scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +696 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +204 -0
- onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +175 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- onedal/basic_statistics/tests/utils.py +50 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +105 -0
- onedal/cluster/kmeans.py +557 -0
- onedal/cluster/kmeans_init.py +112 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +55 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/common/tests/test_sycl.py +128 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +122 -0
- onedal/covariance/incremental_covariance.py +161 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +190 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +121 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +475 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +214 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +285 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +736 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +292 -0
- onedal/linear_model/linear_model.py +325 -0
- onedal/linear_model/logistic_regression.py +247 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- onedal/linear_model/tests/test_linear_regression.py +259 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +763 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +152 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +83 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +124 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +101 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/tests/test_validation.py +142 -0
- onedal/utils/validation.py +464 -0
- scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
- scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
- scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +177 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +261 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +397 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +157 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +405 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +427 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +534 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +140 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +495 -0
- sklearnex/linear_model/incremental_ridge.py +432 -0
- sklearnex/linear_model/linear.py +346 -0
- sklearnex/linear_model/logistic_regression.py +415 -0
- sklearnex/linear_model/ridge.py +390 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/linear_model/tests/test_ridge.py +256 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +26 -0
- sklearnex/manifold/tests/test_tsne.py +250 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +142 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +244 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +491 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_hyperparameters.py +43 -0
- sklearnex/tests/test_memory_usage.py +347 -0
- sklearnex/tests/test_monkeypatch.py +269 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +377 -0
- sklearnex/tests/test_run_to_run_stability.py +326 -0
- sklearnex/tests/utils/__init__.py +48 -0
- sklearnex/tests/utils/base.py +436 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_validation.py +238 -0
- sklearnex/utils/validation.py +208 -0
|
@@ -0,0 +1,242 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from scipy import sparse as sp
|
|
21
|
+
|
|
22
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
23
|
+
from onedal.basic_statistics import BasicStatistics
|
|
24
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
25
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
26
|
+
|
|
27
|
+
options_and_tests_csr = [
|
|
28
|
+
("sum", "sum", (5e-6, 1e-9)),
|
|
29
|
+
("min", "min", (0, 0)),
|
|
30
|
+
("max", "max", (0, 0)),
|
|
31
|
+
("mean", "mean", (5e-6, 1e-9)),
|
|
32
|
+
]
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
36
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
37
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
38
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
39
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
40
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
41
|
+
def test_single_option_on_random_data(
|
|
42
|
+
queue, result_option, row_count, column_count, weighted, dtype
|
|
43
|
+
):
|
|
44
|
+
function, tols = options_and_tests[result_option]
|
|
45
|
+
fp32tol, fp64tol = tols
|
|
46
|
+
seed = 77
|
|
47
|
+
gen = np.random.default_rng(seed)
|
|
48
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
49
|
+
data = data.astype(dtype=dtype)
|
|
50
|
+
if weighted:
|
|
51
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
52
|
+
weights = weights.astype(dtype=dtype)
|
|
53
|
+
else:
|
|
54
|
+
weights = None
|
|
55
|
+
|
|
56
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
57
|
+
|
|
58
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
59
|
+
|
|
60
|
+
res = getattr(result, result_option)
|
|
61
|
+
if weighted:
|
|
62
|
+
weighted_data = np.diag(weights) @ data
|
|
63
|
+
gtr = function(weighted_data)
|
|
64
|
+
else:
|
|
65
|
+
gtr = function(data)
|
|
66
|
+
|
|
67
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
68
|
+
assert_allclose(gtr, res, atol=tol)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
72
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
73
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
74
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
75
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
76
|
+
def test_multiple_options_on_random_data(queue, row_count, column_count, weighted, dtype):
|
|
77
|
+
seed = 42
|
|
78
|
+
gen = np.random.default_rng(seed)
|
|
79
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
80
|
+
data = data.astype(dtype=dtype)
|
|
81
|
+
|
|
82
|
+
if weighted:
|
|
83
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
84
|
+
weights = weights.astype(dtype=dtype)
|
|
85
|
+
else:
|
|
86
|
+
weights = None
|
|
87
|
+
|
|
88
|
+
basicstat = BasicStatistics(result_options=["mean", "max", "sum"])
|
|
89
|
+
|
|
90
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
91
|
+
|
|
92
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
93
|
+
if weighted:
|
|
94
|
+
weighted_data = np.diag(weights) @ data
|
|
95
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
96
|
+
options_and_tests["mean"][0](weighted_data),
|
|
97
|
+
options_and_tests["max"][0](weighted_data),
|
|
98
|
+
options_and_tests["sum"][0](weighted_data),
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
102
|
+
options_and_tests["mean"][0](data),
|
|
103
|
+
options_and_tests["max"][0](data),
|
|
104
|
+
options_and_tests["sum"][0](data),
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
tol = 5e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
108
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
109
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
110
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
114
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
115
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
116
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
117
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
118
|
+
def test_all_option_on_random_data(queue, row_count, column_count, weighted, dtype):
|
|
119
|
+
seed = 77
|
|
120
|
+
gen = np.random.default_rng(seed)
|
|
121
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
122
|
+
data = data.astype(dtype=dtype)
|
|
123
|
+
if weighted:
|
|
124
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
125
|
+
weights = weights.astype(dtype=dtype)
|
|
126
|
+
else:
|
|
127
|
+
weights = None
|
|
128
|
+
|
|
129
|
+
basicstat = BasicStatistics(result_options="all")
|
|
130
|
+
|
|
131
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
132
|
+
|
|
133
|
+
if weighted:
|
|
134
|
+
weighted_data = np.diag(weights) @ data
|
|
135
|
+
|
|
136
|
+
for result_option in options_and_tests:
|
|
137
|
+
function, tols = options_and_tests[result_option]
|
|
138
|
+
fp32tol, fp64tol = tols
|
|
139
|
+
res = getattr(result, result_option)
|
|
140
|
+
if weighted:
|
|
141
|
+
gtr = function(weighted_data)
|
|
142
|
+
else:
|
|
143
|
+
gtr = function(data)
|
|
144
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
145
|
+
assert_allclose(gtr, res, atol=tol)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
149
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
150
|
+
@pytest.mark.parametrize("data_size", [100, 1000])
|
|
151
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
152
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
153
|
+
def test_1d_input_on_random_data(queue, result_option, data_size, weighted, dtype):
|
|
154
|
+
|
|
155
|
+
function, tols = options_and_tests[result_option]
|
|
156
|
+
fp32tol, fp64tol = tols
|
|
157
|
+
seed = 77
|
|
158
|
+
gen = np.random.default_rng(seed)
|
|
159
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=data_size)
|
|
160
|
+
data = data.astype(dtype=dtype)
|
|
161
|
+
if weighted:
|
|
162
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=data_size)
|
|
163
|
+
weights = weights.astype(dtype=dtype)
|
|
164
|
+
else:
|
|
165
|
+
weights = None
|
|
166
|
+
|
|
167
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
168
|
+
|
|
169
|
+
result = basicstat.fit(data, sample_weight=weights, queue=queue)
|
|
170
|
+
|
|
171
|
+
res = getattr(result, result_option)
|
|
172
|
+
if weighted:
|
|
173
|
+
weighted_data = weights * data
|
|
174
|
+
gtr = function(weighted_data)
|
|
175
|
+
else:
|
|
176
|
+
gtr = function(data)
|
|
177
|
+
|
|
178
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
179
|
+
assert_allclose(gtr, res, atol=tol)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@pytest.mark.skipif(not hasattr(sp, "random_array"), reason="requires scipy>=1.12.0")
|
|
183
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
184
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
185
|
+
def test_basic_csr(queue, dtype):
|
|
186
|
+
seed = 42
|
|
187
|
+
row_count, column_count = 5000, 3008
|
|
188
|
+
|
|
189
|
+
gen = np.random.default_rng(seed)
|
|
190
|
+
|
|
191
|
+
data = sp.random_array(
|
|
192
|
+
shape=(row_count, column_count),
|
|
193
|
+
density=0.01,
|
|
194
|
+
format="csr",
|
|
195
|
+
dtype=dtype,
|
|
196
|
+
random_state=gen,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
basicstat = BasicStatistics(result_options="mean")
|
|
200
|
+
result = basicstat.fit(data, queue=queue)
|
|
201
|
+
|
|
202
|
+
res_mean = result.mean
|
|
203
|
+
gtr_mean = data.mean(axis=0)
|
|
204
|
+
tol = 5e-6 if res_mean.dtype == np.float32 else 1e-9
|
|
205
|
+
assert_allclose(gtr_mean, res_mean, rtol=tol)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
@pytest.mark.skipif(not hasattr(sp, "random_array"), reason="requires scipy>=1.12.0")
|
|
209
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
210
|
+
@pytest.mark.parametrize("option", options_and_tests_csr)
|
|
211
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
212
|
+
def test_options_csr(queue, option, dtype):
|
|
213
|
+
result_option, function, tols = option
|
|
214
|
+
fp32tol, fp64tol = tols
|
|
215
|
+
|
|
216
|
+
if result_option == "max":
|
|
217
|
+
pytest.skip("There is a bug in oneDAL's max computations on GPU")
|
|
218
|
+
|
|
219
|
+
seed = 42
|
|
220
|
+
row_count, column_count = 20046, 4007
|
|
221
|
+
|
|
222
|
+
gen = np.random.default_rng(seed)
|
|
223
|
+
|
|
224
|
+
data = sp.random_array(
|
|
225
|
+
shape=(row_count, column_count),
|
|
226
|
+
density=0.002,
|
|
227
|
+
format="csr",
|
|
228
|
+
dtype=dtype,
|
|
229
|
+
random_state=gen,
|
|
230
|
+
)
|
|
231
|
+
|
|
232
|
+
basicstat = BasicStatistics(result_options=result_option)
|
|
233
|
+
result = basicstat.fit(data, queue=queue)
|
|
234
|
+
|
|
235
|
+
res = getattr(result, result_option)
|
|
236
|
+
func = getattr(data, function)
|
|
237
|
+
gtr = func(axis=0)
|
|
238
|
+
if type(gtr).__name__ != "ndarray":
|
|
239
|
+
gtr = gtr.toarray().flatten()
|
|
240
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
241
|
+
|
|
242
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.basic_statistics import IncrementalBasicStatistics
|
|
22
|
+
from onedal.basic_statistics.tests.utils import options_and_tests
|
|
23
|
+
from onedal.datatypes import from_table
|
|
24
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
28
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
29
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
30
|
+
def test_multiple_options_on_gold_data(queue, weighted, dtype):
|
|
31
|
+
X = np.array([[0, 0], [1, 1]])
|
|
32
|
+
X = X.astype(dtype=dtype)
|
|
33
|
+
X_split = np.array_split(X, 2)
|
|
34
|
+
if weighted:
|
|
35
|
+
weights = np.array([1, 0.5])
|
|
36
|
+
weights = weights.astype(dtype=dtype)
|
|
37
|
+
weights_split = np.array_split(weights, 2)
|
|
38
|
+
|
|
39
|
+
incbs = IncrementalBasicStatistics()
|
|
40
|
+
for i in range(2):
|
|
41
|
+
if weighted:
|
|
42
|
+
incbs.partial_fit(X_split[i], weights_split[i], queue=queue)
|
|
43
|
+
else:
|
|
44
|
+
incbs.partial_fit(X_split[i], queue=queue)
|
|
45
|
+
|
|
46
|
+
result = incbs.finalize_fit()
|
|
47
|
+
|
|
48
|
+
if weighted:
|
|
49
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
50
|
+
expected_weighted_min = np.array([0, 0])
|
|
51
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
52
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
53
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
54
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
55
|
+
else:
|
|
56
|
+
expected_mean = np.array([0.5, 0.5])
|
|
57
|
+
expected_min = np.array([0, 0])
|
|
58
|
+
expected_max = np.array([1, 1])
|
|
59
|
+
assert_allclose(expected_mean, result.mean)
|
|
60
|
+
assert_allclose(expected_max, result.max)
|
|
61
|
+
assert_allclose(expected_min, result.min)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
65
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
66
|
+
@pytest.mark.parametrize("result_option", options_and_tests.keys())
|
|
67
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
68
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
69
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
70
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
71
|
+
def test_single_option_on_random_data(
|
|
72
|
+
queue, num_batches, result_option, row_count, column_count, weighted, dtype
|
|
73
|
+
):
|
|
74
|
+
function, tols = options_and_tests[result_option]
|
|
75
|
+
fp32tol, fp64tol = tols
|
|
76
|
+
seed = 77
|
|
77
|
+
gen = np.random.default_rng(seed)
|
|
78
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
79
|
+
data = data.astype(dtype=dtype)
|
|
80
|
+
data_split = np.array_split(data, num_batches)
|
|
81
|
+
if weighted:
|
|
82
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
83
|
+
weights = weights.astype(dtype=dtype)
|
|
84
|
+
weights_split = np.array_split(weights, num_batches)
|
|
85
|
+
incbs = IncrementalBasicStatistics(result_options=result_option)
|
|
86
|
+
|
|
87
|
+
for i in range(num_batches):
|
|
88
|
+
if weighted:
|
|
89
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
90
|
+
else:
|
|
91
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
92
|
+
result = incbs.finalize_fit()
|
|
93
|
+
|
|
94
|
+
res = getattr(result, result_option)
|
|
95
|
+
if weighted:
|
|
96
|
+
weighted_data = np.diag(weights) @ data
|
|
97
|
+
gtr = function(weighted_data)
|
|
98
|
+
else:
|
|
99
|
+
gtr = function(data)
|
|
100
|
+
|
|
101
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
102
|
+
assert_allclose(gtr, res, atol=tol)
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
106
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
107
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
108
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
109
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
110
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
111
|
+
def test_multiple_options_on_random_data(
|
|
112
|
+
queue, num_batches, row_count, column_count, weighted, dtype
|
|
113
|
+
):
|
|
114
|
+
seed = 42
|
|
115
|
+
gen = np.random.default_rng(seed)
|
|
116
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
117
|
+
data = data.astype(dtype=dtype)
|
|
118
|
+
data_split = np.array_split(data, num_batches)
|
|
119
|
+
if weighted:
|
|
120
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
121
|
+
weights = weights.astype(dtype=dtype)
|
|
122
|
+
weights_split = np.array_split(weights, num_batches)
|
|
123
|
+
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
|
|
124
|
+
|
|
125
|
+
for i in range(num_batches):
|
|
126
|
+
if weighted:
|
|
127
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
128
|
+
else:
|
|
129
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
130
|
+
result = incbs.finalize_fit()
|
|
131
|
+
|
|
132
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
133
|
+
if weighted:
|
|
134
|
+
weighted_data = np.diag(weights) @ data
|
|
135
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
136
|
+
options_and_tests["mean"][0](weighted_data),
|
|
137
|
+
options_and_tests["max"][0](weighted_data),
|
|
138
|
+
options_and_tests["sum"][0](weighted_data),
|
|
139
|
+
)
|
|
140
|
+
else:
|
|
141
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
142
|
+
options_and_tests["mean"][0](data),
|
|
143
|
+
options_and_tests["max"][0](data),
|
|
144
|
+
options_and_tests["sum"][0](data),
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
148
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
149
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
150
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
154
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
155
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
156
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
157
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
158
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
159
|
+
def test_all_option_on_random_data(
|
|
160
|
+
queue, num_batches, row_count, column_count, weighted, dtype
|
|
161
|
+
):
|
|
162
|
+
seed = 77
|
|
163
|
+
gen = np.random.default_rng(seed)
|
|
164
|
+
data = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
165
|
+
data = data.astype(dtype=dtype)
|
|
166
|
+
data_split = np.array_split(data, num_batches)
|
|
167
|
+
if weighted:
|
|
168
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
169
|
+
weights = weights.astype(dtype=dtype)
|
|
170
|
+
weights_split = np.array_split(weights, num_batches)
|
|
171
|
+
incbs = IncrementalBasicStatistics(result_options="all")
|
|
172
|
+
|
|
173
|
+
for i in range(num_batches):
|
|
174
|
+
if weighted:
|
|
175
|
+
incbs.partial_fit(data_split[i], weights_split[i], queue=queue)
|
|
176
|
+
else:
|
|
177
|
+
incbs.partial_fit(data_split[i], queue=queue)
|
|
178
|
+
result = incbs.finalize_fit()
|
|
179
|
+
|
|
180
|
+
if weighted:
|
|
181
|
+
weighted_data = np.diag(weights) @ data
|
|
182
|
+
|
|
183
|
+
for result_option in options_and_tests:
|
|
184
|
+
function, tols = options_and_tests[result_option]
|
|
185
|
+
fp32tol, fp64tol = tols
|
|
186
|
+
res = getattr(result, result_option)
|
|
187
|
+
if weighted:
|
|
188
|
+
gtr = function(weighted_data)
|
|
189
|
+
else:
|
|
190
|
+
gtr = function(data)
|
|
191
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
192
|
+
assert_allclose(gtr, res, atol=tol)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
196
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
197
|
+
def test_incremental_estimator_pickle(queue, dtype):
|
|
198
|
+
import pickle
|
|
199
|
+
|
|
200
|
+
from onedal.basic_statistics import IncrementalBasicStatistics
|
|
201
|
+
|
|
202
|
+
incbs = IncrementalBasicStatistics()
|
|
203
|
+
|
|
204
|
+
# Check that estimator can be serialized without any data.
|
|
205
|
+
dump = pickle.dumps(incbs)
|
|
206
|
+
incbs_loaded = pickle.loads(dump)
|
|
207
|
+
seed = 77
|
|
208
|
+
gen = np.random.default_rng(seed)
|
|
209
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
|
|
210
|
+
X = X.astype(dtype)
|
|
211
|
+
X_split = np.array_split(X, 2)
|
|
212
|
+
incbs.partial_fit(X_split[0], queue=queue)
|
|
213
|
+
incbs_loaded.partial_fit(X_split[0], queue=queue)
|
|
214
|
+
|
|
215
|
+
assert incbs._need_to_finalize == True
|
|
216
|
+
assert incbs_loaded._need_to_finalize == True
|
|
217
|
+
|
|
218
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
219
|
+
dump = pickle.dumps(incbs)
|
|
220
|
+
incbs_loaded = pickle.loads(dump)
|
|
221
|
+
assert incbs._need_to_finalize == False
|
|
222
|
+
# Finalize is called during serialization to make sure partial results are finalized correctly.
|
|
223
|
+
assert incbs_loaded._need_to_finalize == False
|
|
224
|
+
|
|
225
|
+
partial_n_rows = from_table(incbs._partial_result.partial_n_rows)
|
|
226
|
+
partial_n_rows_loaded = from_table(incbs_loaded._partial_result.partial_n_rows)
|
|
227
|
+
assert_allclose(partial_n_rows, partial_n_rows_loaded)
|
|
228
|
+
|
|
229
|
+
partial_min = from_table(incbs._partial_result.partial_min)
|
|
230
|
+
partial_min_loaded = from_table(incbs_loaded._partial_result.partial_min)
|
|
231
|
+
assert_allclose(partial_min, partial_min_loaded)
|
|
232
|
+
|
|
233
|
+
partial_max = from_table(incbs._partial_result.partial_max)
|
|
234
|
+
partial_max_loaded = from_table(incbs_loaded._partial_result.partial_max)
|
|
235
|
+
assert_allclose(partial_max, partial_max_loaded)
|
|
236
|
+
|
|
237
|
+
partial_sum = from_table(incbs._partial_result.partial_sum)
|
|
238
|
+
partial_sum_loaded = from_table(incbs_loaded._partial_result.partial_sum)
|
|
239
|
+
assert_allclose(partial_sum, partial_sum_loaded)
|
|
240
|
+
|
|
241
|
+
partial_sum_squares = from_table(incbs._partial_result.partial_sum_squares)
|
|
242
|
+
partial_sum_squares_loaded = from_table(
|
|
243
|
+
incbs_loaded._partial_result.partial_sum_squares
|
|
244
|
+
)
|
|
245
|
+
assert_allclose(partial_sum_squares, partial_sum_squares_loaded)
|
|
246
|
+
|
|
247
|
+
partial_sum_squares_centered = from_table(
|
|
248
|
+
incbs._partial_result.partial_sum_squares_centered
|
|
249
|
+
)
|
|
250
|
+
partial_sum_squares_centered_loaded = from_table(
|
|
251
|
+
incbs_loaded._partial_result.partial_sum_squares_centered
|
|
252
|
+
)
|
|
253
|
+
assert_allclose(partial_sum_squares_centered, partial_sum_squares_centered_loaded)
|
|
254
|
+
|
|
255
|
+
incbs.partial_fit(X_split[1], queue=queue)
|
|
256
|
+
incbs_loaded.partial_fit(X_split[1], queue=queue)
|
|
257
|
+
assert incbs._need_to_finalize == True
|
|
258
|
+
assert incbs_loaded._need_to_finalize == True
|
|
259
|
+
|
|
260
|
+
dump = pickle.dumps(incbs_loaded)
|
|
261
|
+
incbs_loaded = pickle.loads(dump)
|
|
262
|
+
|
|
263
|
+
assert incbs._need_to_finalize == True
|
|
264
|
+
assert incbs_loaded._need_to_finalize == False
|
|
265
|
+
|
|
266
|
+
incbs.finalize_fit()
|
|
267
|
+
incbs_loaded.finalize_fit()
|
|
268
|
+
|
|
269
|
+
# Check that finalized estimator can be serialized.
|
|
270
|
+
dump = pickle.dumps(incbs_loaded)
|
|
271
|
+
incbs_loaded = pickle.loads(dump)
|
|
272
|
+
|
|
273
|
+
for result_option in options_and_tests:
|
|
274
|
+
_, tols = options_and_tests[result_option]
|
|
275
|
+
fp32tol, fp64tol = tols
|
|
276
|
+
res = getattr(incbs, result_option)
|
|
277
|
+
res_loaded = getattr(incbs_loaded, result_option)
|
|
278
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
279
|
+
assert_allclose(res, res_loaded, atol=tol)
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# Compute unbiased variation for the columns of array-like X
|
|
21
|
+
def variation(X):
|
|
22
|
+
X_mean = np.mean(X, axis=0)
|
|
23
|
+
if np.all(X_mean):
|
|
24
|
+
# Avoid division by zero
|
|
25
|
+
return np.std(X, axis=0, ddof=1) / X_mean
|
|
26
|
+
else:
|
|
27
|
+
return np.array(
|
|
28
|
+
[
|
|
29
|
+
x / y if y != 0 else np.nan
|
|
30
|
+
for x, y in zip(np.std(X, axis=0, ddof=1), X_mean)
|
|
31
|
+
]
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
options_and_tests = {
|
|
36
|
+
"sum": (lambda X: np.sum(X, axis=0), (5e-4, 1e-7)),
|
|
37
|
+
"min": (lambda X: np.min(X, axis=0), (1e-7, 1e-7)),
|
|
38
|
+
"max": (lambda X: np.max(X, axis=0), (1e-7, 1e-7)),
|
|
39
|
+
"mean": (lambda X: np.mean(X, axis=0), (5e-7, 1e-7)),
|
|
40
|
+
# sklearnex computes unbiased variance and standard deviation that is why ddof=1
|
|
41
|
+
"variance": (lambda X: np.var(X, axis=0, ddof=1), (2e-4, 1e-7)),
|
|
42
|
+
"variation": (lambda X: variation(X), (1e-3, 1e-6)),
|
|
43
|
+
"sum_squares": (lambda X: np.sum(np.square(X), axis=0), (2e-4, 1e-7)),
|
|
44
|
+
"sum_squares_centered": (
|
|
45
|
+
lambda X: np.sum(np.square(X - np.mean(X, axis=0)), axis=0),
|
|
46
|
+
(1e-3, 1e-7),
|
|
47
|
+
),
|
|
48
|
+
"standard_deviation": (lambda X: np.std(X, axis=0, ddof=1), (2e-3, 1e-7)),
|
|
49
|
+
"second_order_raw_moment": (lambda X: np.mean(np.square(X), axis=0), (1e-6, 1e-7)),
|
|
50
|
+
}
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
from .dbscan import DBSCAN
|
|
20
|
+
from .kmeans import KMeans, k_means
|
|
21
|
+
|
|
22
|
+
__all__ = ["DBSCAN", "KMeans", "k_means"]
|
|
23
|
+
|
|
24
|
+
if daal_check_version((2023, "P", 200)):
|
|
25
|
+
from .kmeans_init import KMeansInit, kmeans_plusplus
|
|
26
|
+
|
|
27
|
+
__all__ += ["KMeansInit", "kmeans_plusplus"]
|