scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,19 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from .pca import PCA
18
+
19
+ __all__ = ["PCA"]
@@ -0,0 +1,427 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+
19
+ from daal4py.sklearn._utils import daal_check_version
20
+
21
+ from .._utils import PatchableEstimator
22
+
23
+ if daal_check_version((2024, "P", 100)):
24
+ import numbers
25
+ from math import sqrt
26
+ from warnings import warn
27
+
28
+ import numpy as np
29
+ from scipy.sparse import issparse
30
+ from sklearn.utils.validation import check_array, check_is_fitted
31
+
32
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
33
+ from daal4py.sklearn._utils import sklearn_check_version
34
+
35
+ from .._device_offload import dispatch, wrap_output_data
36
+ from .._utils import PatchingConditionsChain
37
+ from ..utils._array_api import get_namespace
38
+
39
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
40
+ from sklearn.utils import check_scalar
41
+
42
+ if sklearn_check_version("1.2"):
43
+ from sklearn.utils._param_validation import StrOptions
44
+
45
+ from sklearn.decomposition import PCA as _sklearn_PCA
46
+
47
+ from onedal.decomposition import PCA as onedal_PCA
48
+
49
+ if sklearn_check_version("1.6"):
50
+ from sklearn.utils.validation import validate_data
51
+ else:
52
+ validate_data = _sklearn_PCA._validate_data
53
+
54
+ @control_n_jobs(decorated_methods=["fit", "transform", "fit_transform"])
55
+ class PCA(PatchableEstimator, _sklearn_PCA):
56
+ __doc__ = _sklearn_PCA.__doc__
57
+
58
+ if sklearn_check_version("1.2"):
59
+ _parameter_constraints: dict = {**_sklearn_PCA._parameter_constraints}
60
+ # "onedal_svd" solver uses oneDAL's PCA-SVD algorithm
61
+ # and required for testing purposes to fully enable it in future.
62
+ # "covariance_eigh" solver is added for ability to explicitly request
63
+ # oneDAL's PCA-Covariance algorithm using any sklearn version < 1.5.
64
+ _parameter_constraints["svd_solver"] = [
65
+ StrOptions(
66
+ _parameter_constraints["svd_solver"][0].options
67
+ | {"onedal_svd", "covariance_eigh"}
68
+ )
69
+ ]
70
+
71
+ if sklearn_check_version("1.1"):
72
+
73
+ def __init__(
74
+ self,
75
+ n_components=None,
76
+ *,
77
+ copy=True,
78
+ whiten=False,
79
+ svd_solver="auto",
80
+ tol=0.0,
81
+ iterated_power="auto",
82
+ n_oversamples=10,
83
+ power_iteration_normalizer="auto",
84
+ random_state=None,
85
+ ):
86
+ self.n_components = n_components
87
+ self.copy = copy
88
+ self.whiten = whiten
89
+ self.svd_solver = svd_solver
90
+ self.tol = tol
91
+ self.iterated_power = iterated_power
92
+ self.n_oversamples = n_oversamples
93
+ self.power_iteration_normalizer = power_iteration_normalizer
94
+ self.random_state = random_state
95
+
96
+ else:
97
+
98
+ def __init__(
99
+ self,
100
+ n_components=None,
101
+ copy=True,
102
+ whiten=False,
103
+ svd_solver="auto",
104
+ tol=0.0,
105
+ iterated_power="auto",
106
+ random_state=None,
107
+ ):
108
+ self.n_components = n_components
109
+ self.copy = copy
110
+ self.whiten = whiten
111
+ self.svd_solver = svd_solver
112
+ self.tol = tol
113
+ self.iterated_power = iterated_power
114
+ self.random_state = random_state
115
+
116
+ def fit(self, X, y=None):
117
+ self._fit(X)
118
+ return self
119
+
120
+ @wrap_output_data
121
+ def _fit(self, X):
122
+ if sklearn_check_version("1.2"):
123
+ self._validate_params()
124
+ elif sklearn_check_version("1.1"):
125
+ check_scalar(
126
+ self.n_oversamples,
127
+ "n_oversamples",
128
+ min_val=1,
129
+ target_type=numbers.Integral,
130
+ )
131
+
132
+ return dispatch(
133
+ self,
134
+ "fit",
135
+ {
136
+ "onedal": self.__class__._onedal_fit,
137
+ "sklearn": _sklearn_PCA._fit,
138
+ },
139
+ X,
140
+ )
141
+
142
+ def _onedal_fit(self, X, queue=None):
143
+ X = validate_data(
144
+ self,
145
+ X,
146
+ dtype=[np.float64, np.float32],
147
+ ensure_2d=True,
148
+ copy=self.copy,
149
+ )
150
+
151
+ onedal_params = {
152
+ "n_components": self.n_components,
153
+ "is_deterministic": True,
154
+ "method": "svd" if self._fit_svd_solver == "onedal_svd" else "cov",
155
+ "whiten": self.whiten,
156
+ }
157
+ self._onedal_estimator = onedal_PCA(**onedal_params)
158
+ self._onedal_estimator.fit(X, queue=queue)
159
+ self._save_attributes()
160
+
161
+ U = None
162
+ S = self.singular_values_
163
+ Vt = self.components_
164
+
165
+ if sklearn_check_version("1.5"):
166
+ xp, _ = get_namespace(X)
167
+ x_is_centered = not self.copy
168
+
169
+ return U, S, Vt, X, x_is_centered, xp
170
+ else:
171
+ return U, S, Vt
172
+
173
+ @wrap_output_data
174
+ def transform(self, X):
175
+ check_is_fitted(self)
176
+ return dispatch(
177
+ self,
178
+ "transform",
179
+ {
180
+ "onedal": self.__class__._onedal_transform,
181
+ "sklearn": _sklearn_PCA.transform,
182
+ },
183
+ X,
184
+ )
185
+
186
+ def _onedal_transform(self, X, queue=None):
187
+ if sklearn_check_version("1.0"):
188
+ X = validate_data(
189
+ self,
190
+ X,
191
+ dtype=[np.float64, np.float32],
192
+ reset=False,
193
+ )
194
+ else:
195
+ X = check_array(
196
+ X,
197
+ dtype=[np.float64, np.float32],
198
+ )
199
+ self._validate_n_features_in_after_fitting(X)
200
+
201
+ return self._onedal_estimator.predict(X, queue=queue)
202
+
203
+ def fit_transform(self, X, y=None):
204
+ if sklearn_check_version("1.5"):
205
+ U, S, Vt, X_fit, x_is_centered, xp = self._fit(X)
206
+ else:
207
+ U, S, Vt = self._fit(X)
208
+ X_fit = X
209
+ if hasattr(self, "_onedal_estimator"):
210
+ # oneDAL PCA was fit
211
+ return self.transform(X)
212
+ elif U is not None:
213
+ # Scikit-learn PCA was fit
214
+ U = U[:, : self.n_components_]
215
+
216
+ if self.whiten:
217
+ U *= sqrt(X_fit.shape[0] - 1)
218
+ else:
219
+ U *= S[: self.n_components_]
220
+
221
+ return U
222
+ else:
223
+ # Scikit-learn PCA["covariance_eigh"] was fit
224
+ return self._transform(X_fit, xp, x_is_centered=x_is_centered)
225
+
226
+ @wrap_output_data
227
+ def inverse_transform(self, X):
228
+ xp, _ = get_namespace(X)
229
+
230
+ mean = self.mean_
231
+ if self.whiten:
232
+ components = (
233
+ xp.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_
234
+ )
235
+ else:
236
+ components = self.components_
237
+
238
+ if "numpy" not in xp.__name__:
239
+ # DPCtl and dpnp require inputs to be on the same device for
240
+ # matrix multiplication and division. The type and location
241
+ # of the components and mean are dependent on the sklearn
242
+ # version, this makes sure it is of the same type and on the
243
+ # same device as the data (compute follows data).
244
+ components = xp.asarray(components, device=X.device)
245
+ mean = xp.asarray(mean, device=X.device)
246
+
247
+ return X @ components + mean
248
+
249
+ def _onedal_supported(self, method_name, X):
250
+ class_name = self.__class__.__name__
251
+ patching_status = PatchingConditionsChain(
252
+ f"sklearn.decomposition.{class_name}.{method_name}"
253
+ )
254
+
255
+ if method_name == "fit":
256
+ shape_tuple, _is_shape_compatible = self._get_shape_compatibility(X)
257
+ patching_status.and_conditions(
258
+ [
259
+ (
260
+ _is_shape_compatible,
261
+ "Data shape is not compatible.",
262
+ ),
263
+ (
264
+ self._is_solver_compatible_with_onedal(shape_tuple),
265
+ (
266
+ "Only 'covariance_eigh' and 'onedal_svd' "
267
+ "solvers are supported."
268
+ if sklearn_check_version("1.5")
269
+ else "Only 'full', 'covariance_eigh' and 'onedal_svd' "
270
+ "solvers are supported."
271
+ ),
272
+ ),
273
+ (not issparse(X), "oneDAL PCA does not support sparse data"),
274
+ ]
275
+ )
276
+ return patching_status
277
+
278
+ if method_name == "transform":
279
+ patching_status.and_conditions(
280
+ [
281
+ (
282
+ hasattr(self, "_onedal_estimator"),
283
+ "oneDAL model was not trained",
284
+ ),
285
+ ]
286
+ )
287
+ return patching_status
288
+
289
+ raise RuntimeError(
290
+ f"Unknown method {method_name} in {self.__class__.__name__}"
291
+ )
292
+
293
+ def _onedal_cpu_supported(self, method_name, *data):
294
+ return self._onedal_supported(method_name, *data)
295
+
296
+ def _onedal_gpu_supported(self, method_name, *data):
297
+ return self._onedal_supported(method_name, *data)
298
+
299
+ def _get_shape_compatibility(self, X):
300
+ _is_shape_compatible = False
301
+ _empty_shape = (0, 0)
302
+ if hasattr(X, "shape"):
303
+ shape_tuple = X.shape
304
+ if len(shape_tuple) == 1:
305
+ shape_tuple = (1, shape_tuple[0])
306
+ elif isinstance(X, list):
307
+ if np.ndim(X) == 1:
308
+ shape_tuple = (1, len(X))
309
+ elif np.ndim(X) == 2:
310
+ shape_tuple = (len(X), len(X[0]))
311
+ else:
312
+ return _empty_shape, _is_shape_compatible
313
+
314
+ if shape_tuple[0] > 0 and shape_tuple[1] > 0 and len(shape_tuple) == 2:
315
+ _is_shape_compatible = shape_tuple[1] / shape_tuple[0] < 2
316
+
317
+ return shape_tuple, _is_shape_compatible
318
+
319
+ def _is_solver_compatible_with_onedal(self, shape_tuple):
320
+ self._fit_svd_solver = self.svd_solver
321
+ n_sf_min = min(shape_tuple)
322
+ n_components = n_sf_min if self.n_components is None else self.n_components
323
+
324
+ if self._fit_svd_solver == "auto":
325
+ if sklearn_check_version("1.1"):
326
+ if (
327
+ sklearn_check_version("1.5")
328
+ and shape_tuple[1] <= 1_000
329
+ and shape_tuple[0] >= 10 * shape_tuple[1]
330
+ ):
331
+ self._fit_svd_solver = "covariance_eigh"
332
+ elif max(shape_tuple) <= 500 or n_components == "mle":
333
+ self._fit_svd_solver = "full"
334
+ elif 1 <= n_components < 0.8 * n_sf_min:
335
+ self._fit_svd_solver = "randomized"
336
+ else:
337
+ self._fit_svd_solver = "full"
338
+ else:
339
+ if n_components == "mle":
340
+ self._fit_svd_solver = "full"
341
+ else:
342
+ # check if sklearnex is faster than randomized sklearn
343
+ # Refer to daal4py
344
+ regression_coefs = np.array(
345
+ [
346
+ [
347
+ 9.779873e-11,
348
+ shape_tuple[0] * shape_tuple[1] * n_components,
349
+ ],
350
+ [
351
+ -1.122062e-11,
352
+ shape_tuple[0] * shape_tuple[1] * shape_tuple[1],
353
+ ],
354
+ [1.127905e-09, shape_tuple[0] ** 2],
355
+ ]
356
+ )
357
+ if (
358
+ n_components >= 1
359
+ and np.dot(regression_coefs[:, 0], regression_coefs[:, 1])
360
+ <= 0
361
+ ):
362
+ self._fit_svd_solver = "randomized"
363
+ else:
364
+ self._fit_svd_solver = "full"
365
+
366
+ # Use oneDAL in next cases:
367
+ # 1. oneDAL SVD solver is explicitly set
368
+ # 2. solver is set or dispatched to "covariance_eigh"
369
+ # 3. solver is set or dispatched to "full" and sklearn version < 1.5
370
+ # 4. solver is set to "auto" and dispatched to "full"
371
+ if self._fit_svd_solver in ["onedal_svd", "covariance_eigh"]:
372
+ return True
373
+ elif not sklearn_check_version("1.5") and self._fit_svd_solver == "full":
374
+ self._fit_svd_solver = "covariance_eigh"
375
+ return True
376
+ elif self.svd_solver == "auto" and self._fit_svd_solver == "full":
377
+ warn(
378
+ "Sklearnex always uses `covariance_eigh` solver instead of `full` "
379
+ "when `svd_solver` parameter is set to `auto` "
380
+ "for performance purposes."
381
+ )
382
+ self._fit_svd_solver = "covariance_eigh"
383
+ return True
384
+ else:
385
+ return False
386
+
387
+ def _save_attributes(self):
388
+ self.n_samples_ = self._onedal_estimator.n_samples_
389
+ if sklearn_check_version("1.2"):
390
+ self.n_features_in_ = self._onedal_estimator.n_features_
391
+ else:
392
+ self.n_features_ = self._onedal_estimator.n_features_
393
+ self.n_features_in_ = self._onedal_estimator.n_features_
394
+ self.n_components_ = self._onedal_estimator.n_components_
395
+ self.components_ = self._onedal_estimator.components_
396
+ self.mean_ = self._onedal_estimator.mean_
397
+ self.singular_values_ = self._onedal_estimator.singular_values_
398
+ self.explained_variance_ = self._onedal_estimator.explained_variance_.ravel()
399
+ self.explained_variance_ratio_ = (
400
+ self._onedal_estimator.explained_variance_ratio_
401
+ )
402
+ self.noise_variance_ = self._onedal_estimator.noise_variance_
403
+
404
+ def _validate_n_features_in_after_fitting(self, X):
405
+ if sklearn_check_version("1.2"):
406
+ expected_n_features = self.n_features_in_
407
+ else:
408
+ expected_n_features = self.n_features_
409
+ if X.shape[1] != expected_n_features:
410
+ raise ValueError(
411
+ (
412
+ f"X has {X.shape[1]} features, "
413
+ f"but PCA is expecting {expected_n_features} features as input"
414
+ )
415
+ )
416
+
417
+ fit.__doc__ = _sklearn_PCA.fit.__doc__
418
+ transform.__doc__ = _sklearn_PCA.transform.__doc__
419
+ fit_transform.__doc__ = _sklearn_PCA.fit_transform.__doc__
420
+ inverse_transform.__doc__ = _sklearn_PCA.inverse_transform.__doc__
421
+
422
+ else:
423
+ from daal4py.sklearn.decomposition import PCA
424
+
425
+ logging.warning(
426
+ "Sklearnex PCA requires oneDAL version >= 2024.1.0 but it was not found"
427
+ )
@@ -0,0 +1,58 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.tests.utils._dataframes_support import (
23
+ _as_numpy,
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
27
+
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ def test_sklearnex_import(dataframe, queue):
31
+ from sklearnex.decomposition import PCA
32
+
33
+ X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
34
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
35
+ X_transformed_expected = [
36
+ [-1.38340578, -0.2935787],
37
+ [-2.22189802, 0.25133484],
38
+ [-3.6053038, -0.04224385],
39
+ [1.38340578, 0.2935787],
40
+ [2.22189802, -0.25133484],
41
+ [3.6053038, 0.04224385],
42
+ ]
43
+
44
+ pca = PCA(n_components=2, svd_solver="covariance_eigh")
45
+ pca.fit(X)
46
+ X_transformed = pca.transform(X)
47
+ X_fit_transformed = PCA(n_components=2, svd_solver="covariance_eigh").fit_transform(X)
48
+
49
+ if daal_check_version((2024, "P", 100)):
50
+ assert "sklearnex" in pca.__module__
51
+ assert hasattr(pca, "_onedal_estimator")
52
+ else:
53
+ assert "daal4py" in pca.__module__
54
+
55
+ tol = 1e-5 if _as_numpy(X_transformed).dtype == np.float32 else 1e-7
56
+ assert_allclose([6.30061232, 0.54980396], _as_numpy(pca.singular_values_))
57
+ assert_allclose(X_transformed_expected, _as_numpy(X_transformed), rtol=tol)
58
+ assert_allclose(X_transformed_expected, _as_numpy(X_fit_transformed), rtol=tol)