scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
sklearnex/svm/nusvc.py ADDED
@@ -0,0 +1,371 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.exceptions import NotFittedError
19
+ from sklearn.metrics import accuracy_score
20
+ from sklearn.svm import NuSVC as _sklearn_NuSVC
21
+ from sklearn.utils.validation import (
22
+ _deprecate_positional_args,
23
+ check_array,
24
+ check_is_fitted,
25
+ )
26
+
27
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
28
+ from daal4py.sklearn._utils import sklearn_check_version
29
+
30
+ from .._device_offload import dispatch, wrap_output_data
31
+ from ..utils._array_api import get_namespace
32
+ from ._common import BaseSVC
33
+
34
+ if sklearn_check_version("1.0"):
35
+ from sklearn.utils.metaestimators import available_if
36
+
37
+ from onedal.svm import NuSVC as onedal_NuSVC
38
+
39
+ if sklearn_check_version("1.6"):
40
+ from sklearn.utils.validation import validate_data
41
+ else:
42
+ validate_data = BaseSVC._validate_data
43
+
44
+
45
+ @control_n_jobs(
46
+ decorated_methods=["fit", "predict", "_predict_proba", "decision_function", "score"]
47
+ )
48
+ class NuSVC(_sklearn_NuSVC, BaseSVC):
49
+ __doc__ = _sklearn_NuSVC.__doc__
50
+
51
+ if sklearn_check_version("1.2"):
52
+ _parameter_constraints: dict = {**_sklearn_NuSVC._parameter_constraints}
53
+
54
+ @_deprecate_positional_args
55
+ def __init__(
56
+ self,
57
+ *,
58
+ nu=0.5,
59
+ kernel="rbf",
60
+ degree=3,
61
+ gamma="scale",
62
+ coef0=0.0,
63
+ shrinking=True,
64
+ probability=False,
65
+ tol=1e-3,
66
+ cache_size=200,
67
+ class_weight=None,
68
+ verbose=False,
69
+ max_iter=-1,
70
+ decision_function_shape="ovr",
71
+ break_ties=False,
72
+ random_state=None,
73
+ ):
74
+ super().__init__(
75
+ nu=nu,
76
+ kernel=kernel,
77
+ degree=degree,
78
+ gamma=gamma,
79
+ coef0=coef0,
80
+ shrinking=shrinking,
81
+ probability=probability,
82
+ tol=tol,
83
+ cache_size=cache_size,
84
+ class_weight=class_weight,
85
+ verbose=verbose,
86
+ max_iter=max_iter,
87
+ decision_function_shape=decision_function_shape,
88
+ break_ties=break_ties,
89
+ random_state=random_state,
90
+ )
91
+
92
+ def fit(self, X, y, sample_weight=None):
93
+ if sklearn_check_version("1.2"):
94
+ self._validate_params()
95
+ elif self.nu <= 0 or self.nu > 1:
96
+ # else if added to correct issues with
97
+ # sklearn tests:
98
+ # svm/tests/test_sparse.py::test_error
99
+ # svm/tests/test_svm.py::test_bad_input
100
+ # for sklearn versions < 1.2 (i.e. without
101
+ # validate_params parameter checking)
102
+ # Without this, a segmentation fault with
103
+ # Windows fatal exception: access violation
104
+ # occurs
105
+ raise ValueError("nu <= 0 or nu > 1")
106
+ dispatch(
107
+ self,
108
+ "fit",
109
+ {
110
+ "onedal": self.__class__._onedal_fit,
111
+ "sklearn": _sklearn_NuSVC.fit,
112
+ },
113
+ X,
114
+ y,
115
+ sample_weight=sample_weight,
116
+ )
117
+
118
+ return self
119
+
120
+ @wrap_output_data
121
+ def predict(self, X):
122
+ check_is_fitted(self)
123
+ return dispatch(
124
+ self,
125
+ "predict",
126
+ {
127
+ "onedal": self.__class__._onedal_predict,
128
+ "sklearn": _sklearn_NuSVC.predict,
129
+ },
130
+ X,
131
+ )
132
+
133
+ @wrap_output_data
134
+ def score(self, X, y, sample_weight=None):
135
+ check_is_fitted(self)
136
+ return dispatch(
137
+ self,
138
+ "score",
139
+ {
140
+ "onedal": self.__class__._onedal_score,
141
+ "sklearn": _sklearn_NuSVC.score,
142
+ },
143
+ X,
144
+ y,
145
+ sample_weight=sample_weight,
146
+ )
147
+
148
+ if sklearn_check_version("1.0"):
149
+
150
+ @available_if(_sklearn_NuSVC._check_proba)
151
+ def predict_proba(self, X):
152
+ """
153
+ Compute probabilities of possible outcomes for samples in X.
154
+
155
+ The model need to have probability information computed at training
156
+ time: fit with attribute `probability` set to True.
157
+
158
+ Parameters
159
+ ----------
160
+ X : array-like of shape (n_samples, n_features)
161
+ For kernel="precomputed", the expected shape of X is
162
+ (n_samples_test, n_samples_train).
163
+
164
+ Returns
165
+ -------
166
+ T : ndarray of shape (n_samples, n_classes)
167
+ Returns the probability of the sample for each class in
168
+ the model. The columns correspond to the classes in sorted
169
+ order, as they appear in the attribute :term:`classes_`.
170
+
171
+ Notes
172
+ -----
173
+ The probability model is created using cross validation, so
174
+ the results can be slightly different than those obtained by
175
+ predict. Also, it will produce meaningless results on very small
176
+ datasets.
177
+ """
178
+ check_is_fitted(self)
179
+ return self._predict_proba(X)
180
+
181
+ @available_if(_sklearn_NuSVC._check_proba)
182
+ def predict_log_proba(self, X):
183
+ """Compute log probabilities of possible outcomes for samples in X.
184
+
185
+ The model need to have probability information computed at training
186
+ time: fit with attribute `probability` set to True.
187
+
188
+ Parameters
189
+ ----------
190
+ X : array-like of shape (n_samples, n_features) or \
191
+ (n_samples_test, n_samples_train)
192
+ For kernel="precomputed", the expected shape of X is
193
+ (n_samples_test, n_samples_train).
194
+
195
+ Returns
196
+ -------
197
+ T : ndarray of shape (n_samples, n_classes)
198
+ Returns the log-probabilities of the sample for each class in
199
+ the model. The columns correspond to the classes in sorted
200
+ order, as they appear in the attribute :term:`classes_`.
201
+
202
+ Notes
203
+ -----
204
+ The probability model is created using cross validation, so
205
+ the results can be slightly different than those obtained by
206
+ predict. Also, it will produce meaningless results on very small
207
+ datasets.
208
+ """
209
+ xp, _ = get_namespace(X)
210
+
211
+ return xp.log(self.predict_proba(X))
212
+
213
+ else:
214
+
215
+ @property
216
+ def predict_proba(self):
217
+ self._check_proba()
218
+ check_is_fitted(self)
219
+ return self._predict_proba
220
+
221
+ def _predict_log_proba(self, X):
222
+ xp, _ = get_namespace(X)
223
+ return xp.log(self.predict_proba(X))
224
+
225
+ predict_proba.__doc__ = _sklearn_NuSVC.predict_proba.__doc__
226
+
227
+ @wrap_output_data
228
+ def _predict_proba(self, X):
229
+ sklearn_pred_proba = (
230
+ _sklearn_NuSVC.predict_proba
231
+ if sklearn_check_version("1.0")
232
+ else _sklearn_NuSVC._predict_proba
233
+ )
234
+
235
+ return dispatch(
236
+ self,
237
+ "predict_proba",
238
+ {
239
+ "onedal": self.__class__._onedal_predict_proba,
240
+ "sklearn": sklearn_pred_proba,
241
+ },
242
+ X,
243
+ )
244
+
245
+ @wrap_output_data
246
+ def decision_function(self, X):
247
+ check_is_fitted(self)
248
+ return dispatch(
249
+ self,
250
+ "decision_function",
251
+ {
252
+ "onedal": self.__class__._onedal_decision_function,
253
+ "sklearn": _sklearn_NuSVC.decision_function,
254
+ },
255
+ X,
256
+ )
257
+
258
+ decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
259
+
260
+ def _get_sample_weight(self, X, y, sample_weight=None):
261
+ sample_weight = super()._get_sample_weight(X, y, sample_weight)
262
+ if sample_weight is None:
263
+ return sample_weight
264
+
265
+ weight_per_class = [
266
+ np.sum(sample_weight[y == class_label]) for class_label in np.unique(y)
267
+ ]
268
+
269
+ for i in range(len(weight_per_class)):
270
+ for j in range(i + 1, len(weight_per_class)):
271
+ if self.nu * (weight_per_class[i] + weight_per_class[j]) / 2 > min(
272
+ weight_per_class[i], weight_per_class[j]
273
+ ):
274
+ raise ValueError("specified nu is infeasible")
275
+
276
+ return sample_weight
277
+
278
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
279
+ X, _, weights = self._onedal_fit_checks(X, y, sample_weight)
280
+ onedal_params = {
281
+ "nu": self.nu,
282
+ "kernel": self.kernel,
283
+ "degree": self.degree,
284
+ "gamma": self._compute_gamma_sigma(X),
285
+ "coef0": self.coef0,
286
+ "tol": self.tol,
287
+ "shrinking": self.shrinking,
288
+ "cache_size": self.cache_size,
289
+ "max_iter": self.max_iter,
290
+ "class_weight": self.class_weight,
291
+ "break_ties": self.break_ties,
292
+ "decision_function_shape": self.decision_function_shape,
293
+ }
294
+
295
+ self._onedal_estimator = onedal_NuSVC(**onedal_params)
296
+ self._onedal_estimator.fit(X, y, weights, queue=queue)
297
+
298
+ if self.probability:
299
+ self._fit_proba(
300
+ X,
301
+ y,
302
+ sample_weight=sample_weight,
303
+ queue=queue,
304
+ )
305
+
306
+ self._save_attributes()
307
+
308
+ def _onedal_predict(self, X, queue=None):
309
+ if sklearn_check_version("1.0"):
310
+ validate_data(
311
+ self,
312
+ X,
313
+ dtype=[np.float64, np.float32],
314
+ force_all_finite=False,
315
+ ensure_2d=False,
316
+ accept_sparse="csr",
317
+ reset=False,
318
+ )
319
+ else:
320
+ X = check_array(
321
+ X,
322
+ dtype=[np.float64, np.float32],
323
+ force_all_finite=False,
324
+ accept_sparse="csr",
325
+ )
326
+
327
+ return self._onedal_estimator.predict(X, queue=queue)
328
+
329
+ def _onedal_predict_proba(self, X, queue=None):
330
+ if getattr(self, "clf_prob", None) is None:
331
+ raise NotFittedError(
332
+ "predict_proba is not available when fitted with probability=False"
333
+ )
334
+ from .._config import config_context, get_config
335
+
336
+ # We use stock metaestimators below, so the only way
337
+ # to pass a queue is using config_context.
338
+ cfg = get_config()
339
+ cfg["target_offload"] = queue
340
+ with config_context(**cfg):
341
+ return self.clf_prob.predict_proba(X)
342
+
343
+ def _onedal_decision_function(self, X, queue=None):
344
+ if sklearn_check_version("1.0"):
345
+ validate_data(
346
+ self,
347
+ X,
348
+ dtype=[np.float64, np.float32],
349
+ force_all_finite=False,
350
+ accept_sparse="csr",
351
+ reset=False,
352
+ )
353
+ else:
354
+ X = check_array(
355
+ X,
356
+ dtype=[np.float64, np.float32],
357
+ force_all_finite=False,
358
+ accept_sparse="csr",
359
+ )
360
+
361
+ return self._onedal_estimator.decision_function(X, queue=queue)
362
+
363
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
364
+ return accuracy_score(
365
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
366
+ )
367
+
368
+ fit.__doc__ = _sklearn_NuSVC.fit.__doc__
369
+ predict.__doc__ = _sklearn_NuSVC.predict.__doc__
370
+ decision_function.__doc__ = _sklearn_NuSVC.decision_function.__doc__
371
+ score.__doc__ = _sklearn_NuSVC.score.__doc__
sklearnex/svm/nusvr.py ADDED
@@ -0,0 +1,170 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.svm import NuSVR as _sklearn_NuSVR
19
+ from sklearn.utils.validation import (
20
+ _deprecate_positional_args,
21
+ check_array,
22
+ check_is_fitted,
23
+ )
24
+
25
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
26
+ from daal4py.sklearn._utils import sklearn_check_version
27
+ from onedal.svm import NuSVR as onedal_NuSVR
28
+
29
+ from .._device_offload import dispatch, wrap_output_data
30
+ from ._common import BaseSVR
31
+
32
+ if sklearn_check_version("1.6"):
33
+ from sklearn.utils.validation import validate_data
34
+ else:
35
+ validate_data = BaseSVR._validate_data
36
+
37
+
38
+ @control_n_jobs(decorated_methods=["fit", "predict", "score"])
39
+ class NuSVR(_sklearn_NuSVR, BaseSVR):
40
+ __doc__ = _sklearn_NuSVR.__doc__
41
+
42
+ if sklearn_check_version("1.2"):
43
+ _parameter_constraints: dict = {**_sklearn_NuSVR._parameter_constraints}
44
+
45
+ @_deprecate_positional_args
46
+ def __init__(
47
+ self,
48
+ *,
49
+ nu=0.5,
50
+ C=1.0,
51
+ kernel="rbf",
52
+ degree=3,
53
+ gamma="scale",
54
+ coef0=0.0,
55
+ shrinking=True,
56
+ tol=1e-3,
57
+ cache_size=200,
58
+ verbose=False,
59
+ max_iter=-1,
60
+ ):
61
+ super().__init__(
62
+ kernel=kernel,
63
+ degree=degree,
64
+ gamma=gamma,
65
+ coef0=coef0,
66
+ tol=tol,
67
+ C=C,
68
+ nu=nu,
69
+ shrinking=shrinking,
70
+ cache_size=cache_size,
71
+ verbose=verbose,
72
+ max_iter=max_iter,
73
+ )
74
+
75
+ def fit(self, X, y, sample_weight=None):
76
+ if sklearn_check_version("1.2"):
77
+ self._validate_params()
78
+ elif self.nu <= 0 or self.nu > 1:
79
+ # else if added to correct issues with
80
+ # sklearn tests:
81
+ # svm/tests/test_sparse.py::test_error
82
+ # svm/tests/test_svm.py::test_bad_input
83
+ # for sklearn versions < 1.2 (i.e. without
84
+ # validate_params parameter checking)
85
+ # Without this, a segmentation fault with
86
+ # Windows fatal exception: access violation
87
+ # occurs
88
+ raise ValueError("nu <= 0 or nu > 1")
89
+ dispatch(
90
+ self,
91
+ "fit",
92
+ {
93
+ "onedal": self.__class__._onedal_fit,
94
+ "sklearn": _sklearn_NuSVR.fit,
95
+ },
96
+ X,
97
+ y,
98
+ sample_weight=sample_weight,
99
+ )
100
+ return self
101
+
102
+ @wrap_output_data
103
+ def predict(self, X):
104
+ check_is_fitted(self)
105
+ return dispatch(
106
+ self,
107
+ "predict",
108
+ {
109
+ "onedal": self.__class__._onedal_predict,
110
+ "sklearn": _sklearn_NuSVR.predict,
111
+ },
112
+ X,
113
+ )
114
+
115
+ @wrap_output_data
116
+ def score(self, X, y, sample_weight=None):
117
+ check_is_fitted(self)
118
+ return dispatch(
119
+ self,
120
+ "score",
121
+ {
122
+ "onedal": self.__class__._onedal_score,
123
+ "sklearn": _sklearn_NuSVR.score,
124
+ },
125
+ X,
126
+ y,
127
+ sample_weight=sample_weight,
128
+ )
129
+
130
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
131
+ X, _, sample_weight = self._onedal_fit_checks(X, y, sample_weight)
132
+ onedal_params = {
133
+ "C": self.C,
134
+ "nu": self.nu,
135
+ "kernel": self.kernel,
136
+ "degree": self.degree,
137
+ "gamma": self._compute_gamma_sigma(X),
138
+ "coef0": self.coef0,
139
+ "tol": self.tol,
140
+ "shrinking": self.shrinking,
141
+ "cache_size": self.cache_size,
142
+ "max_iter": self.max_iter,
143
+ }
144
+
145
+ self._onedal_estimator = onedal_NuSVR(**onedal_params)
146
+ self._onedal_estimator.fit(X, y, sample_weight, queue=queue)
147
+ self._save_attributes()
148
+
149
+ def _onedal_predict(self, X, queue=None):
150
+ if sklearn_check_version("1.0"):
151
+ X = validate_data(
152
+ self,
153
+ X,
154
+ dtype=[np.float64, np.float32],
155
+ force_all_finite=False,
156
+ accept_sparse="csr",
157
+ reset=False,
158
+ )
159
+ else:
160
+ X = check_array(
161
+ X,
162
+ dtype=[np.float64, np.float32],
163
+ force_all_finite=False,
164
+ accept_sparse="csr",
165
+ )
166
+ return self._onedal_estimator.predict(X, queue=queue)
167
+
168
+ fit.__doc__ = _sklearn_NuSVR.fit.__doc__
169
+ predict.__doc__ = _sklearn_NuSVR.predict.__doc__
170
+ score.__doc__ = _sklearn_NuSVR.score.__doc__