scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,495 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ import warnings
19
+
20
+ import numpy as np
21
+ from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
22
+ from sklearn.metrics import r2_score
23
+ from sklearn.utils import check_array, gen_batches
24
+ from sklearn.utils.validation import check_is_fitted
25
+
26
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
27
+ from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
28
+ from onedal.linear_model import (
29
+ IncrementalLinearRegression as onedal_IncrementalLinearRegression,
30
+ )
31
+
32
+ if sklearn_check_version("1.2"):
33
+ from sklearn.utils._param_validation import Interval
34
+
35
+ if sklearn_check_version("1.6"):
36
+ from sklearn.utils.validation import validate_data
37
+ else:
38
+ validate_data = BaseEstimator._validate_data
39
+
40
+ from onedal.common.hyperparameters import get_hyperparameters
41
+
42
+ from .._device_offload import dispatch, wrap_output_data
43
+ from .._utils import IntelEstimator, PatchingConditionsChain, register_hyperparameters
44
+
45
+
46
+ @register_hyperparameters(
47
+ {
48
+ "fit": get_hyperparameters("linear_regression", "train"),
49
+ "partial_fit": get_hyperparameters("linear_regression", "train"),
50
+ }
51
+ )
52
+ @control_n_jobs(
53
+ decorated_methods=["fit", "partial_fit", "predict", "score", "_onedal_finalize_fit"]
54
+ )
55
+ class IncrementalLinearRegression(
56
+ IntelEstimator, MultiOutputMixin, RegressorMixin, BaseEstimator
57
+ ):
58
+ """
59
+ Trains a linear regression model, allows for computation if the data are split into
60
+ batches. The user can use the ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide
61
+ the entire dataset.
62
+
63
+ Parameters
64
+ ----------
65
+ fit_intercept : bool, default=True
66
+ Whether to calculate the intercept for this model. If set
67
+ to False, no intercept will be used in calculations
68
+ (i.e. data is expected to be centered).
69
+
70
+ copy_X : bool, default=True
71
+ If True, X will be copied; else, it may be overwritten.
72
+
73
+ n_jobs : int, default=None
74
+ The number of jobs to use for the computation.
75
+
76
+ batch_size : int, default=None
77
+ The number of samples to use for each batch. Only used when calling
78
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
79
+ is inferred from the data and set to ``5 * n_features``.
80
+
81
+ Attributes
82
+ ----------
83
+ coef_ : array of shape (n_features, ) or (n_targets, n_features)
84
+ Estimated coefficients for the linear regression problem.
85
+ If multiple targets are passed during the fit (y 2D), this
86
+ is a 2D array of shape (n_targets, n_features), while if only
87
+ one target is passed, this is a 1D array of length n_features.
88
+
89
+ intercept_ : float or array of shape (n_targets,)
90
+ Independent term in the linear model. Set to 0.0 if
91
+ `fit_intercept = False`.
92
+
93
+ n_samples_seen_ : int
94
+ The number of samples processed by the estimator. Will be reset on
95
+ new calls to ``fit``, but increments across ``partial_fit`` calls.
96
+ It should be not less than `n_features_in_` if `fit_intercept`
97
+ is False and not less than `n_features_in_` + 1 if `fit_intercept`
98
+ is True to obtain regression coefficients.
99
+
100
+ batch_size_ : int
101
+ Inferred batch size from ``batch_size``.
102
+
103
+ n_features_in_ : int
104
+ Number of features seen during ``fit`` or ``partial_fit``.
105
+
106
+ Note
107
+ ----
108
+ Serializing instances of this class will trigger a forced finalization of calculations.
109
+ Since finalize_fit can't be dispatched without directly provided queue
110
+ and the dispatching policy can't be serialized, the computation is finalized
111
+ during serialization call and the policy is not saved in serialized data.
112
+
113
+ Examples
114
+ --------
115
+ >>> import numpy as np
116
+ >>> from sklearnex.linear_model import IncrementalLinearRegression
117
+ >>> inclr = IncrementalLinearRegression(batch_size=2)
118
+ >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 10]])
119
+ >>> y = np.array([1.5, 3.5, 5.5, 8.5])
120
+ >>> inclr.partial_fit(X[:2], y[:2])
121
+ >>> inclr.partial_fit(X[2:], y[2:])
122
+ >>> inclr.coef_
123
+ np.array([0.5., 0.5.])
124
+ >>> inclr.intercept_
125
+ np.array(0.)
126
+ >>> inclr.fit(X)
127
+ >>> inclr.coef_
128
+ np.array([0.5., 0.5.])
129
+ >>> inclr.intercept_
130
+ np.array(0.)
131
+ """
132
+
133
+ _onedal_incremental_linear = staticmethod(onedal_IncrementalLinearRegression)
134
+
135
+ if sklearn_check_version("1.2"):
136
+ _parameter_constraints: dict = {
137
+ "fit_intercept": ["boolean"],
138
+ "copy_X": ["boolean"],
139
+ "n_jobs": [Interval(numbers.Integral, -1, None, closed="left"), None],
140
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
141
+ }
142
+
143
+ def __init__(self, *, fit_intercept=True, copy_X=True, n_jobs=None, batch_size=None):
144
+ self.fit_intercept = fit_intercept
145
+ self.copy_X = copy_X
146
+ self.n_jobs = n_jobs
147
+ self.batch_size = batch_size
148
+
149
+ def _onedal_supported(self, method_name, *data):
150
+ patching_status = PatchingConditionsChain(
151
+ f"sklearn.linear_model.{self.__class__.__name__}.{method_name}"
152
+ )
153
+ return patching_status
154
+
155
+ _onedal_cpu_supported = _onedal_supported
156
+ _onedal_gpu_supported = _onedal_supported
157
+
158
+ def _onedal_predict(self, X, queue=None):
159
+ if sklearn_check_version("1.2"):
160
+ self._validate_params()
161
+
162
+ if sklearn_check_version("1.0"):
163
+ X = validate_data(
164
+ self,
165
+ X,
166
+ dtype=[np.float64, np.float32],
167
+ copy=self.copy_X,
168
+ reset=False,
169
+ )
170
+ else:
171
+ X = check_array(
172
+ X,
173
+ dtype=[np.float64, np.float32],
174
+ copy=self.copy_X,
175
+ )
176
+
177
+ assert hasattr(self, "_onedal_estimator")
178
+ if self._need_to_finalize:
179
+ self._onedal_finalize_fit()
180
+ return self._onedal_estimator.predict(X, queue=queue)
181
+
182
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
183
+ return r2_score(
184
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
185
+ )
186
+
187
+ def _onedal_partial_fit(self, X, y, check_input=True, queue=None):
188
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
189
+
190
+ if sklearn_check_version("1.2"):
191
+ self._validate_params()
192
+
193
+ if check_input:
194
+ if sklearn_check_version("1.0"):
195
+ X, y = validate_data(
196
+ self,
197
+ X,
198
+ y,
199
+ dtype=[np.float64, np.float32],
200
+ reset=first_pass,
201
+ copy=self.copy_X,
202
+ multi_output=True,
203
+ force_all_finite=False,
204
+ )
205
+ else:
206
+ X = check_array(
207
+ X,
208
+ dtype=[np.float64, np.float32],
209
+ copy=self.copy_X,
210
+ force_all_finite=False,
211
+ )
212
+ y = check_array(
213
+ y,
214
+ dtype=[np.float64, np.float32],
215
+ copy=False,
216
+ ensure_2d=False,
217
+ force_all_finite=False,
218
+ )
219
+
220
+ if first_pass:
221
+ self.n_samples_seen_ = X.shape[0]
222
+ self.n_features_in_ = X.shape[1]
223
+ else:
224
+ self.n_samples_seen_ += X.shape[0]
225
+ onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
226
+ if not hasattr(self, "_onedal_estimator"):
227
+ self._onedal_estimator = self._onedal_incremental_linear(**onedal_params)
228
+ self._onedal_estimator.partial_fit(X, y, queue=queue)
229
+ self._need_to_finalize = True
230
+
231
+ if daal_check_version((2025, "P", 200)):
232
+
233
+ def _onedal_validate_underdetermined(self, n_samples, n_features):
234
+ pass
235
+
236
+ else:
237
+
238
+ def _onedal_validate_underdetermined(self, n_samples, n_features):
239
+ is_underdetermined = n_samples < n_features + int(self.fit_intercept)
240
+ if is_underdetermined:
241
+ raise ValueError("Not enough samples for oneDAL")
242
+
243
+ def _onedal_finalize_fit(self, queue=None):
244
+ assert hasattr(self, "_onedal_estimator")
245
+ self._onedal_validate_underdetermined(self.n_samples_seen_, self.n_features_in_)
246
+ self._onedal_estimator.finalize_fit(queue=queue)
247
+ self._need_to_finalize = False
248
+
249
+ def _onedal_fit(self, X, y, queue=None):
250
+ if sklearn_check_version("1.2"):
251
+ self._validate_params()
252
+
253
+ if sklearn_check_version("1.0"):
254
+ X, y = validate_data(
255
+ self,
256
+ X,
257
+ y,
258
+ dtype=[np.float64, np.float32],
259
+ copy=self.copy_X,
260
+ multi_output=True,
261
+ ensure_2d=True,
262
+ )
263
+ else:
264
+ X = check_array(
265
+ X,
266
+ dtype=[np.float64, np.float32],
267
+ copy=self.copy_X,
268
+ )
269
+ y = check_array(
270
+ y,
271
+ dtype=[np.float64, np.float32],
272
+ copy=False,
273
+ ensure_2d=False,
274
+ )
275
+
276
+ n_samples, n_features = X.shape
277
+
278
+ self._onedal_validate_underdetermined(n_samples, n_features)
279
+
280
+ if self.batch_size is None:
281
+ self.batch_size_ = 5 * n_features
282
+ else:
283
+ self.batch_size_ = self.batch_size
284
+
285
+ self.n_samples_seen_ = 0
286
+ if hasattr(self, "_onedal_estimator"):
287
+ self._onedal_estimator._reset()
288
+
289
+ for batch in gen_batches(n_samples, self.batch_size_):
290
+ X_batch, y_batch = X[batch], y[batch]
291
+ self._onedal_partial_fit(X_batch, y_batch, check_input=False, queue=queue)
292
+
293
+ if sklearn_check_version("1.2"):
294
+ self._validate_params()
295
+
296
+ # finite check occurs on onedal side
297
+ self.n_features_in_ = n_features
298
+
299
+ if n_samples == 1:
300
+ warnings.warn(
301
+ "Only one sample available. You may want to reshape your data array"
302
+ )
303
+
304
+ self._onedal_finalize_fit(queue=queue)
305
+ return self
306
+
307
+ @property
308
+ def intercept_(self):
309
+ if hasattr(self, "_onedal_estimator"):
310
+ if self._need_to_finalize:
311
+ self._onedal_finalize_fit()
312
+
313
+ return self._onedal_estimator.intercept_
314
+ else:
315
+ raise AttributeError(
316
+ f"'{self.__class__.__name__}' object has no attribute 'intercept_'"
317
+ )
318
+
319
+ @intercept_.setter
320
+ def intercept_(self, value):
321
+ self.__dict__["intercept_"] = value
322
+ if hasattr(self, "_onedal_estimator"):
323
+ self._onedal_estimator.intercept_ = value
324
+ del self._onedal_estimator._onedal_model
325
+
326
+ @property
327
+ def coef_(self):
328
+ if hasattr(self, "_onedal_estimator"):
329
+ if self._need_to_finalize:
330
+ self._onedal_finalize_fit()
331
+
332
+ return self._onedal_estimator.coef_
333
+ else:
334
+ raise AttributeError(
335
+ f"'{self.__class__.__name__}' object has no attribute 'coef_'"
336
+ )
337
+
338
+ @coef_.setter
339
+ def coef_(self, value):
340
+ self.__dict__["coef_"] = value
341
+ if hasattr(self, "_onedal_estimator"):
342
+ self._onedal_estimator.coef_ = value
343
+ del self._onedal_estimator._onedal_model
344
+
345
+ def partial_fit(self, X, y, check_input=True):
346
+ """
347
+ Incremental fit linear model with X and y. All of X and y is
348
+ processed as a single batch.
349
+
350
+ Parameters
351
+ ----------
352
+ X : array-like of shape (n_samples, n_features)
353
+ Training data, where ``n_samples`` is the number of samples and
354
+ `n_features` is the number of features.
355
+
356
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
357
+ Target values, where ``n_samples`` is the number of samples and
358
+ ``n_targets`` is the number of targets.
359
+
360
+ Returns
361
+ -------
362
+ self : object
363
+ Returns the instance itself.
364
+ """
365
+
366
+ dispatch(
367
+ self,
368
+ "partial_fit",
369
+ {
370
+ "onedal": self.__class__._onedal_partial_fit,
371
+ "sklearn": None,
372
+ },
373
+ X,
374
+ y,
375
+ check_input=check_input,
376
+ )
377
+ return self
378
+
379
+ def fit(self, X, y):
380
+ """
381
+ Fit the model with X and y, using minibatches of size ``batch_size``.
382
+
383
+ Parameters
384
+ ----------
385
+ X : array-like of shape (n_samples, n_features)
386
+ Training data, where ``n_samples`` is the number of samples and
387
+ ``n_features`` is the number of features. It is necessary for
388
+ ``n_samples`` to be not less than ``n_features`` if ``fit_intercept``
389
+ is False and not less than ``n_features + 1`` if ``fit_intercept``
390
+ is True
391
+
392
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
393
+ Target values, where ``n_samples`` is the number of samples and
394
+ ``n_targets`` is the number of targets.
395
+
396
+ Returns
397
+ -------
398
+ self : object
399
+ Returns the instance itself.
400
+ """
401
+
402
+ dispatch(
403
+ self,
404
+ "fit",
405
+ {
406
+ "onedal": self.__class__._onedal_fit,
407
+ "sklearn": None,
408
+ },
409
+ X,
410
+ y,
411
+ )
412
+ return self
413
+
414
+ @wrap_output_data
415
+ def predict(self, X, y=None):
416
+ """
417
+ Predict using the linear model.
418
+
419
+ Parameters
420
+ ----------
421
+ X : array-like or sparse matrix, shape (n_samples, n_features)
422
+ Samples.
423
+
424
+ y : Ignored
425
+ Not used, present for API consistency by convention.
426
+
427
+ Returns
428
+ -------
429
+ C : array, shape (n_samples, n_targets)
430
+ Returns predicted values.
431
+ """
432
+ check_is_fitted(self)
433
+ return dispatch(
434
+ self,
435
+ "predict",
436
+ {
437
+ "onedal": self.__class__._onedal_predict,
438
+ "sklearn": None,
439
+ },
440
+ X,
441
+ )
442
+
443
+ @wrap_output_data
444
+ def score(self, X, y, sample_weight=None):
445
+ """Return the coefficient of determination of the prediction.
446
+
447
+ The coefficient of determination :math:`R^2` is defined as
448
+ :math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual
449
+ sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
450
+ is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
451
+ The best possible score is 1.0 and it can be negative (because the
452
+ model can be arbitrarily worse). A constant model that always predicts
453
+ the expected value of `y`, disregarding the input features, would get
454
+ a :math:`R^2` score of 0.0.
455
+
456
+ Parameters
457
+ ----------
458
+ X : array-like of shape (n_samples, n_features)
459
+ Test samples. For some estimators this may be a precomputed
460
+ kernel matrix or a list of generic objects instead with shape
461
+ ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
462
+ is the number of samples used in the fitting for the estimator.
463
+
464
+ y : array-like of shape (n_samples,) or (n_samples, n_outputs)
465
+ True values for `X`.
466
+
467
+ sample_weight : array-like of shape (n_samples,), default=None
468
+ Sample weights.
469
+
470
+ Returns
471
+ -------
472
+ score : float
473
+ :math:`R^2` of ``self.predict(X)`` w.r.t. `y`.
474
+
475
+ Notes
476
+ -----
477
+ The :math:`R^2` score used when calling ``score`` on a regressor uses
478
+ ``multioutput='uniform_average'`` from version 0.23 to keep consistent
479
+ with default value of :func:`~sklearn.metrics.r2_score`.
480
+ This influences the ``score`` method of all the multioutput
481
+ regressors (except for
482
+ :class:`~sklearn.multioutput.MultiOutputRegressor`).
483
+ """
484
+ check_is_fitted(self)
485
+ return dispatch(
486
+ self,
487
+ "score",
488
+ {
489
+ "onedal": self.__class__._onedal_score,
490
+ "sklearn": None,
491
+ },
492
+ X,
493
+ y,
494
+ sample_weight=sample_weight,
495
+ )