scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +696 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +204 -0
- onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +175 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- onedal/basic_statistics/tests/utils.py +50 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +105 -0
- onedal/cluster/kmeans.py +557 -0
- onedal/cluster/kmeans_init.py +112 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +55 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/common/tests/test_sycl.py +128 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +122 -0
- onedal/covariance/incremental_covariance.py +161 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +190 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +121 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +475 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +214 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +285 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +736 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +292 -0
- onedal/linear_model/linear_model.py +325 -0
- onedal/linear_model/logistic_regression.py +247 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- onedal/linear_model/tests/test_linear_regression.py +259 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +763 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +152 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +83 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +124 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +101 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/tests/test_validation.py +142 -0
- onedal/utils/validation.py +464 -0
- scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
- scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
- scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +177 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +261 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +397 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +157 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +405 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +427 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +534 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +140 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +495 -0
- sklearnex/linear_model/incremental_ridge.py +432 -0
- sklearnex/linear_model/linear.py +346 -0
- sklearnex/linear_model/logistic_regression.py +415 -0
- sklearnex/linear_model/ridge.py +390 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/linear_model/tests/test_ridge.py +256 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +26 -0
- sklearnex/manifold/tests/test_tsne.py +250 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +142 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +244 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +491 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_hyperparameters.py +43 -0
- sklearnex/tests/test_memory_usage.py +347 -0
- sklearnex/tests/test_monkeypatch.py +269 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +377 -0
- sklearnex/tests/test_run_to_run_stability.py +326 -0
- sklearnex/tests/utils/__init__.py +48 -0
- sklearnex/tests/utils/base.py +436 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_validation.py +238 -0
- sklearnex/utils/validation.py +208 -0
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 600)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose
|
|
23
|
+
from sklearn.exceptions import NotFittedError
|
|
24
|
+
|
|
25
|
+
from onedal.tests.utils._dataframes_support import (
|
|
26
|
+
_as_numpy,
|
|
27
|
+
_convert_to_dataframe,
|
|
28
|
+
get_dataframes_and_queues,
|
|
29
|
+
)
|
|
30
|
+
from sklearnex.linear_model import IncrementalRidge
|
|
31
|
+
|
|
32
|
+
def _compute_ridge_coefficients(X, y, alpha, fit_intercept):
|
|
33
|
+
coefficients_manual, intercept_manual = None, None
|
|
34
|
+
if fit_intercept:
|
|
35
|
+
X_mean = np.mean(X, axis=0)
|
|
36
|
+
y_mean = np.mean(y)
|
|
37
|
+
X_centered = X - X_mean
|
|
38
|
+
y_centered = y - y_mean
|
|
39
|
+
|
|
40
|
+
X_with_intercept = np.hstack([np.ones((X.shape[0], 1)), X_centered])
|
|
41
|
+
lambda_identity = alpha * np.eye(X_with_intercept.shape[1])
|
|
42
|
+
inverse_term = np.linalg.inv(
|
|
43
|
+
np.dot(X_with_intercept.T, X_with_intercept) + lambda_identity
|
|
44
|
+
)
|
|
45
|
+
xt_y = np.dot(X_with_intercept.T, y_centered)
|
|
46
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
47
|
+
|
|
48
|
+
intercept_manual = y_mean - np.dot(X_mean, coefficients_manual[1:])
|
|
49
|
+
coefficients_manual = coefficients_manual[1:]
|
|
50
|
+
else:
|
|
51
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
52
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
53
|
+
xt_y = np.dot(X.T, y)
|
|
54
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
55
|
+
|
|
56
|
+
return coefficients_manual, intercept_manual
|
|
57
|
+
|
|
58
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
59
|
+
@pytest.mark.parametrize("batch_size", [10, 100, 1000])
|
|
60
|
+
@pytest.mark.parametrize("alpha", [0.1, 0.5, 1.0])
|
|
61
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
62
|
+
def test_inc_ridge_fit_coefficients(
|
|
63
|
+
dataframe, queue, alpha, batch_size, fit_intercept
|
|
64
|
+
):
|
|
65
|
+
sample_size, feature_size = 1000, 50
|
|
66
|
+
X = np.random.rand(sample_size, feature_size)
|
|
67
|
+
y = np.random.rand(sample_size)
|
|
68
|
+
X_c = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
69
|
+
y_c = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
70
|
+
|
|
71
|
+
inc_ridge = IncrementalRidge(
|
|
72
|
+
fit_intercept=fit_intercept, alpha=alpha, batch_size=batch_size
|
|
73
|
+
)
|
|
74
|
+
inc_ridge.fit(X_c, y_c)
|
|
75
|
+
|
|
76
|
+
coefficients_manual, intercept_manual = _compute_ridge_coefficients(
|
|
77
|
+
X, y, alpha, fit_intercept
|
|
78
|
+
)
|
|
79
|
+
if fit_intercept:
|
|
80
|
+
assert_allclose(inc_ridge.intercept_, intercept_manual, rtol=1e-6, atol=1e-6)
|
|
81
|
+
|
|
82
|
+
assert_allclose(inc_ridge.coef_, coefficients_manual, rtol=1e-6, atol=1e-6)
|
|
83
|
+
|
|
84
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
85
|
+
@pytest.mark.parametrize("batch_size", [2, 5])
|
|
86
|
+
@pytest.mark.parametrize("alpha", [0.1, 0.5, 1.0])
|
|
87
|
+
def test_inc_ridge_partial_fit_coefficients(dataframe, queue, alpha, batch_size):
|
|
88
|
+
sample_size, feature_size = 1000, 50
|
|
89
|
+
X = np.random.rand(sample_size, feature_size)
|
|
90
|
+
y = np.random.rand(sample_size)
|
|
91
|
+
X_split = np.array_split(X, batch_size)
|
|
92
|
+
y_split = np.array_split(y, batch_size)
|
|
93
|
+
|
|
94
|
+
inc_ridge = IncrementalRidge(fit_intercept=False, alpha=alpha)
|
|
95
|
+
|
|
96
|
+
for batch_index in range(len(X_split)):
|
|
97
|
+
X_c = _convert_to_dataframe(
|
|
98
|
+
X_split[batch_index], sycl_queue=queue, target_df=dataframe
|
|
99
|
+
)
|
|
100
|
+
y_c = _convert_to_dataframe(
|
|
101
|
+
y_split[batch_index], sycl_queue=queue, target_df=dataframe
|
|
102
|
+
)
|
|
103
|
+
inc_ridge.partial_fit(X_c, y_c)
|
|
104
|
+
|
|
105
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
106
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
107
|
+
xt_y = np.dot(X.T, y)
|
|
108
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
109
|
+
|
|
110
|
+
assert_allclose(inc_ridge.coef_, coefficients_manual, rtol=1e-6, atol=1e-6)
|
|
111
|
+
|
|
112
|
+
def test_inc_ridge_score_before_fit():
|
|
113
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
114
|
+
y = np.dot(X, np.array([1, 2])) + 3
|
|
115
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
116
|
+
with pytest.raises(NotFittedError):
|
|
117
|
+
inc_ridge.score(X, y)
|
|
118
|
+
|
|
119
|
+
def test_inc_ridge_predict_before_fit():
|
|
120
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
121
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
122
|
+
with pytest.raises(NotFittedError):
|
|
123
|
+
inc_ridge.predict(X)
|
|
124
|
+
|
|
125
|
+
def test_inc_ridge_score_after_fit():
|
|
126
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
127
|
+
y = np.dot(X, np.array([1, 2])) + 3
|
|
128
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
129
|
+
inc_ridge.fit(X, y)
|
|
130
|
+
assert inc_ridge.score(X, y) >= 0.97
|
|
131
|
+
|
|
132
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
133
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
134
|
+
def test_inc_ridge_predict_after_fit(dataframe, queue, fit_intercept):
|
|
135
|
+
sample_size, feature_size = 1000, 50
|
|
136
|
+
X = np.random.rand(sample_size, feature_size)
|
|
137
|
+
y = np.random.rand(sample_size)
|
|
138
|
+
X_c = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
139
|
+
y_c = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
140
|
+
|
|
141
|
+
inc_ridge = IncrementalRidge(fit_intercept=fit_intercept, alpha=0.5)
|
|
142
|
+
inc_ridge.fit(X_c, y_c)
|
|
143
|
+
|
|
144
|
+
y_pred = inc_ridge.predict(X_c)
|
|
145
|
+
|
|
146
|
+
coefficients_manual, intercept_manual = _compute_ridge_coefficients(
|
|
147
|
+
X, y, 0.5, fit_intercept
|
|
148
|
+
)
|
|
149
|
+
y_pred_manual = np.dot(X, coefficients_manual)
|
|
150
|
+
if fit_intercept:
|
|
151
|
+
y_pred_manual += intercept_manual
|
|
152
|
+
|
|
153
|
+
assert_allclose(_as_numpy(y_pred), y_pred_manual, rtol=1e-6, atol=1e-6)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
157
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
158
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
159
|
+
def test_sklearnex_incremental_estimatior_pickle(dataframe, queue, fit_intercept, dtype):
|
|
160
|
+
import pickle
|
|
161
|
+
|
|
162
|
+
from sklearnex.linear_model import IncrementalRidge
|
|
163
|
+
|
|
164
|
+
inc_ridge = IncrementalRidge()
|
|
165
|
+
|
|
166
|
+
# Check that estimator can be serialized without any data.
|
|
167
|
+
dump = pickle.dumps(inc_ridge)
|
|
168
|
+
inc_ridge_loaded = pickle.loads(dump)
|
|
169
|
+
|
|
170
|
+
seed = 77
|
|
171
|
+
gen = np.random.default_rng(seed)
|
|
172
|
+
intercept = gen.random(size=1, dtype=dtype)
|
|
173
|
+
coef = gen.random(size=(1, 10), dtype=dtype).T
|
|
174
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(30, 10))
|
|
175
|
+
X = X.astype(dtype)
|
|
176
|
+
if fit_intercept:
|
|
177
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
178
|
+
else:
|
|
179
|
+
y = X @ coef
|
|
180
|
+
X_split = np.array_split(X, 2)
|
|
181
|
+
y_split = np.array_split(y, 2)
|
|
182
|
+
X_split_df = _convert_to_dataframe(X_split[0], sycl_queue=queue, target_df=dataframe)
|
|
183
|
+
y_split_df = _convert_to_dataframe(y_split[0], sycl_queue=queue, target_df=dataframe)
|
|
184
|
+
inc_ridge.partial_fit(X_split_df, y_split_df)
|
|
185
|
+
inc_ridge_loaded.partial_fit(X_split_df, y_split_df)
|
|
186
|
+
|
|
187
|
+
# Check that estimator can be serialized after partial_fit call.
|
|
188
|
+
dump = pickle.dumps(inc_ridge_loaded)
|
|
189
|
+
inc_ridge_loaded = pickle.loads(dump)
|
|
190
|
+
|
|
191
|
+
assert inc_ridge.batch_size == inc_ridge_loaded.batch_size
|
|
192
|
+
assert inc_ridge.n_features_in_ == inc_ridge_loaded.n_features_in_
|
|
193
|
+
assert inc_ridge.n_samples_seen_ == inc_ridge_loaded.n_samples_seen_
|
|
194
|
+
assert inc_ridge.alpha == inc_ridge_loaded.alpha
|
|
195
|
+
if hasattr(inc_ridge, "_parameter_constraints"):
|
|
196
|
+
assert inc_ridge._parameter_constraints == inc_ridge_loaded._parameter_constraints
|
|
197
|
+
assert inc_ridge.n_jobs == inc_ridge_loaded.n_jobs
|
|
198
|
+
|
|
199
|
+
X_split_df = _convert_to_dataframe(X_split[1], sycl_queue=queue, target_df=dataframe)
|
|
200
|
+
y_split_df = _convert_to_dataframe(y_split[1], sycl_queue=queue, target_df=dataframe)
|
|
201
|
+
inc_ridge.partial_fit(X_split_df, y_split_df)
|
|
202
|
+
inc_ridge_loaded.partial_fit(X_split_df, y_split_df)
|
|
203
|
+
dump = pickle.dumps(inc_ridge)
|
|
204
|
+
inc_ridge_loaded = pickle.loads(dump)
|
|
205
|
+
|
|
206
|
+
assert_allclose(inc_ridge.coef_, inc_ridge_loaded.coef_, atol=1e-6)
|
|
207
|
+
assert_allclose(inc_ridge.intercept_, inc_ridge_loaded.intercept_, atol=1e-6)
|
|
208
|
+
|
|
209
|
+
# Check that finalized estimator can be serialized.
|
|
210
|
+
dump = pickle.dumps(inc_ridge_loaded)
|
|
211
|
+
inc_ridge_loaded = pickle.loads(dump)
|
|
212
|
+
|
|
213
|
+
assert_allclose(inc_ridge.coef_, inc_ridge_loaded.coef_, atol=1e-6)
|
|
214
|
+
assert_allclose(inc_ridge.intercept_, inc_ridge_loaded.intercept_, atol=1e-6)
|
|
@@ -0,0 +1,142 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from scipy.linalg import lstsq
|
|
21
|
+
from sklearn.datasets import make_regression
|
|
22
|
+
|
|
23
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
24
|
+
from onedal.tests.utils._dataframes_support import (
|
|
25
|
+
_as_numpy,
|
|
26
|
+
_convert_to_dataframe,
|
|
27
|
+
get_dataframes_and_queues,
|
|
28
|
+
)
|
|
29
|
+
from sklearnex.tests.utils import _IS_INTEL
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
33
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
34
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
35
|
+
@pytest.mark.parametrize("overdetermined", [False, True])
|
|
36
|
+
@pytest.mark.parametrize("multi_output", [False, True])
|
|
37
|
+
def test_sklearnex_import_linear(
|
|
38
|
+
dataframe, queue, dtype, macro_block, overdetermined, multi_output
|
|
39
|
+
):
|
|
40
|
+
if (not overdetermined or multi_output) and not daal_check_version((2025, "P", 1)):
|
|
41
|
+
pytest.skip("Functionality introduced in later versions")
|
|
42
|
+
if (
|
|
43
|
+
not overdetermined
|
|
44
|
+
and queue
|
|
45
|
+
and queue.sycl_device.is_gpu
|
|
46
|
+
and not daal_check_version((2025, "P", 200))
|
|
47
|
+
):
|
|
48
|
+
pytest.skip("Functionality introduced in later versions")
|
|
49
|
+
|
|
50
|
+
from sklearnex.linear_model import LinearRegression
|
|
51
|
+
|
|
52
|
+
rng = np.random.default_rng(seed=123)
|
|
53
|
+
X = rng.standard_normal(size=(10, 20) if not overdetermined else (20, 5))
|
|
54
|
+
y = rng.standard_normal(size=(X.shape[0], 3) if multi_output else X.shape[0])
|
|
55
|
+
|
|
56
|
+
Xi = np.c_[X, np.ones((X.shape[0], 1))]
|
|
57
|
+
expected_coefs = lstsq(Xi, y)[0]
|
|
58
|
+
expected_intercept = expected_coefs[-1]
|
|
59
|
+
expected_coefs = expected_coefs[: X.shape[1]]
|
|
60
|
+
if multi_output:
|
|
61
|
+
expected_coefs = expected_coefs.T
|
|
62
|
+
|
|
63
|
+
linreg = LinearRegression()
|
|
64
|
+
if daal_check_version((2024, "P", 0)) and macro_block is not None:
|
|
65
|
+
hparams = LinearRegression.get_hyperparameters("fit")
|
|
66
|
+
hparams.cpu_macro_block = macro_block
|
|
67
|
+
hparams.gpu_macro_block = macro_block
|
|
68
|
+
|
|
69
|
+
X = X.astype(dtype=dtype)
|
|
70
|
+
y = y.astype(dtype=dtype)
|
|
71
|
+
y_list = y.tolist()
|
|
72
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
73
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
74
|
+
linreg.fit(X, y)
|
|
75
|
+
|
|
76
|
+
assert hasattr(linreg, "_onedal_estimator")
|
|
77
|
+
assert "sklearnex" in linreg.__module__
|
|
78
|
+
|
|
79
|
+
rtol = 1e-3 if dtype == np.float32 else 1e-5
|
|
80
|
+
assert_allclose(_as_numpy(linreg.coef_), expected_coefs, rtol=rtol)
|
|
81
|
+
assert_allclose(_as_numpy(linreg.intercept_), expected_intercept, rtol=rtol)
|
|
82
|
+
|
|
83
|
+
# check that it also works with lists
|
|
84
|
+
if isinstance(X, np.ndarray):
|
|
85
|
+
linreg_list = LinearRegression().fit(X, y_list)
|
|
86
|
+
assert_allclose(linreg_list.coef_, linreg.coef_)
|
|
87
|
+
assert_allclose(linreg_list.intercept_, linreg.intercept_)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
91
|
+
def test_sklearnex_import_lasso(dataframe, queue):
|
|
92
|
+
from sklearnex.linear_model import Lasso
|
|
93
|
+
|
|
94
|
+
X = [[0, 0], [1, 1], [2, 2]]
|
|
95
|
+
y = [0, 1, 2]
|
|
96
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
97
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
98
|
+
lasso = Lasso(alpha=0.1).fit(X, y)
|
|
99
|
+
assert "daal4py" in lasso.__module__
|
|
100
|
+
assert_allclose(lasso.intercept_, 0.15)
|
|
101
|
+
assert_allclose(lasso.coef_, [0.85, 0.0])
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
105
|
+
def test_sklearnex_import_elastic(dataframe, queue):
|
|
106
|
+
from sklearnex.linear_model import ElasticNet
|
|
107
|
+
|
|
108
|
+
X, y = make_regression(n_features=2, random_state=0)
|
|
109
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
110
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
111
|
+
elasticnet = ElasticNet(random_state=0).fit(X, y)
|
|
112
|
+
assert "daal4py" in elasticnet.__module__
|
|
113
|
+
assert_allclose(elasticnet.intercept_, 1.451, atol=1e-3)
|
|
114
|
+
assert_allclose(elasticnet.coef_, [18.838, 64.559], atol=1e-3)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
118
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
119
|
+
def test_sklearnex_reconstruct_model(dataframe, queue, dtype):
|
|
120
|
+
from sklearnex.linear_model import LinearRegression
|
|
121
|
+
|
|
122
|
+
seed = 42
|
|
123
|
+
num_samples = 3500
|
|
124
|
+
num_features, num_targets = 14, 9
|
|
125
|
+
|
|
126
|
+
gen = np.random.default_rng(seed)
|
|
127
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
128
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
129
|
+
|
|
130
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
131
|
+
gtr = X @ coef + intercept[np.newaxis, :]
|
|
132
|
+
|
|
133
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
134
|
+
|
|
135
|
+
linreg = LinearRegression(fit_intercept=True)
|
|
136
|
+
linreg.coef_ = coef.T
|
|
137
|
+
linreg.intercept_ = intercept
|
|
138
|
+
|
|
139
|
+
y_pred = linreg.predict(X)
|
|
140
|
+
|
|
141
|
+
tol = 1e-5 if _as_numpy(y_pred).dtype == np.float32 else 1e-7
|
|
142
|
+
assert_allclose(gtr, _as_numpy(y_pred), rtol=tol)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
20
|
+
from scipy.sparse import csr_matrix
|
|
21
|
+
from sklearn.datasets import load_breast_cancer, load_iris, make_classification
|
|
22
|
+
from sklearn.metrics import accuracy_score
|
|
23
|
+
from sklearn.model_selection import train_test_split
|
|
24
|
+
|
|
25
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
26
|
+
from onedal.tests.utils._dataframes_support import (
|
|
27
|
+
_as_numpy,
|
|
28
|
+
_convert_to_dataframe,
|
|
29
|
+
get_dataframes_and_queues,
|
|
30
|
+
get_queues,
|
|
31
|
+
)
|
|
32
|
+
from sklearnex import config_context
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def prepare_input(X, y, dataframe, queue):
|
|
36
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
37
|
+
X, y, train_size=0.8, random_state=42
|
|
38
|
+
)
|
|
39
|
+
X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
40
|
+
y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
41
|
+
X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
42
|
+
return X_train, X_test, y_train, y_test
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@pytest.mark.parametrize(
|
|
46
|
+
"dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
|
|
47
|
+
)
|
|
48
|
+
def test_sklearnex_multiclass_classification(dataframe, queue):
|
|
49
|
+
from sklearnex.linear_model import LogisticRegression
|
|
50
|
+
|
|
51
|
+
X, y = load_iris(return_X_y=True)
|
|
52
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
53
|
+
|
|
54
|
+
logreg = LogisticRegression(fit_intercept=True, solver="lbfgs", max_iter=200).fit(
|
|
55
|
+
X_train, y_train
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
if daal_check_version((2024, "P", 1)):
|
|
59
|
+
assert "sklearnex" in logreg.__module__
|
|
60
|
+
else:
|
|
61
|
+
assert "daal4py" in logreg.__module__
|
|
62
|
+
|
|
63
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
64
|
+
assert accuracy_score(y_test, y_pred) > 0.99
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
@pytest.mark.parametrize(
|
|
68
|
+
"dataframe,queue",
|
|
69
|
+
get_dataframes_and_queues(),
|
|
70
|
+
)
|
|
71
|
+
def test_sklearnex_binary_classification(dataframe, queue):
|
|
72
|
+
from sklearnex.linear_model import LogisticRegression
|
|
73
|
+
|
|
74
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
75
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
76
|
+
|
|
77
|
+
logreg = LogisticRegression(fit_intercept=True, solver="newton-cg", max_iter=100).fit(
|
|
78
|
+
X_train, y_train
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
if daal_check_version((2024, "P", 1)):
|
|
82
|
+
assert "sklearnex" in logreg.__module__
|
|
83
|
+
else:
|
|
84
|
+
assert "daal4py" in logreg.__module__
|
|
85
|
+
if (
|
|
86
|
+
dataframe != "numpy"
|
|
87
|
+
and queue is not None
|
|
88
|
+
and queue.sycl_device.is_gpu
|
|
89
|
+
and daal_check_version((2024, "P", 1))
|
|
90
|
+
):
|
|
91
|
+
# fit was done on gpu
|
|
92
|
+
assert hasattr(logreg, "_onedal_estimator")
|
|
93
|
+
|
|
94
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
95
|
+
assert accuracy_score(y_test, y_pred) > 0.95
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
if daal_check_version((2024, "P", 700)):
|
|
99
|
+
|
|
100
|
+
@pytest.mark.parametrize("queue", get_queues("gpu"))
|
|
101
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
102
|
+
@pytest.mark.parametrize(
|
|
103
|
+
"dims", [(3007, 17, 0.05), (50000, 100, 0.01), (512, 10, 0.5)]
|
|
104
|
+
)
|
|
105
|
+
def test_csr(queue, dtype, dims):
|
|
106
|
+
from sklearnex.linear_model import LogisticRegression
|
|
107
|
+
|
|
108
|
+
n, p, density = dims
|
|
109
|
+
|
|
110
|
+
# Create sparse dataset for classification
|
|
111
|
+
X, y = make_classification(n, p, random_state=42)
|
|
112
|
+
X = X.astype(dtype)
|
|
113
|
+
y = y.astype(dtype)
|
|
114
|
+
np.random.seed(2007 + n + p)
|
|
115
|
+
mask = np.random.binomial(1, density, (n, p))
|
|
116
|
+
X = X * mask
|
|
117
|
+
X_sp = csr_matrix(X)
|
|
118
|
+
|
|
119
|
+
model = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
120
|
+
model_sp = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
121
|
+
|
|
122
|
+
with config_context(target_offload="gpu:0"):
|
|
123
|
+
model.fit(X, y)
|
|
124
|
+
pred = model.predict(X)
|
|
125
|
+
prob = model.predict_proba(X)
|
|
126
|
+
model_sp.fit(X_sp, y)
|
|
127
|
+
pred_sp = model_sp.predict(X_sp)
|
|
128
|
+
prob_sp = model_sp.predict_proba(X_sp)
|
|
129
|
+
|
|
130
|
+
rtol = 2e-4
|
|
131
|
+
assert_allclose(pred, pred_sp, rtol=rtol)
|
|
132
|
+
assert_allclose(prob, prob_sp, rtol=rtol)
|
|
133
|
+
assert_allclose(model.coef_, model_sp.coef_, rtol=rtol)
|
|
134
|
+
assert_allclose(model.intercept_, model_sp.intercept_, rtol=rtol)
|