -0
- scipy/conftest.py +683 -0
- scipy/constants/__init__.py +358 -0
- scipy/constants/_codata.py +2266 -0
- scipy/constants/_constants.py +369 -0
- scipy/constants/codata.py +21 -0
- scipy/constants/constants.py +53 -0
- scipy/constants/tests/__init__.py +0 -0
- scipy/constants/tests/test_codata.py +78 -0
- scipy/constants/tests/test_constants.py +83 -0
- scipy/datasets/__init__.py +90 -0
- scipy/datasets/_download_all.py +71 -0
- scipy/datasets/_fetchers.py +225 -0
- scipy/datasets/_registry.py +26 -0
- scipy/datasets/_utils.py +81 -0
- scipy/datasets/tests/__init__.py +0 -0
- scipy/datasets/tests/test_data.py +128 -0
- scipy/differentiate/__init__.py +27 -0
- scipy/differentiate/_differentiate.py +1129 -0
- scipy/differentiate/tests/__init__.py +0 -0
- scipy/differentiate/tests/test_differentiate.py +694 -0
- scipy/fft/__init__.py +114 -0
- scipy/fft/_backend.py +196 -0
- scipy/fft/_basic.py +1650 -0
- scipy/fft/_basic_backend.py +197 -0
- scipy/fft/_debug_backends.py +22 -0
- scipy/fft/_fftlog.py +223 -0
- scipy/fft/_fftlog_backend.py +200 -0
- scipy/fft/_helper.py +348 -0
- scipy/fft/_pocketfft/LICENSE.md +25 -0
- scipy/fft/_pocketfft/__init__.py +9 -0
- scipy/fft/_pocketfft/basic.py +251 -0
- scipy/fft/_pocketfft/helper.py +249 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.lib +0 -0
- scipy/fft/_pocketfft/pypocketfft.cp313-win_arm64.pyd +0 -0
- scipy/fft/_pocketfft/realtransforms.py +109 -0
- scipy/fft/_pocketfft/tests/__init__.py +0 -0
- scipy/fft/_pocketfft/tests/test_basic.py +1011 -0
- scipy/fft/_pocketfft/tests/test_real_transforms.py +505 -0
- scipy/fft/_realtransforms.py +706 -0
- scipy/fft/_realtransforms_backend.py +63 -0
- scipy/fft/tests/__init__.py +0 -0
- scipy/fft/tests/mock_backend.py +96 -0
- scipy/fft/tests/test_backend.py +98 -0
- scipy/fft/tests/test_basic.py +504 -0
- scipy/fft/tests/test_fftlog.py +215 -0
- scipy/fft/tests/test_helper.py +558 -0
- scipy/fft/tests/test_multithreading.py +84 -0
- scipy/fft/tests/test_real_transforms.py +247 -0
- scipy/fftpack/__init__.py +103 -0
- scipy/fftpack/_basic.py +428 -0
- scipy/fftpack/_helper.py +115 -0
- scipy/fftpack/_pseudo_diffs.py +554 -0
- scipy/fftpack/_realtransforms.py +598 -0
- scipy/fftpack/basic.py +20 -0
- scipy/fftpack/convolve.cp313-win_arm64.lib +0 -0
- scipy/fftpack/convolve.cp313-win_arm64.pyd +0 -0
- scipy/fftpack/helper.py +19 -0
- scipy/fftpack/pseudo_diffs.py +22 -0
- scipy/fftpack/realtransforms.py +19 -0
- scipy/fftpack/tests/__init__.py +0 -0
- scipy/fftpack/tests/fftw_double_ref.npz +0 -0
- scipy/fftpack/tests/fftw_longdouble_ref.npz +0 -0
- scipy/fftpack/tests/fftw_single_ref.npz +0 -0
- scipy/fftpack/tests/test.npz +0 -0
- scipy/fftpack/tests/test_basic.py +877 -0
- scipy/fftpack/tests/test_helper.py +54 -0
- scipy/fftpack/tests/test_import.py +33 -0
- scipy/fftpack/tests/test_pseudo_diffs.py +388 -0
- scipy/fftpack/tests/test_real_transforms.py +836 -0
- scipy/integrate/__init__.py +122 -0
- scipy/integrate/_bvp.py +1160 -0
- scipy/integrate/_cubature.py +729 -0
- scipy/integrate/_dop.cp313-win_arm64.lib +0 -0
- scipy/integrate/_dop.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ivp/__init__.py +8 -0
- scipy/integrate/_ivp/base.py +290 -0
- scipy/integrate/_ivp/bdf.py +478 -0
- scipy/integrate/_ivp/common.py +451 -0
- scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- scipy/integrate/_ivp/ivp.py +755 -0
- scipy/integrate/_ivp/lsoda.py +224 -0
- scipy/integrate/_ivp/radau.py +572 -0
- scipy/integrate/_ivp/rk.py +601 -0
- scipy/integrate/_ivp/tests/__init__.py +0 -0
- scipy/integrate/_ivp/tests/test_ivp.py +1287 -0
- scipy/integrate/_ivp/tests/test_rk.py +37 -0
- scipy/integrate/_lebedev.py +5450 -0
- scipy/integrate/_lsoda.cp313-win_arm64.lib +0 -0
- scipy/integrate/_lsoda.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_ode.py +1395 -0
- scipy/integrate/_odepack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_odepack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_odepack_py.py +273 -0
- scipy/integrate/_quad_vec.py +674 -0
- scipy/integrate/_quadpack.cp313-win_arm64.lib +0 -0
- scipy/integrate/_quadpack.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_quadpack_py.py +1283 -0
- scipy/integrate/_quadrature.py +1336 -0
- scipy/integrate/_rules/__init__.py +12 -0
- scipy/integrate/_rules/_base.py +518 -0
- scipy/integrate/_rules/_gauss_kronrod.py +202 -0
- scipy/integrate/_rules/_gauss_legendre.py +62 -0
- scipy/integrate/_rules/_genz_malik.py +210 -0
- scipy/integrate/_tanhsinh.py +1385 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_multivariate.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.lib +0 -0
- scipy/integrate/_test_odeint_banded.cp313-win_arm64.pyd +0 -0
- scipy/integrate/_vode.cp313-win_arm64.lib +0 -0
- scipy/integrate/_vode.cp313-win_arm64.pyd +0 -0
- scipy/integrate/dop.py +15 -0
- scipy/integrate/lsoda.py +15 -0
- scipy/integrate/odepack.py +17 -0
- scipy/integrate/quadpack.py +23 -0
- scipy/integrate/tests/__init__.py +0 -0
- scipy/integrate/tests/test__quad_vec.py +211 -0
- scipy/integrate/tests/test_banded_ode_solvers.py +305 -0
- scipy/integrate/tests/test_bvp.py +714 -0
- scipy/integrate/tests/test_cubature.py +1375 -0
- scipy/integrate/tests/test_integrate.py +840 -0
- scipy/integrate/tests/test_odeint_jac.py +74 -0
- scipy/integrate/tests/test_quadpack.py +680 -0
- scipy/integrate/tests/test_quadrature.py +730 -0
- scipy/integrate/tests/test_tanhsinh.py +1171 -0
- scipy/integrate/vode.py +15 -0
- scipy/interpolate/__init__.py +228 -0
- scipy/interpolate/_bary_rational.py +715 -0
- scipy/interpolate/_bsplines.py +2469 -0
- scipy/interpolate/_cubic.py +973 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dfitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_dierckx.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_fitpack.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_fitpack2.py +2397 -0
- scipy/interpolate/_fitpack_impl.py +811 -0
- scipy/interpolate/_fitpack_py.py +898 -0
- scipy/interpolate/_fitpack_repro.py +996 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_interpnd.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_interpolate.py +2266 -0
- scipy/interpolate/_ndbspline.py +415 -0
- scipy/interpolate/_ndgriddata.py +329 -0
- scipy/interpolate/_pade.py +67 -0
- scipy/interpolate/_polyint.py +1025 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_ppoly.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rbf.py +290 -0
- scipy/interpolate/_rbfinterp.py +550 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rbfinterp_pythran.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/_rgi.py +764 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.lib +0 -0
- scipy/interpolate/_rgi_cython.cp313-win_arm64.pyd +0 -0
- scipy/interpolate/dfitpack.py +24 -0
- scipy/interpolate/fitpack.py +31 -0
- scipy/interpolate/fitpack2.py +29 -0
- scipy/interpolate/interpnd.py +24 -0
- scipy/interpolate/interpolate.py +30 -0
- scipy/interpolate/ndgriddata.py +23 -0
- scipy/interpolate/polyint.py +24 -0
- scipy/interpolate/rbf.py +18 -0
- scipy/interpolate/tests/__init__.py +0 -0
- scipy/interpolate/tests/data/bug-1310.npz +0 -0
- scipy/interpolate/tests/data/estimate_gradients_hang.npy +0 -0
- scipy/interpolate/tests/data/gcvspl.npz +0 -0
- scipy/interpolate/tests/test_bary_rational.py +368 -0
- scipy/interpolate/tests/test_bsplines.py +3754 -0
- scipy/interpolate/tests/test_fitpack.py +519 -0
- scipy/interpolate/tests/test_fitpack2.py +1431 -0
- scipy/interpolate/tests/test_gil.py +64 -0
- scipy/interpolate/tests/test_interpnd.py +452 -0
- scipy/interpolate/tests/test_interpolate.py +2630 -0
- scipy/interpolate/tests/test_ndgriddata.py +308 -0
- scipy/interpolate/tests/test_pade.py +107 -0
- scipy/interpolate/tests/test_polyint.py +972 -0
- scipy/interpolate/tests/test_rbf.py +246 -0
- scipy/interpolate/tests/test_rbfinterp.py +534 -0
- scipy/interpolate/tests/test_rgi.py +1151 -0
- scipy/io/__init__.py +116 -0
- scipy/io/_fast_matrix_market/__init__.py +600 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.lib +0 -0
- scipy/io/_fast_matrix_market/_fmm_core.cp313-win_arm64.pyd +0 -0
- scipy/io/_fortran.py +354 -0
- scipy/io/_harwell_boeing/__init__.py +7 -0
- scipy/io/_harwell_boeing/_fortran_format_parser.py +316 -0
- scipy/io/_harwell_boeing/hb.py +571 -0
- scipy/io/_harwell_boeing/tests/__init__.py +0 -0
- scipy/io/_harwell_boeing/tests/test_fortran_format.py +74 -0
- scipy/io/_harwell_boeing/tests/test_hb.py +70 -0
- scipy/io/_idl.py +917 -0
- scipy/io/_mmio.py +968 -0
- scipy/io/_netcdf.py +1104 -0
- scipy/io/_test_fortran.cp313-win_arm64.lib +0 -0
- scipy/io/_test_fortran.cp313-win_arm64.pyd +0 -0
- scipy/io/arff/__init__.py +28 -0
- scipy/io/arff/_arffread.py +873 -0
- scipy/io/arff/arffread.py +19 -0
- scipy/io/arff/tests/__init__.py +0 -0
- scipy/io/arff/tests/data/iris.arff +225 -0
- scipy/io/arff/tests/data/missing.arff +8 -0
- scipy/io/arff/tests/data/nodata.arff +11 -0
- scipy/io/arff/tests/data/quoted_nominal.arff +13 -0
- scipy/io/arff/tests/data/quoted_nominal_spaces.arff +13 -0
- scipy/io/arff/tests/data/test1.arff +10 -0
- scipy/io/arff/tests/data/test10.arff +8 -0
- scipy/io/arff/tests/data/test11.arff +11 -0
- scipy/io/arff/tests/data/test2.arff +15 -0
- scipy/io/arff/tests/data/test3.arff +6 -0
- scipy/io/arff/tests/data/test4.arff +11 -0
- scipy/io/arff/tests/data/test5.arff +26 -0
- scipy/io/arff/tests/data/test6.arff +12 -0
- scipy/io/arff/tests/data/test7.arff +15 -0
- scipy/io/arff/tests/data/test8.arff +12 -0
- scipy/io/arff/tests/data/test9.arff +14 -0
- scipy/io/arff/tests/test_arffread.py +421 -0
- scipy/io/harwell_boeing.py +17 -0
- scipy/io/idl.py +17 -0
- scipy/io/matlab/__init__.py +66 -0
- scipy/io/matlab/_byteordercodes.py +75 -0
- scipy/io/matlab/_mio.py +375 -0
- scipy/io/matlab/_mio4.py +632 -0
- scipy/io/matlab/_mio5.py +901 -0
- scipy/io/matlab/_mio5_params.py +281 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio5_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_mio_utils.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/_miobase.py +435 -0
- scipy/io/matlab/_streams.cp313-win_arm64.lib +0 -0
- scipy/io/matlab/_streams.cp313-win_arm64.pyd +0 -0
- scipy/io/matlab/byteordercodes.py +17 -0
- scipy/io/matlab/mio.py +16 -0
- scipy/io/matlab/mio4.py +17 -0
- scipy/io/matlab/mio5.py +19 -0
- scipy/io/matlab/mio5_params.py +18 -0
- scipy/io/matlab/mio5_utils.py +17 -0
- scipy/io/matlab/mio_utils.py +17 -0
- scipy/io/matlab/miobase.py +16 -0
- scipy/io/matlab/streams.py +16 -0
- scipy/io/matlab/tests/__init__.py +0 -0
- scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
- scipy/io/matlab/tests/data/bad_miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/big_endian.mat +0 -0
- scipy/io/matlab/tests/data/broken_utf8.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_checksum.mat +0 -0
- scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
- scipy/io/matlab/tests/data/debigged_m4.mat +0 -0
- scipy/io/matlab/tests/data/japanese_utf8.txt +5 -0
- scipy/io/matlab/tests/data/little_endian.mat +0 -0
- scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
- scipy/io/matlab/tests/data/malformed1.mat +0 -0
- scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
- scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
- scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
- scipy/io/matlab/tests/data/one_by_zero_char.mat +0 -0
- scipy/io/matlab/tests/data/parabola.mat +0 -0
- scipy/io/matlab/tests/data/single_empty_string.mat +0 -0
- scipy/io/matlab/tests/data/some_functions.mat +0 -0
- scipy/io/matlab/tests/data/sqr.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/test_empty_struct.mat +0 -0
- scipy/io/matlab/tests/data/test_mat4_le_floats.mat +0 -0
- scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
- scipy/io/matlab/tests/data/testbool_8_WIN64.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcellnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testcomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testdouble_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_5.3_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testemptycell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testfunc_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testhdf5_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmatrix_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testminus_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testminus_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testmulti_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testobject_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testobject_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testonechar_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testscalarcell_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsimplecell.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparse_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsecomplex_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testsparsefloat_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststring_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststring_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_4.2c_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststringarray_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststruct_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructarr_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.1_SOL2.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_6.5.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/teststructnest_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.1_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testunicode_7.4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/data/testvec_4_GLNX86.mat +0 -0
- scipy/io/matlab/tests/test_byteordercodes.py +29 -0
- scipy/io/matlab/tests/test_mio.py +1399 -0
- scipy/io/matlab/tests/test_mio5_utils.py +179 -0
- scipy/io/matlab/tests/test_mio_funcs.py +51 -0
- scipy/io/matlab/tests/test_mio_utils.py +45 -0
- scipy/io/matlab/tests/test_miobase.py +32 -0
- scipy/io/matlab/tests/test_pathological.py +33 -0
- scipy/io/matlab/tests/test_streams.py +241 -0
- scipy/io/mmio.py +17 -0
- scipy/io/netcdf.py +17 -0
- scipy/io/tests/__init__.py +0 -0
- scipy/io/tests/data/Transparent Busy.ani +0 -0
- scipy/io/tests/data/array_float32_1d.sav +0 -0
- scipy/io/tests/data/array_float32_2d.sav +0 -0
- scipy/io/tests/data/array_float32_3d.sav +0 -0
- scipy/io/tests/data/array_float32_4d.sav +0 -0
- scipy/io/tests/data/array_float32_5d.sav +0 -0
- scipy/io/tests/data/array_float32_6d.sav +0 -0
- scipy/io/tests/data/array_float32_7d.sav +0 -0
- scipy/io/tests/data/array_float32_8d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_1d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_2d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_3d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_4d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_5d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_6d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_7d.sav +0 -0
- scipy/io/tests/data/array_float32_pointer_8d.sav +0 -0
- scipy/io/tests/data/example_1.nc +0 -0
- scipy/io/tests/data/example_2.nc +0 -0
- scipy/io/tests/data/example_3_maskedvals.nc +0 -0
- scipy/io/tests/data/fortran-3x3d-2i.dat +0 -0
- scipy/io/tests/data/fortran-mixed.dat +0 -0
- scipy/io/tests/data/fortran-sf8-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-sf8-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-sf8-1x3x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-11x1x10.dat +0 -0
- scipy/io/tests/data/fortran-si4-15x10x22.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x1.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x5.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x1x7.dat +0 -0
- scipy/io/tests/data/fortran-si4-1x3x5.dat +0 -0
- scipy/io/tests/data/invalid_pointer.sav +0 -0
- scipy/io/tests/data/null_pointer.sav +0 -0
- scipy/io/tests/data/scalar_byte.sav +0 -0
- scipy/io/tests/data/scalar_byte_descr.sav +0 -0
- scipy/io/tests/data/scalar_complex32.sav +0 -0
- scipy/io/tests/data/scalar_complex64.sav +0 -0
- scipy/io/tests/data/scalar_float32.sav +0 -0
- scipy/io/tests/data/scalar_float64.sav +0 -0
- scipy/io/tests/data/scalar_heap_pointer.sav +0 -0
- scipy/io/tests/data/scalar_int16.sav +0 -0
- scipy/io/tests/data/scalar_int32.sav +0 -0
- scipy/io/tests/data/scalar_int64.sav +0 -0
- scipy/io/tests/data/scalar_string.sav +0 -0
- scipy/io/tests/data/scalar_uint16.sav +0 -0
- scipy/io/tests/data/scalar_uint32.sav +0 -0
- scipy/io/tests/data/scalar_uint64.sav +0 -0
- scipy/io/tests/data/struct_arrays.sav +0 -0
- scipy/io/tests/data/struct_arrays_byte_idl80.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_inherit.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointer_arrays_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_pointers.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated.sav +0 -0
- scipy/io/tests/data/struct_pointers_replicated_3d.sav +0 -0
- scipy/io/tests/data/struct_scalars.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated.sav +0 -0
- scipy/io/tests/data/struct_scalars_replicated_3d.sav +0 -0
- scipy/io/tests/data/test-1234Hz-le-1ch-10S-20bit-extra.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-be.wav +0 -0
- scipy/io/tests/data/test-44100Hz-2ch-32bit-float-le.wav +0 -0
- scipy/io/tests/data/test-44100Hz-be-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof-no-data.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-early-eof.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-incomplete-chunk.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes-rf64.wav +0 -0
- scipy/io/tests/data/test-44100Hz-le-1ch-4bytes.wav +0 -0
- scipy/io/tests/data/test-48000Hz-2ch-64bit-float-le-wavex.wav +0 -0
- scipy/io/tests/data/test-8000Hz-be-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-1ch-1byte-ulaw.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-2ch-1byteu.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-inconsistent.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit-rf64.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-24bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-36bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-45bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-53bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-3ch-5S-64bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-4ch-9S-12bit.wav +0 -0
- scipy/io/tests/data/test-8000Hz-le-5ch-9S-5bit.wav +0 -0
- scipy/io/tests/data/various_compressed.sav +0 -0
- scipy/io/tests/test_fortran.py +264 -0
- scipy/io/tests/test_idl.py +483 -0
- scipy/io/tests/test_mmio.py +831 -0
- scipy/io/tests/test_netcdf.py +550 -0
- scipy/io/tests/test_paths.py +93 -0
- scipy/io/tests/test_wavfile.py +501 -0
- scipy/io/wavfile.py +938 -0
- scipy/linalg/__init__.pxd +1 -0
- scipy/linalg/__init__.py +236 -0
- scipy/linalg/_basic.py +2146 -0
- scipy/linalg/_blas_subroutines.h +164 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.lib +0 -0
- scipy/linalg/_cythonized_array_utils.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_cythonized_array_utils.pxd +40 -0
- scipy/linalg/_cythonized_array_utils.pyi +16 -0
- scipy/linalg/_decomp.py +1645 -0
- scipy/linalg/_decomp_cholesky.py +413 -0
- scipy/linalg/_decomp_cossin.py +236 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_interpolative.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_ldl.py +356 -0
- scipy/linalg/_decomp_lu.py +401 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_lu_cython.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_decomp_lu_cython.pyi +6 -0
- scipy/linalg/_decomp_polar.py +113 -0
- scipy/linalg/_decomp_qr.py +494 -0
- scipy/linalg/_decomp_qz.py +452 -0
- scipy/linalg/_decomp_schur.py +336 -0
- scipy/linalg/_decomp_svd.py +545 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.lib +0 -0
- scipy/linalg/_decomp_update.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_expm_frechet.py +417 -0
- scipy/linalg/_fblas.cp313-win_arm64.lib +0 -0
- scipy/linalg/_fblas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/_flapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_lapack_subroutines.h +1521 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.lib +0 -0
- scipy/linalg/_linalg_pythran.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs.py +1050 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_expm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_expm.pyi +6 -0
- scipy/linalg/_matfuncs_inv_ssq.py +886 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_schur_sqrtm.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_matfuncs_sqrtm.py +107 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.lib +0 -0
- scipy/linalg/_matfuncs_sqrtm_triu.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_misc.py +191 -0
- scipy/linalg/_procrustes.py +113 -0
- scipy/linalg/_sketches.py +189 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.lib +0 -0
- scipy/linalg/_solve_toeplitz.cp313-win_arm64.pyd +0 -0
- scipy/linalg/_solvers.py +862 -0
- scipy/linalg/_special_matrices.py +1322 -0
- scipy/linalg/_testutils.py +65 -0
- scipy/linalg/basic.py +23 -0
- scipy/linalg/blas.py +495 -0
- scipy/linalg/cython_blas.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_blas.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_blas.pxd +169 -0
- scipy/linalg/cython_blas.pyx +1432 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.lib +0 -0
- scipy/linalg/cython_lapack.cp313-win_arm64.pyd +0 -0
- scipy/linalg/cython_lapack.pxd +1528 -0
- scipy/linalg/cython_lapack.pyx +12045 -0
- scipy/linalg/decomp.py +23 -0
- scipy/linalg/decomp_cholesky.py +21 -0
- scipy/linalg/decomp_lu.py +21 -0
- scipy/linalg/decomp_qr.py +20 -0
- scipy/linalg/decomp_schur.py +21 -0
- scipy/linalg/decomp_svd.py +21 -0
- scipy/linalg/interpolative.py +989 -0
- scipy/linalg/lapack.py +1081 -0
- scipy/linalg/matfuncs.py +23 -0
- scipy/linalg/misc.py +21 -0
- scipy/linalg/special_matrices.py +22 -0
- scipy/linalg/tests/__init__.py +0 -0
- scipy/linalg/tests/_cython_examples/extending.pyx +23 -0
- scipy/linalg/tests/_cython_examples/meson.build +34 -0
- scipy/linalg/tests/data/carex_15_data.npz +0 -0
- scipy/linalg/tests/data/carex_18_data.npz +0 -0
- scipy/linalg/tests/data/carex_19_data.npz +0 -0
- scipy/linalg/tests/data/carex_20_data.npz +0 -0
- scipy/linalg/tests/data/carex_6_data.npz +0 -0
- scipy/linalg/tests/data/gendare_20170120_data.npz +0 -0
- scipy/linalg/tests/test_basic.py +2074 -0
- scipy/linalg/tests/test_batch.py +588 -0
- scipy/linalg/tests/test_blas.py +1127 -0
- scipy/linalg/tests/test_cython_blas.py +118 -0
- scipy/linalg/tests/test_cython_lapack.py +22 -0
- scipy/linalg/tests/test_cythonized_array_utils.py +130 -0
- scipy/linalg/tests/test_decomp.py +3189 -0
- scipy/linalg/tests/test_decomp_cholesky.py +268 -0
- scipy/linalg/tests/test_decomp_cossin.py +314 -0
- scipy/linalg/tests/test_decomp_ldl.py +137 -0
- scipy/linalg/tests/test_decomp_lu.py +308 -0
- scipy/linalg/tests/test_decomp_polar.py +110 -0
- scipy/linalg/tests/test_decomp_update.py +1701 -0
- scipy/linalg/tests/test_extending.py +46 -0
- scipy/linalg/tests/test_fblas.py +607 -0
- scipy/linalg/tests/test_interpolative.py +232 -0
- scipy/linalg/tests/test_lapack.py +3620 -0
- scipy/linalg/tests/test_matfuncs.py +1125 -0
- scipy/linalg/tests/test_matmul_toeplitz.py +136 -0
- scipy/linalg/tests/test_procrustes.py +214 -0
- scipy/linalg/tests/test_sketches.py +118 -0
- scipy/linalg/tests/test_solve_toeplitz.py +150 -0
- scipy/linalg/tests/test_solvers.py +844 -0
- scipy/linalg/tests/test_special_matrices.py +636 -0
- scipy/misc/__init__.py +6 -0
- scipy/misc/common.py +6 -0
- scipy/misc/doccer.py +6 -0
- scipy/ndimage/__init__.py +174 -0
- scipy/ndimage/_ctest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ctest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_cytest.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_delegators.py +303 -0
- scipy/ndimage/_filters.py +2422 -0
- scipy/ndimage/_fourier.py +306 -0
- scipy/ndimage/_interpolation.py +1033 -0
- scipy/ndimage/_measurements.py +1689 -0
- scipy/ndimage/_morphology.py +2634 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_nd_image.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ndimage_api.py +16 -0
- scipy/ndimage/_ni_docstrings.py +214 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_ni_label.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_ni_support.py +139 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.lib +0 -0
- scipy/ndimage/_rank_filter_1d.cp313-win_arm64.pyd +0 -0
- scipy/ndimage/_support_alternative_backends.py +84 -0
- scipy/ndimage/filters.py +27 -0
- scipy/ndimage/fourier.py +21 -0
- scipy/ndimage/interpolation.py +22 -0
- scipy/ndimage/measurements.py +24 -0
- scipy/ndimage/morphology.py +27 -0
- scipy/ndimage/tests/__init__.py +12 -0
- scipy/ndimage/tests/data/label_inputs.txt +21 -0
- scipy/ndimage/tests/data/label_results.txt +294 -0
- scipy/ndimage/tests/data/label_strels.txt +42 -0
- scipy/ndimage/tests/dots.png +0 -0
- scipy/ndimage/tests/test_c_api.py +102 -0
- scipy/ndimage/tests/test_datatypes.py +67 -0
- scipy/ndimage/tests/test_filters.py +3083 -0
- scipy/ndimage/tests/test_fourier.py +187 -0
- scipy/ndimage/tests/test_interpolation.py +1491 -0
- scipy/ndimage/tests/test_measurements.py +1592 -0
- scipy/ndimage/tests/test_morphology.py +2950 -0
- scipy/ndimage/tests/test_ni_support.py +78 -0
- scipy/ndimage/tests/test_splines.py +70 -0
- scipy/odr/__init__.py +131 -0
- scipy/odr/__odrpack.cp313-win_arm64.lib +0 -0
- scipy/odr/__odrpack.cp313-win_arm64.pyd +0 -0
- scipy/odr/_add_newdocs.py +34 -0
- scipy/odr/_models.py +315 -0
- scipy/odr/_odrpack.py +1154 -0
- scipy/odr/models.py +20 -0
- scipy/odr/odrpack.py +21 -0
- scipy/odr/tests/__init__.py +0 -0
- scipy/odr/tests/test_odr.py +607 -0
- scipy/optimize/__init__.pxd +1 -0
- scipy/optimize/__init__.py +460 -0
- scipy/optimize/_basinhopping.py +741 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.lib +0 -0
- scipy/optimize/_bglu_dense.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_bracket.py +706 -0
- scipy/optimize/_chandrupatla.py +551 -0
- scipy/optimize/_cobyla_py.py +297 -0
- scipy/optimize/_cobyqa_py.py +72 -0
- scipy/optimize/_constraints.py +598 -0
- scipy/optimize/_dcsrch.py +728 -0
- scipy/optimize/_differentiable_functions.py +835 -0
- scipy/optimize/_differentialevolution.py +1970 -0
- scipy/optimize/_direct.cp313-win_arm64.lib +0 -0
- scipy/optimize/_direct.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_direct_py.py +280 -0
- scipy/optimize/_dual_annealing.py +732 -0
- scipy/optimize/_elementwise.py +798 -0
- scipy/optimize/_group_columns.cp313-win_arm64.lib +0 -0
- scipy/optimize/_group_columns.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_hessian_update_strategy.py +479 -0
- scipy/optimize/_highspy/__init__.py +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_core.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.lib +0 -0
- scipy/optimize/_highspy/_highs_options.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_highspy/_highs_wrapper.py +338 -0
- scipy/optimize/_isotonic.py +157 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lbfgsb.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lbfgsb_py.py +634 -0
- scipy/optimize/_linesearch.py +896 -0
- scipy/optimize/_linprog.py +733 -0
- scipy/optimize/_linprog_doc.py +1434 -0
- scipy/optimize/_linprog_highs.py +422 -0
- scipy/optimize/_linprog_ip.py +1141 -0
- scipy/optimize/_linprog_rs.py +572 -0
- scipy/optimize/_linprog_simplex.py +663 -0
- scipy/optimize/_linprog_util.py +1521 -0
- scipy/optimize/_lsap.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsap.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/__init__.py +5 -0
- scipy/optimize/_lsq/bvls.py +183 -0
- scipy/optimize/_lsq/common.py +731 -0
- scipy/optimize/_lsq/dogbox.py +345 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.lib +0 -0
- scipy/optimize/_lsq/givens_elimination.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_lsq/least_squares.py +1044 -0
- scipy/optimize/_lsq/lsq_linear.py +361 -0
- scipy/optimize/_lsq/trf.py +587 -0
- scipy/optimize/_lsq/trf_linear.py +249 -0
- scipy/optimize/_milp.py +394 -0
- scipy/optimize/_minimize.py +1199 -0
- scipy/optimize/_minpack.cp313-win_arm64.lib +0 -0
- scipy/optimize/_minpack.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_minpack_py.py +1178 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.lib +0 -0
- scipy/optimize/_moduleTNC.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_nnls.py +96 -0
- scipy/optimize/_nonlin.py +1634 -0
- scipy/optimize/_numdiff.py +963 -0
- scipy/optimize/_optimize.py +4169 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.lib +0 -0
- scipy/optimize/_pava_pybind.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_qap.py +760 -0
- scipy/optimize/_remove_redundancy.py +522 -0
- scipy/optimize/_root.py +732 -0
- scipy/optimize/_root_scalar.py +538 -0
- scipy/optimize/_shgo.py +1606 -0
- scipy/optimize/_shgo_lib/__init__.py +0 -0
- scipy/optimize/_shgo_lib/_complex.py +1225 -0
- scipy/optimize/_shgo_lib/_vertex.py +460 -0
- scipy/optimize/_slsqp_py.py +603 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_slsqplib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_spectral.py +260 -0
- scipy/optimize/_tnc.py +438 -0
- scipy/optimize/_trlib/__init__.py +12 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.lib +0 -0
- scipy/optimize/_trlib/_trlib.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_trustregion.py +318 -0
- scipy/optimize/_trustregion_constr/__init__.py +6 -0
- scipy/optimize/_trustregion_constr/canonical_constraint.py +390 -0
- scipy/optimize/_trustregion_constr/equality_constrained_sqp.py +231 -0
- scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py +584 -0
- scipy/optimize/_trustregion_constr/projections.py +411 -0
- scipy/optimize/_trustregion_constr/qp_subproblem.py +637 -0
- scipy/optimize/_trustregion_constr/report.py +49 -0
- scipy/optimize/_trustregion_constr/tests/__init__.py +0 -0
- scipy/optimize/_trustregion_constr/tests/test_canonical_constraint.py +296 -0
- scipy/optimize/_trustregion_constr/tests/test_nested_minimize.py +39 -0
- scipy/optimize/_trustregion_constr/tests/test_projections.py +214 -0
- scipy/optimize/_trustregion_constr/tests/test_qp_subproblem.py +645 -0
- scipy/optimize/_trustregion_constr/tests/test_report.py +34 -0
- scipy/optimize/_trustregion_constr/tr_interior_point.py +361 -0
- scipy/optimize/_trustregion_dogleg.py +122 -0
- scipy/optimize/_trustregion_exact.py +437 -0
- scipy/optimize/_trustregion_krylov.py +65 -0
- scipy/optimize/_trustregion_ncg.py +126 -0
- scipy/optimize/_tstutils.py +972 -0
- scipy/optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/_zeros_py.py +1475 -0
- scipy/optimize/cobyla.py +19 -0
- scipy/optimize/cython_optimize/__init__.py +133 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.lib +0 -0
- scipy/optimize/cython_optimize/_zeros.cp313-win_arm64.pyd +0 -0
- scipy/optimize/cython_optimize/_zeros.pxd +33 -0
- scipy/optimize/cython_optimize/c_zeros.pxd +26 -0
- scipy/optimize/cython_optimize.pxd +11 -0
- scipy/optimize/elementwise.py +38 -0
- scipy/optimize/lbfgsb.py +23 -0
- scipy/optimize/linesearch.py +18 -0
- scipy/optimize/minpack.py +27 -0
- scipy/optimize/minpack2.py +17 -0
- scipy/optimize/moduleTNC.py +19 -0
- scipy/optimize/nonlin.py +29 -0
- scipy/optimize/optimize.py +40 -0
- scipy/optimize/slsqp.py +22 -0
- scipy/optimize/tests/__init__.py +0 -0
- scipy/optimize/tests/_cython_examples/extending.pyx +43 -0
- scipy/optimize/tests/_cython_examples/meson.build +32 -0
- scipy/optimize/tests/test__basinhopping.py +535 -0
- scipy/optimize/tests/test__differential_evolution.py +1703 -0
- scipy/optimize/tests/test__dual_annealing.py +416 -0
- scipy/optimize/tests/test__linprog_clean_inputs.py +312 -0
- scipy/optimize/tests/test__numdiff.py +885 -0
- scipy/optimize/tests/test__remove_redundancy.py +228 -0
- scipy/optimize/tests/test__root.py +124 -0
- scipy/optimize/tests/test__shgo.py +1164 -0
- scipy/optimize/tests/test__spectral.py +226 -0
- scipy/optimize/tests/test_bracket.py +896 -0
- scipy/optimize/tests/test_chandrupatla.py +982 -0
- scipy/optimize/tests/test_cobyla.py +195 -0
- scipy/optimize/tests/test_cobyqa.py +252 -0
- scipy/optimize/tests/test_constraint_conversion.py +286 -0
- scipy/optimize/tests/test_constraints.py +255 -0
- scipy/optimize/tests/test_cython_optimize.py +92 -0
- scipy/optimize/tests/test_differentiable_functions.py +1025 -0
- scipy/optimize/tests/test_direct.py +321 -0
- scipy/optimize/tests/test_extending.py +28 -0
- scipy/optimize/tests/test_hessian_update_strategy.py +300 -0
- scipy/optimize/tests/test_isotonic_regression.py +167 -0
- scipy/optimize/tests/test_lbfgsb_hessinv.py +65 -0
- scipy/optimize/tests/test_lbfgsb_setulb.py +122 -0
- scipy/optimize/tests/test_least_squares.py +986 -0
- scipy/optimize/tests/test_linear_assignment.py +116 -0
- scipy/optimize/tests/test_linesearch.py +328 -0
- scipy/optimize/tests/test_linprog.py +2577 -0
- scipy/optimize/tests/test_lsq_common.py +297 -0
- scipy/optimize/tests/test_lsq_linear.py +287 -0
- scipy/optimize/tests/test_milp.py +459 -0
- scipy/optimize/tests/test_minimize_constrained.py +845 -0
- scipy/optimize/tests/test_minpack.py +1194 -0
- scipy/optimize/tests/test_nnls.py +469 -0
- scipy/optimize/tests/test_nonlin.py +572 -0
- scipy/optimize/tests/test_optimize.py +3344 -0
- scipy/optimize/tests/test_quadratic_assignment.py +455 -0
- scipy/optimize/tests/test_regression.py +40 -0
- scipy/optimize/tests/test_slsqp.py +645 -0
- scipy/optimize/tests/test_tnc.py +345 -0
- scipy/optimize/tests/test_trustregion.py +110 -0
- scipy/optimize/tests/test_trustregion_exact.py +351 -0
- scipy/optimize/tests/test_trustregion_krylov.py +170 -0
- scipy/optimize/tests/test_zeros.py +998 -0
- scipy/optimize/tnc.py +22 -0
- scipy/optimize/zeros.py +26 -0
- scipy/signal/__init__.py +316 -0
- scipy/signal/_arraytools.py +264 -0
- scipy/signal/_czt.py +575 -0
- scipy/signal/_delegators.py +568 -0
- scipy/signal/_filter_design.py +5893 -0
- scipy/signal/_fir_filter_design.py +1458 -0
- scipy/signal/_lti_conversion.py +534 -0
- scipy/signal/_ltisys.py +3546 -0
- scipy/signal/_max_len_seq.py +139 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.lib +0 -0
- scipy/signal/_max_len_seq_inner.cp313-win_arm64.pyd +0 -0
- scipy/signal/_peak_finding.py +1310 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.lib +0 -0
- scipy/signal/_peak_finding_utils.cp313-win_arm64.pyd +0 -0
- scipy/signal/_polyutils.py +172 -0
- scipy/signal/_savitzky_golay.py +357 -0
- scipy/signal/_short_time_fft.py +2228 -0
- scipy/signal/_signal_api.py +30 -0
- scipy/signal/_signaltools.py +5309 -0
- scipy/signal/_sigtools.cp313-win_arm64.lib +0 -0
- scipy/signal/_sigtools.cp313-win_arm64.pyd +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.lib +0 -0
- scipy/signal/_sosfilt.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spectral_py.py +2471 -0
- scipy/signal/_spline.cp313-win_arm64.lib +0 -0
- scipy/signal/_spline.cp313-win_arm64.pyd +0 -0
- scipy/signal/_spline.pyi +34 -0
- scipy/signal/_spline_filters.py +848 -0
- scipy/signal/_support_alternative_backends.py +73 -0
- scipy/signal/_upfirdn.py +219 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.lib +0 -0
- scipy/signal/_upfirdn_apply.cp313-win_arm64.pyd +0 -0
- scipy/signal/_waveforms.py +687 -0
- scipy/signal/_wavelets.py +29 -0
- scipy/signal/bsplines.py +21 -0
- scipy/signal/filter_design.py +28 -0
- scipy/signal/fir_filter_design.py +21 -0
- scipy/signal/lti_conversion.py +20 -0
- scipy/signal/ltisys.py +25 -0
- scipy/signal/signaltools.py +27 -0
- scipy/signal/spectral.py +21 -0
- scipy/signal/spline.py +18 -0
- scipy/signal/tests/__init__.py +0 -0
- scipy/signal/tests/_scipy_spectral_test_shim.py +311 -0
- scipy/signal/tests/mpsig.py +122 -0
- scipy/signal/tests/test_array_tools.py +111 -0
- scipy/signal/tests/test_bsplines.py +365 -0
- scipy/signal/tests/test_cont2discrete.py +424 -0
- scipy/signal/tests/test_czt.py +221 -0
- scipy/signal/tests/test_dltisys.py +599 -0
- scipy/signal/tests/test_filter_design.py +4744 -0
- scipy/signal/tests/test_fir_filter_design.py +851 -0
- scipy/signal/tests/test_ltisys.py +1225 -0
- scipy/signal/tests/test_max_len_seq.py +71 -0
- scipy/signal/tests/test_peak_finding.py +915 -0
- scipy/signal/tests/test_result_type.py +51 -0
- scipy/signal/tests/test_savitzky_golay.py +363 -0
- scipy/signal/tests/test_short_time_fft.py +1107 -0
- scipy/signal/tests/test_signaltools.py +4735 -0
- scipy/signal/tests/test_spectral.py +2141 -0
- scipy/signal/tests/test_splines.py +427 -0
- scipy/signal/tests/test_upfirdn.py +322 -0
- scipy/signal/tests/test_waveforms.py +400 -0
- scipy/signal/tests/test_wavelets.py +59 -0
- scipy/signal/tests/test_windows.py +987 -0
- scipy/signal/waveforms.py +20 -0
- scipy/signal/wavelets.py +17 -0
- scipy/signal/windows/__init__.py +52 -0
- scipy/signal/windows/_windows.py +2513 -0
- scipy/signal/windows/windows.py +23 -0
- scipy/sparse/__init__.py +350 -0
- scipy/sparse/_base.py +1613 -0
- scipy/sparse/_bsr.py +880 -0
- scipy/sparse/_compressed.py +1328 -0
- scipy/sparse/_construct.py +1454 -0
- scipy/sparse/_coo.py +1581 -0
- scipy/sparse/_csc.py +367 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_csparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_csr.py +558 -0
- scipy/sparse/_data.py +569 -0
- scipy/sparse/_dia.py +677 -0
- scipy/sparse/_dok.py +669 -0
- scipy/sparse/_extract.py +178 -0
- scipy/sparse/_index.py +444 -0
- scipy/sparse/_lil.py +632 -0
- scipy/sparse/_matrix.py +169 -0
- scipy/sparse/_matrix_io.py +167 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.lib +0 -0
- scipy/sparse/_sparsetools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/_spfuncs.py +76 -0
- scipy/sparse/_sputils.py +632 -0
- scipy/sparse/base.py +24 -0
- scipy/sparse/bsr.py +22 -0
- scipy/sparse/compressed.py +20 -0
- scipy/sparse/construct.py +38 -0
- scipy/sparse/coo.py +23 -0
- scipy/sparse/csc.py +22 -0
- scipy/sparse/csgraph/__init__.py +210 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_flow.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_laplacian.py +563 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_matching.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_min_spanning_tree.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_reordering.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_shortest_path.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_tools.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.lib +0 -0
- scipy/sparse/csgraph/_traversal.cp313-win_arm64.pyd +0 -0
- scipy/sparse/csgraph/_validation.py +66 -0
- scipy/sparse/csgraph/tests/__init__.py +0 -0
- scipy/sparse/csgraph/tests/test_connected_components.py +119 -0
- scipy/sparse/csgraph/tests/test_conversions.py +61 -0
- scipy/sparse/csgraph/tests/test_flow.py +209 -0
- scipy/sparse/csgraph/tests/test_graph_laplacian.py +368 -0
- scipy/sparse/csgraph/tests/test_matching.py +307 -0
- scipy/sparse/csgraph/tests/test_pydata_sparse.py +197 -0
- scipy/sparse/csgraph/tests/test_reordering.py +70 -0
- scipy/sparse/csgraph/tests/test_shortest_path.py +540 -0
- scipy/sparse/csgraph/tests/test_spanning_tree.py +66 -0
- scipy/sparse/csgraph/tests/test_traversal.py +148 -0
- scipy/sparse/csr.py +22 -0
- scipy/sparse/data.py +18 -0
- scipy/sparse/dia.py +22 -0
- scipy/sparse/dok.py +22 -0
- scipy/sparse/extract.py +23 -0
- scipy/sparse/lil.py +22 -0
- scipy/sparse/linalg/__init__.py +148 -0
- scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- scipy/sparse/linalg/_dsolve/_add_newdocs.py +147 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_dsolve/_superlu.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_dsolve/linsolve.py +882 -0
- scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +928 -0
- scipy/sparse/linalg/_eigen/__init__.py +22 -0
- scipy/sparse/linalg/_eigen/_svds.py +540 -0
- scipy/sparse/linalg/_eigen/_svds_doc.py +382 -0
- scipy/sparse/linalg/_eigen/arpack/COPYING +45 -0
- scipy/sparse/linalg/_eigen/arpack/__init__.py +20 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_eigen/arpack/_arpack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_eigen/arpack/arpack.py +1706 -0
- scipy/sparse/linalg/_eigen/arpack/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py +717 -0
- scipy/sparse/linalg/_eigen/lobpcg/__init__.py +16 -0
- scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py +1110 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py +725 -0
- scipy/sparse/linalg/_eigen/tests/__init__.py +0 -0
- scipy/sparse/linalg/_eigen/tests/test_svds.py +886 -0
- scipy/sparse/linalg/_expm_multiply.py +816 -0
- scipy/sparse/linalg/_interface.py +920 -0
- scipy/sparse/linalg/_isolve/__init__.py +20 -0
- scipy/sparse/linalg/_isolve/_gcrotmk.py +503 -0
- scipy/sparse/linalg/_isolve/iterative.py +1051 -0
- scipy/sparse/linalg/_isolve/lgmres.py +230 -0
- scipy/sparse/linalg/_isolve/lsmr.py +486 -0
- scipy/sparse/linalg/_isolve/lsqr.py +589 -0
- scipy/sparse/linalg/_isolve/minres.py +372 -0
- scipy/sparse/linalg/_isolve/tests/__init__.py +0 -0
- scipy/sparse/linalg/_isolve/tests/test_gcrotmk.py +183 -0
- scipy/sparse/linalg/_isolve/tests/test_iterative.py +809 -0
- scipy/sparse/linalg/_isolve/tests/test_lgmres.py +225 -0
- scipy/sparse/linalg/_isolve/tests/test_lsmr.py +185 -0
- scipy/sparse/linalg/_isolve/tests/test_lsqr.py +120 -0
- scipy/sparse/linalg/_isolve/tests/test_minres.py +97 -0
- scipy/sparse/linalg/_isolve/tests/test_utils.py +9 -0
- scipy/sparse/linalg/_isolve/tfqmr.py +179 -0
- scipy/sparse/linalg/_isolve/utils.py +121 -0
- scipy/sparse/linalg/_matfuncs.py +940 -0
- scipy/sparse/linalg/_norm.py +195 -0
- scipy/sparse/linalg/_onenormest.py +467 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_cpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_dpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_spropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.lib +0 -0
- scipy/sparse/linalg/_propack/_zpropack.cp313-win_arm64.pyd +0 -0
- scipy/sparse/linalg/_special_sparse_arrays.py +949 -0
- scipy/sparse/linalg/_svdp.py +309 -0
- scipy/sparse/linalg/dsolve.py +22 -0
- scipy/sparse/linalg/eigen.py +21 -0
- scipy/sparse/linalg/interface.py +20 -0
- scipy/sparse/linalg/isolve.py +22 -0
- scipy/sparse/linalg/matfuncs.py +18 -0
- scipy/sparse/linalg/tests/__init__.py +0 -0
- scipy/sparse/linalg/tests/propack_test_data.npz +0 -0
- scipy/sparse/linalg/tests/test_expm_multiply.py +367 -0
- scipy/sparse/linalg/tests/test_interface.py +561 -0
- scipy/sparse/linalg/tests/test_matfuncs.py +592 -0
- scipy/sparse/linalg/tests/test_norm.py +154 -0
- scipy/sparse/linalg/tests/test_onenormest.py +252 -0
- scipy/sparse/linalg/tests/test_propack.py +165 -0
- scipy/sparse/linalg/tests/test_pydata_sparse.py +272 -0
- scipy/sparse/linalg/tests/test_special_sparse_arrays.py +337 -0
- scipy/sparse/sparsetools.py +17 -0
- scipy/sparse/spfuncs.py +17 -0
- scipy/sparse/sputils.py +17 -0
- scipy/sparse/tests/__init__.py +0 -0
- scipy/sparse/tests/data/csc_py2.npz +0 -0
- scipy/sparse/tests/data/csc_py3.npz +0 -0
- scipy/sparse/tests/test_arithmetic1d.py +341 -0
- scipy/sparse/tests/test_array_api.py +561 -0
- scipy/sparse/tests/test_base.py +5870 -0
- scipy/sparse/tests/test_common1d.py +447 -0
- scipy/sparse/tests/test_construct.py +872 -0
- scipy/sparse/tests/test_coo.py +1119 -0
- scipy/sparse/tests/test_csc.py +98 -0
- scipy/sparse/tests/test_csr.py +214 -0
- scipy/sparse/tests/test_dok.py +209 -0
- scipy/sparse/tests/test_extract.py +51 -0
- scipy/sparse/tests/test_indexing1d.py +603 -0
- scipy/sparse/tests/test_matrix_io.py +109 -0
- scipy/sparse/tests/test_minmax1d.py +128 -0
- scipy/sparse/tests/test_sparsetools.py +344 -0
- scipy/sparse/tests/test_spfuncs.py +97 -0
- scipy/sparse/tests/test_sputils.py +424 -0
- scipy/spatial/__init__.py +129 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.lib +0 -0
- scipy/spatial/_ckdtree.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_pybind.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.lib +0 -0
- scipy/spatial/_distance_wrap.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_geometric_slerp.py +238 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.lib +0 -0
- scipy/spatial/_hausdorff.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_kdtree.py +920 -0
- scipy/spatial/_plotutils.py +274 -0
- scipy/spatial/_procrustes.py +132 -0
- scipy/spatial/_qhull.cp313-win_arm64.lib +0 -0
- scipy/spatial/_qhull.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_qhull.pyi +213 -0
- scipy/spatial/_spherical_voronoi.py +341 -0
- scipy/spatial/_voronoi.cp313-win_arm64.lib +0 -0
- scipy/spatial/_voronoi.cp313-win_arm64.pyd +0 -0
- scipy/spatial/_voronoi.pyi +4 -0
- scipy/spatial/ckdtree.py +18 -0
- scipy/spatial/distance.py +3147 -0
- scipy/spatial/distance.pyi +210 -0
- scipy/spatial/kdtree.py +25 -0
- scipy/spatial/qhull.py +25 -0
- scipy/spatial/qhull_src/COPYING_QHULL.txt +39 -0
- scipy/spatial/tests/__init__.py +0 -0
- scipy/spatial/tests/data/cdist-X1.txt +10 -0
- scipy/spatial/tests/data/cdist-X2.txt +20 -0
- scipy/spatial/tests/data/degenerate_pointset.npz +0 -0
- scipy/spatial/tests/data/iris.txt +150 -0
- scipy/spatial/tests/data/pdist-boolean-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-chebyshev-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cityblock-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-correlation-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-cosine-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-double-inp.txt +20 -0
- scipy/spatial/tests/data/pdist-euclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-euclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-hamming-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jaccard-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-jensenshannon-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-3.2-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt +1 -0
- scipy/spatial/tests/data/pdist-seuclidean-ml.txt +1 -0
- scipy/spatial/tests/data/pdist-spearman-ml.txt +1 -0
- scipy/spatial/tests/data/random-bool-data.txt +100 -0
- scipy/spatial/tests/data/random-double-data.txt +100 -0
- scipy/spatial/tests/data/random-int-data.txt +100 -0
- scipy/spatial/tests/data/random-uint-data.txt +100 -0
- scipy/spatial/tests/data/selfdual-4d-polytope.txt +27 -0
- scipy/spatial/tests/test__plotutils.py +91 -0
- scipy/spatial/tests/test__procrustes.py +116 -0
- scipy/spatial/tests/test_distance.py +2389 -0
- scipy/spatial/tests/test_hausdorff.py +199 -0
- scipy/spatial/tests/test_kdtree.py +1536 -0
- scipy/spatial/tests/test_qhull.py +1313 -0
- scipy/spatial/tests/test_slerp.py +417 -0
- scipy/spatial/tests/test_spherical_voronoi.py +358 -0
- scipy/spatial/transform/__init__.py +31 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rigid_transform.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.lib +0 -0
- scipy/spatial/transform/_rotation.cp313-win_arm64.pyd +0 -0
- scipy/spatial/transform/_rotation_groups.py +140 -0
- scipy/spatial/transform/_rotation_spline.py +460 -0
- scipy/spatial/transform/rotation.py +21 -0
- scipy/spatial/transform/tests/__init__.py +0 -0
- scipy/spatial/transform/tests/test_rigid_transform.py +1221 -0
- scipy/spatial/transform/tests/test_rotation.py +2569 -0
- scipy/spatial/transform/tests/test_rotation_groups.py +169 -0
- scipy/spatial/transform/tests/test_rotation_spline.py +183 -0
- scipy/special/__init__.pxd +1 -0
- scipy/special/__init__.py +841 -0
- scipy/special/_add_newdocs.py +9961 -0
- scipy/special/_basic.py +3576 -0
- scipy/special/_comb.cp313-win_arm64.lib +0 -0
- scipy/special/_comb.cp313-win_arm64.pyd +0 -0
- scipy/special/_ellip_harm.py +214 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.lib +0 -0
- scipy/special/_ellip_harm_2.cp313-win_arm64.pyd +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_gufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_input_validation.py +17 -0
- scipy/special/_lambertw.py +149 -0
- scipy/special/_logsumexp.py +426 -0
- scipy/special/_mptestutils.py +453 -0
- scipy/special/_multiufuncs.py +610 -0
- scipy/special/_orthogonal.py +2592 -0
- scipy/special/_orthogonal.pyi +330 -0
- scipy/special/_precompute/__init__.py +0 -0
- scipy/special/_precompute/cosine_cdf.py +17 -0
- scipy/special/_precompute/expn_asy.py +54 -0
- scipy/special/_precompute/gammainc_asy.py +116 -0
- scipy/special/_precompute/gammainc_data.py +124 -0
- scipy/special/_precompute/hyp2f1_data.py +484 -0
- scipy/special/_precompute/lambertw.py +68 -0
- scipy/special/_precompute/loggamma.py +43 -0
- scipy/special/_precompute/struve_convergence.py +131 -0
- scipy/special/_precompute/utils.py +38 -0
- scipy/special/_precompute/wright_bessel.py +342 -0
- scipy/special/_precompute/wright_bessel_data.py +152 -0
- scipy/special/_precompute/wrightomega.py +41 -0
- scipy/special/_precompute/zetac.py +27 -0
- scipy/special/_sf_error.py +15 -0
- scipy/special/_specfun.cp313-win_arm64.lib +0 -0
- scipy/special/_specfun.cp313-win_arm64.pyd +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_special_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_spfun_stats.py +106 -0
- scipy/special/_spherical_bessel.py +397 -0
- scipy/special/_support_alternative_backends.py +295 -0
- scipy/special/_test_internal.cp313-win_arm64.lib +0 -0
- scipy/special/_test_internal.cp313-win_arm64.pyd +0 -0
- scipy/special/_test_internal.pyi +9 -0
- scipy/special/_testutils.py +321 -0
- scipy/special/_ufuncs.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs.pyi +522 -0
- scipy/special/_ufuncs.pyx +13173 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.lib +0 -0
- scipy/special/_ufuncs_cxx.cp313-win_arm64.pyd +0 -0
- scipy/special/_ufuncs_cxx.pxd +142 -0
- scipy/special/_ufuncs_cxx.pyx +427 -0
- scipy/special/_ufuncs_cxx_defs.h +147 -0
- scipy/special/_ufuncs_defs.h +57 -0
- scipy/special/add_newdocs.py +15 -0
- scipy/special/basic.py +87 -0
- scipy/special/cython_special.cp313-win_arm64.lib +0 -0
- scipy/special/cython_special.cp313-win_arm64.pyd +0 -0
- scipy/special/cython_special.pxd +259 -0
- scipy/special/cython_special.pyi +3 -0
- scipy/special/orthogonal.py +45 -0
- scipy/special/sf_error.py +20 -0
- scipy/special/specfun.py +24 -0
- scipy/special/spfun_stats.py +17 -0
- scipy/special/tests/__init__.py +0 -0
- scipy/special/tests/_cython_examples/extending.pyx +12 -0
- scipy/special/tests/_cython_examples/meson.build +34 -0
- scipy/special/tests/data/__init__.py +0 -0
- scipy/special/tests/data/boost.npz +0 -0
- scipy/special/tests/data/gsl.npz +0 -0
- scipy/special/tests/data/local.npz +0 -0
- scipy/special/tests/test_basic.py +4815 -0
- scipy/special/tests/test_bdtr.py +112 -0
- scipy/special/tests/test_boost_ufuncs.py +64 -0
- scipy/special/tests/test_boxcox.py +125 -0
- scipy/special/tests/test_cdflib.py +712 -0
- scipy/special/tests/test_cdft_asymptotic.py +49 -0
- scipy/special/tests/test_cephes_intp_cast.py +29 -0
- scipy/special/tests/test_cosine_distr.py +83 -0
- scipy/special/tests/test_cython_special.py +363 -0
- scipy/special/tests/test_data.py +719 -0
- scipy/special/tests/test_dd.py +42 -0
- scipy/special/tests/test_digamma.py +45 -0
- scipy/special/tests/test_ellip_harm.py +278 -0
- scipy/special/tests/test_erfinv.py +89 -0
- scipy/special/tests/test_exponential_integrals.py +118 -0
- scipy/special/tests/test_extending.py +28 -0
- scipy/special/tests/test_faddeeva.py +85 -0
- scipy/special/tests/test_gamma.py +12 -0
- scipy/special/tests/test_gammainc.py +152 -0
- scipy/special/tests/test_hyp2f1.py +2566 -0
- scipy/special/tests/test_hypergeometric.py +234 -0
- scipy/special/tests/test_iv_ratio.py +249 -0
- scipy/special/tests/test_kolmogorov.py +491 -0
- scipy/special/tests/test_lambertw.py +109 -0
- scipy/special/tests/test_legendre.py +1518 -0
- scipy/special/tests/test_log1mexp.py +85 -0
- scipy/special/tests/test_loggamma.py +70 -0
- scipy/special/tests/test_logit.py +162 -0
- scipy/special/tests/test_logsumexp.py +469 -0
- scipy/special/tests/test_mpmath.py +2293 -0
- scipy/special/tests/test_nan_inputs.py +65 -0
- scipy/special/tests/test_ndtr.py +77 -0
- scipy/special/tests/test_ndtri_exp.py +94 -0
- scipy/special/tests/test_orthogonal.py +821 -0
- scipy/special/tests/test_orthogonal_eval.py +275 -0
- scipy/special/tests/test_owens_t.py +53 -0
- scipy/special/tests/test_pcf.py +24 -0
- scipy/special/tests/test_pdtr.py +48 -0
- scipy/special/tests/test_powm1.py +65 -0
- scipy/special/tests/test_precompute_expn_asy.py +24 -0
- scipy/special/tests/test_precompute_gammainc.py +108 -0
- scipy/special/tests/test_precompute_utils.py +36 -0
- scipy/special/tests/test_round.py +18 -0
- scipy/special/tests/test_sf_error.py +146 -0
- scipy/special/tests/test_sici.py +36 -0
- scipy/special/tests/test_specfun.py +48 -0
- scipy/special/tests/test_spence.py +32 -0
- scipy/special/tests/test_spfun_stats.py +61 -0
- scipy/special/tests/test_sph_harm.py +85 -0
- scipy/special/tests/test_spherical_bessel.py +400 -0
- scipy/special/tests/test_support_alternative_backends.py +248 -0
- scipy/special/tests/test_trig.py +72 -0
- scipy/special/tests/test_ufunc_signatures.py +46 -0
- scipy/special/tests/test_wright_bessel.py +205 -0
- scipy/special/tests/test_wrightomega.py +117 -0
- scipy/special/tests/test_zeta.py +301 -0
- scipy/stats/__init__.py +670 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.lib +0 -0
- scipy/stats/_ansari_swilk_statistics.cp313-win_arm64.pyd +0 -0
- scipy/stats/_axis_nan_policy.py +692 -0
- scipy/stats/_biasedurn.cp313-win_arm64.lib +0 -0
- scipy/stats/_biasedurn.cp313-win_arm64.pyd +0 -0
- scipy/stats/_biasedurn.pxd +27 -0
- scipy/stats/_binned_statistic.py +795 -0
- scipy/stats/_binomtest.py +375 -0
- scipy/stats/_bws_test.py +177 -0
- scipy/stats/_censored_data.py +459 -0
- scipy/stats/_common.py +5 -0
- scipy/stats/_constants.py +42 -0
- scipy/stats/_continued_fraction.py +387 -0
- scipy/stats/_continuous_distns.py +12486 -0
- scipy/stats/_correlation.py +210 -0
- scipy/stats/_covariance.py +636 -0
- scipy/stats/_crosstab.py +204 -0
- scipy/stats/_discrete_distns.py +2098 -0
- scipy/stats/_distn_infrastructure.py +4201 -0
- scipy/stats/_distr_params.py +299 -0
- scipy/stats/_distribution_infrastructure.py +5750 -0
- scipy/stats/_entropy.py +428 -0
- scipy/stats/_finite_differences.py +145 -0
- scipy/stats/_fit.py +1351 -0
- scipy/stats/_hypotests.py +2060 -0
- scipy/stats/_kde.py +732 -0
- scipy/stats/_ksstats.py +600 -0
- scipy/stats/_levy_stable/__init__.py +1231 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.lib +0 -0
- scipy/stats/_levy_stable/levyst.cp313-win_arm64.pyd +0 -0
- scipy/stats/_mannwhitneyu.py +492 -0
- scipy/stats/_mgc.py +550 -0
- scipy/stats/_morestats.py +4626 -0
- scipy/stats/_mstats_basic.py +3658 -0
- scipy/stats/_mstats_extras.py +521 -0
- scipy/stats/_multicomp.py +449 -0
- scipy/stats/_multivariate.py +7281 -0
- scipy/stats/_new_distributions.py +452 -0
- scipy/stats/_odds_ratio.py +466 -0
- scipy/stats/_page_trend_test.py +486 -0
- scipy/stats/_probability_distribution.py +1964 -0
- scipy/stats/_qmc.py +2956 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmc_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_qmc_cy.pyi +54 -0
- scipy/stats/_qmvnt.py +454 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.lib +0 -0
- scipy/stats/_qmvnt_cy.cp313-win_arm64.pyd +0 -0
- scipy/stats/_quantile.py +335 -0
- scipy/stats/_rcont/__init__.py +4 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.lib +0 -0
- scipy/stats/_rcont/rcont.cp313-win_arm64.pyd +0 -0
- scipy/stats/_relative_risk.py +263 -0
- scipy/stats/_resampling.py +2352 -0
- scipy/stats/_result_classes.py +40 -0
- scipy/stats/_sampling.py +1314 -0
- scipy/stats/_sensitivity_analysis.py +713 -0
- scipy/stats/_sobol.cp313-win_arm64.lib +0 -0
- scipy/stats/_sobol.cp313-win_arm64.pyd +0 -0
- scipy/stats/_sobol.pyi +54 -0
- scipy/stats/_sobol_direction_numbers.npz +0 -0
- scipy/stats/_stats.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats.cp313-win_arm64.pyd +0 -0
- scipy/stats/_stats.pxd +10 -0
- scipy/stats/_stats_mstats_common.py +322 -0
- scipy/stats/_stats_py.py +11089 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.lib +0 -0
- scipy/stats/_stats_pythran.cp313-win_arm64.pyd +0 -0
- scipy/stats/_survival.py +683 -0
- scipy/stats/_tukeylambda_stats.py +199 -0
- scipy/stats/_unuran/__init__.py +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.lib +0 -0
- scipy/stats/_unuran/unuran_wrapper.cp313-win_arm64.pyd +0 -0
- scipy/stats/_unuran/unuran_wrapper.pyi +179 -0
- scipy/stats/_variation.py +126 -0
- scipy/stats/_warnings_errors.py +38 -0
- scipy/stats/_wilcoxon.py +265 -0
- scipy/stats/biasedurn.py +16 -0
- scipy/stats/contingency.py +521 -0
- scipy/stats/distributions.py +24 -0
- scipy/stats/kde.py +18 -0
- scipy/stats/morestats.py +27 -0
- scipy/stats/mstats.py +140 -0
- scipy/stats/mstats_basic.py +42 -0
- scipy/stats/mstats_extras.py +25 -0
- scipy/stats/mvn.py +17 -0
- scipy/stats/qmc.py +236 -0
- scipy/stats/sampling.py +73 -0
- scipy/stats/stats.py +41 -0
- scipy/stats/tests/__init__.py +0 -0
- scipy/stats/tests/common_tests.py +356 -0
- scipy/stats/tests/data/_mvt.py +171 -0
- scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
- scipy/stats/tests/data/jf_skew_t_gamlss_pdf_data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-cdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-Z1-pdf-sample-data.npy +0 -0
- scipy/stats/tests/data/levy_stable/stable-loc-scale-sample-data.npy +0 -0
- scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
- scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
- scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs03.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs06.dat +18069 -0
- scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
- scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
- scipy/stats/tests/data/nist_anova/SmLs09.dat +18069 -0
- scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
- scipy/stats/tests/data/rel_breitwigner_pdf_sample_data_ROOT.npy +0 -0
- scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
- scipy/stats/tests/test_axis_nan_policy.py +1388 -0
- scipy/stats/tests/test_binned_statistic.py +568 -0
- scipy/stats/tests/test_censored_data.py +152 -0
- scipy/stats/tests/test_contingency.py +294 -0
- scipy/stats/tests/test_continued_fraction.py +173 -0
- scipy/stats/tests/test_continuous.py +2198 -0
- scipy/stats/tests/test_continuous_basic.py +1053 -0
- scipy/stats/tests/test_continuous_fit_censored.py +683 -0
- scipy/stats/tests/test_correlation.py +80 -0
- scipy/stats/tests/test_crosstab.py +115 -0
- scipy/stats/tests/test_discrete_basic.py +580 -0
- scipy/stats/tests/test_discrete_distns.py +700 -0
- scipy/stats/tests/test_distributions.py +10413 -0
- scipy/stats/tests/test_entropy.py +322 -0
- scipy/stats/tests/test_fast_gen_inversion.py +435 -0
- scipy/stats/tests/test_fit.py +1090 -0
- scipy/stats/tests/test_hypotests.py +1991 -0
- scipy/stats/tests/test_kdeoth.py +676 -0
- scipy/stats/tests/test_marray.py +289 -0
- scipy/stats/tests/test_mgc.py +217 -0
- scipy/stats/tests/test_morestats.py +3259 -0
- scipy/stats/tests/test_mstats_basic.py +2071 -0
- scipy/stats/tests/test_mstats_extras.py +172 -0
- scipy/stats/tests/test_multicomp.py +405 -0
- scipy/stats/tests/test_multivariate.py +4381 -0
- scipy/stats/tests/test_odds_ratio.py +148 -0
- scipy/stats/tests/test_qmc.py +1492 -0
- scipy/stats/tests/test_quantile.py +199 -0
- scipy/stats/tests/test_rank.py +345 -0
- scipy/stats/tests/test_relative_risk.py +95 -0
- scipy/stats/tests/test_resampling.py +2000 -0
- scipy/stats/tests/test_sampling.py +1450 -0
- scipy/stats/tests/test_sensitivity_analysis.py +310 -0
- scipy/stats/tests/test_stats.py +9707 -0
- scipy/stats/tests/test_survival.py +466 -0
- scipy/stats/tests/test_tukeylambda_stats.py +85 -0
- scipy/stats/tests/test_variation.py +216 -0
- scipy/version.py +12 -0
- scipy-1.16.2.dist-info/DELVEWHEEL +2 -0
- scipy-1.16.2.dist-info/LICENSE.txt +912 -0
- scipy-1.16.2.dist-info/METADATA +1061 -0
- scipy-1.16.2.dist-info/RECORD +1530 -0
- scipy-1.16.2.dist-info/WHEEL +4 -0
- scipy.libs/msvcp140-5f1c5dd31916990d94181e07bc3afb32.dll +0 -0
- scipy.libs/scipy_openblas-f3ac85b1f412f7e86514c923dc4058d1.dll +0 -0
@@ -0,0 +1,1336 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import numpy.typing as npt
|
3
|
+
import math
|
4
|
+
import warnings
|
5
|
+
from collections import namedtuple
|
6
|
+
from collections.abc import Callable
|
7
|
+
|
8
|
+
from scipy.special import roots_legendre
|
9
|
+
from scipy.special import gammaln, logsumexp
|
10
|
+
from scipy._lib._util import _rng_spawn
|
11
|
+
from scipy._lib._array_api import _asarray, array_namespace, xp_result_type
|
12
|
+
|
13
|
+
|
14
|
+
__all__ = ['fixed_quad', 'romb',
|
15
|
+
'trapezoid', 'simpson',
|
16
|
+
'cumulative_trapezoid', 'newton_cotes',
|
17
|
+
'qmc_quad', 'cumulative_simpson']
|
18
|
+
|
19
|
+
|
20
|
+
def trapezoid(y, x=None, dx=1.0, axis=-1):
|
21
|
+
r"""
|
22
|
+
Integrate along the given axis using the composite trapezoidal rule.
|
23
|
+
|
24
|
+
If `x` is provided, the integration happens in sequence along its
|
25
|
+
elements - they are not sorted.
|
26
|
+
|
27
|
+
Integrate `y` (`x`) along each 1d slice on the given axis, compute
|
28
|
+
:math:`\int y(x) dx`.
|
29
|
+
When `x` is specified, this integrates along the parametric curve,
|
30
|
+
computing :math:`\int_t y(t) dt =
|
31
|
+
\int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.
|
32
|
+
|
33
|
+
Parameters
|
34
|
+
----------
|
35
|
+
y : array_like
|
36
|
+
Input array to integrate.
|
37
|
+
x : array_like, optional
|
38
|
+
The sample points corresponding to the `y` values. If `x` is None,
|
39
|
+
the sample points are assumed to be evenly spaced `dx` apart. The
|
40
|
+
default is None.
|
41
|
+
dx : scalar, optional
|
42
|
+
The spacing between sample points when `x` is None. The default is 1.
|
43
|
+
axis : int, optional
|
44
|
+
The axis along which to integrate. The default is the last axis.
|
45
|
+
|
46
|
+
Returns
|
47
|
+
-------
|
48
|
+
trapezoid : float or ndarray
|
49
|
+
Definite integral of `y` = n-dimensional array as approximated along
|
50
|
+
a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
|
51
|
+
then the result is a float. If `n` is greater than 1, then the result
|
52
|
+
is an `n`-1 dimensional array.
|
53
|
+
|
54
|
+
See Also
|
55
|
+
--------
|
56
|
+
cumulative_trapezoid, simpson, romb
|
57
|
+
|
58
|
+
Notes
|
59
|
+
-----
|
60
|
+
Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
|
61
|
+
will be taken from `y` array, by default x-axis distances between
|
62
|
+
points will be 1.0, alternatively they can be provided with `x` array
|
63
|
+
or with `dx` scalar. Return value will be equal to combined area under
|
64
|
+
the red lines.
|
65
|
+
|
66
|
+
References
|
67
|
+
----------
|
68
|
+
.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule
|
69
|
+
|
70
|
+
.. [2] Illustration image:
|
71
|
+
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
|
72
|
+
|
73
|
+
Examples
|
74
|
+
--------
|
75
|
+
Use the trapezoidal rule on evenly spaced points:
|
76
|
+
|
77
|
+
>>> import numpy as np
|
78
|
+
>>> from scipy import integrate
|
79
|
+
>>> integrate.trapezoid([1, 2, 3])
|
80
|
+
4.0
|
81
|
+
|
82
|
+
The spacing between sample points can be selected by either the
|
83
|
+
``x`` or ``dx`` arguments:
|
84
|
+
|
85
|
+
>>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
|
86
|
+
8.0
|
87
|
+
>>> integrate.trapezoid([1, 2, 3], dx=2)
|
88
|
+
8.0
|
89
|
+
|
90
|
+
Using a decreasing ``x`` corresponds to integrating in reverse:
|
91
|
+
|
92
|
+
>>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
|
93
|
+
-8.0
|
94
|
+
|
95
|
+
More generally ``x`` is used to integrate along a parametric curve. We can
|
96
|
+
estimate the integral :math:`\int_0^1 x^2 = 1/3` using:
|
97
|
+
|
98
|
+
>>> x = np.linspace(0, 1, num=50)
|
99
|
+
>>> y = x**2
|
100
|
+
>>> integrate.trapezoid(y, x)
|
101
|
+
0.33340274885464394
|
102
|
+
|
103
|
+
Or estimate the area of a circle, noting we repeat the sample which closes
|
104
|
+
the curve:
|
105
|
+
|
106
|
+
>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
|
107
|
+
>>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
|
108
|
+
3.141571941375841
|
109
|
+
|
110
|
+
``trapezoid`` can be applied along a specified axis to do multiple
|
111
|
+
computations in one call:
|
112
|
+
|
113
|
+
>>> a = np.arange(6).reshape(2, 3)
|
114
|
+
>>> a
|
115
|
+
array([[0, 1, 2],
|
116
|
+
[3, 4, 5]])
|
117
|
+
>>> integrate.trapezoid(a, axis=0)
|
118
|
+
array([1.5, 2.5, 3.5])
|
119
|
+
>>> integrate.trapezoid(a, axis=1)
|
120
|
+
array([2., 8.])
|
121
|
+
"""
|
122
|
+
xp = array_namespace(y)
|
123
|
+
y = _asarray(y, xp=xp, subok=True)
|
124
|
+
# Cannot just use the broadcasted arrays that are returned
|
125
|
+
# because trapezoid does not follow normal broadcasting rules
|
126
|
+
# cf. https://github.com/scipy/scipy/pull/21524#issuecomment-2354105942
|
127
|
+
result_dtype = xp_result_type(y, force_floating=True, xp=xp)
|
128
|
+
nd = y.ndim
|
129
|
+
slice1 = [slice(None)]*nd
|
130
|
+
slice2 = [slice(None)]*nd
|
131
|
+
slice1[axis] = slice(1, None)
|
132
|
+
slice2[axis] = slice(None, -1)
|
133
|
+
if x is None:
|
134
|
+
d = dx
|
135
|
+
else:
|
136
|
+
x = _asarray(x, xp=xp, subok=True)
|
137
|
+
if x.ndim == 1:
|
138
|
+
d = x[1:] - x[:-1]
|
139
|
+
# make d broadcastable to y
|
140
|
+
slice3 = [None] * nd
|
141
|
+
slice3[axis] = slice(None)
|
142
|
+
d = d[tuple(slice3)]
|
143
|
+
else:
|
144
|
+
# if x is n-D it should be broadcastable to y
|
145
|
+
x = xp.broadcast_to(x, y.shape)
|
146
|
+
d = x[tuple(slice1)] - x[tuple(slice2)]
|
147
|
+
try:
|
148
|
+
ret = xp.sum(
|
149
|
+
d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0,
|
150
|
+
axis=axis, dtype=result_dtype
|
151
|
+
)
|
152
|
+
except ValueError:
|
153
|
+
# Operations didn't work, cast to ndarray
|
154
|
+
d = xp.asarray(d)
|
155
|
+
y = xp.asarray(y)
|
156
|
+
ret = xp.sum(
|
157
|
+
d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0,
|
158
|
+
axis=axis, dtype=result_dtype
|
159
|
+
)
|
160
|
+
return ret
|
161
|
+
|
162
|
+
|
163
|
+
def _cached_roots_legendre(n):
|
164
|
+
"""
|
165
|
+
Cache roots_legendre results to speed up calls of the fixed_quad
|
166
|
+
function.
|
167
|
+
"""
|
168
|
+
if n in _cached_roots_legendre.cache:
|
169
|
+
return _cached_roots_legendre.cache[n]
|
170
|
+
|
171
|
+
_cached_roots_legendre.cache[n] = roots_legendre(n)
|
172
|
+
return _cached_roots_legendre.cache[n]
|
173
|
+
|
174
|
+
|
175
|
+
_cached_roots_legendre.cache = dict()
|
176
|
+
|
177
|
+
|
178
|
+
def fixed_quad(func, a, b, args=(), n=5):
|
179
|
+
"""
|
180
|
+
Compute a definite integral using fixed-order Gaussian quadrature.
|
181
|
+
|
182
|
+
Integrate `func` from `a` to `b` using Gaussian quadrature of
|
183
|
+
order `n`.
|
184
|
+
|
185
|
+
Parameters
|
186
|
+
----------
|
187
|
+
func : callable
|
188
|
+
A Python function or method to integrate (must accept vector inputs).
|
189
|
+
If integrating a vector-valued function, the returned array must have
|
190
|
+
shape ``(..., len(x))``.
|
191
|
+
a : float
|
192
|
+
Lower limit of integration.
|
193
|
+
b : float
|
194
|
+
Upper limit of integration.
|
195
|
+
args : tuple, optional
|
196
|
+
Extra arguments to pass to function, if any.
|
197
|
+
n : int, optional
|
198
|
+
Order of quadrature integration. Default is 5.
|
199
|
+
|
200
|
+
Returns
|
201
|
+
-------
|
202
|
+
val : float
|
203
|
+
Gaussian quadrature approximation to the integral
|
204
|
+
none : None
|
205
|
+
Statically returned value of None
|
206
|
+
|
207
|
+
See Also
|
208
|
+
--------
|
209
|
+
quad : adaptive quadrature using QUADPACK
|
210
|
+
dblquad : double integrals
|
211
|
+
tplquad : triple integrals
|
212
|
+
romb : integrators for sampled data
|
213
|
+
simpson : integrators for sampled data
|
214
|
+
cumulative_trapezoid : cumulative integration for sampled data
|
215
|
+
|
216
|
+
Examples
|
217
|
+
--------
|
218
|
+
>>> from scipy import integrate
|
219
|
+
>>> import numpy as np
|
220
|
+
>>> f = lambda x: x**8
|
221
|
+
>>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
|
222
|
+
(0.1110884353741496, None)
|
223
|
+
>>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
|
224
|
+
(0.11111111111111102, None)
|
225
|
+
>>> print(1/9.0) # analytical result
|
226
|
+
0.1111111111111111
|
227
|
+
|
228
|
+
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
|
229
|
+
(0.9999999771971152, None)
|
230
|
+
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
|
231
|
+
(1.000000000039565, None)
|
232
|
+
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
|
233
|
+
1.0
|
234
|
+
|
235
|
+
"""
|
236
|
+
x, w = _cached_roots_legendre(n)
|
237
|
+
x = np.real(x)
|
238
|
+
if np.isinf(a) or np.isinf(b):
|
239
|
+
raise ValueError("Gaussian quadrature is only available for "
|
240
|
+
"finite limits.")
|
241
|
+
y = (b-a)*(x+1)/2.0 + a
|
242
|
+
return (b-a)/2.0 * np.sum(w*func(y, *args), axis=-1), None
|
243
|
+
|
244
|
+
|
245
|
+
def tupleset(t, i, value):
|
246
|
+
l = list(t)
|
247
|
+
l[i] = value
|
248
|
+
return tuple(l)
|
249
|
+
|
250
|
+
|
251
|
+
def cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None):
|
252
|
+
"""
|
253
|
+
Cumulatively integrate y(x) using the composite trapezoidal rule.
|
254
|
+
|
255
|
+
Parameters
|
256
|
+
----------
|
257
|
+
y : array_like
|
258
|
+
Values to integrate.
|
259
|
+
x : array_like, optional
|
260
|
+
The coordinate to integrate along. If None (default), use spacing `dx`
|
261
|
+
between consecutive elements in `y`.
|
262
|
+
dx : float, optional
|
263
|
+
Spacing between elements of `y`. Only used if `x` is None.
|
264
|
+
axis : int, optional
|
265
|
+
Specifies the axis to cumulate. Default is -1 (last axis).
|
266
|
+
initial : scalar, optional
|
267
|
+
If given, insert this value at the beginning of the returned result.
|
268
|
+
0 or None are the only values accepted. Default is None, which means
|
269
|
+
`res` has one element less than `y` along the axis of integration.
|
270
|
+
|
271
|
+
Returns
|
272
|
+
-------
|
273
|
+
res : ndarray
|
274
|
+
The result of cumulative integration of `y` along `axis`.
|
275
|
+
If `initial` is None, the shape is such that the axis of integration
|
276
|
+
has one less value than `y`. If `initial` is given, the shape is equal
|
277
|
+
to that of `y`.
|
278
|
+
|
279
|
+
See Also
|
280
|
+
--------
|
281
|
+
numpy.cumsum, numpy.cumprod
|
282
|
+
cumulative_simpson : cumulative integration using Simpson's 1/3 rule
|
283
|
+
quad : adaptive quadrature using QUADPACK
|
284
|
+
fixed_quad : fixed-order Gaussian quadrature
|
285
|
+
dblquad : double integrals
|
286
|
+
tplquad : triple integrals
|
287
|
+
romb : integrators for sampled data
|
288
|
+
|
289
|
+
Examples
|
290
|
+
--------
|
291
|
+
>>> from scipy import integrate
|
292
|
+
>>> import numpy as np
|
293
|
+
>>> import matplotlib.pyplot as plt
|
294
|
+
|
295
|
+
>>> x = np.linspace(-2, 2, num=20)
|
296
|
+
>>> y = x
|
297
|
+
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
|
298
|
+
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
|
299
|
+
>>> plt.show()
|
300
|
+
|
301
|
+
"""
|
302
|
+
y = np.asarray(y)
|
303
|
+
if y.shape[axis] == 0:
|
304
|
+
raise ValueError("At least one point is required along `axis`.")
|
305
|
+
if x is None:
|
306
|
+
d = dx
|
307
|
+
else:
|
308
|
+
x = np.asarray(x)
|
309
|
+
if x.ndim == 1:
|
310
|
+
d = np.diff(x)
|
311
|
+
# reshape to correct shape
|
312
|
+
shape = [1] * y.ndim
|
313
|
+
shape[axis] = -1
|
314
|
+
d = d.reshape(shape)
|
315
|
+
elif len(x.shape) != len(y.shape):
|
316
|
+
raise ValueError("If given, shape of x must be 1-D or the "
|
317
|
+
"same as y.")
|
318
|
+
else:
|
319
|
+
d = np.diff(x, axis=axis)
|
320
|
+
|
321
|
+
if d.shape[axis] != y.shape[axis] - 1:
|
322
|
+
raise ValueError("If given, length of x along axis must be the "
|
323
|
+
"same as y.")
|
324
|
+
|
325
|
+
nd = len(y.shape)
|
326
|
+
slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
|
327
|
+
slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
|
328
|
+
res = np.cumsum(d * (y[slice1] + y[slice2]) / 2.0, axis=axis)
|
329
|
+
|
330
|
+
if initial is not None:
|
331
|
+
if initial != 0:
|
332
|
+
raise ValueError("`initial` must be `None` or `0`.")
|
333
|
+
if not np.isscalar(initial):
|
334
|
+
raise ValueError("`initial` parameter should be a scalar.")
|
335
|
+
|
336
|
+
shape = list(res.shape)
|
337
|
+
shape[axis] = 1
|
338
|
+
res = np.concatenate([np.full(shape, initial, dtype=res.dtype), res],
|
339
|
+
axis=axis)
|
340
|
+
|
341
|
+
return res
|
342
|
+
|
343
|
+
|
344
|
+
def _basic_simpson(y, start, stop, x, dx, axis):
|
345
|
+
nd = len(y.shape)
|
346
|
+
if start is None:
|
347
|
+
start = 0
|
348
|
+
step = 2
|
349
|
+
slice_all = (slice(None),)*nd
|
350
|
+
slice0 = tupleset(slice_all, axis, slice(start, stop, step))
|
351
|
+
slice1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
|
352
|
+
slice2 = tupleset(slice_all, axis, slice(start+2, stop+2, step))
|
353
|
+
|
354
|
+
if x is None: # Even-spaced Simpson's rule.
|
355
|
+
result = np.sum(y[slice0] + 4.0*y[slice1] + y[slice2], axis=axis)
|
356
|
+
result *= dx / 3.0
|
357
|
+
else:
|
358
|
+
# Account for possibly different spacings.
|
359
|
+
# Simpson's rule changes a bit.
|
360
|
+
h = np.diff(x, axis=axis)
|
361
|
+
sl0 = tupleset(slice_all, axis, slice(start, stop, step))
|
362
|
+
sl1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
|
363
|
+
h0 = h[sl0].astype(float, copy=False)
|
364
|
+
h1 = h[sl1].astype(float, copy=False)
|
365
|
+
hsum = h0 + h1
|
366
|
+
hprod = h0 * h1
|
367
|
+
h0divh1 = np.true_divide(h0, h1, out=np.zeros_like(h0), where=h1 != 0)
|
368
|
+
tmp = hsum/6.0 * (y[slice0] *
|
369
|
+
(2.0 - np.true_divide(1.0, h0divh1,
|
370
|
+
out=np.zeros_like(h0divh1),
|
371
|
+
where=h0divh1 != 0)) +
|
372
|
+
y[slice1] * (hsum *
|
373
|
+
np.true_divide(hsum, hprod,
|
374
|
+
out=np.zeros_like(hsum),
|
375
|
+
where=hprod != 0)) +
|
376
|
+
y[slice2] * (2.0 - h0divh1))
|
377
|
+
result = np.sum(tmp, axis=axis)
|
378
|
+
return result
|
379
|
+
|
380
|
+
|
381
|
+
def simpson(y, x=None, *, dx=1.0, axis=-1):
|
382
|
+
"""
|
383
|
+
Integrate y(x) using samples along the given axis and the composite
|
384
|
+
Simpson's rule. If x is None, spacing of dx is assumed.
|
385
|
+
|
386
|
+
Parameters
|
387
|
+
----------
|
388
|
+
y : array_like
|
389
|
+
Array to be integrated.
|
390
|
+
x : array_like, optional
|
391
|
+
If given, the points at which `y` is sampled.
|
392
|
+
dx : float, optional
|
393
|
+
Spacing of integration points along axis of `x`. Only used when
|
394
|
+
`x` is None. Default is 1.
|
395
|
+
axis : int, optional
|
396
|
+
Axis along which to integrate. Default is the last axis.
|
397
|
+
|
398
|
+
Returns
|
399
|
+
-------
|
400
|
+
float
|
401
|
+
The estimated integral computed with the composite Simpson's rule.
|
402
|
+
|
403
|
+
See Also
|
404
|
+
--------
|
405
|
+
quad : adaptive quadrature using QUADPACK
|
406
|
+
fixed_quad : fixed-order Gaussian quadrature
|
407
|
+
dblquad : double integrals
|
408
|
+
tplquad : triple integrals
|
409
|
+
romb : integrators for sampled data
|
410
|
+
cumulative_trapezoid : cumulative integration for sampled data
|
411
|
+
cumulative_simpson : cumulative integration using Simpson's 1/3 rule
|
412
|
+
|
413
|
+
Notes
|
414
|
+
-----
|
415
|
+
For an odd number of samples that are equally spaced the result is
|
416
|
+
exact if the function is a polynomial of order 3 or less. If
|
417
|
+
the samples are not equally spaced, then the result is exact only
|
418
|
+
if the function is a polynomial of order 2 or less.
|
419
|
+
|
420
|
+
References
|
421
|
+
----------
|
422
|
+
.. [1] Cartwright, Kenneth V. Simpson's Rule Cumulative Integration with
|
423
|
+
MS Excel and Irregularly-spaced Data. Journal of Mathematical
|
424
|
+
Sciences and Mathematics Education. 12 (2): 1-9
|
425
|
+
|
426
|
+
Examples
|
427
|
+
--------
|
428
|
+
>>> from scipy import integrate
|
429
|
+
>>> import numpy as np
|
430
|
+
>>> x = np.arange(0, 10)
|
431
|
+
>>> y = np.arange(0, 10)
|
432
|
+
|
433
|
+
>>> integrate.simpson(y, x=x)
|
434
|
+
40.5
|
435
|
+
|
436
|
+
>>> y = np.power(x, 3)
|
437
|
+
>>> integrate.simpson(y, x=x)
|
438
|
+
1640.5
|
439
|
+
>>> integrate.quad(lambda x: x**3, 0, 9)[0]
|
440
|
+
1640.25
|
441
|
+
|
442
|
+
"""
|
443
|
+
y = np.asarray(y)
|
444
|
+
nd = len(y.shape)
|
445
|
+
N = y.shape[axis]
|
446
|
+
last_dx = dx
|
447
|
+
returnshape = 0
|
448
|
+
if x is not None:
|
449
|
+
x = np.asarray(x)
|
450
|
+
if len(x.shape) == 1:
|
451
|
+
shapex = [1] * nd
|
452
|
+
shapex[axis] = x.shape[0]
|
453
|
+
saveshape = x.shape
|
454
|
+
returnshape = 1
|
455
|
+
x = x.reshape(tuple(shapex))
|
456
|
+
elif len(x.shape) != len(y.shape):
|
457
|
+
raise ValueError("If given, shape of x must be 1-D or the "
|
458
|
+
"same as y.")
|
459
|
+
if x.shape[axis] != N:
|
460
|
+
raise ValueError("If given, length of x along axis must be the "
|
461
|
+
"same as y.")
|
462
|
+
|
463
|
+
if N % 2 == 0:
|
464
|
+
val = 0.0
|
465
|
+
result = 0.0
|
466
|
+
slice_all = (slice(None),) * nd
|
467
|
+
|
468
|
+
if N == 2:
|
469
|
+
# need at least 3 points in integration axis to form parabolic
|
470
|
+
# segment. If there are two points then any of 'avg', 'first',
|
471
|
+
# 'last' should give the same result.
|
472
|
+
slice1 = tupleset(slice_all, axis, -1)
|
473
|
+
slice2 = tupleset(slice_all, axis, -2)
|
474
|
+
if x is not None:
|
475
|
+
last_dx = x[slice1] - x[slice2]
|
476
|
+
val += 0.5 * last_dx * (y[slice1] + y[slice2])
|
477
|
+
else:
|
478
|
+
# use Simpson's rule on first intervals
|
479
|
+
result = _basic_simpson(y, 0, N-3, x, dx, axis)
|
480
|
+
|
481
|
+
slice1 = tupleset(slice_all, axis, -1)
|
482
|
+
slice2 = tupleset(slice_all, axis, -2)
|
483
|
+
slice3 = tupleset(slice_all, axis, -3)
|
484
|
+
|
485
|
+
h = np.asarray([dx, dx], dtype=np.float64)
|
486
|
+
if x is not None:
|
487
|
+
# grab the last two spacings from the appropriate axis
|
488
|
+
hm2 = tupleset(slice_all, axis, slice(-2, -1, 1))
|
489
|
+
hm1 = tupleset(slice_all, axis, slice(-1, None, 1))
|
490
|
+
|
491
|
+
diffs = np.float64(np.diff(x, axis=axis))
|
492
|
+
h = [np.squeeze(diffs[hm2], axis=axis),
|
493
|
+
np.squeeze(diffs[hm1], axis=axis)]
|
494
|
+
|
495
|
+
# This is the correction for the last interval according to
|
496
|
+
# Cartwright.
|
497
|
+
# However, I used the equations given at
|
498
|
+
# https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule_for_irregularly_spaced_data
|
499
|
+
# A footnote on Wikipedia says:
|
500
|
+
# Cartwright 2017, Equation 8. The equation in Cartwright is
|
501
|
+
# calculating the first interval whereas the equations in the
|
502
|
+
# Wikipedia article are adjusting for the last integral. If the
|
503
|
+
# proper algebraic substitutions are made, the equation results in
|
504
|
+
# the values shown.
|
505
|
+
num = 2 * h[1] ** 2 + 3 * h[0] * h[1]
|
506
|
+
den = 6 * (h[1] + h[0])
|
507
|
+
alpha = np.true_divide(
|
508
|
+
num,
|
509
|
+
den,
|
510
|
+
out=np.zeros_like(den),
|
511
|
+
where=den != 0
|
512
|
+
)
|
513
|
+
|
514
|
+
num = h[1] ** 2 + 3.0 * h[0] * h[1]
|
515
|
+
den = 6 * h[0]
|
516
|
+
beta = np.true_divide(
|
517
|
+
num,
|
518
|
+
den,
|
519
|
+
out=np.zeros_like(den),
|
520
|
+
where=den != 0
|
521
|
+
)
|
522
|
+
|
523
|
+
num = 1 * h[1] ** 3
|
524
|
+
den = 6 * h[0] * (h[0] + h[1])
|
525
|
+
eta = np.true_divide(
|
526
|
+
num,
|
527
|
+
den,
|
528
|
+
out=np.zeros_like(den),
|
529
|
+
where=den != 0
|
530
|
+
)
|
531
|
+
|
532
|
+
result += alpha*y[slice1] + beta*y[slice2] - eta*y[slice3]
|
533
|
+
|
534
|
+
result += val
|
535
|
+
else:
|
536
|
+
result = _basic_simpson(y, 0, N-2, x, dx, axis)
|
537
|
+
if returnshape:
|
538
|
+
x = x.reshape(saveshape)
|
539
|
+
return result
|
540
|
+
|
541
|
+
|
542
|
+
def _cumulatively_sum_simpson_integrals(
|
543
|
+
y: np.ndarray,
|
544
|
+
dx: np.ndarray,
|
545
|
+
integration_func: Callable[[np.ndarray, np.ndarray], np.ndarray],
|
546
|
+
) -> np.ndarray:
|
547
|
+
"""Calculate cumulative sum of Simpson integrals.
|
548
|
+
Takes as input the integration function to be used.
|
549
|
+
The integration_func is assumed to return the cumulative sum using
|
550
|
+
composite Simpson's rule. Assumes the axis of summation is -1.
|
551
|
+
"""
|
552
|
+
sub_integrals_h1 = integration_func(y, dx)
|
553
|
+
sub_integrals_h2 = integration_func(y[..., ::-1], dx[..., ::-1])[..., ::-1]
|
554
|
+
|
555
|
+
shape = list(sub_integrals_h1.shape)
|
556
|
+
shape[-1] += 1
|
557
|
+
sub_integrals = np.empty(shape)
|
558
|
+
sub_integrals[..., :-1:2] = sub_integrals_h1[..., ::2]
|
559
|
+
sub_integrals[..., 1::2] = sub_integrals_h2[..., ::2]
|
560
|
+
# Integral over last subinterval can only be calculated from
|
561
|
+
# formula for h2
|
562
|
+
sub_integrals[..., -1] = sub_integrals_h2[..., -1]
|
563
|
+
res = np.cumsum(sub_integrals, axis=-1)
|
564
|
+
return res
|
565
|
+
|
566
|
+
|
567
|
+
def _cumulative_simpson_equal_intervals(y: np.ndarray, dx: np.ndarray) -> np.ndarray:
|
568
|
+
"""Calculate the Simpson integrals for all h1 intervals assuming equal interval
|
569
|
+
widths. The function can also be used to calculate the integral for all
|
570
|
+
h2 intervals by reversing the inputs, `y` and `dx`.
|
571
|
+
"""
|
572
|
+
d = dx[..., :-1]
|
573
|
+
f1 = y[..., :-2]
|
574
|
+
f2 = y[..., 1:-1]
|
575
|
+
f3 = y[..., 2:]
|
576
|
+
|
577
|
+
# Calculate integral over the subintervals (eqn (10) of Reference [2])
|
578
|
+
return d / 3 * (5 * f1 / 4 + 2 * f2 - f3 / 4)
|
579
|
+
|
580
|
+
|
581
|
+
def _cumulative_simpson_unequal_intervals(y: np.ndarray, dx: np.ndarray) -> np.ndarray:
|
582
|
+
"""Calculate the Simpson integrals for all h1 intervals assuming unequal interval
|
583
|
+
widths. The function can also be used to calculate the integral for all
|
584
|
+
h2 intervals by reversing the inputs, `y` and `dx`.
|
585
|
+
"""
|
586
|
+
x21 = dx[..., :-1]
|
587
|
+
x32 = dx[..., 1:]
|
588
|
+
f1 = y[..., :-2]
|
589
|
+
f2 = y[..., 1:-1]
|
590
|
+
f3 = y[..., 2:]
|
591
|
+
|
592
|
+
x31 = x21 + x32
|
593
|
+
x21_x31 = x21/x31
|
594
|
+
x21_x32 = x21/x32
|
595
|
+
x21x21_x31x32 = x21_x31 * x21_x32
|
596
|
+
|
597
|
+
# Calculate integral over the subintervals (eqn (8) of Reference [2])
|
598
|
+
coeff1 = 3 - x21_x31
|
599
|
+
coeff2 = 3 + x21x21_x31x32 + x21_x31
|
600
|
+
coeff3 = -x21x21_x31x32
|
601
|
+
|
602
|
+
return x21/6 * (coeff1*f1 + coeff2*f2 + coeff3*f3)
|
603
|
+
|
604
|
+
|
605
|
+
def _ensure_float_array(arr: npt.ArrayLike) -> np.ndarray:
|
606
|
+
arr = np.asarray(arr)
|
607
|
+
if np.issubdtype(arr.dtype, np.integer):
|
608
|
+
arr = arr.astype(float, copy=False)
|
609
|
+
return arr
|
610
|
+
|
611
|
+
|
612
|
+
def cumulative_simpson(y, *, x=None, dx=1.0, axis=-1, initial=None):
|
613
|
+
r"""
|
614
|
+
Cumulatively integrate y(x) using the composite Simpson's 1/3 rule.
|
615
|
+
The integral of the samples at every point is calculated by assuming a
|
616
|
+
quadratic relationship between each point and the two adjacent points.
|
617
|
+
|
618
|
+
Parameters
|
619
|
+
----------
|
620
|
+
y : array_like
|
621
|
+
Values to integrate. Requires at least one point along `axis`. If two or fewer
|
622
|
+
points are provided along `axis`, Simpson's integration is not possible and the
|
623
|
+
result is calculated with `cumulative_trapezoid`.
|
624
|
+
x : array_like, optional
|
625
|
+
The coordinate to integrate along. Must have the same shape as `y` or
|
626
|
+
must be 1D with the same length as `y` along `axis`. `x` must also be
|
627
|
+
strictly increasing along `axis`.
|
628
|
+
If `x` is None (default), integration is performed using spacing `dx`
|
629
|
+
between consecutive elements in `y`.
|
630
|
+
dx : scalar or array_like, optional
|
631
|
+
Spacing between elements of `y`. Only used if `x` is None. Can either
|
632
|
+
be a float, or an array with the same shape as `y`, but of length one along
|
633
|
+
`axis`. Default is 1.0.
|
634
|
+
axis : int, optional
|
635
|
+
Specifies the axis to integrate along. Default is -1 (last axis).
|
636
|
+
initial : scalar or array_like, optional
|
637
|
+
If given, insert this value at the beginning of the returned result,
|
638
|
+
and add it to the rest of the result. Default is None, which means no
|
639
|
+
value at ``x[0]`` is returned and `res` has one element less than `y`
|
640
|
+
along the axis of integration. Can either be a float, or an array with
|
641
|
+
the same shape as `y`, but of length one along `axis`.
|
642
|
+
|
643
|
+
Returns
|
644
|
+
-------
|
645
|
+
res : ndarray
|
646
|
+
The result of cumulative integration of `y` along `axis`.
|
647
|
+
If `initial` is None, the shape is such that the axis of integration
|
648
|
+
has one less value than `y`. If `initial` is given, the shape is equal
|
649
|
+
to that of `y`.
|
650
|
+
|
651
|
+
See Also
|
652
|
+
--------
|
653
|
+
numpy.cumsum
|
654
|
+
cumulative_trapezoid : cumulative integration using the composite
|
655
|
+
trapezoidal rule
|
656
|
+
simpson : integrator for sampled data using the Composite Simpson's Rule
|
657
|
+
|
658
|
+
Notes
|
659
|
+
-----
|
660
|
+
|
661
|
+
.. versionadded:: 1.12.0
|
662
|
+
|
663
|
+
The composite Simpson's 1/3 method can be used to approximate the definite
|
664
|
+
integral of a sampled input function :math:`y(x)` [1]_. The method assumes
|
665
|
+
a quadratic relationship over the interval containing any three consecutive
|
666
|
+
sampled points.
|
667
|
+
|
668
|
+
Consider three consecutive points:
|
669
|
+
:math:`(x_1, y_1), (x_2, y_2), (x_3, y_3)`.
|
670
|
+
|
671
|
+
Assuming a quadratic relationship over the three points, the integral over
|
672
|
+
the subinterval between :math:`x_1` and :math:`x_2` is given by formula
|
673
|
+
(8) of [2]_:
|
674
|
+
|
675
|
+
.. math::
|
676
|
+
\int_{x_1}^{x_2} y(x) dx\ &= \frac{x_2-x_1}{6}\left[\
|
677
|
+
\left\{3-\frac{x_2-x_1}{x_3-x_1}\right\} y_1 + \
|
678
|
+
\left\{3 + \frac{(x_2-x_1)^2}{(x_3-x_2)(x_3-x_1)} + \
|
679
|
+
\frac{x_2-x_1}{x_3-x_1}\right\} y_2\\
|
680
|
+
- \frac{(x_2-x_1)^2}{(x_3-x_2)(x_3-x_1)} y_3\right]
|
681
|
+
|
682
|
+
The integral between :math:`x_2` and :math:`x_3` is given by swapping
|
683
|
+
appearances of :math:`x_1` and :math:`x_3`. The integral is estimated
|
684
|
+
separately for each subinterval and then cumulatively summed to obtain
|
685
|
+
the final result.
|
686
|
+
|
687
|
+
For samples that are equally spaced, the result is exact if the function
|
688
|
+
is a polynomial of order three or less [1]_ and the number of subintervals
|
689
|
+
is even. Otherwise, the integral is exact for polynomials of order two or
|
690
|
+
less.
|
691
|
+
|
692
|
+
References
|
693
|
+
----------
|
694
|
+
.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Simpson's_rule
|
695
|
+
.. [2] Cartwright, Kenneth V. Simpson's Rule Cumulative Integration with
|
696
|
+
MS Excel and Irregularly-spaced Data. Journal of Mathematical
|
697
|
+
Sciences and Mathematics Education. 12 (2): 1-9
|
698
|
+
|
699
|
+
Examples
|
700
|
+
--------
|
701
|
+
>>> from scipy import integrate
|
702
|
+
>>> import numpy as np
|
703
|
+
>>> import matplotlib.pyplot as plt
|
704
|
+
>>> x = np.linspace(-2, 2, num=20)
|
705
|
+
>>> y = x**2
|
706
|
+
>>> y_int = integrate.cumulative_simpson(y, x=x, initial=0)
|
707
|
+
>>> fig, ax = plt.subplots()
|
708
|
+
>>> ax.plot(x, y_int, 'ro', x, x**3/3 - (x[0])**3/3, 'b-')
|
709
|
+
>>> ax.grid()
|
710
|
+
>>> plt.show()
|
711
|
+
|
712
|
+
The output of `cumulative_simpson` is similar to that of iteratively
|
713
|
+
calling `simpson` with successively higher upper limits of integration, but
|
714
|
+
not identical.
|
715
|
+
|
716
|
+
>>> def cumulative_simpson_reference(y, x):
|
717
|
+
... return np.asarray([integrate.simpson(y[:i], x=x[:i])
|
718
|
+
... for i in range(2, len(y) + 1)])
|
719
|
+
>>>
|
720
|
+
>>> rng = np.random.default_rng(354673834679465)
|
721
|
+
>>> x, y = rng.random(size=(2, 10))
|
722
|
+
>>> x.sort()
|
723
|
+
>>>
|
724
|
+
>>> res = integrate.cumulative_simpson(y, x=x)
|
725
|
+
>>> ref = cumulative_simpson_reference(y, x)
|
726
|
+
>>> equal = np.abs(res - ref) < 1e-15
|
727
|
+
>>> equal # not equal when `simpson` has even number of subintervals
|
728
|
+
array([False, True, False, True, False, True, False, True, True])
|
729
|
+
|
730
|
+
This is expected: because `cumulative_simpson` has access to more
|
731
|
+
information than `simpson`, it can typically produce more accurate
|
732
|
+
estimates of the underlying integral over subintervals.
|
733
|
+
|
734
|
+
"""
|
735
|
+
y = _ensure_float_array(y)
|
736
|
+
|
737
|
+
# validate `axis` and standardize to work along the last axis
|
738
|
+
original_y = y
|
739
|
+
original_shape = y.shape
|
740
|
+
try:
|
741
|
+
y = np.swapaxes(y, axis, -1)
|
742
|
+
except IndexError as e:
|
743
|
+
message = f"`axis={axis}` is not valid for `y` with `y.ndim={y.ndim}`."
|
744
|
+
raise ValueError(message) from e
|
745
|
+
if y.shape[-1] < 3:
|
746
|
+
res = cumulative_trapezoid(original_y, x, dx=dx, axis=axis, initial=None)
|
747
|
+
res = np.swapaxes(res, axis, -1)
|
748
|
+
|
749
|
+
elif x is not None:
|
750
|
+
x = _ensure_float_array(x)
|
751
|
+
message = ("If given, shape of `x` must be the same as `y` or 1-D with "
|
752
|
+
"the same length as `y` along `axis`.")
|
753
|
+
if not (x.shape == original_shape
|
754
|
+
or (x.ndim == 1 and len(x) == original_shape[axis])):
|
755
|
+
raise ValueError(message)
|
756
|
+
|
757
|
+
x = np.broadcast_to(x, y.shape) if x.ndim == 1 else np.swapaxes(x, axis, -1)
|
758
|
+
dx = np.diff(x, axis=-1)
|
759
|
+
if np.any(dx <= 0):
|
760
|
+
raise ValueError("Input x must be strictly increasing.")
|
761
|
+
res = _cumulatively_sum_simpson_integrals(
|
762
|
+
y, dx, _cumulative_simpson_unequal_intervals
|
763
|
+
)
|
764
|
+
|
765
|
+
else:
|
766
|
+
dx = _ensure_float_array(dx)
|
767
|
+
final_dx_shape = tupleset(original_shape, axis, original_shape[axis] - 1)
|
768
|
+
alt_input_dx_shape = tupleset(original_shape, axis, 1)
|
769
|
+
message = ("If provided, `dx` must either be a scalar or have the same "
|
770
|
+
"shape as `y` but with only 1 point along `axis`.")
|
771
|
+
if not (dx.ndim == 0 or dx.shape == alt_input_dx_shape):
|
772
|
+
raise ValueError(message)
|
773
|
+
dx = np.broadcast_to(dx, final_dx_shape)
|
774
|
+
dx = np.swapaxes(dx, axis, -1)
|
775
|
+
res = _cumulatively_sum_simpson_integrals(
|
776
|
+
y, dx, _cumulative_simpson_equal_intervals
|
777
|
+
)
|
778
|
+
|
779
|
+
if initial is not None:
|
780
|
+
initial = _ensure_float_array(initial)
|
781
|
+
alt_initial_input_shape = tupleset(original_shape, axis, 1)
|
782
|
+
message = ("If provided, `initial` must either be a scalar or have the "
|
783
|
+
"same shape as `y` but with only 1 point along `axis`.")
|
784
|
+
if not (initial.ndim == 0 or initial.shape == alt_initial_input_shape):
|
785
|
+
raise ValueError(message)
|
786
|
+
initial = np.broadcast_to(initial, alt_initial_input_shape)
|
787
|
+
initial = np.swapaxes(initial, axis, -1)
|
788
|
+
|
789
|
+
res += initial
|
790
|
+
res = np.concatenate((initial, res), axis=-1)
|
791
|
+
|
792
|
+
res = np.swapaxes(res, -1, axis)
|
793
|
+
return res
|
794
|
+
|
795
|
+
|
796
|
+
def romb(y, dx=1.0, axis=-1, show=False):
|
797
|
+
"""
|
798
|
+
Romberg integration using samples of a function.
|
799
|
+
|
800
|
+
Parameters
|
801
|
+
----------
|
802
|
+
y : array_like
|
803
|
+
A vector of ``2**k + 1`` equally-spaced samples of a function.
|
804
|
+
dx : float, optional
|
805
|
+
The sample spacing. Default is 1.
|
806
|
+
axis : int, optional
|
807
|
+
The axis along which to integrate. Default is -1 (last axis).
|
808
|
+
show : bool, optional
|
809
|
+
When `y` is a single 1-D array, then if this argument is True
|
810
|
+
print the table showing Richardson extrapolation from the
|
811
|
+
samples. Default is False.
|
812
|
+
|
813
|
+
Returns
|
814
|
+
-------
|
815
|
+
romb : ndarray
|
816
|
+
The integrated result for `axis`.
|
817
|
+
|
818
|
+
See Also
|
819
|
+
--------
|
820
|
+
quad : adaptive quadrature using QUADPACK
|
821
|
+
fixed_quad : fixed-order Gaussian quadrature
|
822
|
+
dblquad : double integrals
|
823
|
+
tplquad : triple integrals
|
824
|
+
simpson : integrators for sampled data
|
825
|
+
cumulative_trapezoid : cumulative integration for sampled data
|
826
|
+
|
827
|
+
Examples
|
828
|
+
--------
|
829
|
+
>>> from scipy import integrate
|
830
|
+
>>> import numpy as np
|
831
|
+
>>> x = np.arange(10, 14.25, 0.25)
|
832
|
+
>>> y = np.arange(3, 12)
|
833
|
+
|
834
|
+
>>> integrate.romb(y)
|
835
|
+
56.0
|
836
|
+
|
837
|
+
>>> y = np.sin(np.power(x, 2.5))
|
838
|
+
>>> integrate.romb(y)
|
839
|
+
-0.742561336672229
|
840
|
+
|
841
|
+
>>> integrate.romb(y, show=True)
|
842
|
+
Richardson Extrapolation Table for Romberg Integration
|
843
|
+
======================================================
|
844
|
+
-0.81576
|
845
|
+
4.63862 6.45674
|
846
|
+
-1.10581 -3.02062 -3.65245
|
847
|
+
-2.57379 -3.06311 -3.06595 -3.05664
|
848
|
+
-1.34093 -0.92997 -0.78776 -0.75160 -0.74256
|
849
|
+
======================================================
|
850
|
+
-0.742561336672229 # may vary
|
851
|
+
|
852
|
+
"""
|
853
|
+
y = np.asarray(y)
|
854
|
+
nd = len(y.shape)
|
855
|
+
Nsamps = y.shape[axis]
|
856
|
+
Ninterv = Nsamps-1
|
857
|
+
n = 1
|
858
|
+
k = 0
|
859
|
+
while n < Ninterv:
|
860
|
+
n <<= 1
|
861
|
+
k += 1
|
862
|
+
if n != Ninterv:
|
863
|
+
raise ValueError("Number of samples must be one plus a "
|
864
|
+
"non-negative power of 2.")
|
865
|
+
|
866
|
+
R = {}
|
867
|
+
slice_all = (slice(None),) * nd
|
868
|
+
slice0 = tupleset(slice_all, axis, 0)
|
869
|
+
slicem1 = tupleset(slice_all, axis, -1)
|
870
|
+
h = Ninterv * np.asarray(dx, dtype=float)
|
871
|
+
R[(0, 0)] = (y[slice0] + y[slicem1])/2.0*h
|
872
|
+
slice_R = slice_all
|
873
|
+
start = stop = step = Ninterv
|
874
|
+
for i in range(1, k+1):
|
875
|
+
start >>= 1
|
876
|
+
slice_R = tupleset(slice_R, axis, slice(start, stop, step))
|
877
|
+
step >>= 1
|
878
|
+
R[(i, 0)] = 0.5*(R[(i-1, 0)] + h*y[slice_R].sum(axis=axis))
|
879
|
+
for j in range(1, i+1):
|
880
|
+
prev = R[(i, j-1)]
|
881
|
+
R[(i, j)] = prev + (prev-R[(i-1, j-1)]) / ((1 << (2*j))-1)
|
882
|
+
h /= 2.0
|
883
|
+
|
884
|
+
if show:
|
885
|
+
if not np.isscalar(R[(0, 0)]):
|
886
|
+
print("*** Printing table only supported for integrals" +
|
887
|
+
" of a single data set.")
|
888
|
+
else:
|
889
|
+
try:
|
890
|
+
precis = show[0]
|
891
|
+
except (TypeError, IndexError):
|
892
|
+
precis = 5
|
893
|
+
try:
|
894
|
+
width = show[1]
|
895
|
+
except (TypeError, IndexError):
|
896
|
+
width = 8
|
897
|
+
formstr = f"%{width}.{precis}f"
|
898
|
+
|
899
|
+
title = "Richardson Extrapolation Table for Romberg Integration"
|
900
|
+
print(title, "=" * len(title), sep="\n", end="\n")
|
901
|
+
for i in range(k+1):
|
902
|
+
for j in range(i+1):
|
903
|
+
print(formstr % R[(i, j)], end=" ")
|
904
|
+
print()
|
905
|
+
print("=" * len(title))
|
906
|
+
|
907
|
+
return R[(k, k)]
|
908
|
+
|
909
|
+
|
910
|
+
# Coefficients for Newton-Cotes quadrature
|
911
|
+
#
|
912
|
+
# These are the points being used
|
913
|
+
# to construct the local interpolating polynomial
|
914
|
+
# a are the weights for Newton-Cotes integration
|
915
|
+
# B is the error coefficient.
|
916
|
+
# error in these coefficients grows as N gets larger.
|
917
|
+
# or as samples are closer and closer together
|
918
|
+
|
919
|
+
# You can use maxima to find these rational coefficients
|
920
|
+
# for equally spaced data using the commands
|
921
|
+
# a(i,N) := (integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N)
|
922
|
+
# / ((N-i)! * i!) * (-1)^(N-i));
|
923
|
+
# Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
|
924
|
+
# Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
|
925
|
+
# B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
|
926
|
+
#
|
927
|
+
# pre-computed for equally-spaced weights
|
928
|
+
#
|
929
|
+
# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
|
930
|
+
#
|
931
|
+
# a = num_a*array(int_a)/den_a
|
932
|
+
# B = num_B*1.0 / den_B
|
933
|
+
#
|
934
|
+
# integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
|
935
|
+
# where k = N // 2
|
936
|
+
#
|
937
|
+
_builtincoeffs = {
|
938
|
+
1: (1,2,[1,1],-1,12),
|
939
|
+
2: (1,3,[1,4,1],-1,90),
|
940
|
+
3: (3,8,[1,3,3,1],-3,80),
|
941
|
+
4: (2,45,[7,32,12,32,7],-8,945),
|
942
|
+
5: (5,288,[19,75,50,50,75,19],-275,12096),
|
943
|
+
6: (1,140,[41,216,27,272,27,216,41],-9,1400),
|
944
|
+
7: (7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
|
945
|
+
8: (4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
|
946
|
+
-2368,467775),
|
947
|
+
9: (9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
|
948
|
+
15741,2857], -4671, 394240),
|
949
|
+
10: (5,299376,[16067,106300,-48525,272400,-260550,427368,
|
950
|
+
-260550,272400,-48525,106300,16067],
|
951
|
+
-673175, 163459296),
|
952
|
+
11: (11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
|
953
|
+
15493566,15493566,-9595542,25226685,-3237113,
|
954
|
+
13486539,2171465], -2224234463, 237758976000),
|
955
|
+
12: (1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
|
956
|
+
87516288,-87797136,87516288,-51491295,35725120,
|
957
|
+
-7587864,9903168,1364651], -3012, 875875),
|
958
|
+
13: (13, 402361344000,[8181904909, 56280729661, -31268252574,
|
959
|
+
156074417954,-151659573325,206683437987,
|
960
|
+
-43111992612,-43111992612,206683437987,
|
961
|
+
-151659573325,156074417954,-31268252574,
|
962
|
+
56280729661,8181904909], -2639651053,
|
963
|
+
344881152000),
|
964
|
+
14: (7, 2501928000, [90241897,710986864,-770720657,3501442784,
|
965
|
+
-6625093363,12630121616,-16802270373,19534438464,
|
966
|
+
-16802270373,12630121616,-6625093363,3501442784,
|
967
|
+
-770720657,710986864,90241897], -3740727473,
|
968
|
+
1275983280000)
|
969
|
+
}
|
970
|
+
|
971
|
+
|
972
|
+
def newton_cotes(rn, equal=0):
|
973
|
+
r"""
|
974
|
+
Return weights and error coefficient for Newton-Cotes integration.
|
975
|
+
|
976
|
+
Suppose we have (N+1) samples of f at the positions
|
977
|
+
x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
|
978
|
+
integral between x_0 and x_N is:
|
979
|
+
|
980
|
+
:math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
|
981
|
+
+ B_N (\Delta x)^{N+2} f^{N+1} (\xi)`
|
982
|
+
|
983
|
+
where :math:`\xi \in [x_0,x_N]`
|
984
|
+
and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.
|
985
|
+
|
986
|
+
If the samples are equally-spaced and N is even, then the error
|
987
|
+
term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.
|
988
|
+
|
989
|
+
Parameters
|
990
|
+
----------
|
991
|
+
rn : int
|
992
|
+
The integer order for equally-spaced data or the relative positions of
|
993
|
+
the samples with the first sample at 0 and the last at N, where N+1 is
|
994
|
+
the length of `rn`. N is the order of the Newton-Cotes integration.
|
995
|
+
equal : int, optional
|
996
|
+
Set to 1 to enforce equally spaced data.
|
997
|
+
|
998
|
+
Returns
|
999
|
+
-------
|
1000
|
+
an : ndarray
|
1001
|
+
1-D array of weights to apply to the function at the provided sample
|
1002
|
+
positions.
|
1003
|
+
B : float
|
1004
|
+
Error coefficient.
|
1005
|
+
|
1006
|
+
Notes
|
1007
|
+
-----
|
1008
|
+
Normally, the Newton-Cotes rules are used on smaller integration
|
1009
|
+
regions and a composite rule is used to return the total integral.
|
1010
|
+
|
1011
|
+
Examples
|
1012
|
+
--------
|
1013
|
+
Compute the integral of sin(x) in [0, :math:`\pi`]:
|
1014
|
+
|
1015
|
+
>>> from scipy.integrate import newton_cotes
|
1016
|
+
>>> import numpy as np
|
1017
|
+
>>> def f(x):
|
1018
|
+
... return np.sin(x)
|
1019
|
+
>>> a = 0
|
1020
|
+
>>> b = np.pi
|
1021
|
+
>>> exact = 2
|
1022
|
+
>>> for N in [2, 4, 6, 8, 10]:
|
1023
|
+
... x = np.linspace(a, b, N + 1)
|
1024
|
+
... an, B = newton_cotes(N, 1)
|
1025
|
+
... dx = (b - a) / N
|
1026
|
+
... quad = dx * np.sum(an * f(x))
|
1027
|
+
... error = abs(quad - exact)
|
1028
|
+
... print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
|
1029
|
+
...
|
1030
|
+
2 2.094395102 9.43951e-02
|
1031
|
+
4 1.998570732 1.42927e-03
|
1032
|
+
6 2.000017814 1.78136e-05
|
1033
|
+
8 1.999999835 1.64725e-07
|
1034
|
+
10 2.000000001 1.14677e-09
|
1035
|
+
|
1036
|
+
"""
|
1037
|
+
try:
|
1038
|
+
N = len(rn)-1
|
1039
|
+
if equal:
|
1040
|
+
rn = np.arange(N+1)
|
1041
|
+
elif np.all(np.diff(rn) == 1):
|
1042
|
+
equal = 1
|
1043
|
+
except Exception:
|
1044
|
+
N = rn
|
1045
|
+
rn = np.arange(N+1)
|
1046
|
+
equal = 1
|
1047
|
+
|
1048
|
+
if equal and N in _builtincoeffs:
|
1049
|
+
na, da, vi, nb, db = _builtincoeffs[N]
|
1050
|
+
an = na * np.array(vi, dtype=float) / da
|
1051
|
+
return an, float(nb)/db
|
1052
|
+
|
1053
|
+
if (rn[0] != 0) or (rn[-1] != N):
|
1054
|
+
raise ValueError("The sample positions must start at 0"
|
1055
|
+
" and end at N")
|
1056
|
+
yi = rn / float(N)
|
1057
|
+
ti = 2 * yi - 1
|
1058
|
+
nvec = np.arange(N+1)
|
1059
|
+
C = ti ** nvec[:, np.newaxis]
|
1060
|
+
Cinv = np.linalg.inv(C)
|
1061
|
+
# improve precision of result
|
1062
|
+
for i in range(2):
|
1063
|
+
Cinv = 2*Cinv - Cinv.dot(C).dot(Cinv)
|
1064
|
+
vec = 2.0 / (nvec[::2]+1)
|
1065
|
+
ai = Cinv[:, ::2].dot(vec) * (N / 2.)
|
1066
|
+
|
1067
|
+
if (N % 2 == 0) and equal:
|
1068
|
+
BN = N/(N+3.)
|
1069
|
+
power = N+2
|
1070
|
+
else:
|
1071
|
+
BN = N/(N+2.)
|
1072
|
+
power = N+1
|
1073
|
+
|
1074
|
+
BN = BN - np.dot(yi**power, ai)
|
1075
|
+
p1 = power+1
|
1076
|
+
fac = power*math.log(N) - gammaln(p1)
|
1077
|
+
fac = math.exp(fac)
|
1078
|
+
return ai, BN*fac
|
1079
|
+
|
1080
|
+
|
1081
|
+
def _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log):
|
1082
|
+
|
1083
|
+
# lazy import to avoid issues with partially-initialized submodule
|
1084
|
+
if not hasattr(qmc_quad, 'qmc'):
|
1085
|
+
from scipy import stats
|
1086
|
+
qmc_quad.stats = stats
|
1087
|
+
else:
|
1088
|
+
stats = qmc_quad.stats
|
1089
|
+
|
1090
|
+
if not callable(func):
|
1091
|
+
message = "`func` must be callable."
|
1092
|
+
raise TypeError(message)
|
1093
|
+
|
1094
|
+
# a, b will be modified, so copy. Oh well if it's copied twice.
|
1095
|
+
a = np.atleast_1d(a).copy()
|
1096
|
+
b = np.atleast_1d(b).copy()
|
1097
|
+
a, b = np.broadcast_arrays(a, b)
|
1098
|
+
dim = a.shape[0]
|
1099
|
+
|
1100
|
+
try:
|
1101
|
+
func((a + b) / 2)
|
1102
|
+
except Exception as e:
|
1103
|
+
message = ("`func` must evaluate the integrand at points within "
|
1104
|
+
"the integration range; e.g. `func( (a + b) / 2)` "
|
1105
|
+
"must return the integrand at the centroid of the "
|
1106
|
+
"integration volume.")
|
1107
|
+
raise ValueError(message) from e
|
1108
|
+
|
1109
|
+
try:
|
1110
|
+
func(np.array([a, b]).T)
|
1111
|
+
vfunc = func
|
1112
|
+
except Exception as e:
|
1113
|
+
message = ("Exception encountered when attempting vectorized call to "
|
1114
|
+
f"`func`: {e}. For better performance, `func` should "
|
1115
|
+
"accept two-dimensional array `x` with shape `(len(a), "
|
1116
|
+
"n_points)` and return an array of the integrand value at "
|
1117
|
+
"each of the `n_points.")
|
1118
|
+
warnings.warn(message, stacklevel=3)
|
1119
|
+
|
1120
|
+
def vfunc(x):
|
1121
|
+
return np.apply_along_axis(func, axis=-1, arr=x)
|
1122
|
+
|
1123
|
+
n_points_int = np.int64(n_points)
|
1124
|
+
if n_points != n_points_int:
|
1125
|
+
message = "`n_points` must be an integer."
|
1126
|
+
raise TypeError(message)
|
1127
|
+
|
1128
|
+
n_estimates_int = np.int64(n_estimates)
|
1129
|
+
if n_estimates != n_estimates_int:
|
1130
|
+
message = "`n_estimates` must be an integer."
|
1131
|
+
raise TypeError(message)
|
1132
|
+
|
1133
|
+
if qrng is None:
|
1134
|
+
qrng = stats.qmc.Halton(dim)
|
1135
|
+
elif not isinstance(qrng, stats.qmc.QMCEngine):
|
1136
|
+
message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
|
1137
|
+
raise TypeError(message)
|
1138
|
+
|
1139
|
+
if qrng.d != a.shape[0]:
|
1140
|
+
message = ("`qrng` must be initialized with dimensionality equal to "
|
1141
|
+
"the number of variables in `a`, i.e., "
|
1142
|
+
"`qrng.random().shape[-1]` must equal `a.shape[0]`.")
|
1143
|
+
raise ValueError(message)
|
1144
|
+
|
1145
|
+
rng_seed = getattr(qrng, 'rng_seed', None)
|
1146
|
+
rng = stats._qmc.check_random_state(rng_seed)
|
1147
|
+
|
1148
|
+
if log not in {True, False}:
|
1149
|
+
message = "`log` must be boolean (`True` or `False`)."
|
1150
|
+
raise TypeError(message)
|
1151
|
+
|
1152
|
+
return (vfunc, a, b, n_points_int, n_estimates_int, qrng, rng, log, stats)
|
1153
|
+
|
1154
|
+
|
1155
|
+
QMCQuadResult = namedtuple('QMCQuadResult', ['integral', 'standard_error'])
|
1156
|
+
|
1157
|
+
|
1158
|
+
def qmc_quad(func, a, b, *, n_estimates=8, n_points=1024, qrng=None,
|
1159
|
+
log=False):
|
1160
|
+
"""
|
1161
|
+
Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.
|
1162
|
+
|
1163
|
+
Parameters
|
1164
|
+
----------
|
1165
|
+
func : callable
|
1166
|
+
The integrand. Must accept a single argument ``x``, an array which
|
1167
|
+
specifies the point(s) at which to evaluate the scalar-valued
|
1168
|
+
integrand, and return the value(s) of the integrand.
|
1169
|
+
For efficiency, the function should be vectorized to accept an array of
|
1170
|
+
shape ``(d, n_points)``, where ``d`` is the number of variables (i.e.
|
1171
|
+
the dimensionality of the function domain) and `n_points` is the number
|
1172
|
+
of quadrature points, and return an array of shape ``(n_points,)``,
|
1173
|
+
the integrand at each quadrature point.
|
1174
|
+
a, b : array-like
|
1175
|
+
One-dimensional arrays specifying the lower and upper integration
|
1176
|
+
limits, respectively, of each of the ``d`` variables.
|
1177
|
+
n_estimates, n_points : int, optional
|
1178
|
+
`n_estimates` (default: 8) statistically independent QMC samples, each
|
1179
|
+
of `n_points` (default: 1024) points, will be generated by `qrng`.
|
1180
|
+
The total number of points at which the integrand `func` will be
|
1181
|
+
evaluated is ``n_points * n_estimates``. See Notes for details.
|
1182
|
+
qrng : `~scipy.stats.qmc.QMCEngine`, optional
|
1183
|
+
An instance of the QMCEngine from which to sample QMC points.
|
1184
|
+
The QMCEngine must be initialized to a number of dimensions ``d``
|
1185
|
+
corresponding with the number of variables ``x1, ..., xd`` passed to
|
1186
|
+
`func`.
|
1187
|
+
The provided QMCEngine is used to produce the first integral estimate.
|
1188
|
+
If `n_estimates` is greater than one, additional QMCEngines are
|
1189
|
+
spawned from the first (with scrambling enabled, if it is an option.)
|
1190
|
+
If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
|
1191
|
+
will be initialized with the number of dimensions determine from
|
1192
|
+
the length of `a`.
|
1193
|
+
log : boolean, default: False
|
1194
|
+
When set to True, `func` returns the log of the integrand, and
|
1195
|
+
the result object contains the log of the integral.
|
1196
|
+
|
1197
|
+
Returns
|
1198
|
+
-------
|
1199
|
+
result : object
|
1200
|
+
A result object with attributes:
|
1201
|
+
|
1202
|
+
integral : float
|
1203
|
+
The estimate of the integral.
|
1204
|
+
standard_error :
|
1205
|
+
The error estimate. See Notes for interpretation.
|
1206
|
+
|
1207
|
+
Notes
|
1208
|
+
-----
|
1209
|
+
Values of the integrand at each of the `n_points` points of a QMC sample
|
1210
|
+
are used to produce an estimate of the integral. This estimate is drawn
|
1211
|
+
from a population of possible estimates of the integral, the value of
|
1212
|
+
which we obtain depends on the particular points at which the integral
|
1213
|
+
was evaluated. We perform this process `n_estimates` times, each time
|
1214
|
+
evaluating the integrand at different scrambled QMC points, effectively
|
1215
|
+
drawing i.i.d. random samples from the population of integral estimates.
|
1216
|
+
The sample mean :math:`m` of these integral estimates is an
|
1217
|
+
unbiased estimator of the true value of the integral, and the standard
|
1218
|
+
error of the mean :math:`s` of these estimates may be used to generate
|
1219
|
+
confidence intervals using the t distribution with ``n_estimates - 1``
|
1220
|
+
degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
|
1221
|
+
while keeping the total number of function evaluation points
|
1222
|
+
``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
|
1223
|
+
increasing `n_estimates` tends to decrease the error estimate.
|
1224
|
+
|
1225
|
+
Examples
|
1226
|
+
--------
|
1227
|
+
QMC quadrature is particularly useful for computing integrals in higher
|
1228
|
+
dimensions. An example integrand is the probability density function
|
1229
|
+
of a multivariate normal distribution.
|
1230
|
+
|
1231
|
+
>>> import numpy as np
|
1232
|
+
>>> from scipy import stats
|
1233
|
+
>>> dim = 8
|
1234
|
+
>>> mean = np.zeros(dim)
|
1235
|
+
>>> cov = np.eye(dim)
|
1236
|
+
>>> def func(x):
|
1237
|
+
... # `multivariate_normal` expects the _last_ axis to correspond with
|
1238
|
+
... # the dimensionality of the space, so `x` must be transposed
|
1239
|
+
... return stats.multivariate_normal.pdf(x.T, mean, cov)
|
1240
|
+
|
1241
|
+
To compute the integral over the unit hypercube:
|
1242
|
+
|
1243
|
+
>>> from scipy.integrate import qmc_quad
|
1244
|
+
>>> a = np.zeros(dim)
|
1245
|
+
>>> b = np.ones(dim)
|
1246
|
+
>>> rng = np.random.default_rng()
|
1247
|
+
>>> qrng = stats.qmc.Halton(d=dim, seed=rng)
|
1248
|
+
>>> n_estimates = 8
|
1249
|
+
>>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
|
1250
|
+
>>> res.integral, res.standard_error
|
1251
|
+
(0.00018429555666024108, 1.0389431116001344e-07)
|
1252
|
+
|
1253
|
+
A two-sided, 99% confidence interval for the integral may be estimated
|
1254
|
+
as:
|
1255
|
+
|
1256
|
+
>>> t = stats.t(df=n_estimates-1, loc=res.integral,
|
1257
|
+
... scale=res.standard_error)
|
1258
|
+
>>> t.interval(0.99)
|
1259
|
+
(0.0001839319802536469, 0.00018465913306683527)
|
1260
|
+
|
1261
|
+
Indeed, the value reported by `scipy.stats.multivariate_normal` is
|
1262
|
+
within this range.
|
1263
|
+
|
1264
|
+
>>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
|
1265
|
+
0.00018430867675187443
|
1266
|
+
|
1267
|
+
"""
|
1268
|
+
args = _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log)
|
1269
|
+
func, a, b, n_points, n_estimates, qrng, rng, log, stats = args
|
1270
|
+
|
1271
|
+
def sum_product(integrands, dA, log=False):
|
1272
|
+
if log:
|
1273
|
+
return logsumexp(integrands) + np.log(dA)
|
1274
|
+
else:
|
1275
|
+
return np.sum(integrands * dA)
|
1276
|
+
|
1277
|
+
def mean(estimates, log=False):
|
1278
|
+
if log:
|
1279
|
+
return logsumexp(estimates) - np.log(n_estimates)
|
1280
|
+
else:
|
1281
|
+
return np.mean(estimates)
|
1282
|
+
|
1283
|
+
def std(estimates, m=None, ddof=0, log=False):
|
1284
|
+
m = m or mean(estimates, log)
|
1285
|
+
if log:
|
1286
|
+
estimates, m = np.broadcast_arrays(estimates, m)
|
1287
|
+
temp = np.vstack((estimates, m + np.pi * 1j))
|
1288
|
+
diff = logsumexp(temp, axis=0)
|
1289
|
+
return np.real(0.5 * (logsumexp(2 * diff)
|
1290
|
+
- np.log(n_estimates - ddof)))
|
1291
|
+
else:
|
1292
|
+
return np.std(estimates, ddof=ddof)
|
1293
|
+
|
1294
|
+
def sem(estimates, m=None, s=None, log=False):
|
1295
|
+
m = m or mean(estimates, log)
|
1296
|
+
s = s or std(estimates, m, ddof=1, log=log)
|
1297
|
+
if log:
|
1298
|
+
return s - 0.5*np.log(n_estimates)
|
1299
|
+
else:
|
1300
|
+
return s / np.sqrt(n_estimates)
|
1301
|
+
|
1302
|
+
# The sign of the integral depends on the order of the limits. Fix this by
|
1303
|
+
# ensuring that lower bounds are indeed lower and setting sign of resulting
|
1304
|
+
# integral manually
|
1305
|
+
if np.any(a == b):
|
1306
|
+
message = ("A lower limit was equal to an upper limit, so the value "
|
1307
|
+
"of the integral is zero by definition.")
|
1308
|
+
warnings.warn(message, stacklevel=2)
|
1309
|
+
return QMCQuadResult(-np.inf if log else 0, 0)
|
1310
|
+
|
1311
|
+
i_swap = b < a
|
1312
|
+
sign = (-1)**(i_swap.sum(axis=-1)) # odd # of swaps -> negative
|
1313
|
+
a[i_swap], b[i_swap] = b[i_swap], a[i_swap]
|
1314
|
+
|
1315
|
+
A = np.prod(b - a)
|
1316
|
+
dA = A / n_points
|
1317
|
+
|
1318
|
+
estimates = np.zeros(n_estimates)
|
1319
|
+
rngs = _rng_spawn(qrng.rng, n_estimates)
|
1320
|
+
for i in range(n_estimates):
|
1321
|
+
# Generate integral estimate
|
1322
|
+
sample = qrng.random(n_points)
|
1323
|
+
# The rationale for transposing is that this allows users to easily
|
1324
|
+
# unpack `x` into separate variables, if desired. This is consistent
|
1325
|
+
# with the `xx` array passed into the `scipy.integrate.nquad` `func`.
|
1326
|
+
x = stats.qmc.scale(sample, a, b).T # (n_dim, n_points)
|
1327
|
+
integrands = func(x)
|
1328
|
+
estimates[i] = sum_product(integrands, dA, log)
|
1329
|
+
|
1330
|
+
# Get a new, independently-scrambled QRNG for next time
|
1331
|
+
qrng = type(qrng)(seed=rngs[i], **qrng._init_quad)
|
1332
|
+
|
1333
|
+
integral = mean(estimates, log)
|
1334
|
+
standard_error = sem(estimates, m=integral, log=log)
|
1335
|
+
integral = integral + np.pi*1j if (log and sign < 0) else integral*sign
|
1336
|
+
return QMCQuadResult(integral, standard_error)
|