scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +696 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +204 -0
- onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +175 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- onedal/basic_statistics/tests/utils.py +50 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +105 -0
- onedal/cluster/kmeans.py +557 -0
- onedal/cluster/kmeans_init.py +112 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +55 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/common/tests/test_sycl.py +128 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +122 -0
- onedal/covariance/incremental_covariance.py +161 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +190 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +121 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +475 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +214 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +285 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +736 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +292 -0
- onedal/linear_model/linear_model.py +325 -0
- onedal/linear_model/logistic_regression.py +247 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- onedal/linear_model/tests/test_linear_regression.py +259 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +763 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +152 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +83 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +124 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +101 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/tests/test_validation.py +142 -0
- onedal/utils/validation.py +464 -0
- scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
- scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
- scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +177 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +261 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +397 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +157 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +405 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +427 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +534 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +140 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +495 -0
- sklearnex/linear_model/incremental_ridge.py +432 -0
- sklearnex/linear_model/linear.py +346 -0
- sklearnex/linear_model/logistic_regression.py +415 -0
- sklearnex/linear_model/ridge.py +390 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/linear_model/tests/test_ridge.py +256 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +26 -0
- sklearnex/manifold/tests/test_tsne.py +250 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +142 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +244 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +491 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_hyperparameters.py +43 -0
- sklearnex/tests/test_memory_usage.py +347 -0
- sklearnex/tests/test_monkeypatch.py +269 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +377 -0
- sklearnex/tests/test_run_to_run_stability.py +326 -0
- sklearnex/tests/utils/__init__.py +48 -0
- sklearnex/tests/utils/base.py +436 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_validation.py +238 -0
- sklearnex/utils/validation.py +208 -0
|
@@ -0,0 +1,455 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
22
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
23
|
+
from onedal.tests.utils._dataframes_support import (
|
|
24
|
+
_convert_to_dataframe,
|
|
25
|
+
get_dataframes_and_queues,
|
|
26
|
+
)
|
|
27
|
+
from sklearnex.basic_statistics import IncrementalBasicStatistics
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
34
|
+
X = np.array([[0, 0], [1, 1]])
|
|
35
|
+
X = X.astype(dtype=dtype)
|
|
36
|
+
X_split = np.array_split(X, 2)
|
|
37
|
+
if weighted:
|
|
38
|
+
weights = np.array([1, 0.5])
|
|
39
|
+
weights = weights.astype(dtype=dtype)
|
|
40
|
+
weights_split = np.array_split(weights, 2)
|
|
41
|
+
|
|
42
|
+
incbs = IncrementalBasicStatistics()
|
|
43
|
+
for i in range(2):
|
|
44
|
+
X_split_df = _convert_to_dataframe(
|
|
45
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
46
|
+
)
|
|
47
|
+
if weighted:
|
|
48
|
+
weights_split_df = _convert_to_dataframe(
|
|
49
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
50
|
+
)
|
|
51
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
52
|
+
else:
|
|
53
|
+
result = incbs.partial_fit(X_split_df)
|
|
54
|
+
|
|
55
|
+
if weighted:
|
|
56
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
57
|
+
expected_weighted_min = np.array([0, 0])
|
|
58
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
59
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
60
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
61
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
62
|
+
else:
|
|
63
|
+
expected_mean = np.array([0.5, 0.5])
|
|
64
|
+
expected_min = np.array([0, 0])
|
|
65
|
+
expected_max = np.array([1, 1])
|
|
66
|
+
assert_allclose(expected_mean, result.mean)
|
|
67
|
+
assert_allclose(expected_max, result.max)
|
|
68
|
+
assert_allclose(expected_min, result.min)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
72
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
73
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
74
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
75
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
76
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
77
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
78
|
+
def test_partial_fit_single_option_on_random_data(
|
|
79
|
+
dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
80
|
+
):
|
|
81
|
+
function, tols = options_and_tests[result_option]
|
|
82
|
+
fp32tol, fp64tol = tols
|
|
83
|
+
seed = 77
|
|
84
|
+
gen = np.random.default_rng(seed)
|
|
85
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
86
|
+
X = X.astype(dtype=dtype)
|
|
87
|
+
X_split = np.array_split(X, num_batches)
|
|
88
|
+
if weighted:
|
|
89
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
90
|
+
weights = weights.astype(dtype=dtype)
|
|
91
|
+
weights_split = np.array_split(weights, num_batches)
|
|
92
|
+
incbs = IncrementalBasicStatistics(result_options=result_option)
|
|
93
|
+
|
|
94
|
+
for i in range(num_batches):
|
|
95
|
+
X_split_df = _convert_to_dataframe(
|
|
96
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
97
|
+
)
|
|
98
|
+
if weighted:
|
|
99
|
+
weights_split_df = _convert_to_dataframe(
|
|
100
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
101
|
+
)
|
|
102
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
103
|
+
else:
|
|
104
|
+
result = incbs.partial_fit(X_split_df)
|
|
105
|
+
|
|
106
|
+
res = getattr(result, result_option)
|
|
107
|
+
if weighted:
|
|
108
|
+
weighted_data = np.diag(weights) @ X
|
|
109
|
+
gtr = function(weighted_data)
|
|
110
|
+
else:
|
|
111
|
+
gtr = function(X)
|
|
112
|
+
|
|
113
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
114
|
+
assert_allclose(gtr, res, atol=tol)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
118
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
119
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
120
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
121
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
122
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
123
|
+
def test_partial_fit_multiple_options_on_random_data(
|
|
124
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
125
|
+
):
|
|
126
|
+
seed = 42
|
|
127
|
+
gen = np.random.default_rng(seed)
|
|
128
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
129
|
+
X = X.astype(dtype=dtype)
|
|
130
|
+
X_split = np.array_split(X, num_batches)
|
|
131
|
+
if weighted:
|
|
132
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
133
|
+
weights = weights.astype(dtype=dtype)
|
|
134
|
+
weights_split = np.array_split(weights, num_batches)
|
|
135
|
+
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
|
|
136
|
+
|
|
137
|
+
for i in range(num_batches):
|
|
138
|
+
X_split_df = _convert_to_dataframe(
|
|
139
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
140
|
+
)
|
|
141
|
+
if weighted:
|
|
142
|
+
weights_split_df = _convert_to_dataframe(
|
|
143
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
144
|
+
)
|
|
145
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
146
|
+
else:
|
|
147
|
+
result = incbs.partial_fit(X_split_df)
|
|
148
|
+
|
|
149
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
150
|
+
if weighted:
|
|
151
|
+
weighted_data = np.diag(weights) @ X
|
|
152
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
153
|
+
options_and_tests["mean"][0](weighted_data),
|
|
154
|
+
options_and_tests["max"][0](weighted_data),
|
|
155
|
+
options_and_tests["sum"][0](weighted_data),
|
|
156
|
+
)
|
|
157
|
+
else:
|
|
158
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
159
|
+
options_and_tests["mean"][0](X),
|
|
160
|
+
options_and_tests["max"][0](X),
|
|
161
|
+
options_and_tests["sum"][0](X),
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
165
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
166
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
167
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
171
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
172
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
173
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
174
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
175
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
176
|
+
def test_partial_fit_all_option_on_random_data(
|
|
177
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
178
|
+
):
|
|
179
|
+
seed = 77
|
|
180
|
+
gen = np.random.default_rng(seed)
|
|
181
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
182
|
+
X = X.astype(dtype=dtype)
|
|
183
|
+
X_split = np.array_split(X, num_batches)
|
|
184
|
+
if weighted:
|
|
185
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
186
|
+
weights = weights.astype(dtype=dtype)
|
|
187
|
+
weights_split = np.array_split(weights, num_batches)
|
|
188
|
+
incbs = IncrementalBasicStatistics(result_options="all")
|
|
189
|
+
|
|
190
|
+
for i in range(num_batches):
|
|
191
|
+
X_split_df = _convert_to_dataframe(
|
|
192
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
193
|
+
)
|
|
194
|
+
if weighted:
|
|
195
|
+
weights_split_df = _convert_to_dataframe(
|
|
196
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
197
|
+
)
|
|
198
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
199
|
+
else:
|
|
200
|
+
result = incbs.partial_fit(X_split_df)
|
|
201
|
+
|
|
202
|
+
if weighted:
|
|
203
|
+
weighted_data = np.diag(weights) @ X
|
|
204
|
+
|
|
205
|
+
for result_option in options_and_tests:
|
|
206
|
+
function, tols = options_and_tests[result_option]
|
|
207
|
+
fp32tol, fp64tol = tols
|
|
208
|
+
res = getattr(result, result_option)
|
|
209
|
+
if weighted:
|
|
210
|
+
gtr = function(weighted_data)
|
|
211
|
+
else:
|
|
212
|
+
gtr = function(X)
|
|
213
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
214
|
+
assert_allclose(gtr, res, atol=tol)
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
218
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
219
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
220
|
+
def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
221
|
+
X = np.array([[0, 0], [1, 1]])
|
|
222
|
+
X = X.astype(dtype=dtype)
|
|
223
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
224
|
+
if weighted:
|
|
225
|
+
weights = np.array([1, 0.5])
|
|
226
|
+
weights = weights.astype(dtype=dtype)
|
|
227
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
228
|
+
incbs = IncrementalBasicStatistics(batch_size=1)
|
|
229
|
+
|
|
230
|
+
if weighted:
|
|
231
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
232
|
+
else:
|
|
233
|
+
result = incbs.fit(X_df)
|
|
234
|
+
|
|
235
|
+
if weighted:
|
|
236
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
237
|
+
expected_weighted_min = np.array([0, 0])
|
|
238
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
239
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
240
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
241
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
242
|
+
else:
|
|
243
|
+
expected_mean = np.array([0.5, 0.5])
|
|
244
|
+
expected_min = np.array([0, 0])
|
|
245
|
+
expected_max = np.array([1, 1])
|
|
246
|
+
assert_allclose(expected_mean, result.mean)
|
|
247
|
+
assert_allclose(expected_max, result.max)
|
|
248
|
+
assert_allclose(expected_min, result.min)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
252
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
253
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
254
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
255
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
256
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
257
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
258
|
+
def test_fit_single_option_on_random_data(
|
|
259
|
+
dataframe, queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
260
|
+
):
|
|
261
|
+
function, tols = options_and_tests[result_option]
|
|
262
|
+
fp32tol, fp64tol = tols
|
|
263
|
+
seed = 77
|
|
264
|
+
gen = np.random.default_rng(seed)
|
|
265
|
+
batch_size = row_count // num_batches
|
|
266
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
267
|
+
X = X.astype(dtype=dtype)
|
|
268
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
269
|
+
if weighted:
|
|
270
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
271
|
+
weights = weights.astype(dtype=dtype)
|
|
272
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
273
|
+
incbs = IncrementalBasicStatistics(
|
|
274
|
+
result_options=result_option, batch_size=batch_size
|
|
275
|
+
)
|
|
276
|
+
|
|
277
|
+
if weighted:
|
|
278
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
279
|
+
else:
|
|
280
|
+
result = incbs.fit(X_df)
|
|
281
|
+
|
|
282
|
+
res = getattr(result, result_option)
|
|
283
|
+
if weighted:
|
|
284
|
+
weighted_data = np.diag(weights) @ X
|
|
285
|
+
gtr = function(weighted_data)
|
|
286
|
+
else:
|
|
287
|
+
gtr = function(X)
|
|
288
|
+
|
|
289
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
290
|
+
assert_allclose(gtr, res, atol=tol)
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
294
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
295
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
296
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
297
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
298
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
299
|
+
def test_fit_multiple_options_on_random_data(
|
|
300
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
301
|
+
):
|
|
302
|
+
seed = 77
|
|
303
|
+
gen = np.random.default_rng(seed)
|
|
304
|
+
batch_size = row_count // num_batches
|
|
305
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
306
|
+
X = X.astype(dtype=dtype)
|
|
307
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
308
|
+
if weighted:
|
|
309
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
310
|
+
weights = weights.astype(dtype=dtype)
|
|
311
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
312
|
+
incbs = IncrementalBasicStatistics(
|
|
313
|
+
result_options=["mean", "max", "sum"], batch_size=batch_size
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
if weighted:
|
|
317
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
318
|
+
else:
|
|
319
|
+
result = incbs.fit(X_df)
|
|
320
|
+
|
|
321
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
322
|
+
if weighted:
|
|
323
|
+
weighted_data = np.diag(weights) @ X
|
|
324
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
325
|
+
options_and_tests["mean"][0](weighted_data),
|
|
326
|
+
options_and_tests["max"][0](weighted_data),
|
|
327
|
+
options_and_tests["sum"][0](weighted_data),
|
|
328
|
+
)
|
|
329
|
+
else:
|
|
330
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
331
|
+
options_and_tests["mean"][0](X),
|
|
332
|
+
options_and_tests["max"][0](X),
|
|
333
|
+
options_and_tests["sum"][0](X),
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
337
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
338
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
339
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
343
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
344
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
345
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
346
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
347
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
348
|
+
def test_fit_all_option_on_random_data(
|
|
349
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
350
|
+
):
|
|
351
|
+
seed = 77
|
|
352
|
+
gen = np.random.default_rng(seed)
|
|
353
|
+
batch_size = row_count // num_batches
|
|
354
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
355
|
+
X = X.astype(dtype=dtype)
|
|
356
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
357
|
+
if weighted:
|
|
358
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
359
|
+
weights = weights.astype(dtype=dtype)
|
|
360
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
361
|
+
incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
|
|
362
|
+
|
|
363
|
+
if weighted:
|
|
364
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
365
|
+
else:
|
|
366
|
+
result = incbs.fit(X_df)
|
|
367
|
+
|
|
368
|
+
if weighted:
|
|
369
|
+
weighted_data = np.diag(weights) @ X
|
|
370
|
+
|
|
371
|
+
for result_option in options_and_tests:
|
|
372
|
+
function, tols = options_and_tests[result_option]
|
|
373
|
+
fp32tol, fp64tol = tols
|
|
374
|
+
res = getattr(result, result_option)
|
|
375
|
+
if weighted:
|
|
376
|
+
gtr = function(weighted_data)
|
|
377
|
+
else:
|
|
378
|
+
gtr = function(X)
|
|
379
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
380
|
+
assert_allclose(gtr, res, atol=tol)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
def test_warning():
|
|
384
|
+
basicstat = IncrementalBasicStatistics("all")
|
|
385
|
+
# Only 2d inputs supported into IncrementalBasicStatistics
|
|
386
|
+
data = np.array([[0.0], [1.0]])
|
|
387
|
+
|
|
388
|
+
basicstat.fit(data)
|
|
389
|
+
for i in basicstat._onedal_estimator.get_all_result_options():
|
|
390
|
+
with pytest.warns(
|
|
391
|
+
UserWarning,
|
|
392
|
+
match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
|
|
393
|
+
) as warn_record:
|
|
394
|
+
getattr(basicstat, i)
|
|
395
|
+
|
|
396
|
+
if daal_check_version((2026, "P", 0)):
|
|
397
|
+
assert len(warn_record) == 0, i
|
|
398
|
+
else:
|
|
399
|
+
assert len(warn_record) == 1, i
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
403
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
404
|
+
def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, dtype):
|
|
405
|
+
import pickle
|
|
406
|
+
|
|
407
|
+
from sklearnex.basic_statistics import IncrementalBasicStatistics
|
|
408
|
+
|
|
409
|
+
incbs = IncrementalBasicStatistics()
|
|
410
|
+
|
|
411
|
+
# Check that estimator can be serialized without any data.
|
|
412
|
+
dump = pickle.dumps(incbs)
|
|
413
|
+
incbs_loaded = pickle.loads(dump)
|
|
414
|
+
seed = 77
|
|
415
|
+
gen = np.random.default_rng(seed)
|
|
416
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
417
|
+
X = X.astype(dtype)
|
|
418
|
+
X_split = np.array_split(X, 2)
|
|
419
|
+
X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
|
|
420
|
+
incbs.partial_fit(X_split_df)
|
|
421
|
+
incbs_loaded.partial_fit(X_split_df)
|
|
422
|
+
|
|
423
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
424
|
+
dump = pickle.dumps(incbs_loaded)
|
|
425
|
+
incbs_loaded = pickle.loads(dump)
|
|
426
|
+
|
|
427
|
+
X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
|
|
428
|
+
incbs.partial_fit(X_split_df)
|
|
429
|
+
incbs_loaded.partial_fit(X_split_df)
|
|
430
|
+
dump = pickle.dumps(incbs)
|
|
431
|
+
incbs_loaded = pickle.loads(dump)
|
|
432
|
+
assert incbs.batch_size == incbs_loaded.batch_size
|
|
433
|
+
assert incbs.n_features_in_ == incbs_loaded.n_features_in_
|
|
434
|
+
assert incbs.n_samples_seen_ == incbs_loaded.n_samples_seen_
|
|
435
|
+
if hasattr(incbs, "_parameter_constraints"):
|
|
436
|
+
assert incbs._parameter_constraints == incbs_loaded._parameter_constraints
|
|
437
|
+
assert incbs.n_jobs == incbs_loaded.n_jobs
|
|
438
|
+
for result_option in options_and_tests:
|
|
439
|
+
_, tols = options_and_tests[result_option]
|
|
440
|
+
fp32tol, fp64tol = tols
|
|
441
|
+
res = getattr(incbs, result_option)
|
|
442
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
443
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
444
|
+
assert_allclose(res, res_loaded, atol=tol)
|
|
445
|
+
|
|
446
|
+
# Check that finalized estimator can be serialized.
|
|
447
|
+
dump = pickle.dumps(incbs_loaded)
|
|
448
|
+
incbs_loaded = pickle.loads(dump)
|
|
449
|
+
for result_option in options_and_tests:
|
|
450
|
+
_, tols = options_and_tests[result_option]
|
|
451
|
+
fp32tol, fp64tol = tols
|
|
452
|
+
res = getattr(incbs, result_option)
|
|
453
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
454
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
455
|
+
assert_allclose(res, res_loaded, atol=tol)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .dbscan import DBSCAN
|
|
18
|
+
from .k_means import KMeans
|
|
19
|
+
|
|
20
|
+
__all__ = ["DBSCAN", "KMeans"]
|
|
@@ -0,0 +1,197 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numbers
|
|
18
|
+
from abc import ABC
|
|
19
|
+
|
|
20
|
+
from scipy import sparse as sp
|
|
21
|
+
from sklearn.cluster import DBSCAN as _sklearn_DBSCAN
|
|
22
|
+
from sklearn.utils.validation import _check_sample_weight
|
|
23
|
+
|
|
24
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
25
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
26
|
+
from onedal.cluster import DBSCAN as onedal_DBSCAN
|
|
27
|
+
|
|
28
|
+
from .._device_offload import dispatch
|
|
29
|
+
from .._utils import PatchableEstimator, PatchingConditionsChain
|
|
30
|
+
|
|
31
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
32
|
+
from sklearn.utils import check_scalar
|
|
33
|
+
|
|
34
|
+
if sklearn_check_version("1.6"):
|
|
35
|
+
from sklearn.utils.validation import validate_data
|
|
36
|
+
else:
|
|
37
|
+
validate_data = _sklearn_DBSCAN._validate_data
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
class BaseDBSCAN(ABC):
|
|
41
|
+
def _onedal_dbscan(self, **onedal_params):
|
|
42
|
+
return onedal_DBSCAN(**onedal_params)
|
|
43
|
+
|
|
44
|
+
def _save_attributes(self):
|
|
45
|
+
assert hasattr(self, "_onedal_estimator")
|
|
46
|
+
|
|
47
|
+
self.labels_ = self._onedal_estimator.labels_
|
|
48
|
+
self.core_sample_indices_ = self._onedal_estimator.core_sample_indices_
|
|
49
|
+
self.components_ = self._onedal_estimator.components_
|
|
50
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
@control_n_jobs(decorated_methods=["fit"])
|
|
54
|
+
class DBSCAN(PatchableEstimator, _sklearn_DBSCAN, BaseDBSCAN):
|
|
55
|
+
__doc__ = _sklearn_DBSCAN.__doc__
|
|
56
|
+
|
|
57
|
+
if sklearn_check_version("1.2"):
|
|
58
|
+
_parameter_constraints: dict = {**_sklearn_DBSCAN._parameter_constraints}
|
|
59
|
+
|
|
60
|
+
def __init__(
|
|
61
|
+
self,
|
|
62
|
+
eps=0.5,
|
|
63
|
+
*,
|
|
64
|
+
min_samples=5,
|
|
65
|
+
metric="euclidean",
|
|
66
|
+
metric_params=None,
|
|
67
|
+
algorithm="auto",
|
|
68
|
+
leaf_size=30,
|
|
69
|
+
p=None,
|
|
70
|
+
n_jobs=None,
|
|
71
|
+
):
|
|
72
|
+
super(DBSCAN, self).__init__(
|
|
73
|
+
eps=eps,
|
|
74
|
+
min_samples=min_samples,
|
|
75
|
+
metric=metric,
|
|
76
|
+
metric_params=metric_params,
|
|
77
|
+
algorithm=algorithm,
|
|
78
|
+
leaf_size=leaf_size,
|
|
79
|
+
p=p,
|
|
80
|
+
n_jobs=n_jobs,
|
|
81
|
+
)
|
|
82
|
+
self.eps = eps
|
|
83
|
+
self.min_samples = min_samples
|
|
84
|
+
self.metric = metric
|
|
85
|
+
self.metric_params = metric_params
|
|
86
|
+
self.algorithm = algorithm
|
|
87
|
+
self.leaf_size = leaf_size
|
|
88
|
+
self.p = p
|
|
89
|
+
self.n_jobs = n_jobs
|
|
90
|
+
|
|
91
|
+
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
92
|
+
if sklearn_check_version("1.0"):
|
|
93
|
+
X = validate_data(self, X, force_all_finite=False)
|
|
94
|
+
|
|
95
|
+
onedal_params = {
|
|
96
|
+
"eps": self.eps,
|
|
97
|
+
"min_samples": self.min_samples,
|
|
98
|
+
"metric": self.metric,
|
|
99
|
+
"metric_params": self.metric_params,
|
|
100
|
+
"algorithm": self.algorithm,
|
|
101
|
+
"leaf_size": self.leaf_size,
|
|
102
|
+
"p": self.p,
|
|
103
|
+
"n_jobs": self.n_jobs,
|
|
104
|
+
}
|
|
105
|
+
self._onedal_estimator = self._onedal_dbscan(**onedal_params)
|
|
106
|
+
|
|
107
|
+
self._onedal_estimator.fit(X, y=y, sample_weight=sample_weight, queue=queue)
|
|
108
|
+
self._save_attributes()
|
|
109
|
+
|
|
110
|
+
def _onedal_supported(self, method_name, *data):
|
|
111
|
+
class_name = self.__class__.__name__
|
|
112
|
+
patching_status = PatchingConditionsChain(
|
|
113
|
+
f"sklearn.cluster.{class_name}.{method_name}"
|
|
114
|
+
)
|
|
115
|
+
if method_name == "fit":
|
|
116
|
+
X, y, sample_weight = data
|
|
117
|
+
patching_status.and_conditions(
|
|
118
|
+
[
|
|
119
|
+
(
|
|
120
|
+
self.algorithm in ["auto", "brute"],
|
|
121
|
+
f"'{self.algorithm}' algorithm is not supported. "
|
|
122
|
+
"Only 'auto' and 'brute' algorithms are supported",
|
|
123
|
+
),
|
|
124
|
+
(
|
|
125
|
+
self.metric == "euclidean"
|
|
126
|
+
or (self.metric == "minkowski" and self.p == 2),
|
|
127
|
+
f"'{self.metric}' (p={self.p}) metric is not supported. "
|
|
128
|
+
"Only 'euclidean' or 'minkowski' with p=2 metrics are supported.",
|
|
129
|
+
),
|
|
130
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
131
|
+
]
|
|
132
|
+
)
|
|
133
|
+
return patching_status
|
|
134
|
+
raise RuntimeError(f"Unknown method {method_name} in {self.__class__.__name__}")
|
|
135
|
+
|
|
136
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
137
|
+
return self._onedal_supported(method_name, *data)
|
|
138
|
+
|
|
139
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
140
|
+
return self._onedal_supported(method_name, *data)
|
|
141
|
+
|
|
142
|
+
def fit(self, X, y=None, sample_weight=None):
|
|
143
|
+
if sklearn_check_version("1.2"):
|
|
144
|
+
self._validate_params()
|
|
145
|
+
elif sklearn_check_version("1.1"):
|
|
146
|
+
check_scalar(
|
|
147
|
+
self.eps,
|
|
148
|
+
"eps",
|
|
149
|
+
target_type=numbers.Real,
|
|
150
|
+
min_val=0.0,
|
|
151
|
+
include_boundaries="neither",
|
|
152
|
+
)
|
|
153
|
+
check_scalar(
|
|
154
|
+
self.min_samples,
|
|
155
|
+
"min_samples",
|
|
156
|
+
target_type=numbers.Integral,
|
|
157
|
+
min_val=1,
|
|
158
|
+
include_boundaries="left",
|
|
159
|
+
)
|
|
160
|
+
check_scalar(
|
|
161
|
+
self.leaf_size,
|
|
162
|
+
"leaf_size",
|
|
163
|
+
target_type=numbers.Integral,
|
|
164
|
+
min_val=1,
|
|
165
|
+
include_boundaries="left",
|
|
166
|
+
)
|
|
167
|
+
if self.p is not None:
|
|
168
|
+
check_scalar(
|
|
169
|
+
self.p,
|
|
170
|
+
"p",
|
|
171
|
+
target_type=numbers.Real,
|
|
172
|
+
min_val=0.0,
|
|
173
|
+
include_boundaries="left",
|
|
174
|
+
)
|
|
175
|
+
if self.n_jobs is not None:
|
|
176
|
+
check_scalar(self.n_jobs, "n_jobs", target_type=numbers.Integral)
|
|
177
|
+
else:
|
|
178
|
+
if self.eps <= 0.0:
|
|
179
|
+
raise ValueError(f"eps == {self.eps}, must be > 0.0.")
|
|
180
|
+
|
|
181
|
+
if sample_weight is not None:
|
|
182
|
+
sample_weight = _check_sample_weight(sample_weight, X)
|
|
183
|
+
dispatch(
|
|
184
|
+
self,
|
|
185
|
+
"fit",
|
|
186
|
+
{
|
|
187
|
+
"onedal": self.__class__._onedal_fit,
|
|
188
|
+
"sklearn": _sklearn_DBSCAN.fit,
|
|
189
|
+
},
|
|
190
|
+
X,
|
|
191
|
+
y,
|
|
192
|
+
sample_weight,
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
return self
|
|
196
|
+
|
|
197
|
+
fit.__doc__ = _sklearn_DBSCAN.fit.__doc__
|