scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,455 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.basic_statistics.tests.utils import options_and_tests
23
+ from onedal.tests.utils._dataframes_support import (
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
27
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
28
+
29
+
30
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
31
+ @pytest.mark.parametrize("weighted", [True, False])
32
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
33
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
34
+ X = np.array([[0, 0], [1, 1]])
35
+ X = X.astype(dtype=dtype)
36
+ X_split = np.array_split(X, 2)
37
+ if weighted:
38
+ weights = np.array([1, 0.5])
39
+ weights = weights.astype(dtype=dtype)
40
+ weights_split = np.array_split(weights, 2)
41
+
42
+ incbs = IncrementalBasicStatistics()
43
+ for i in range(2):
44
+ X_split_df = _convert_to_dataframe(
45
+ X_split[i], sycl_queue=queue, target_df=dataframe
46
+ )
47
+ if weighted:
48
+ weights_split_df = _convert_to_dataframe(
49
+ weights_split[i], sycl_queue=queue, target_df=dataframe
50
+ )
51
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
52
+ else:
53
+ result = incbs.partial_fit(X_split_df)
54
+
55
+ if weighted:
56
+ expected_weighted_mean = np.array([0.25, 0.25])
57
+ expected_weighted_min = np.array([0, 0])
58
+ expected_weighted_max = np.array([0.5, 0.5])
59
+ assert_allclose(expected_weighted_mean, result.mean)
60
+ assert_allclose(expected_weighted_max, result.max)
61
+ assert_allclose(expected_weighted_min, result.min)
62
+ else:
63
+ expected_mean = np.array([0.5, 0.5])
64
+ expected_min = np.array([0, 0])
65
+ expected_max = np.array([1, 1])
66
+ assert_allclose(expected_mean, result.mean)
67
+ assert_allclose(expected_max, result.max)
68
+ assert_allclose(expected_min, result.min)
69
+
70
+
71
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
72
+ @pytest.mark.parametrize("num_batches", [2, 10])
73
+ @pytest.mark.parametrize("result_option", options_and_tests.keys())
74
+ @pytest.mark.parametrize("row_count", [100, 1000])
75
+ @pytest.mark.parametrize("column_count", [10, 100])
76
+ @pytest.mark.parametrize("weighted", [True, False])
77
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
78
+ def test_partial_fit_single_option_on_random_data(
79
+ dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
80
+ ):
81
+ function, tols = options_and_tests[result_option]
82
+ fp32tol, fp64tol = tols
83
+ seed = 77
84
+ gen = np.random.default_rng(seed)
85
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
86
+ X = X.astype(dtype=dtype)
87
+ X_split = np.array_split(X, num_batches)
88
+ if weighted:
89
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
90
+ weights = weights.astype(dtype=dtype)
91
+ weights_split = np.array_split(weights, num_batches)
92
+ incbs = IncrementalBasicStatistics(result_options=result_option)
93
+
94
+ for i in range(num_batches):
95
+ X_split_df = _convert_to_dataframe(
96
+ X_split[i], sycl_queue=queue, target_df=dataframe
97
+ )
98
+ if weighted:
99
+ weights_split_df = _convert_to_dataframe(
100
+ weights_split[i], sycl_queue=queue, target_df=dataframe
101
+ )
102
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
103
+ else:
104
+ result = incbs.partial_fit(X_split_df)
105
+
106
+ res = getattr(result, result_option)
107
+ if weighted:
108
+ weighted_data = np.diag(weights) @ X
109
+ gtr = function(weighted_data)
110
+ else:
111
+ gtr = function(X)
112
+
113
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
114
+ assert_allclose(gtr, res, atol=tol)
115
+
116
+
117
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
118
+ @pytest.mark.parametrize("num_batches", [2, 10])
119
+ @pytest.mark.parametrize("row_count", [100, 1000])
120
+ @pytest.mark.parametrize("column_count", [10, 100])
121
+ @pytest.mark.parametrize("weighted", [True, False])
122
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
123
+ def test_partial_fit_multiple_options_on_random_data(
124
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
125
+ ):
126
+ seed = 42
127
+ gen = np.random.default_rng(seed)
128
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
129
+ X = X.astype(dtype=dtype)
130
+ X_split = np.array_split(X, num_batches)
131
+ if weighted:
132
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
133
+ weights = weights.astype(dtype=dtype)
134
+ weights_split = np.array_split(weights, num_batches)
135
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
136
+
137
+ for i in range(num_batches):
138
+ X_split_df = _convert_to_dataframe(
139
+ X_split[i], sycl_queue=queue, target_df=dataframe
140
+ )
141
+ if weighted:
142
+ weights_split_df = _convert_to_dataframe(
143
+ weights_split[i], sycl_queue=queue, target_df=dataframe
144
+ )
145
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
146
+ else:
147
+ result = incbs.partial_fit(X_split_df)
148
+
149
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
150
+ if weighted:
151
+ weighted_data = np.diag(weights) @ X
152
+ gtr_mean, gtr_max, gtr_sum = (
153
+ options_and_tests["mean"][0](weighted_data),
154
+ options_and_tests["max"][0](weighted_data),
155
+ options_and_tests["sum"][0](weighted_data),
156
+ )
157
+ else:
158
+ gtr_mean, gtr_max, gtr_sum = (
159
+ options_and_tests["mean"][0](X),
160
+ options_and_tests["max"][0](X),
161
+ options_and_tests["sum"][0](X),
162
+ )
163
+
164
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
165
+ assert_allclose(gtr_mean, res_mean, atol=tol)
166
+ assert_allclose(gtr_max, res_max, atol=tol)
167
+ assert_allclose(gtr_sum, res_sum, atol=tol)
168
+
169
+
170
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
171
+ @pytest.mark.parametrize("num_batches", [2, 10])
172
+ @pytest.mark.parametrize("row_count", [100, 1000])
173
+ @pytest.mark.parametrize("column_count", [10, 100])
174
+ @pytest.mark.parametrize("weighted", [True, False])
175
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
176
+ def test_partial_fit_all_option_on_random_data(
177
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
178
+ ):
179
+ seed = 77
180
+ gen = np.random.default_rng(seed)
181
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
182
+ X = X.astype(dtype=dtype)
183
+ X_split = np.array_split(X, num_batches)
184
+ if weighted:
185
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
186
+ weights = weights.astype(dtype=dtype)
187
+ weights_split = np.array_split(weights, num_batches)
188
+ incbs = IncrementalBasicStatistics(result_options="all")
189
+
190
+ for i in range(num_batches):
191
+ X_split_df = _convert_to_dataframe(
192
+ X_split[i], sycl_queue=queue, target_df=dataframe
193
+ )
194
+ if weighted:
195
+ weights_split_df = _convert_to_dataframe(
196
+ weights_split[i], sycl_queue=queue, target_df=dataframe
197
+ )
198
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
199
+ else:
200
+ result = incbs.partial_fit(X_split_df)
201
+
202
+ if weighted:
203
+ weighted_data = np.diag(weights) @ X
204
+
205
+ for result_option in options_and_tests:
206
+ function, tols = options_and_tests[result_option]
207
+ fp32tol, fp64tol = tols
208
+ res = getattr(result, result_option)
209
+ if weighted:
210
+ gtr = function(weighted_data)
211
+ else:
212
+ gtr = function(X)
213
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
214
+ assert_allclose(gtr, res, atol=tol)
215
+
216
+
217
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
218
+ @pytest.mark.parametrize("weighted", [True, False])
219
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
220
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
221
+ X = np.array([[0, 0], [1, 1]])
222
+ X = X.astype(dtype=dtype)
223
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
224
+ if weighted:
225
+ weights = np.array([1, 0.5])
226
+ weights = weights.astype(dtype=dtype)
227
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
228
+ incbs = IncrementalBasicStatistics(batch_size=1)
229
+
230
+ if weighted:
231
+ result = incbs.fit(X_df, sample_weight=weights_df)
232
+ else:
233
+ result = incbs.fit(X_df)
234
+
235
+ if weighted:
236
+ expected_weighted_mean = np.array([0.25, 0.25])
237
+ expected_weighted_min = np.array([0, 0])
238
+ expected_weighted_max = np.array([0.5, 0.5])
239
+ assert_allclose(expected_weighted_mean, result.mean)
240
+ assert_allclose(expected_weighted_max, result.max)
241
+ assert_allclose(expected_weighted_min, result.min)
242
+ else:
243
+ expected_mean = np.array([0.5, 0.5])
244
+ expected_min = np.array([0, 0])
245
+ expected_max = np.array([1, 1])
246
+ assert_allclose(expected_mean, result.mean)
247
+ assert_allclose(expected_max, result.max)
248
+ assert_allclose(expected_min, result.min)
249
+
250
+
251
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
252
+ @pytest.mark.parametrize("num_batches", [2, 10])
253
+ @pytest.mark.parametrize("result_option", options_and_tests.keys())
254
+ @pytest.mark.parametrize("row_count", [100, 1000])
255
+ @pytest.mark.parametrize("column_count", [10, 100])
256
+ @pytest.mark.parametrize("weighted", [True, False])
257
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
258
+ def test_fit_single_option_on_random_data(
259
+ dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
260
+ ):
261
+ function, tols = options_and_tests[result_option]
262
+ fp32tol, fp64tol = tols
263
+ seed = 77
264
+ gen = np.random.default_rng(seed)
265
+ batch_size = row_count // num_batches
266
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
267
+ X = X.astype(dtype=dtype)
268
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
269
+ if weighted:
270
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
271
+ weights = weights.astype(dtype=dtype)
272
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
273
+ incbs = IncrementalBasicStatistics(
274
+ result_options=result_option, batch_size=batch_size
275
+ )
276
+
277
+ if weighted:
278
+ result = incbs.fit(X_df, sample_weight=weights_df)
279
+ else:
280
+ result = incbs.fit(X_df)
281
+
282
+ res = getattr(result, result_option)
283
+ if weighted:
284
+ weighted_data = np.diag(weights) @ X
285
+ gtr = function(weighted_data)
286
+ else:
287
+ gtr = function(X)
288
+
289
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
290
+ assert_allclose(gtr, res, atol=tol)
291
+
292
+
293
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
294
+ @pytest.mark.parametrize("num_batches", [2, 10])
295
+ @pytest.mark.parametrize("row_count", [100, 1000])
296
+ @pytest.mark.parametrize("column_count", [10, 100])
297
+ @pytest.mark.parametrize("weighted", [True, False])
298
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
299
+ def test_fit_multiple_options_on_random_data(
300
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
301
+ ):
302
+ seed = 77
303
+ gen = np.random.default_rng(seed)
304
+ batch_size = row_count // num_batches
305
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
306
+ X = X.astype(dtype=dtype)
307
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
308
+ if weighted:
309
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
310
+ weights = weights.astype(dtype=dtype)
311
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
312
+ incbs = IncrementalBasicStatistics(
313
+ result_options=["mean", "max", "sum"], batch_size=batch_size
314
+ )
315
+
316
+ if weighted:
317
+ result = incbs.fit(X_df, sample_weight=weights_df)
318
+ else:
319
+ result = incbs.fit(X_df)
320
+
321
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
322
+ if weighted:
323
+ weighted_data = np.diag(weights) @ X
324
+ gtr_mean, gtr_max, gtr_sum = (
325
+ options_and_tests["mean"][0](weighted_data),
326
+ options_and_tests["max"][0](weighted_data),
327
+ options_and_tests["sum"][0](weighted_data),
328
+ )
329
+ else:
330
+ gtr_mean, gtr_max, gtr_sum = (
331
+ options_and_tests["mean"][0](X),
332
+ options_and_tests["max"][0](X),
333
+ options_and_tests["sum"][0](X),
334
+ )
335
+
336
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
337
+ assert_allclose(gtr_mean, res_mean, atol=tol)
338
+ assert_allclose(gtr_max, res_max, atol=tol)
339
+ assert_allclose(gtr_sum, res_sum, atol=tol)
340
+
341
+
342
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
343
+ @pytest.mark.parametrize("num_batches", [2, 10])
344
+ @pytest.mark.parametrize("row_count", [100, 1000])
345
+ @pytest.mark.parametrize("column_count", [10, 100])
346
+ @pytest.mark.parametrize("weighted", [True, False])
347
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
348
+ def test_fit_all_option_on_random_data(
349
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
350
+ ):
351
+ seed = 77
352
+ gen = np.random.default_rng(seed)
353
+ batch_size = row_count // num_batches
354
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
355
+ X = X.astype(dtype=dtype)
356
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
357
+ if weighted:
358
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
359
+ weights = weights.astype(dtype=dtype)
360
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
361
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
362
+
363
+ if weighted:
364
+ result = incbs.fit(X_df, sample_weight=weights_df)
365
+ else:
366
+ result = incbs.fit(X_df)
367
+
368
+ if weighted:
369
+ weighted_data = np.diag(weights) @ X
370
+
371
+ for result_option in options_and_tests:
372
+ function, tols = options_and_tests[result_option]
373
+ fp32tol, fp64tol = tols
374
+ res = getattr(result, result_option)
375
+ if weighted:
376
+ gtr = function(weighted_data)
377
+ else:
378
+ gtr = function(X)
379
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
380
+ assert_allclose(gtr, res, atol=tol)
381
+
382
+
383
+ def test_warning():
384
+ basicstat = IncrementalBasicStatistics("all")
385
+ # Only 2d inputs supported into IncrementalBasicStatistics
386
+ data = np.array([[0.0], [1.0]])
387
+
388
+ basicstat.fit(data)
389
+ for i in basicstat._onedal_estimator.get_all_result_options():
390
+ with pytest.warns(
391
+ UserWarning,
392
+ match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
393
+ ) as warn_record:
394
+ getattr(basicstat, i)
395
+
396
+ if daal_check_version((2026, "P", 0)):
397
+ assert len(warn_record) == 0, i
398
+ else:
399
+ assert len(warn_record) == 1, i
400
+
401
+
402
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
403
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
404
+ def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, dtype):
405
+ import pickle
406
+
407
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
408
+
409
+ incbs = IncrementalBasicStatistics()
410
+
411
+ # Check that estimator can be serialized without any data.
412
+ dump = pickle.dumps(incbs)
413
+ incbs_loaded = pickle.loads(dump)
414
+ seed = 77
415
+ gen = np.random.default_rng(seed)
416
+ X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
417
+ X = X.astype(dtype)
418
+ X_split = np.array_split(X, 2)
419
+ X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
420
+ incbs.partial_fit(X_split_df)
421
+ incbs_loaded.partial_fit(X_split_df)
422
+
423
+ # Check that estimator can be serialized after partial_fit call.
424
+ dump = pickle.dumps(incbs_loaded)
425
+ incbs_loaded = pickle.loads(dump)
426
+
427
+ X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
428
+ incbs.partial_fit(X_split_df)
429
+ incbs_loaded.partial_fit(X_split_df)
430
+ dump = pickle.dumps(incbs)
431
+ incbs_loaded = pickle.loads(dump)
432
+ assert incbs.batch_size == incbs_loaded.batch_size
433
+ assert incbs.n_features_in_ == incbs_loaded.n_features_in_
434
+ assert incbs.n_samples_seen_ == incbs_loaded.n_samples_seen_
435
+ if hasattr(incbs, "_parameter_constraints"):
436
+ assert incbs._parameter_constraints == incbs_loaded._parameter_constraints
437
+ assert incbs.n_jobs == incbs_loaded.n_jobs
438
+ for result_option in options_and_tests:
439
+ _, tols = options_and_tests[result_option]
440
+ fp32tol, fp64tol = tols
441
+ res = getattr(incbs, result_option)
442
+ res_loaded = getattr(incbs_loaded, result_option)
443
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
444
+ assert_allclose(res, res_loaded, atol=tol)
445
+
446
+ # Check that finalized estimator can be serialized.
447
+ dump = pickle.dumps(incbs_loaded)
448
+ incbs_loaded = pickle.loads(dump)
449
+ for result_option in options_and_tests:
450
+ _, tols = options_and_tests[result_option]
451
+ fp32tol, fp64tol = tols
452
+ res = getattr(incbs, result_option)
453
+ res_loaded = getattr(incbs_loaded, result_option)
454
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
455
+ assert_allclose(res, res_loaded, atol=tol)
@@ -0,0 +1,20 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from .dbscan import DBSCAN
18
+ from .k_means import KMeans
19
+
20
+ __all__ = ["DBSCAN", "KMeans"]
@@ -0,0 +1,197 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ from abc import ABC
19
+
20
+ from scipy import sparse as sp
21
+ from sklearn.cluster import DBSCAN as _sklearn_DBSCAN
22
+ from sklearn.utils.validation import _check_sample_weight
23
+
24
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
25
+ from daal4py.sklearn._utils import sklearn_check_version
26
+ from onedal.cluster import DBSCAN as onedal_DBSCAN
27
+
28
+ from .._device_offload import dispatch
29
+ from .._utils import PatchableEstimator, PatchingConditionsChain
30
+
31
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
32
+ from sklearn.utils import check_scalar
33
+
34
+ if sklearn_check_version("1.6"):
35
+ from sklearn.utils.validation import validate_data
36
+ else:
37
+ validate_data = _sklearn_DBSCAN._validate_data
38
+
39
+
40
+ class BaseDBSCAN(ABC):
41
+ def _onedal_dbscan(self, **onedal_params):
42
+ return onedal_DBSCAN(**onedal_params)
43
+
44
+ def _save_attributes(self):
45
+ assert hasattr(self, "_onedal_estimator")
46
+
47
+ self.labels_ = self._onedal_estimator.labels_
48
+ self.core_sample_indices_ = self._onedal_estimator.core_sample_indices_
49
+ self.components_ = self._onedal_estimator.components_
50
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
51
+
52
+
53
+ @control_n_jobs(decorated_methods=["fit"])
54
+ class DBSCAN(PatchableEstimator, _sklearn_DBSCAN, BaseDBSCAN):
55
+ __doc__ = _sklearn_DBSCAN.__doc__
56
+
57
+ if sklearn_check_version("1.2"):
58
+ _parameter_constraints: dict = {**_sklearn_DBSCAN._parameter_constraints}
59
+
60
+ def __init__(
61
+ self,
62
+ eps=0.5,
63
+ *,
64
+ min_samples=5,
65
+ metric="euclidean",
66
+ metric_params=None,
67
+ algorithm="auto",
68
+ leaf_size=30,
69
+ p=None,
70
+ n_jobs=None,
71
+ ):
72
+ super(DBSCAN, self).__init__(
73
+ eps=eps,
74
+ min_samples=min_samples,
75
+ metric=metric,
76
+ metric_params=metric_params,
77
+ algorithm=algorithm,
78
+ leaf_size=leaf_size,
79
+ p=p,
80
+ n_jobs=n_jobs,
81
+ )
82
+ self.eps = eps
83
+ self.min_samples = min_samples
84
+ self.metric = metric
85
+ self.metric_params = metric_params
86
+ self.algorithm = algorithm
87
+ self.leaf_size = leaf_size
88
+ self.p = p
89
+ self.n_jobs = n_jobs
90
+
91
+ def _onedal_fit(self, X, y, sample_weight=None, queue=None):
92
+ if sklearn_check_version("1.0"):
93
+ X = validate_data(self, X, force_all_finite=False)
94
+
95
+ onedal_params = {
96
+ "eps": self.eps,
97
+ "min_samples": self.min_samples,
98
+ "metric": self.metric,
99
+ "metric_params": self.metric_params,
100
+ "algorithm": self.algorithm,
101
+ "leaf_size": self.leaf_size,
102
+ "p": self.p,
103
+ "n_jobs": self.n_jobs,
104
+ }
105
+ self._onedal_estimator = self._onedal_dbscan(**onedal_params)
106
+
107
+ self._onedal_estimator.fit(X, y=y, sample_weight=sample_weight, queue=queue)
108
+ self._save_attributes()
109
+
110
+ def _onedal_supported(self, method_name, *data):
111
+ class_name = self.__class__.__name__
112
+ patching_status = PatchingConditionsChain(
113
+ f"sklearn.cluster.{class_name}.{method_name}"
114
+ )
115
+ if method_name == "fit":
116
+ X, y, sample_weight = data
117
+ patching_status.and_conditions(
118
+ [
119
+ (
120
+ self.algorithm in ["auto", "brute"],
121
+ f"'{self.algorithm}' algorithm is not supported. "
122
+ "Only 'auto' and 'brute' algorithms are supported",
123
+ ),
124
+ (
125
+ self.metric == "euclidean"
126
+ or (self.metric == "minkowski" and self.p == 2),
127
+ f"'{self.metric}' (p={self.p}) metric is not supported. "
128
+ "Only 'euclidean' or 'minkowski' with p=2 metrics are supported.",
129
+ ),
130
+ (not sp.issparse(X), "X is sparse. Sparse input is not supported."),
131
+ ]
132
+ )
133
+ return patching_status
134
+ raise RuntimeError(f"Unknown method {method_name} in {self.__class__.__name__}")
135
+
136
+ def _onedal_cpu_supported(self, method_name, *data):
137
+ return self._onedal_supported(method_name, *data)
138
+
139
+ def _onedal_gpu_supported(self, method_name, *data):
140
+ return self._onedal_supported(method_name, *data)
141
+
142
+ def fit(self, X, y=None, sample_weight=None):
143
+ if sklearn_check_version("1.2"):
144
+ self._validate_params()
145
+ elif sklearn_check_version("1.1"):
146
+ check_scalar(
147
+ self.eps,
148
+ "eps",
149
+ target_type=numbers.Real,
150
+ min_val=0.0,
151
+ include_boundaries="neither",
152
+ )
153
+ check_scalar(
154
+ self.min_samples,
155
+ "min_samples",
156
+ target_type=numbers.Integral,
157
+ min_val=1,
158
+ include_boundaries="left",
159
+ )
160
+ check_scalar(
161
+ self.leaf_size,
162
+ "leaf_size",
163
+ target_type=numbers.Integral,
164
+ min_val=1,
165
+ include_boundaries="left",
166
+ )
167
+ if self.p is not None:
168
+ check_scalar(
169
+ self.p,
170
+ "p",
171
+ target_type=numbers.Real,
172
+ min_val=0.0,
173
+ include_boundaries="left",
174
+ )
175
+ if self.n_jobs is not None:
176
+ check_scalar(self.n_jobs, "n_jobs", target_type=numbers.Integral)
177
+ else:
178
+ if self.eps <= 0.0:
179
+ raise ValueError(f"eps == {self.eps}, must be > 0.0.")
180
+
181
+ if sample_weight is not None:
182
+ sample_weight = _check_sample_weight(sample_weight, X)
183
+ dispatch(
184
+ self,
185
+ "fit",
186
+ {
187
+ "onedal": self.__class__._onedal_fit,
188
+ "sklearn": _sklearn_DBSCAN.fit,
189
+ },
190
+ X,
191
+ y,
192
+ sample_weight,
193
+ )
194
+
195
+ return self
196
+
197
+ fit.__doc__ = _sklearn_DBSCAN.fit.__doc__