scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,128 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests.utils.spmd import (
26
+ _generate_statistic_data,
27
+ _get_local_tensor,
28
+ _mpi_libs_and_gpu_available,
29
+ )
30
+
31
+
32
+ @pytest.mark.skipif(
33
+ not _mpi_libs_and_gpu_available,
34
+ reason="GPU device and MPI libs required for test",
35
+ )
36
+ @pytest.mark.parametrize(
37
+ "dataframe,queue",
38
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
39
+ )
40
+ @pytest.mark.mpi
41
+ def test_pca_spmd_gold(dataframe, queue):
42
+ # Import spmd and batch algo
43
+ from sklearnex.decomposition import PCA as PCA_Batch
44
+ from sklearnex.spmd.decomposition import PCA as PCA_SPMD
45
+
46
+ # Create gold data and convert to dataframe
47
+ data = np.array(
48
+ [
49
+ [0.0, 0.0, 0.0],
50
+ [0.0, 1.0, 2.0],
51
+ [0.0, 2.0, 4.0],
52
+ [0.0, 3.0, 8.0],
53
+ [0.0, 4.0, 16.0],
54
+ [0.0, 5.0, 32.0],
55
+ [0.0, 6.0, 64.0],
56
+ [0.0, 7.0, 128.0],
57
+ ]
58
+ )
59
+
60
+ local_dpt_data = _convert_to_dataframe(
61
+ _get_local_tensor(data), sycl_queue=queue, target_df=dataframe
62
+ )
63
+
64
+ # Ensure results of batch algo match spmd
65
+ spmd_result = PCA_SPMD(n_components=2).fit(local_dpt_data)
66
+ batch_result = PCA_Batch(n_components=2).fit(data)
67
+
68
+ assert_allclose(spmd_result.mean_, batch_result.mean_)
69
+ assert_allclose(spmd_result.components_, batch_result.components_)
70
+ assert_allclose(spmd_result.singular_values_, batch_result.singular_values_)
71
+ assert_allclose(
72
+ spmd_result.noise_variance_,
73
+ batch_result.noise_variance_,
74
+ atol=1e-7,
75
+ )
76
+ assert_allclose(
77
+ spmd_result.explained_variance_ratio_, batch_result.explained_variance_ratio_
78
+ )
79
+
80
+
81
+ @pytest.mark.skipif(
82
+ not _mpi_libs_and_gpu_available,
83
+ reason="GPU device and MPI libs required for test",
84
+ )
85
+ @pytest.mark.parametrize("n_samples", [100, 10000])
86
+ @pytest.mark.parametrize("n_features", [10, 100])
87
+ @pytest.mark.parametrize("n_components", [0.5, 3, "mle", None])
88
+ @pytest.mark.parametrize("whiten", [True, False])
89
+ @pytest.mark.parametrize(
90
+ "dataframe,queue",
91
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
92
+ )
93
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
+ @pytest.mark.mpi
95
+ def test_pca_spmd_synthetic(
96
+ n_samples, n_features, n_components, whiten, dataframe, queue, dtype
97
+ ):
98
+ # TODO: Resolve issues with batch fallback and lack of support for n_rows_rank < n_cols
99
+ if n_components == "mle" or n_components == 3:
100
+ pytest.skip("Avoid error in case of batch fallback to sklearn")
101
+ if n_samples <= n_features:
102
+ pytest.skip("Avoid n_samples < n_features error from spmd data split")
103
+
104
+ # Import spmd and batch algo
105
+ from sklearnex.decomposition import PCA as PCA_Batch
106
+ from sklearnex.spmd.decomposition import PCA as PCA_SPMD
107
+
108
+ # Generate data and convert to dataframe
109
+ data = _generate_statistic_data(n_samples, n_features, dtype=dtype)
110
+
111
+ local_dpt_data = _convert_to_dataframe(
112
+ _get_local_tensor(data), sycl_queue=queue, target_df=dataframe
113
+ )
114
+
115
+ # Ensure results of batch algo match spmd
116
+ spmd_result = PCA_SPMD(n_components=n_components, whiten=whiten).fit(local_dpt_data)
117
+ batch_result = PCA_Batch(n_components=n_components, whiten=whiten).fit(data)
118
+
119
+ tol = 1e-3 if dtype == np.float32 else 1e-7
120
+ assert_allclose(spmd_result.mean_, batch_result.mean_, atol=tol)
121
+ assert_allclose(spmd_result.components_, batch_result.components_, atol=tol, rtol=tol)
122
+ assert_allclose(spmd_result.singular_values_, batch_result.singular_values_, atol=tol)
123
+ assert_allclose(spmd_result.noise_variance_, batch_result.noise_variance_, atol=tol)
124
+ assert_allclose(
125
+ spmd_result.explained_variance_ratio_,
126
+ batch_result.explained_variance_ratio_,
127
+ atol=tol,
128
+ )
@@ -0,0 +1,19 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .forest import RandomForestClassifier, RandomForestRegressor
18
+
19
+ __all__ = ["RandomForestClassifier", "RandomForestRegressor"]
@@ -0,0 +1,71 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
18
+ from onedal.spmd.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
19
+
20
+ from ...ensemble import RandomForestClassifier as RandomForestClassifier_Batch
21
+ from ...ensemble import RandomForestRegressor as RandomForestRegressor_Batch
22
+
23
+
24
+ class RandomForestClassifier(RandomForestClassifier_Batch):
25
+ __doc__ = RandomForestClassifier_Batch.__doc__
26
+ _onedal_factory = onedal_RandomForestClassifier
27
+
28
+ def _onedal_cpu_supported(self, method_name, *data):
29
+ # TODO:
30
+ # check which methods supported SPMD interface on CPU.
31
+ ready = super()._onedal_cpu_supported(method_name, *data)
32
+ if not ready:
33
+ raise RuntimeError(
34
+ f"Method {method_name} in {self.__class__.__name__} "
35
+ "is not supported with given inputs."
36
+ )
37
+ return ready
38
+
39
+ def _onedal_gpu_supported(self, method_name, *data):
40
+ ready = super()._onedal_gpu_supported(method_name, *data)
41
+ if not ready:
42
+ raise RuntimeError(
43
+ f"Method {method_name} in {self.__class__.__name__} "
44
+ "is not supported with given inputs."
45
+ )
46
+ return ready
47
+
48
+
49
+ class RandomForestRegressor(RandomForestRegressor_Batch):
50
+ __doc__ = RandomForestRegressor_Batch.__doc__
51
+ _onedal_factory = onedal_RandomForestRegressor
52
+
53
+ def _onedal_cpu_supported(self, method_name, *data):
54
+ # TODO:
55
+ # check which methods supported SPMD interface on CPU.
56
+ ready = super()._onedal_cpu_supported(method_name, *data)
57
+ if not ready:
58
+ raise RuntimeError(
59
+ f"Method {method_name} in {self.__class__.__name__} "
60
+ "is not supported with given inputs."
61
+ )
62
+ return ready
63
+
64
+ def _onedal_gpu_supported(self, method_name, *data):
65
+ ready = super()._onedal_gpu_supported(method_name, *data)
66
+ if not ready:
67
+ raise RuntimeError(
68
+ f"Method {method_name} in {self.__class__.__name__} "
69
+ "is not supported with given inputs."
70
+ )
71
+ return ready
@@ -0,0 +1,265 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from sklearn.datasets import make_regression
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+ from sklearnex.tests.utils.spmd import (
26
+ _generate_classification_data,
27
+ _generate_regression_data,
28
+ _get_local_tensor,
29
+ _mpi_libs_and_gpu_available,
30
+ _spmd_assert_allclose,
31
+ )
32
+
33
+
34
+ @pytest.mark.skipif(
35
+ not _mpi_libs_and_gpu_available,
36
+ reason="GPU device and MPI libs required for test",
37
+ )
38
+ @pytest.mark.parametrize(
39
+ "dataframe,queue",
40
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
41
+ )
42
+ @pytest.mark.mpi
43
+ def test_rfcls_spmd_gold(dataframe, queue):
44
+ # Import spmd and batch algo
45
+ from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
46
+ from sklearnex.spmd.ensemble import (
47
+ RandomForestClassifier as RandomForestClassifier_SPMD,
48
+ )
49
+
50
+ # Create gold data and convert to dataframe
51
+ X_train = np.array(
52
+ [
53
+ [0.0, 0.0],
54
+ [0.0, 1.0],
55
+ [1.0, 0.0],
56
+ [0.0, 2.0],
57
+ [2.0, 0.0],
58
+ [1.0, 1.0],
59
+ [0.0, -1.0],
60
+ [-1.0, 0.0],
61
+ [-1.0, -1.0],
62
+ ]
63
+ )
64
+ y_train = np.array([0, 2, 1, 2, 1, 0, 1, 2, 0])
65
+ X_test = np.array(
66
+ [
67
+ [1.0, -1.0],
68
+ [-1.0, 1.0],
69
+ [0.0, 1.0],
70
+ [10.0, -10.0],
71
+ ]
72
+ )
73
+
74
+ local_dpt_X_train = _convert_to_dataframe(
75
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
76
+ )
77
+ local_dpt_y_train = _convert_to_dataframe(
78
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
79
+ )
80
+ local_dpt_X_test = _convert_to_dataframe(
81
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
82
+ )
83
+
84
+ # Ensure predictions of batch algo match spmd
85
+ spmd_model = RandomForestClassifier_SPMD(n_estimators=3, random_state=0).fit(
86
+ local_dpt_X_train, local_dpt_y_train
87
+ )
88
+ batch_model = RandomForestClassifier_Batch(n_estimators=3, random_state=0).fit(
89
+ X_train, y_train
90
+ )
91
+ spmd_result = spmd_model.predict(local_dpt_X_test)
92
+ batch_result = batch_model.predict(X_test)
93
+
94
+ pytest.skip("SPMD and batch random forest results not aligned")
95
+ _spmd_assert_allclose(spmd_result, batch_result)
96
+
97
+
98
+ @pytest.mark.skipif(
99
+ not _mpi_libs_and_gpu_available,
100
+ reason="GPU device and MPI libs required for test",
101
+ )
102
+ @pytest.mark.parametrize("n_samples", [200, 1000])
103
+ @pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
104
+ @pytest.mark.parametrize("n_estimators", [10, 100])
105
+ @pytest.mark.parametrize("max_depth", [3, None])
106
+ @pytest.mark.parametrize(
107
+ "dataframe,queue",
108
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
109
+ )
110
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
111
+ @pytest.mark.mpi
112
+ def test_rfcls_spmd_synthetic(
113
+ n_samples, n_features_and_classes, n_estimators, max_depth, dataframe, queue, dtype
114
+ ):
115
+ n_features, n_classes = n_features_and_classes
116
+ # Import spmd and batch algo
117
+ from sklearnex.ensemble import RandomForestClassifier as RandomForestClassifier_Batch
118
+ from sklearnex.spmd.ensemble import (
119
+ RandomForestClassifier as RandomForestClassifier_SPMD,
120
+ )
121
+
122
+ # Generate data and convert to dataframe
123
+ X_train, X_test, y_train, _ = _generate_classification_data(
124
+ n_samples, n_features, n_classes, dtype=dtype
125
+ )
126
+
127
+ local_dpt_X_train = _convert_to_dataframe(
128
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
129
+ )
130
+ local_dpt_y_train = _convert_to_dataframe(
131
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
132
+ )
133
+ local_dpt_X_test = _convert_to_dataframe(
134
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
135
+ )
136
+
137
+ # Ensure predictions of batch algo match spmd
138
+ spmd_model = RandomForestClassifier_SPMD(
139
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
140
+ ).fit(local_dpt_X_train, local_dpt_y_train)
141
+ batch_model = RandomForestClassifier_Batch(
142
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
143
+ ).fit(X_train, y_train)
144
+ spmd_result = spmd_model.predict(local_dpt_X_test)
145
+ batch_result = batch_model.predict(X_test)
146
+
147
+ pytest.skip("SPMD and batch random forest results not aligned")
148
+ _spmd_assert_allclose(spmd_result, batch_result)
149
+
150
+
151
+ @pytest.mark.skipif(
152
+ not _mpi_libs_and_gpu_available,
153
+ reason="GPU device and MPI libs required for test",
154
+ )
155
+ @pytest.mark.parametrize(
156
+ "dataframe,queue",
157
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
158
+ )
159
+ @pytest.mark.mpi
160
+ def test_rfreg_spmd_gold(dataframe, queue):
161
+ # Import spmd and batch algo
162
+ from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
163
+ from sklearnex.spmd.ensemble import (
164
+ RandomForestRegressor as RandomForestRegressor_SPMD,
165
+ )
166
+
167
+ # Create gold data and convert to dataframe
168
+ X_train = np.array(
169
+ [
170
+ [0.0, 0.0],
171
+ [0.0, 1.0],
172
+ [1.0, 0.0],
173
+ [0.0, 2.0],
174
+ [2.0, 0.0],
175
+ [1.0, 1.0],
176
+ [0.0, -1.0],
177
+ [-1.0, 0.0],
178
+ [-1.0, -1.0],
179
+ ]
180
+ )
181
+ y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
182
+ X_test = np.array(
183
+ [
184
+ [1.0, -1.0],
185
+ [-1.0, 1.0],
186
+ [0.0, 1.0],
187
+ [10.0, -10.0],
188
+ ]
189
+ )
190
+
191
+ local_dpt_X_train = _convert_to_dataframe(
192
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
193
+ )
194
+ local_dpt_y_train = _convert_to_dataframe(
195
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
196
+ )
197
+ local_dpt_X_test = _convert_to_dataframe(
198
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
199
+ )
200
+
201
+ # Ensure predictions of batch algo match spmd
202
+ spmd_model = RandomForestRegressor_SPMD(n_estimators=3, random_state=0).fit(
203
+ local_dpt_X_train, local_dpt_y_train
204
+ )
205
+ batch_model = RandomForestRegressor_Batch(n_estimators=3, random_state=0).fit(
206
+ X_train, y_train
207
+ )
208
+ spmd_result = spmd_model.predict(local_dpt_X_test)
209
+ batch_result = batch_model.predict(X_test)
210
+
211
+ pytest.skip("SPMD and batch random forest results not aligned")
212
+ _spmd_assert_allclose(spmd_result, batch_result)
213
+
214
+
215
+ @pytest.mark.skipif(
216
+ not _mpi_libs_and_gpu_available,
217
+ reason="GPU device and MPI libs required for test",
218
+ )
219
+ @pytest.mark.parametrize("n_samples", [200, 1000])
220
+ @pytest.mark.parametrize("n_features", [5, 25])
221
+ @pytest.mark.parametrize("n_estimators", [10, 100])
222
+ @pytest.mark.parametrize("max_depth", [3, None])
223
+ @pytest.mark.parametrize(
224
+ "dataframe,queue",
225
+ get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
226
+ )
227
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
228
+ @pytest.mark.mpi
229
+ def test_rfreg_spmd_synthetic(
230
+ n_samples, n_features, n_estimators, max_depth, dataframe, queue, dtype
231
+ ):
232
+ # Import spmd and batch algo
233
+ from sklearnex.ensemble import RandomForestRegressor as RandomForestRegressor_Batch
234
+ from sklearnex.spmd.ensemble import (
235
+ RandomForestRegressor as RandomForestRegressor_SPMD,
236
+ )
237
+
238
+ # Generate data and convert to dataframe
239
+ X_train, X_test, y_train, _ = _generate_regression_data(
240
+ n_samples, n_features, dtype=dtype
241
+ )
242
+
243
+ local_dpt_X_train = _convert_to_dataframe(
244
+ _get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
245
+ )
246
+ local_dpt_y_train = _convert_to_dataframe(
247
+ _get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
248
+ )
249
+ local_dpt_X_test = _convert_to_dataframe(
250
+ _get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
251
+ )
252
+
253
+ # Ensure predictions of batch algo match spmd
254
+ spmd_model = RandomForestRegressor_Batch(
255
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
256
+ ).fit(local_dpt_X_train, local_dpt_y_train)
257
+ batch_model = RandomForestRegressor_Batch(
258
+ n_estimators=n_estimators, max_depth=max_depth, random_state=0
259
+ ).fit(X_train, y_train)
260
+ spmd_result = spmd_model.predict(local_dpt_X_test)
261
+ batch_result = batch_model.predict(X_test)
262
+
263
+ # TODO: remove skips when SPMD and batch are aligned
264
+ pytest.skip("SPMD and batch random forest results not aligned")
265
+ _spmd_assert_allclose(spmd_result, batch_result)
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .incremental_linear_model import IncrementalLinearRegression
18
+ from .linear_model import LinearRegression
19
+ from .logistic_regression import LogisticRegression
20
+
21
+ __all__ = ["IncrementalLinearRegression", "LinearRegression", "LogisticRegression"]
@@ -0,0 +1,35 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+
18
+ from onedal.spmd.linear_model import (
19
+ IncrementalLinearRegression as onedalSPMD_IncrementalLinearRegression,
20
+ )
21
+
22
+ from ...linear_model import (
23
+ IncrementalLinearRegression as base_IncrementalLinearRegression,
24
+ )
25
+
26
+
27
+ class IncrementalLinearRegression(base_IncrementalLinearRegression):
28
+ """
29
+ Distributed incremental estimator for linear regression.
30
+ Allows for distributed training of linear regression if data is split into batches.
31
+
32
+ API is the same as for `sklearnex.linear_model.IncrementalLinearRegression`.
33
+ """
34
+
35
+ _onedal_incremental_linear = staticmethod(onedalSPMD_IncrementalLinearRegression)
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.linear_model import LinearRegression
18
+
19
+ # TODO:
20
+ # Currently it uses `onedal` module interface.
21
+ # Add sklearnex dispatching.
@@ -0,0 +1,21 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from onedal.spmd.linear_model import LogisticRegression
18
+
19
+ # TODO:
20
+ # Currently it uses `onedal` module interface.
21
+ # Add sklearnex dispatching.