scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,190 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.datatypes import from_table
22
+ from onedal.tests.utils._device_selection import get_queues
23
+
24
+
25
+ @pytest.mark.parametrize("queue", get_queues())
26
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
27
+ def test_on_gold_data_unbiased(queue, dtype):
28
+ from onedal.covariance import IncrementalEmpiricalCovariance
29
+
30
+ X = np.array([[0, 1], [0, 1]])
31
+ X = X.astype(dtype)
32
+ X_split = np.array_split(X, 2)
33
+ inccov = IncrementalEmpiricalCovariance()
34
+
35
+ for i in range(2):
36
+ inccov.partial_fit(X_split[i], queue=queue)
37
+ result = inccov.finalize_fit()
38
+
39
+ expected_covariance = np.array([[0, 0], [0, 0]])
40
+ expected_means = np.array([0, 1])
41
+
42
+ assert_allclose(expected_covariance, result.covariance_)
43
+ assert_allclose(expected_means, result.location_)
44
+
45
+ X = np.array([[1, 2], [3, 6]])
46
+ X = X.astype(dtype)
47
+ X_split = np.array_split(X, 2)
48
+ inccov = IncrementalEmpiricalCovariance()
49
+
50
+ for i in range(2):
51
+ inccov.partial_fit(X_split[i], queue=queue)
52
+ result = inccov.finalize_fit()
53
+
54
+ expected_covariance = np.array([[2, 4], [4, 8]])
55
+ expected_means = np.array([2, 4])
56
+
57
+ assert_allclose(expected_covariance, result.covariance_)
58
+ assert_allclose(expected_means, result.location_)
59
+
60
+
61
+ @pytest.mark.parametrize("queue", get_queues())
62
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
63
+ def test_on_gold_data_biased(queue, dtype):
64
+ from onedal.covariance import IncrementalEmpiricalCovariance
65
+
66
+ X = np.array([[0, 1], [0, 1]])
67
+ X = X.astype(dtype)
68
+ X_split = np.array_split(X, 2)
69
+ inccov = IncrementalEmpiricalCovariance(bias=True)
70
+
71
+ for i in range(2):
72
+ inccov.partial_fit(X_split[i], queue=queue)
73
+ result = inccov.finalize_fit()
74
+
75
+ expected_covariance = np.array([[0, 0], [0, 0]])
76
+ expected_means = np.array([0, 1])
77
+
78
+ assert_allclose(expected_covariance, result.covariance_)
79
+ assert_allclose(expected_means, result.location_)
80
+
81
+ X = np.array([[1, 2], [3, 6]])
82
+ X = X.astype(dtype)
83
+ X_split = np.array_split(X, 2)
84
+ inccov = IncrementalEmpiricalCovariance(bias=True)
85
+
86
+ for i in range(2):
87
+ inccov.partial_fit(X_split[i], queue=queue)
88
+ result = inccov.finalize_fit()
89
+
90
+ expected_covariance = np.array([[1, 2], [2, 4]])
91
+ expected_means = np.array([2, 4])
92
+
93
+ assert_allclose(expected_covariance, result.covariance_)
94
+ assert_allclose(expected_means, result.location_)
95
+
96
+
97
+ @pytest.mark.parametrize("queue", get_queues())
98
+ @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
99
+ @pytest.mark.parametrize("row_count", [100, 1000, 2000])
100
+ @pytest.mark.parametrize("column_count", [10, 100, 200])
101
+ @pytest.mark.parametrize("bias", [True, False])
102
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
103
+ def test_partial_fit_on_random_data(
104
+ queue, num_batches, row_count, column_count, bias, dtype
105
+ ):
106
+ from onedal.covariance import IncrementalEmpiricalCovariance
107
+
108
+ seed = 77
109
+ gen = np.random.default_rng(seed)
110
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
111
+ X = X.astype(dtype)
112
+ X_split = np.array_split(X, num_batches)
113
+ inccov = IncrementalEmpiricalCovariance(bias=bias)
114
+
115
+ for i in range(num_batches):
116
+ inccov.partial_fit(X_split[i], queue=queue)
117
+ result = inccov.finalize_fit()
118
+
119
+ expected_covariance = np.cov(X.T, bias=bias)
120
+ expected_means = np.mean(X, axis=0)
121
+
122
+ assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
123
+ assert_allclose(expected_means, result.location_, atol=1e-6)
124
+
125
+
126
+ @pytest.mark.parametrize("queue", get_queues())
127
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
128
+ def test_incremental_estimator_pickle(queue, dtype):
129
+ import pickle
130
+
131
+ from onedal.covariance import IncrementalEmpiricalCovariance
132
+
133
+ inccov = IncrementalEmpiricalCovariance()
134
+
135
+ # Check that estimator can be serialized without any data.
136
+ dump = pickle.dumps(inccov)
137
+ inccov_loaded = pickle.loads(dump)
138
+ seed = 77
139
+ gen = np.random.default_rng(seed)
140
+ X = gen.uniform(low=-0.3, high=+0.7, size=(10, 10))
141
+ X = X.astype(dtype)
142
+ X_split = np.array_split(X, 2)
143
+ inccov.partial_fit(X_split[0], queue=queue)
144
+ inccov_loaded.partial_fit(X_split[0], queue=queue)
145
+
146
+ assert inccov._need_to_finalize == True
147
+ assert inccov_loaded._need_to_finalize == True
148
+
149
+ # Check that estimator can be serialized after partial_fit call.
150
+ dump = pickle.dumps(inccov)
151
+ inccov_loaded = pickle.loads(dump)
152
+
153
+ assert inccov._need_to_finalize == False
154
+ # Finalize is called during serialization to make sure partial results are finalized correctly.
155
+ assert inccov_loaded._need_to_finalize == False
156
+
157
+ partial_n_rows = from_table(inccov._partial_result.partial_n_rows)
158
+ partial_n_rows_loaded = from_table(inccov_loaded._partial_result.partial_n_rows)
159
+ assert_allclose(partial_n_rows, partial_n_rows_loaded)
160
+
161
+ partial_crossproduct = from_table(inccov._partial_result.partial_crossproduct)
162
+ partial_crossproduct_loaded = from_table(
163
+ inccov_loaded._partial_result.partial_crossproduct
164
+ )
165
+ assert_allclose(partial_crossproduct, partial_crossproduct_loaded)
166
+
167
+ partial_sums = from_table(inccov._partial_result.partial_sums)
168
+ partial_sums_loaded = from_table(inccov_loaded._partial_result.partial_sums)
169
+ assert_allclose(partial_sums, partial_sums_loaded)
170
+
171
+ inccov.partial_fit(X_split[1], queue=queue)
172
+ inccov_loaded.partial_fit(X_split[1], queue=queue)
173
+ assert inccov._need_to_finalize == True
174
+ assert inccov_loaded._need_to_finalize == True
175
+
176
+ dump = pickle.dumps(inccov_loaded)
177
+ inccov_loaded = pickle.loads(dump)
178
+
179
+ assert inccov._need_to_finalize == True
180
+ assert inccov_loaded._need_to_finalize == False
181
+
182
+ inccov.finalize_fit()
183
+ inccov_loaded.finalize_fit()
184
+
185
+ # Check that finalized estimator can be serialized.
186
+ dump = pickle.dumps(inccov_loaded)
187
+ inccov_loaded = pickle.loads(dump)
188
+
189
+ assert_allclose(inccov.location_, inccov_loaded.location_, atol=1e-6)
190
+ assert_allclose(inccov.covariance_, inccov_loaded.covariance_, atol=1e-6)
@@ -0,0 +1,19 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from ._data_conversion import from_table, to_table
18
+
19
+ __all__ = ["from_table", "to_table"]
@@ -0,0 +1,121 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import warnings
18
+
19
+ import numpy as np
20
+
21
+ from onedal import _backend, _is_dpc_backend
22
+
23
+
24
+ def _apply_and_pass(func, *args, **kwargs):
25
+ if len(args) == 1:
26
+ return func(args[0], **kwargs)
27
+ return tuple(map(lambda arg: func(arg, **kwargs), args))
28
+
29
+
30
+ def _convert_one_to_table(arg, queue=None):
31
+ # All inputs for table conversion must be array-like or sparse, not scalars
32
+ return _backend.to_table(np.atleast_2d(arg) if np.isscalar(arg) else arg, queue)
33
+
34
+
35
+ def to_table(*args, queue=None):
36
+ """Create oneDAL tables from scalars and/or arrays.
37
+
38
+ Note: this implementation can be used with scipy.sparse, numpy ndarrays,
39
+ DPCTL/DPNP usm_ndarrays and scalars. Tables will use pointers to the
40
+ original array data. Scalars and non-contiguous arrays will be copies.
41
+ Arrays may be modified in-place by oneDAL during computation. This works
42
+ for data located on CPU and SYCL-enabled Intel GPUs. Each array may only
43
+ be of a single datatype (i.e. each must be homogeneous).
44
+
45
+ Parameters
46
+ ----------
47
+ *args : {scalar, numpy array, sycl_usm_ndarray, csr_matrix, or csr_array}
48
+ arg1, arg2... The arrays should be given as arguments.
49
+
50
+ Returns
51
+ -------
52
+ tables: {oneDAL homogeneous tables}
53
+ """
54
+ return _apply_and_pass(_convert_one_to_table, *args, queue=queue)
55
+
56
+
57
+ if _is_dpc_backend:
58
+
59
+ try:
60
+ # try/catch is used here instead of dpep_helpers because
61
+ # of circular import issues of _data_conversion.py and
62
+ # utils/validation.py. This is a temporary fix until the
63
+ # issue with dpnp is addressed, at which point this can
64
+ # be removed entirely.
65
+ import dpnp
66
+
67
+ def _table_to_array(table, xp=None):
68
+ # By default DPNP ndarray created with a copy.
69
+ # TODO:
70
+ # investigate why dpnp.array(table, copy=False) doesn't work.
71
+ # Work around with using dpctl.tensor.asarray.
72
+ if xp == dpnp:
73
+ return dpnp.array(dpnp.dpctl.tensor.asarray(table), copy=False)
74
+ else:
75
+ return xp.asarray(table)
76
+
77
+ except ImportError:
78
+
79
+ def _table_to_array(table, xp=None):
80
+ return xp.asarray(table)
81
+
82
+ from ..common._policy import _HostInteropPolicy
83
+
84
+ def convert_one_from_table(table, sycl_queue=None, sua_iface=None, xp=None):
85
+ # Currently only `__sycl_usm_array_interface__` protocol used to
86
+ # convert into dpnp/dpctl tensors.
87
+ if sua_iface:
88
+ if (
89
+ sycl_queue
90
+ and sycl_queue.sycl_device.is_cpu
91
+ and table.__sycl_usm_array_interface__["syclobj"] is None
92
+ ):
93
+ # oneDAL returns tables with None sycl queue for CPU sycl queue inputs.
94
+ # This workaround is necessary for the functional preservation
95
+ # of the compute-follows-data execution.
96
+ # Host tables first converted into numpy.narrays and then to array from xp
97
+ # namespace.
98
+ return xp.asarray(
99
+ _backend.from_table(table), usm_type="device", sycl_queue=sycl_queue
100
+ )
101
+ else:
102
+ return _table_to_array(table, xp=xp)
103
+
104
+ return _backend.from_table(table)
105
+
106
+ else:
107
+
108
+ def convert_one_from_table(table, sycl_queue=None, sua_iface=None, xp=None):
109
+ # Currently only `__sycl_usm_array_interface__` protocol used to
110
+ # convert into dpnp/dpctl tensors.
111
+ if sua_iface:
112
+ raise RuntimeError(
113
+ "SYCL usm array conversion from table requires the DPC backend"
114
+ )
115
+ return _backend.from_table(table)
116
+
117
+
118
+ def from_table(*args, sycl_queue=None, sua_iface=None, xp=None):
119
+ return _apply_and_pass(
120
+ convert_one_from_table, *args, sycl_queue=sycl_queue, sua_iface=sua_iface, xp=xp
121
+ )
@@ -0,0 +1,126 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from onedal.utils._dpep_helpers import dpctl_available, dpnp_available
18
+
19
+ if dpnp_available:
20
+ import dpnp
21
+
22
+ if dpctl_available:
23
+ import dpctl
24
+ from dpctl.tensor import usm_ndarray
25
+
26
+ def _get_sycl_queue(syclobj):
27
+ if hasattr(syclobj, "_get_capsule"):
28
+ return dpctl.SyclQueue(syclobj._get_capsule())
29
+ else:
30
+ return dpctl.SyclQueue(syclobj)
31
+
32
+ def _assert_tensor_attr(actual, desired, order):
33
+ """Check attributes of two given USM tensors."""
34
+ is_usm_tensor = (
35
+ lambda x: dpnp_available
36
+ and isinstance(x, dpnp.ndarray)
37
+ or isinstance(x, usm_ndarray)
38
+ )
39
+ assert is_usm_tensor(actual)
40
+ assert is_usm_tensor(desired)
41
+ # dpctl.tensor is the dpnp.ndarrays's core tensor structure along
42
+ # with advanced device management. Convert dpnp to dpctl.tensor with zero copy.
43
+ get_tensor = lambda x: (
44
+ x.get_array() if dpnp_available and isinstance(x, dpnp.ndarray) else x
45
+ )
46
+ # Now DPCtl tensors
47
+ actual = get_tensor(actual)
48
+ desired = get_tensor(desired)
49
+
50
+ assert actual.shape == desired.shape
51
+ assert actual.strides == desired.strides
52
+ assert actual.dtype == desired.dtype
53
+ if order == "F":
54
+ assert actual.flags.f_contiguous
55
+ assert desired.flags.f_contiguous
56
+ assert actual.flags.f_contiguous == desired.flags.f_contiguous
57
+ else:
58
+ assert actual.flags.c_contiguous
59
+ assert desired.flags.c_contiguous
60
+ assert actual.flags.c_contiguous == desired.flags.c_contiguous
61
+ assert actual.flags == desired.flags
62
+ assert actual.sycl_queue == desired.sycl_queue
63
+ # TODO:
64
+ # check better way to check usm ptrs.
65
+ assert actual.usm_data._pointer == desired.usm_data._pointer
66
+
67
+ def _assert_sua_iface_fields(
68
+ actual, desired, skip_syclobj=False, skip_data_0=False, skip_data_1=False
69
+ ):
70
+ """Check attributes of two given reprsesentations of
71
+ USM allocations `__sycl_usm_array_interface__`.
72
+
73
+ For full documentation about `__sycl_usm_array_interface__` refer
74
+ https://intelpython.github.io/dpctl/latest/api_reference/dpctl/sycl_usm_array_interface.html.
75
+
76
+ Parameters
77
+ ----------
78
+ actual : dict, __sycl_usm_array_interface__
79
+ desired : dict, __sycl_usm_array_interface__
80
+ skip_syclobj : bool, default=False
81
+ If True, check for __sycl_usm_array_interface__["syclobj"]
82
+ will be skipped.
83
+ skip_data_0 : bool, default=False
84
+ If True, check for __sycl_usm_array_interface__["data"][0]
85
+ will be skipped.
86
+ skip_data_1 : bool, default=False
87
+ If True, check for __sycl_usm_array_interface__["data"][1]
88
+ will be skipped.
89
+ """
90
+ assert hasattr(actual, "__sycl_usm_array_interface__")
91
+ assert hasattr(desired, "__sycl_usm_array_interface__")
92
+ actual_sua_iface = actual.__sycl_usm_array_interface__
93
+ desired_sua_iface = desired.__sycl_usm_array_interface__
94
+ # data: A 2-tuple whose first element is a Python integer encoding
95
+ # USM pointer value. The second entry in the tuple is a read-only flag
96
+ # (True means the data area is read-only).
97
+ if not skip_data_0:
98
+ assert actual_sua_iface["data"][0] == desired_sua_iface["data"][0]
99
+ if not skip_data_1:
100
+ assert actual_sua_iface["data"][1] == desired_sua_iface["data"][1]
101
+ # shape: a tuple of integers describing dimensions of an N-dimensional array.
102
+ # Reformating shapes for check cases (r,) vs (r,1). Contiguous flattened array
103
+ # shape (r,) becoming (r,1) just for the check, since oneDAL supports only (r,1)
104
+ # for 1-D arrays. In code after from_table conversion for 1-D expected outputs
105
+ # xp.ravel or reshape(-1) is used.
106
+ get_shape_if_1d = lambda shape: (shape[0], 1) if len(shape) == 1 else shape
107
+ actual_shape = get_shape_if_1d(actual_sua_iface["shape"])
108
+ desired_shape = get_shape_if_1d(desired_sua_iface["shape"])
109
+ assert actual_shape == desired_shape
110
+ # strides: An optional tuple of integers describing number of array elements
111
+ # needed to jump to the next array element in the corresponding dimensions.
112
+ if not actual_sua_iface["strides"] and not desired_sua_iface["strides"]:
113
+ # None to indicate a C-style contiguous 1D array.
114
+ # onedal4py constructs __sycl_usm_array_interface__["strides"] with
115
+ # real values.
116
+ assert actual_sua_iface["strides"] == desired_sua_iface["strides"]
117
+ # versions: Version of the interface.
118
+ assert actual_sua_iface["version"] == desired_sua_iface["version"]
119
+ # typestr: a string encoding elemental data type of the array.
120
+ assert actual_sua_iface["typestr"] == desired_sua_iface["typestr"]
121
+ # syclobj: Python object from which SYCL context to which represented USM
122
+ # allocation is bound.
123
+ if not skip_syclobj and dpctl_available:
124
+ actual_sycl_queue = _get_sycl_queue(actual_sua_iface["syclobj"])
125
+ desired_sycl_queue = _get_sycl_queue(desired_sua_iface["syclobj"])
126
+ assert actual_sycl_queue == desired_sycl_queue