scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,390 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+
19
+ from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
20
+
21
+ if daal_check_version((2024, "P", 600)):
22
+ import numbers
23
+
24
+ import numpy as np
25
+ from scipy.sparse import issparse
26
+ from sklearn.linear_model import Ridge as _sklearn_Ridge
27
+ from sklearn.metrics import r2_score
28
+ from sklearn.utils.validation import check_is_fitted
29
+
30
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
31
+
32
+ if not sklearn_check_version("1.2"):
33
+ from sklearn.linear_model._base import _deprecate_normalize
34
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
35
+ from sklearn.utils import check_scalar
36
+
37
+ from onedal.linear_model import Ridge as onedal_Ridge
38
+ from onedal.utils import _num_features, _num_samples
39
+
40
+ from .._device_offload import dispatch, wrap_output_data
41
+ from .._utils import PatchableEstimator, PatchingConditionsChain
42
+
43
+ if sklearn_check_version("1.6"):
44
+ from sklearn.utils.validation import validate_data
45
+ else:
46
+ validate_data = _sklearn_Ridge._validate_data
47
+
48
+ @control_n_jobs(decorated_methods=["fit", "predict", "score"])
49
+ class Ridge(PatchableEstimator, _sklearn_Ridge):
50
+ __doc__ = _sklearn_Ridge.__doc__
51
+
52
+ if sklearn_check_version("1.2"):
53
+ _parameter_constraints: dict = {**_sklearn_Ridge._parameter_constraints}
54
+
55
+ def __init__(
56
+ self,
57
+ alpha=1.0,
58
+ fit_intercept=True,
59
+ copy_X=True,
60
+ max_iter=None,
61
+ tol=1e-4,
62
+ solver="auto",
63
+ positive=False,
64
+ random_state=None,
65
+ ):
66
+ super().__init__(
67
+ alpha=alpha,
68
+ fit_intercept=fit_intercept,
69
+ copy_X=copy_X,
70
+ max_iter=max_iter,
71
+ tol=tol,
72
+ solver=solver,
73
+ positive=positive,
74
+ random_state=random_state,
75
+ )
76
+
77
+ else:
78
+
79
+ def __init__(
80
+ self,
81
+ alpha=1.0,
82
+ fit_intercept=True,
83
+ normalize="deprecated",
84
+ copy_X=True,
85
+ max_iter=None,
86
+ tol=1e-3,
87
+ solver="auto",
88
+ positive=False,
89
+ random_state=None,
90
+ ):
91
+ super().__init__(
92
+ alpha=alpha,
93
+ fit_intercept=fit_intercept,
94
+ normalize=normalize,
95
+ copy_X=copy_X,
96
+ max_iter=max_iter,
97
+ solver=solver,
98
+ tol=tol,
99
+ positive=positive,
100
+ random_state=random_state,
101
+ )
102
+
103
+ def fit(self, X, y, sample_weight=None):
104
+ if sklearn_check_version("1.2"):
105
+ self._validate_params()
106
+
107
+ # It is necessary to properly update coefs for predict if we
108
+ # fallback to sklearn in dispatch
109
+ if hasattr(self, "_onedal_estimator"):
110
+ del self._onedal_estimator
111
+
112
+ dispatch(
113
+ self,
114
+ "fit",
115
+ {
116
+ "onedal": self.__class__._onedal_fit,
117
+ "sklearn": _sklearn_Ridge.fit,
118
+ },
119
+ X,
120
+ y,
121
+ sample_weight,
122
+ )
123
+ return self
124
+
125
+ @wrap_output_data
126
+ def predict(self, X):
127
+ check_is_fitted(self)
128
+
129
+ return dispatch(
130
+ self,
131
+ "predict",
132
+ {
133
+ "onedal": self.__class__._onedal_predict,
134
+ "sklearn": _sklearn_Ridge.predict,
135
+ },
136
+ X,
137
+ )
138
+
139
+ @wrap_output_data
140
+ def score(self, X, y, sample_weight=None):
141
+ check_is_fitted(self)
142
+
143
+ return dispatch(
144
+ self,
145
+ "score",
146
+ {
147
+ "onedal": self.__class__._onedal_score,
148
+ "sklearn": _sklearn_Ridge.score,
149
+ },
150
+ X,
151
+ y,
152
+ sample_weight=sample_weight,
153
+ )
154
+
155
+ def _onedal_fit_supported(self, patching_status, method_name, *data):
156
+ assert method_name == "fit"
157
+ assert len(data) == 3
158
+ X, y, sample_weight = data
159
+
160
+ normalize_is_set = (
161
+ hasattr(self, "normalize")
162
+ and self.normalize
163
+ and self.normalize != "deprecated"
164
+ )
165
+ positive_is_set = hasattr(self, "positive") and self.positive
166
+
167
+ patching_status.and_conditions(
168
+ [
169
+ (
170
+ self.solver == "auto",
171
+ f"'{self.solver}' solver is not supported. "
172
+ "Only 'auto' solver is supported.",
173
+ ),
174
+ (
175
+ not issparse(X) and not issparse(y),
176
+ "Sparse input is not supported.",
177
+ ),
178
+ (sample_weight is None, "Sample weight is not supported."),
179
+ (not normalize_is_set, "Normalization is not supported."),
180
+ (
181
+ not positive_is_set,
182
+ "Forced positive coefficients are not supported.",
183
+ ),
184
+ (
185
+ isinstance(self.alpha, numbers.Real),
186
+ "Non-scalar alpha is not supported yet.",
187
+ ),
188
+ ]
189
+ )
190
+
191
+ return patching_status
192
+
193
+ def _onedal_predict_supported(self, patching_status, method_name, *data):
194
+ assert method_name in ["predict", "score"]
195
+ assert len(data) <= 2
196
+
197
+ n_samples = _num_samples(data[0])
198
+ model_is_sparse = issparse(self.coef_) or (
199
+ self.fit_intercept and issparse(self.intercept_)
200
+ )
201
+ patching_status.and_conditions(
202
+ [
203
+ (
204
+ self.solver == "auto",
205
+ f"'{self.solver}' solver is not supported. "
206
+ "Only 'auto' solver is supported.",
207
+ ),
208
+ (n_samples > 0, "Number of samples is less than 1."),
209
+ (not issparse(data[0]), "Sparse input is not supported."),
210
+ (not model_is_sparse, "Sparse coefficients are not supported."),
211
+ ]
212
+ )
213
+
214
+ return patching_status
215
+
216
+ def _onedal_gpu_supported(self, method_name, *data):
217
+ patching_status = PatchingConditionsChain(
218
+ f"sklearn.linear_model.{self.__class__.__name__}.{method_name}"
219
+ )
220
+
221
+ if method_name == "fit":
222
+ if not daal_check_version((2025, "P", 200)):
223
+ n_samples = _num_samples(data[0])
224
+ n_features = _num_features(data[0], fallback_1d=True)
225
+ is_underdetermined = n_samples < (
226
+ n_features + int(self.fit_intercept)
227
+ )
228
+ is_zero_alpha = isinstance(self.alpha, numbers.Real) and np.isclose(
229
+ self.alpha, 0, atol=1e-5
230
+ )
231
+
232
+ patching_status.and_condition(
233
+ not is_underdetermined or not is_zero_alpha,
234
+ "The shape of X (fitting) does not satisfy oneDAL requirements:"
235
+ "Number of features + 1 >= number of samples and alpha = 0.",
236
+ )
237
+
238
+ return self._onedal_fit_supported(patching_status, method_name, *data)
239
+
240
+ if method_name in ["predict", "score"]:
241
+ return self._onedal_predict_supported(patching_status, method_name, *data)
242
+
243
+ raise RuntimeError(
244
+ f"Unknown method {method_name} in {self.__class__.__name__}"
245
+ )
246
+
247
+ def _onedal_cpu_supported(self, method_name, *data):
248
+ patching_status = PatchingConditionsChain(
249
+ f"sklearn.linear_model.{self.__class__.__name__}.{method_name}"
250
+ )
251
+
252
+ if method_name == "fit":
253
+ if not daal_check_version((2025, "P", 100)):
254
+ n_samples = _num_samples(data[0])
255
+ n_features = _num_features(data[0], fallback_1d=True)
256
+ is_underdetermined = n_samples < (
257
+ n_features + int(self.fit_intercept)
258
+ )
259
+ is_zero_alpha = isinstance(self.alpha, numbers.Real) and np.isclose(
260
+ self.alpha, 0, atol=1e-5
261
+ )
262
+
263
+ patching_status.and_condition(
264
+ not is_underdetermined or not is_zero_alpha,
265
+ "The shape of X (fitting) does not satisfy oneDAL requirements:"
266
+ "Number of features + 1 >= number of samples and alpha = 0.",
267
+ )
268
+ return self._onedal_fit_supported(patching_status, method_name, *data)
269
+
270
+ if method_name in ["predict", "score"]:
271
+ return self._onedal_predict_supported(patching_status, method_name, *data)
272
+
273
+ raise RuntimeError(
274
+ f"Unknown method {method_name} in {self.__class__.__name__}"
275
+ )
276
+
277
+ def _initialize_onedal_estimator(self):
278
+ onedal_params = {
279
+ "fit_intercept": self.fit_intercept,
280
+ "alpha": self.alpha,
281
+ "copy_X": self.copy_X,
282
+ }
283
+ self._onedal_estimator = onedal_Ridge(**onedal_params)
284
+
285
+ def _onedal_fit(self, X, y, sample_weight, queue=None):
286
+ # `Sample weight` is not supported. Expected to be None value.
287
+ assert sample_weight is None
288
+
289
+ if sklearn_check_version("1.2"):
290
+ self._validate_params()
291
+ elif sklearn_check_version("1.1"):
292
+ if self.max_iter is not None:
293
+ self.max_iter = check_scalar(
294
+ self.max_iter, "max_iter", target_type=numbers.Integral, min_val=1
295
+ )
296
+ self.tol = check_scalar(
297
+ self.tol, "tol", target_type=numbers.Real, min_val=0.0
298
+ )
299
+ if self.alpha is not None and not isinstance(
300
+ self.alpha, (np.ndarray, tuple)
301
+ ):
302
+ self.alpha = check_scalar(
303
+ self.alpha,
304
+ "alpha",
305
+ target_type=numbers.Real,
306
+ min_val=0.0,
307
+ include_boundaries="left",
308
+ )
309
+
310
+ check_params = {
311
+ "X": X,
312
+ "y": y,
313
+ "dtype": [np.float64, np.float32],
314
+ "accept_sparse": ["csr", "csc", "coo"],
315
+ "y_numeric": True,
316
+ "multi_output": True,
317
+ }
318
+ X, y = validate_data(self, **check_params)
319
+
320
+ if not sklearn_check_version("1.2"):
321
+ self._normalize = _deprecate_normalize(
322
+ self.normalize,
323
+ default=False,
324
+ estimator_name=self.__class__.__name__,
325
+ )
326
+
327
+ self._initialize_onedal_estimator()
328
+ self._onedal_estimator.fit(X, y, queue=queue)
329
+ self._save_attributes()
330
+
331
+ def _onedal_predict(self, X, queue=None):
332
+ X = validate_data(self, X, accept_sparse=False, reset=False)
333
+
334
+ if not hasattr(self, "_onedal_estimator"):
335
+ self._initialize_onedal_estimator()
336
+ self._onedal_estimator.coef_ = self.coef_
337
+ self._onedal_estimator.intercept_ = self.intercept_
338
+
339
+ res = self._onedal_estimator.predict(X, queue=queue)
340
+ return res
341
+
342
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
343
+ return r2_score(
344
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
345
+ )
346
+
347
+ @property
348
+ def coef_(self):
349
+ return self._coef
350
+
351
+ @coef_.setter
352
+ def coef_(self, value):
353
+ if hasattr(self, "_onedal_estimator"):
354
+ self._onedal_estimator.coef_ = value
355
+ # checking if the model is already fitted and if so, deleting the model
356
+ if hasattr(self._onedal_estimator, "_onedal_model"):
357
+ del self._onedal_estimator._onedal_model
358
+ self._coef = value
359
+
360
+ @property
361
+ def intercept_(self):
362
+ return self._intercept
363
+
364
+ @intercept_.setter
365
+ def intercept_(self, value):
366
+ if hasattr(self, "_onedal_estimator"):
367
+ self._onedal_estimator.intercept_ = value
368
+ # checking if the model is already fitted and if so, deleting the model
369
+ if hasattr(self._onedal_estimator, "_onedal_model"):
370
+ del self._onedal_estimator._onedal_model
371
+ self._intercept = value
372
+
373
+ def _save_attributes(self):
374
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
375
+ self._coef = self._onedal_estimator.coef_
376
+ self._intercept = self._onedal_estimator.intercept_
377
+
378
+ fit.__doc__ = _sklearn_Ridge.fit.__doc__
379
+ predict.__doc__ = _sklearn_Ridge.predict.__doc__
380
+ score.__doc__ = _sklearn_Ridge.score.__doc__
381
+
382
+ else:
383
+ from daal4py.sklearn.linear_model import Ridge
384
+ from onedal._device_offload import support_input_format
385
+
386
+ Ridge.fit = support_input_format(queue_param=False)(Ridge.fit)
387
+ Ridge.predict = support_input_format(queue_param=False)(Ridge.predict)
388
+ Ridge.score = support_input_format(queue_param=False)(Ridge.score)
389
+
390
+ logging.warning("Ridge requires oneDAL version >= 2024.6 but it was not found")
@@ -0,0 +1,267 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _as_numpy,
23
+ _convert_to_dataframe,
24
+ get_dataframes_and_queues,
25
+ )
26
+ from sklearnex.linear_model import IncrementalLinearRegression
27
+ from sklearnex.tests.utils import _IS_INTEL
28
+
29
+
30
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
31
+ @pytest.mark.parametrize("fit_intercept", [True, False])
32
+ @pytest.mark.parametrize("macro_block", [None, 1024])
33
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
34
+ def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
35
+ X = np.array([[1], [2]])
36
+ X = X.astype(dtype=dtype)
37
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
38
+ y = np.array([[1], [2]])
39
+ y = y.astype(dtype=dtype)
40
+ y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
41
+
42
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
43
+ if macro_block is not None:
44
+ hparams = IncrementalLinearRegression.get_hyperparameters("fit")
45
+ hparams.cpu_macro_block = macro_block
46
+ hparams.gpu_macro_block = macro_block
47
+ inclin.fit(X_df, y_df)
48
+
49
+ y_pred = inclin.predict(X_df)
50
+ np_y_pred = _as_numpy(y_pred)
51
+
52
+ tol = 5e-5 if dtype == np.float32 else 1e-7
53
+ assert_allclose(inclin.coef_, [1], atol=tol)
54
+ if fit_intercept:
55
+ assert_allclose(inclin.intercept_, [0], atol=tol)
56
+ assert_allclose(np_y_pred, y, atol=tol)
57
+
58
+
59
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
60
+ @pytest.mark.parametrize("fit_intercept", [True, False])
61
+ @pytest.mark.parametrize("macro_block", [None, 1024])
62
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
63
+ def test_sklearnex_partial_fit_on_gold_data(
64
+ dataframe, queue, fit_intercept, macro_block, dtype
65
+ ):
66
+ X = np.array([[1], [2], [3], [4]])
67
+ X = X.astype(dtype=dtype)
68
+ y = X + 3
69
+ y = y.astype(dtype=dtype)
70
+ X_split = np.array_split(X, 2)
71
+ y_split = np.array_split(y, 2)
72
+
73
+ inclin = IncrementalLinearRegression()
74
+ if macro_block is not None:
75
+ hparams = IncrementalLinearRegression.get_hyperparameters("fit")
76
+ hparams.cpu_macro_block = macro_block
77
+ hparams.gpu_macro_block = macro_block
78
+ for i in range(2):
79
+ X_split_df = _convert_to_dataframe(
80
+ X_split[i], sycl_queue=queue, target_df=dataframe
81
+ )
82
+ y_split_df = _convert_to_dataframe(
83
+ y_split[i], sycl_queue=queue, target_df=dataframe
84
+ )
85
+ inclin.partial_fit(X_split_df, y_split_df)
86
+
87
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
88
+ y_pred = inclin.predict(X_df)
89
+ np_y_pred = _as_numpy(y_pred)
90
+
91
+ assert inclin.n_features_in_ == 1
92
+ tol = 1e-5 if dtype == np.float32 else 1e-7
93
+ assert_allclose(inclin.coef_, [[1]], atol=tol)
94
+ if fit_intercept:
95
+ assert_allclose(inclin.intercept_, 3, atol=tol)
96
+
97
+ assert_allclose(np_y_pred, y, atol=tol)
98
+
99
+
100
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
101
+ @pytest.mark.parametrize("fit_intercept", [True, False])
102
+ @pytest.mark.parametrize("macro_block", [None, 1024])
103
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
104
+ def test_sklearnex_partial_fit_multitarget_on_gold_data(
105
+ dataframe, queue, fit_intercept, macro_block, dtype
106
+ ):
107
+ X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
108
+ X = X.astype(dtype=dtype)
109
+ y = np.dot(X, [1, 2]) + 3
110
+ y = y.astype(dtype=dtype)
111
+ X_split = np.array_split(X, 2)
112
+ y_split = np.array_split(y, 2)
113
+
114
+ inclin = IncrementalLinearRegression()
115
+ if macro_block is not None:
116
+ hparams = IncrementalLinearRegression.get_hyperparameters("fit")
117
+ hparams.cpu_macro_block = macro_block
118
+ hparams.gpu_macro_block = macro_block
119
+ for i in range(2):
120
+ X_split_df = _convert_to_dataframe(
121
+ X_split[i], sycl_queue=queue, target_df=dataframe
122
+ )
123
+ y_split_df = _convert_to_dataframe(
124
+ y_split[i], sycl_queue=queue, target_df=dataframe
125
+ )
126
+ inclin.partial_fit(X_split_df, y_split_df)
127
+
128
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
129
+ y_pred = inclin.predict(X_df)
130
+ np_y_pred = _as_numpy(y_pred)
131
+
132
+ assert inclin.n_features_in_ == 2
133
+ tol = 1e-7
134
+ if dtype == np.float32:
135
+ tol = 7e-6 if _IS_INTEL else 2e-5
136
+
137
+ assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
138
+ if fit_intercept:
139
+ assert_allclose(inclin.intercept_, 3.0, atol=tol)
140
+
141
+ assert_allclose(np_y_pred, y, atol=tol)
142
+
143
+
144
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
145
+ @pytest.mark.parametrize("fit_intercept", [True, False])
146
+ @pytest.mark.parametrize("num_samples", [100, 1000])
147
+ @pytest.mark.parametrize("num_features", [5, 10])
148
+ @pytest.mark.parametrize("num_targets", [1, 2])
149
+ @pytest.mark.parametrize("num_blocks", [1, 10])
150
+ @pytest.mark.parametrize("macro_block", [None, 1024])
151
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
152
+ def test_sklearnex_partial_fit_on_random_data(
153
+ dataframe,
154
+ queue,
155
+ fit_intercept,
156
+ num_samples,
157
+ num_features,
158
+ num_targets,
159
+ num_blocks,
160
+ macro_block,
161
+ dtype,
162
+ ):
163
+ seed = 42
164
+ gen = np.random.default_rng(seed)
165
+ intercept = gen.random(size=num_targets, dtype=dtype)
166
+ coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
167
+
168
+ X = gen.random(size=(num_samples, num_features), dtype=dtype)
169
+ if fit_intercept:
170
+ y = X @ coef + intercept[np.newaxis, :]
171
+ else:
172
+ y = X @ coef
173
+
174
+ X_split = np.array_split(X, num_blocks)
175
+ y_split = np.array_split(y, num_blocks)
176
+
177
+ inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
178
+ if macro_block is not None:
179
+ hparams = IncrementalLinearRegression.get_hyperparameters("fit")
180
+ hparams.cpu_macro_block = macro_block
181
+ hparams.gpu_macro_block = macro_block
182
+ for i in range(num_blocks):
183
+ X_split_df = _convert_to_dataframe(
184
+ X_split[i], sycl_queue=queue, target_df=dataframe
185
+ )
186
+ y_split_df = _convert_to_dataframe(
187
+ y_split[i], sycl_queue=queue, target_df=dataframe
188
+ )
189
+ inclin.partial_fit(X_split_df, y_split_df)
190
+
191
+ tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
192
+ assert_allclose(coef.T.squeeze(), inclin.coef_, atol=tol)
193
+
194
+ if fit_intercept:
195
+ assert_allclose(intercept, inclin.intercept_, atol=tol)
196
+
197
+ X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
198
+ if fit_intercept:
199
+ expected_y_pred = (X_test @ coef + intercept[np.newaxis, :]).squeeze()
200
+ else:
201
+ expected_y_pred = (X_test @ coef).squeeze()
202
+
203
+ X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
204
+
205
+ y_pred = inclin.predict(X_test_df)
206
+
207
+ assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
208
+
209
+
210
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
211
+ @pytest.mark.parametrize("fit_intercept", [True, False])
212
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
213
+ def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, fit_intercept, dtype):
214
+ import pickle
215
+
216
+ from sklearnex.linear_model import IncrementalLinearRegression
217
+
218
+ inclin = IncrementalLinearRegression()
219
+
220
+ # Check that estimator can be serialized without any data.
221
+ dump = pickle.dumps(inclin)
222
+ inclin_loaded = pickle.loads(dump)
223
+
224
+ seed = 77
225
+ gen = np.random.default_rng(seed)
226
+ intercept = gen.random(size=1, dtype=dtype)
227
+ coef = gen.random(size=(1, 10), dtype=dtype).T
228
+ X = gen.uniform(low=-0.3, high=+0.7, size=(30, 10))
229
+ X = X.astype(dtype)
230
+ if fit_intercept:
231
+ y = X @ coef + intercept[np.newaxis, :]
232
+ else:
233
+ y = X @ coef
234
+ X_split = np.array_split(X, 2)
235
+ y_split = np.array_split(y, 2)
236
+ X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
237
+ y_split_df = _convert_to_dataframe(y_split[0], sycl_queue=queue, target_df=dataframe)
238
+ inclin.partial_fit(X_split_df, y_split_df)
239
+ inclin_loaded.partial_fit(X_split_df, y_split_df)
240
+
241
+ # Check that estimator can be serialized after partial_fit call.
242
+ dump = pickle.dumps(inclin_loaded)
243
+ inclin_loaded = pickle.loads(dump)
244
+
245
+ assert inclin.batch_size == inclin_loaded.batch_size
246
+ assert inclin.n_features_in_ == inclin_loaded.n_features_in_
247
+ assert inclin.n_samples_seen_ == inclin_loaded.n_samples_seen_
248
+ if hasattr(inclin, "_parameter_constraints"):
249
+ assert inclin._parameter_constraints == inclin_loaded._parameter_constraints
250
+ assert inclin.n_jobs == inclin_loaded.n_jobs
251
+
252
+ X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
253
+ y_split_df = _convert_to_dataframe(y_split[1], sycl_queue=queue, target_df=dataframe)
254
+ inclin.partial_fit(X_split_df, y_split_df)
255
+ inclin_loaded.partial_fit(X_split_df, y_split_df)
256
+ dump = pickle.dumps(inclin)
257
+ inclin_loaded = pickle.loads(dump)
258
+
259
+ assert_allclose(inclin.coef_, inclin_loaded.coef_, atol=1e-6)
260
+ assert_allclose(inclin.intercept_, inclin_loaded.intercept_, atol=1e-6)
261
+
262
+ # Check that finalized estimator can be serialized.
263
+ dump = pickle.dumps(inclin_loaded)
264
+ inclin_loaded = pickle.loads(dump)
265
+
266
+ assert_allclose(inclin.coef_, inclin_loaded.coef_, atol=1e-6)
267
+ assert_allclose(inclin.intercept_, inclin_loaded.intercept_, atol=1e-6)