scikit-learn-intelex 2025.4.0__py313-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (282) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +696 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +204 -0
  62. onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +175 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +242 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  70. onedal/basic_statistics/tests/utils.py +50 -0
  71. onedal/cluster/__init__.py +27 -0
  72. onedal/cluster/dbscan.py +105 -0
  73. onedal/cluster/kmeans.py +557 -0
  74. onedal/cluster/kmeans_init.py +112 -0
  75. onedal/cluster/tests/test_dbscan.py +125 -0
  76. onedal/cluster/tests/test_kmeans.py +88 -0
  77. onedal/cluster/tests/test_kmeans_init.py +93 -0
  78. onedal/common/_base.py +38 -0
  79. onedal/common/_estimator_checks.py +47 -0
  80. onedal/common/_mixin.py +62 -0
  81. onedal/common/_policy.py +55 -0
  82. onedal/common/_spmd_policy.py +30 -0
  83. onedal/common/hyperparameters.py +125 -0
  84. onedal/common/tests/test_policy.py +76 -0
  85. onedal/common/tests/test_sycl.py +128 -0
  86. onedal/covariance/__init__.py +20 -0
  87. onedal/covariance/covariance.py +122 -0
  88. onedal/covariance/incremental_covariance.py +161 -0
  89. onedal/covariance/tests/test_covariance.py +50 -0
  90. onedal/covariance/tests/test_incremental_covariance.py +190 -0
  91. onedal/datatypes/__init__.py +19 -0
  92. onedal/datatypes/_data_conversion.py +121 -0
  93. onedal/datatypes/tests/common.py +126 -0
  94. onedal/datatypes/tests/test_data.py +475 -0
  95. onedal/decomposition/__init__.py +20 -0
  96. onedal/decomposition/incremental_pca.py +214 -0
  97. onedal/decomposition/pca.py +186 -0
  98. onedal/decomposition/tests/test_incremental_pca.py +285 -0
  99. onedal/ensemble/__init__.py +29 -0
  100. onedal/ensemble/forest.py +736 -0
  101. onedal/ensemble/tests/test_random_forest.py +97 -0
  102. onedal/linear_model/__init__.py +27 -0
  103. onedal/linear_model/incremental_linear_model.py +292 -0
  104. onedal/linear_model/linear_model.py +325 -0
  105. onedal/linear_model/logistic_regression.py +247 -0
  106. onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  107. onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  108. onedal/linear_model/tests/test_linear_regression.py +259 -0
  109. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  110. onedal/linear_model/tests/test_ridge.py +95 -0
  111. onedal/neighbors/__init__.py +19 -0
  112. onedal/neighbors/neighbors.py +763 -0
  113. onedal/neighbors/tests/test_knn_classification.py +49 -0
  114. onedal/primitives/__init__.py +27 -0
  115. onedal/primitives/get_tree.py +25 -0
  116. onedal/primitives/kernel_functions.py +152 -0
  117. onedal/primitives/tests/test_kernel_functions.py +159 -0
  118. onedal/spmd/__init__.py +25 -0
  119. onedal/spmd/_base.py +30 -0
  120. onedal/spmd/basic_statistics/__init__.py +20 -0
  121. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  122. onedal/spmd/basic_statistics/incremental_basic_statistics.py +71 -0
  123. onedal/spmd/cluster/__init__.py +28 -0
  124. onedal/spmd/cluster/dbscan.py +23 -0
  125. onedal/spmd/cluster/kmeans.py +56 -0
  126. onedal/spmd/covariance/__init__.py +20 -0
  127. onedal/spmd/covariance/covariance.py +26 -0
  128. onedal/spmd/covariance/incremental_covariance.py +83 -0
  129. onedal/spmd/decomposition/__init__.py +20 -0
  130. onedal/spmd/decomposition/incremental_pca.py +124 -0
  131. onedal/spmd/decomposition/pca.py +26 -0
  132. onedal/spmd/ensemble/__init__.py +19 -0
  133. onedal/spmd/ensemble/forest.py +28 -0
  134. onedal/spmd/linear_model/__init__.py +21 -0
  135. onedal/spmd/linear_model/incremental_linear_model.py +101 -0
  136. onedal/spmd/linear_model/linear_model.py +30 -0
  137. onedal/spmd/linear_model/logistic_regression.py +38 -0
  138. onedal/spmd/neighbors/__init__.py +19 -0
  139. onedal/spmd/neighbors/neighbors.py +75 -0
  140. onedal/svm/__init__.py +19 -0
  141. onedal/svm/svm.py +556 -0
  142. onedal/svm/tests/test_csr_svm.py +351 -0
  143. onedal/svm/tests/test_nusvc.py +204 -0
  144. onedal/svm/tests/test_nusvr.py +210 -0
  145. onedal/svm/tests/test_svc.py +176 -0
  146. onedal/svm/tests/test_svr.py +243 -0
  147. onedal/tests/test_common.py +57 -0
  148. onedal/tests/utils/_dataframes_support.py +162 -0
  149. onedal/tests/utils/_device_selection.py +102 -0
  150. onedal/utils/__init__.py +49 -0
  151. onedal/utils/_array_api.py +81 -0
  152. onedal/utils/_dpep_helpers.py +56 -0
  153. onedal/utils/tests/test_validation.py +142 -0
  154. onedal/utils/validation.py +464 -0
  155. scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt +202 -0
  156. scikit_learn_intelex-2025.4.0.dist-info/METADATA +190 -0
  157. scikit_learn_intelex-2025.4.0.dist-info/RECORD +282 -0
  158. scikit_learn_intelex-2025.4.0.dist-info/WHEEL +5 -0
  159. scikit_learn_intelex-2025.4.0.dist-info/top_level.txt +3 -0
  160. sklearnex/__init__.py +66 -0
  161. sklearnex/__main__.py +58 -0
  162. sklearnex/_config.py +116 -0
  163. sklearnex/_device_offload.py +126 -0
  164. sklearnex/_utils.py +177 -0
  165. sklearnex/basic_statistics/__init__.py +20 -0
  166. sklearnex/basic_statistics/basic_statistics.py +261 -0
  167. sklearnex/basic_statistics/incremental_basic_statistics.py +352 -0
  168. sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  169. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  170. sklearnex/cluster/__init__.py +20 -0
  171. sklearnex/cluster/dbscan.py +197 -0
  172. sklearnex/cluster/k_means.py +397 -0
  173. sklearnex/cluster/tests/test_dbscan.py +38 -0
  174. sklearnex/cluster/tests/test_kmeans.py +157 -0
  175. sklearnex/conftest.py +82 -0
  176. sklearnex/covariance/__init__.py +19 -0
  177. sklearnex/covariance/incremental_covariance.py +405 -0
  178. sklearnex/covariance/tests/test_incremental_covariance.py +287 -0
  179. sklearnex/decomposition/__init__.py +19 -0
  180. sklearnex/decomposition/pca.py +427 -0
  181. sklearnex/decomposition/tests/test_pca.py +58 -0
  182. sklearnex/dispatcher.py +534 -0
  183. sklearnex/doc/third-party-programs.txt +424 -0
  184. sklearnex/ensemble/__init__.py +29 -0
  185. sklearnex/ensemble/_forest.py +2029 -0
  186. sklearnex/ensemble/tests/test_forest.py +140 -0
  187. sklearnex/glob/__main__.py +72 -0
  188. sklearnex/glob/dispatcher.py +101 -0
  189. sklearnex/linear_model/__init__.py +32 -0
  190. sklearnex/linear_model/coordinate_descent.py +30 -0
  191. sklearnex/linear_model/incremental_linear.py +495 -0
  192. sklearnex/linear_model/incremental_ridge.py +432 -0
  193. sklearnex/linear_model/linear.py +346 -0
  194. sklearnex/linear_model/logistic_regression.py +415 -0
  195. sklearnex/linear_model/ridge.py +390 -0
  196. sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  197. sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  198. sklearnex/linear_model/tests/test_linear.py +142 -0
  199. sklearnex/linear_model/tests/test_logreg.py +134 -0
  200. sklearnex/linear_model/tests/test_ridge.py +256 -0
  201. sklearnex/manifold/__init__.py +19 -0
  202. sklearnex/manifold/t_sne.py +26 -0
  203. sklearnex/manifold/tests/test_tsne.py +250 -0
  204. sklearnex/metrics/__init__.py +23 -0
  205. sklearnex/metrics/pairwise.py +22 -0
  206. sklearnex/metrics/ranking.py +20 -0
  207. sklearnex/metrics/tests/test_metrics.py +39 -0
  208. sklearnex/model_selection/__init__.py +21 -0
  209. sklearnex/model_selection/split.py +22 -0
  210. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  211. sklearnex/neighbors/__init__.py +27 -0
  212. sklearnex/neighbors/_lof.py +236 -0
  213. sklearnex/neighbors/common.py +310 -0
  214. sklearnex/neighbors/knn_classification.py +231 -0
  215. sklearnex/neighbors/knn_regression.py +207 -0
  216. sklearnex/neighbors/knn_unsupervised.py +178 -0
  217. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  218. sklearnex/preview/__init__.py +17 -0
  219. sklearnex/preview/covariance/__init__.py +19 -0
  220. sklearnex/preview/covariance/covariance.py +142 -0
  221. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  222. sklearnex/preview/decomposition/__init__.py +19 -0
  223. sklearnex/preview/decomposition/incremental_pca.py +244 -0
  224. sklearnex/preview/decomposition/tests/test_incremental_pca.py +336 -0
  225. sklearnex/spmd/__init__.py +25 -0
  226. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  227. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  228. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  229. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  230. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +306 -0
  231. sklearnex/spmd/cluster/__init__.py +30 -0
  232. sklearnex/spmd/cluster/dbscan.py +50 -0
  233. sklearnex/spmd/cluster/kmeans.py +21 -0
  234. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  235. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +173 -0
  236. sklearnex/spmd/covariance/__init__.py +20 -0
  237. sklearnex/spmd/covariance/covariance.py +21 -0
  238. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  239. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  240. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  241. sklearnex/spmd/decomposition/__init__.py +20 -0
  242. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  243. sklearnex/spmd/decomposition/pca.py +21 -0
  244. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  245. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  246. sklearnex/spmd/ensemble/__init__.py +19 -0
  247. sklearnex/spmd/ensemble/forest.py +71 -0
  248. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  249. sklearnex/spmd/linear_model/__init__.py +21 -0
  250. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  251. sklearnex/spmd/linear_model/linear_model.py +21 -0
  252. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  253. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +331 -0
  254. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  255. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  256. sklearnex/spmd/neighbors/__init__.py +19 -0
  257. sklearnex/spmd/neighbors/neighbors.py +25 -0
  258. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  259. sklearnex/svm/__init__.py +29 -0
  260. sklearnex/svm/_common.py +339 -0
  261. sklearnex/svm/nusvc.py +371 -0
  262. sklearnex/svm/nusvr.py +170 -0
  263. sklearnex/svm/svc.py +399 -0
  264. sklearnex/svm/svr.py +167 -0
  265. sklearnex/svm/tests/test_svm.py +93 -0
  266. sklearnex/tests/test_common.py +491 -0
  267. sklearnex/tests/test_config.py +123 -0
  268. sklearnex/tests/test_hyperparameters.py +43 -0
  269. sklearnex/tests/test_memory_usage.py +347 -0
  270. sklearnex/tests/test_monkeypatch.py +269 -0
  271. sklearnex/tests/test_n_jobs_support.py +108 -0
  272. sklearnex/tests/test_parallel.py +48 -0
  273. sklearnex/tests/test_patching.py +377 -0
  274. sklearnex/tests/test_run_to_run_stability.py +326 -0
  275. sklearnex/tests/utils/__init__.py +48 -0
  276. sklearnex/tests/utils/base.py +436 -0
  277. sklearnex/tests/utils/spmd.py +198 -0
  278. sklearnex/utils/__init__.py +19 -0
  279. sklearnex/utils/_array_api.py +82 -0
  280. sklearnex/utils/parallel.py +59 -0
  281. sklearnex/utils/tests/test_validation.py +238 -0
  282. sklearnex/utils/validation.py +208 -0
@@ -0,0 +1,190 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-learn-intelex
3
+ Version: 2025.4.0
4
+ Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
+ Home-page: https://github.com/intel/scikit-learn-intelex
6
+ Author: Intel Corporation
7
+ Author-email: onedal.maintainers@intel.com
8
+ Maintainer-email: onedal.maintainers@intel.com
9
+ License: Apache v2.0
10
+ Project-URL: Bug Tracker, https://github.com/uxlfoundation/scikit-learn-intelex/issues
11
+ Project-URL: Documentation, https://uxlfoundation.github.io/scikit-learn-intelex/
12
+ Project-URL: Source Code, https://github.com/uxlfoundation/scikit-learn-intelex
13
+ Keywords: machine learning,scikit-learn,data science,data analytics
14
+ Platform: UNKNOWN
15
+ Classifier: Development Status :: 5 - Production/Stable
16
+ Classifier: Environment :: Console
17
+ Classifier: Intended Audience :: Developers
18
+ Classifier: Intended Audience :: Other Audience
19
+ Classifier: Intended Audience :: Science/Research
20
+ Classifier: License :: OSI Approved :: Apache Software License
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: POSIX :: Linux
23
+ Classifier: Programming Language :: Python :: 3.9
24
+ Classifier: Programming Language :: Python :: 3.10
25
+ Classifier: Programming Language :: Python :: 3.11
26
+ Classifier: Programming Language :: Python :: 3.12
27
+ Classifier: Programming Language :: Python :: 3.13
28
+ Classifier: Topic :: Scientific/Engineering
29
+ Classifier: Topic :: System
30
+ Classifier: Topic :: Software Development
31
+ Requires-Python: >=3.7
32
+ Description-Content-Type: text/markdown
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: daal (==2025.4.0)
35
+ Requires-Dist: numpy (>=1.19)
36
+ Requires-Dist: scikit-learn (>=0.22)
37
+
38
+
39
+ # Intel(R) Extension for Scikit-learn*
40
+
41
+ [![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
42
+ [![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
43
+ [![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/uxlfoundation/scikit-learn-intelex/discussions)
44
+ [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
45
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
46
+
47
+ With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
48
+
49
+ The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/uxlfoundation/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
50
+
51
+ ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
52
+ You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
53
+
54
+ ## 👀 Follow us on Medium
55
+
56
+ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
57
+
58
+ - [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
59
+ - [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
60
+ - [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
61
+ - [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
62
+ - [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
63
+ - [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
64
+ - [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
65
+ - [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
66
+ - [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
67
+ - [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
68
+
69
+ ## 🔗 Important links
70
+ - [Notebook examples](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/examples/notebooks)
71
+ - [Documentation](https://uxlfoundation.github.io/scikit-learn-intelex/)
72
+ - [scikit-learn API and patching](https://uxlfoundation.github.io/scikit-learn-intelex/)
73
+ - [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
74
+ - [Building from Sources](https://github.com/uxlfoundation/scikit-learn-intelex/blob/master/INSTALL.md)
75
+ - [About Intel(R) oneAPI Data Analytics Library](https://github.com/ouxlfoundation/oneDAL)
76
+ - [About Intel(R) daal4py](https://github.com/uxlfoundation/scikit-learn-intelex/tree/master/daal4py)
77
+
78
+ ## 💬 Support
79
+
80
+ Report issues, ask questions, and provide suggestions using:
81
+
82
+ - [GitHub Issues](https://github.com/uxlfoundation/scikit-learn-intelex/issues)
83
+ - [GitHub Discussions](https://github.com/uxlfoundation/scikit-learn-intelex/discussions)
84
+ - [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
85
+
86
+ You may reach out to project maintainers privately at onedal.maintainers@intel.com
87
+
88
+ # 🛠 Installation
89
+ Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
90
+ on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://software.repos.intel.com/python/conda/).
91
+ Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
92
+
93
+ - PyPi (recommended by default)
94
+
95
+ ```shell
96
+ pip install scikit-learn-intelex
97
+ ```
98
+
99
+ - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
100
+
101
+ ```shell
102
+ conda install -c conda-forge scikit-learn-intelex
103
+ ```
104
+
105
+ - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
106
+
107
+ ```shell
108
+ conda install -c https://software.repos.intel.com/python/conda/ scikit-learn-intelex
109
+ ```
110
+
111
+ <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
112
+
113
+ #### 📦 PyPi channel
114
+
115
+ | OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
116
+ | :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
117
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
118
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
119
+
120
+ #### 📦 Anaconda Cloud: Conda-Forge channel
121
+
122
+ | OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
123
+ | :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
124
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
125
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
126
+
127
+ #### 📦 Anaconda Cloud: Intel channel
128
+
129
+ | OS / Python version | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**| **Python 3.13**|
130
+ | :-----------------------| :-------------:| :------------: | :------------: | :------------: | :------------: |
131
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
132
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
133
+
134
+ </details>
135
+
136
+ You can [build the package from sources](https://github.com/uxlfoundation/scikit-learn-intelex/blob/master/INSTALL.md) as well.
137
+
138
+ # ⚡️ Get Started
139
+
140
+ Intel CPU optimizations patching
141
+ ```py
142
+ import numpy as np
143
+ from sklearnex import patch_sklearn
144
+ patch_sklearn()
145
+
146
+ from sklearn.cluster import DBSCAN
147
+
148
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
149
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
150
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
151
+ ```
152
+
153
+ Intel GPU optimizations patching
154
+ ```py
155
+ import numpy as np
156
+ from sklearnex import patch_sklearn, config_context
157
+ patch_sklearn()
158
+
159
+ from sklearn.cluster import DBSCAN
160
+
161
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
162
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
163
+ with config_context(target_offload="gpu:0"):
164
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
165
+ ```
166
+
167
+ # 🚀 Scikit-learn patching
168
+
169
+ ![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
170
+ Configurations:
171
+ - HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
172
+ - SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
173
+
174
+ [Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
175
+
176
+ Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://uxlfoundation.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/uxlfoundation/scikit-learn-intelex/issues).
177
+
178
+ ## 📜 Intel(R) Extension for Scikit-learn verbose
179
+
180
+ To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
181
+ - On Linux: `export SKLEARNEX_VERBOSE=INFO`
182
+ - On Windows: `set SKLEARNEX_VERBOSE=INFO`
183
+
184
+ For example, for DBSCAN you get one of these print statements depending on which implementation is used:
185
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
186
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
187
+
188
+ [Read more in the documentation](https://uxlfoundation.github.io/scikit-learn-intelex/).
189
+
190
+
@@ -0,0 +1,282 @@
1
+ daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
2
+ daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
3
+ daal4py/_daal4py.cpython-313-x86_64-linux-gnu.so,sha256=2vZI6x4JMBp0zq68FHM2DYNT3GQA1rzQ6UivVPkmD4A,11137960
4
+ daal4py/mpi_transceiver.cpython-313-x86_64-linux-gnu.so,sha256=595lje5b0OBTy1BhEGV3O1QMClumqH0F9LD_oZCzYqo,22904
5
+ daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
6
+ daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
7
+ daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
8
+ daal4py/sklearn/__init__.py,sha256=ljO7C5-OtnGwwtlFCDWGHzmc4pDH0M9QtlJbs--TeiQ,1410
9
+ daal4py/sklearn/_n_jobs_support.py,sha256=EltNq0g0YxqIyO7nxBpskXjKg9GqCOPogKpSOxD9wlk,9756
10
+ daal4py/sklearn/_utils.py,sha256=gEkrpJmWJZ3vH0saploNyeTc11JqobT-If666oA7orA,7619
11
+ daal4py/sklearn/cluster/__init__.py,sha256=qb3jlWeIF5XSxofmlnvtAWYINhsnnWBq_PJg_jp0F44,831
12
+ daal4py/sklearn/cluster/dbscan.py,sha256=3op03kXlvKYul28sl64K3xY4G6q7XBGXyShukBBLPjA,5726
13
+ daal4py/sklearn/cluster/k_means.py,sha256=LLlap2zDbHrp6wPILOQZ-GzG6WhVmUpNZLsJSLA-cyk,20218
14
+ daal4py/sklearn/cluster/tests/test_dbscan.py,sha256=j8PeJIt3zqpWFMDltt2-nYc2gWPujeZYYdwQfUHyEe0,3868
15
+ daal4py/sklearn/decomposition/__init__.py,sha256=L7T0brhrvz-9lrJjnou9U84u5y0C9bscg1y18KfA--Y,785
16
+ daal4py/sklearn/decomposition/_pca.py,sha256=nG-4L4N90QmmIlRJJgGXi5FoXeyNyOfUrkTMrYxn9Ag,18970
17
+ daal4py/sklearn/ensemble/AdaBoostClassifier.py,sha256=QdQwxoyLkVdhj9FpETNwq4FboAEbuaHQhAoV0YMh7nw,6773
18
+ daal4py/sklearn/ensemble/GBTDAAL.py,sha256=0scbxzKTf8ItjeF6afME9l1AvnbQz0MIs63yRcW5qFw,11482
19
+ daal4py/sklearn/ensemble/__init__.py,sha256=NE1py-RLgY6ubN6LIi4QlbXqMkLaygTK5uwQyjC3-d4,1068
20
+ daal4py/sklearn/ensemble/_forest.py,sha256=cG3pf7fAyAzvOt22fXPZeMB-2eq8Moq29OmonsTid88,53253
21
+ daal4py/sklearn/ensemble/tests/test_decision_forest.py,sha256=r0u7UkQrAntATP99EyCIpvvt3a1BgHMQEiqwqDeLGsk,6956
22
+ daal4py/sklearn/linear_model/__init__.py,sha256=qBjmXJW0bKX7FZZC9j559ZREUw7Ddb0vobKjDKkrXaw,1069
23
+ daal4py/sklearn/linear_model/_coordinate_descent.py,sha256=PE_6ZnoVygVPtgFgfm3jvoT6SyufIQ0UpNL8QhCfXvA,28380
24
+ daal4py/sklearn/linear_model/_linear.py,sha256=3EBj8q1TUDvYDaxw2dfOkAiWjWxFXeZ6LbeVrdOdYY8,8753
25
+ daal4py/sklearn/linear_model/_ridge.py,sha256=u_X0jRxUqR0u_WLfW7Ls1hYeXYnedBVxJdsF99I0JkM,10533
26
+ daal4py/sklearn/linear_model/coordinate_descent.py,sha256=upbKtmIQ3sVxr2H4z6GA1qWqXgT2hgP5OHZK7ASidis,779
27
+ daal4py/sklearn/linear_model/linear.py,sha256=na9FknpQlw2Up-jgIV7xYqSpHZKN1s9O5LWgP0oxMmk,767
28
+ daal4py/sklearn/linear_model/logistic_loss.py,sha256=PFX7HInSCjUsjWxEqz2AcWpNGkne1X_f2WgsVkvFkXk,5698
29
+ daal4py/sklearn/linear_model/logistic_path.py,sha256=D8HTC7r4obokccmoTjktGrKdbuF71yc3_4DQVYgorfs,37387
30
+ daal4py/sklearn/linear_model/ridge.py,sha256=87SL9602MtRaahCWkwqwzUOUW1tk-nOQah9BklU7a7c,766
31
+ daal4py/sklearn/linear_model/tests/test_linear.py,sha256=_k-O0BlaeeVDdS4HmpLGg4XirPV-2eJrkTj9AnEGWwE,6763
32
+ daal4py/sklearn/linear_model/tests/test_ridge.py,sha256=UNxSclFuq4V5pqzcYTaFQBGRWxKlgNwfnYSqUkio8mQ,2451
33
+ daal4py/sklearn/manifold/__init__.py,sha256=wwA6Xjd62lNdPIFu2gowmpZfcm_B2WUk8BYUM_Y3vAo,789
34
+ daal4py/sklearn/manifold/_t_sne.py,sha256=Vlh8--DoNA7JSAVRx0WfZLg45qfz8kbj2sZjOKNuKKc,15947
35
+ daal4py/sklearn/metrics/__init__.py,sha256=tvEWaSO3dAPaCuUClXFhVpO7XfNEnYDoq1ZFf66KD3M,873
36
+ daal4py/sklearn/metrics/_pairwise.py,sha256=4TACjG8vU0KSOc9JkeCmWq8c-HpPBEXVmGM90ESsu7E,8239
37
+ daal4py/sklearn/metrics/_ranking.py,sha256=YBJznAOjgQ-GPaIu-aNP6AMV39_SEwjr99Z_9Ub13XI,7238
38
+ daal4py/sklearn/model_selection/__init__.py,sha256=AkKzl_Q4hN9myaeXmTMRQSwXcKh9UTzKH85ySH29AHo,834
39
+ daal4py/sklearn/model_selection/_split.py,sha256=fvPJQEz3mceWeLeknrKuchqKxT1eyLoCehg7OBCCbvw,11389
40
+ daal4py/sklearn/model_selection/tests/test_split.py,sha256=MUBiCKh63UctC71aUzzlk4KNXCRblEjzAL0qbaB8xUQ,2065
41
+ daal4py/sklearn/monkeypatch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
+ daal4py/sklearn/monkeypatch/dispatcher.py,sha256=GGtLj7wUOjNO8l22sGXep4MP93Q2e_vYei4e3p5kuoE,9016
43
+ daal4py/sklearn/monkeypatch/tests/_models_info.py,sha256=mD80wbWCNDr5XiPVNBPbeQ96j9vsWkAdJit5437nmNY,4632
44
+ daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py,sha256=SBy6hDFMymxeaXCliLcmjtF_Q2BaJ__hjC4DCJQVgn8,2447
45
+ daal4py/sklearn/monkeypatch/tests/test_patching.py,sha256=8-PNkS1IzGkPTUKH-8BTeBAKzjWoxVr3gxXnIEcDMjI,2708
46
+ daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py,sha256=QsshyTu_xbEfRyDqIdwYXhn72YMDRsNsdxoxMVyzv7E,3698
47
+ daal4py/sklearn/neighbors/__init__.py,sha256=HKrqR7H6UIU4G02S4KASadaYcwGHHBXKLoQmPaDT_WY,962
48
+ daal4py/sklearn/neighbors/_base.py,sha256=jXRYB6UMmS10OREN_K2vROyjMb_c1W6nXdUUSK6DJw4,17297
49
+ daal4py/sklearn/neighbors/_classification.py,sha256=FV8MlAJ5HRgHk6CxnlZv4N102vgs41pMZ_dWdy8OHeI,4823
50
+ daal4py/sklearn/neighbors/_regression.py,sha256=fw8RotX9x_1taqhOmW_MFLGOQsbjGTzrFvvA4IJRddE,2434
51
+ daal4py/sklearn/neighbors/_unsupervised.py,sha256=IpIKiZYmdbKtNatbi6BE6QIF7i7VXXcnh9tACY8kLB8,1790
52
+ daal4py/sklearn/neighbors/tests/test_kneighbors.py,sha256=ifHe4Uz4wvEjf-u71eGN2O3FfPXUY20-BbqhLAAjyIs,4394
53
+ daal4py/sklearn/svm/__init__.py,sha256=zSfWPgCxTUGF92Ul5psjCyssvDYnaOfKvyuz3pAQk4A,784
54
+ daal4py/sklearn/svm/svm.py,sha256=VKmImNCRRK1MCCFpROAQCs7U79TrgPRBqtoyolfODTk,24126
55
+ daal4py/sklearn/utils/__init__.py,sha256=4Lehb4O7jih_S0n_y4aNun6vWT5SfISDPDzPP0WnPhA,828
56
+ daal4py/sklearn/utils/base.py,sha256=usdRsETKbIsEZfohFBWZqfD4cQfZ3B-3svoLTAhIXiI,3032
57
+ daal4py/sklearn/utils/validation.py,sha256=DX1vQx0IDJ4r-MdeLmZJPzSBuYRIvHlfjC8Mg8D1Dm8,25966
58
+ daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dVkaFfzi7WU2xo,1963
59
+ onedal/__init__.py,sha256=t9aTOZfzqSLNLlDITKiZD2Y-Q6uGD5Ust0DuzkhoUNI,2595
60
+ onedal/_config.py,sha256=Y6u69lFxA5FV-2fgzis1f5QxMbWfbT6rUN_dPV_OmCU,1828
61
+ onedal/_device_offload.py,sha256=9ZMS-LNcJru83EuLQk3GJ9hAEoZ0uPvOe7lWP76ALws,7380
62
+ onedal/_onedal_py_dpc.cpython-313-x86_64-linux-gnu.so,sha256=zAe-Z4eMCgrHnbXnZUbKQm3eOr7vbvv-SSh8R_899AU,2891312
63
+ onedal/_onedal_py_host.cpython-313-x86_64-linux-gnu.so,sha256=8pso4XXHJlspoBXml4MvV-iNAjLZPlBrYgbRCvwW1s0,1625384
64
+ onedal/_onedal_py_spmd_dpc.cpython-313-x86_64-linux-gnu.so,sha256=4SIyGTiq-hBN5Kj-lvqdJNO-_Q_sOuk3dCd0Q_mt_zs,1072688
65
+ onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
66
+ onedal/basic_statistics/basic_statistics.py,sha256=IXbf9SWaXIIpCeZXIvOmmjtJxpJf3vBcOGEAYK130Js,3587
67
+ onedal/basic_statistics/incremental_basic_statistics.py,sha256=C--4qkoY5w4ZXrQAn6lX13SbCabFu2b9rNQNiizaieA,5887
68
+ onedal/basic_statistics/tests/test_basic_statistics.py,sha256=64yoRPdIopQZ4koLe9BqvsaaPf23xqaIQh6_DeTRls8,8405
69
+ onedal/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=E7Tt6Fa3eNOu83_xiWni9EWTVtjxNpH5iAEa3If_7-g,10906
70
+ onedal/basic_statistics/tests/utils.py,sha256=waTV0wB5JXU9_mNhG8QpdOi1ACqX7EdIa_tuXY0iNDU,2001
71
+ onedal/cluster/__init__.py,sha256=_xWLZWG4nmnvcntClA-KAG0SOQOVUeq3hQdlRXt4ZlE,1054
72
+ onedal/cluster/dbscan.py,sha256=g6vPr3qW_imh4Zgt8lsm0wHgCFAcBfFGM6aiJKKr0Xs,3493
73
+ onedal/cluster/kmeans.py,sha256=VQoLozkA-AUKlKIjzwgsp10lpb1l1Ejm8hPmDfSYUJ8,19060
74
+ onedal/cluster/kmeans_init.py,sha256=Kb2_JKkTga_otE7MHrHoKTOwmioN3tqIHq3XRV5fmmc,3898
75
+ onedal/cluster/tests/test_dbscan.py,sha256=EFbPR7872nnwg9pjGK358EpdfIDvep2ML1ml1ewC1Jw,4232
76
+ onedal/cluster/tests/test_kmeans.py,sha256=8-CaqVDa1WBy8NFEJ7aEogxNeRF9FuryRUtP0M4oLnM,3683
77
+ onedal/cluster/tests/test_kmeans_init.py,sha256=DmMWYhTyX4ju9zdPTuAQnfH4mvd3vDUol0qgv9wVejI,4031
78
+ onedal/common/_base.py,sha256=_ywcmPy5qbF8igz50FKnFp8obpuqcOFdFEePnN-mKiA,1374
79
+ onedal/common/_estimator_checks.py,sha256=IJre7S_H4_cBSyOhHKzUN6BkmbXYPxWUJkLyjTtuyEM,1848
80
+ onedal/common/_mixin.py,sha256=ucnJvRl5m6RS4r_9jAZWVPlE2AZ-shd0bbHu_kFAH8U,1995
81
+ onedal/common/_policy.py,sha256=cy68T8whPuw8KPVp18lOptqjMAToe556CCN7OzcxubU,1874
82
+ onedal/common/_spmd_policy.py,sha256=428GN-Evrq_DDmSQbVyhPuiRpEhUDYw66pZiFZ_-HwU,1170
83
+ onedal/common/hyperparameters.py,sha256=tlrxFB3tWVEeZEjAKziTGVoq9sus6aRBWIpv0JgzxcA,4907
84
+ onedal/common/tests/test_policy.py,sha256=V7oEax87QvUBAxPUp7dp9QiAYJE8Rto4a53Xqy2aC6o,2669
85
+ onedal/common/tests/test_sycl.py,sha256=wtHm6gx0KRIaWDpHG4kYkV4Y693c8ojErCQpAM86z_A,4666
86
+ onedal/covariance/__init__.py,sha256=M_LutElm3cDgR5EPd38HTJhHfkAibSv_n01RrZSpnVs,926
87
+ onedal/covariance/covariance.py,sha256=TSXo5BGH4C1oig0rE3HkMmfunmv3-PAcQlxP8pcXbvw,4166
88
+ onedal/covariance/incremental_covariance.py,sha256=Dqj5t_2yNcY5nr0J3DALakTkgJD1xAO56uBWB9fRgAo,5279
89
+ onedal/covariance/tests/test_covariance.py,sha256=ABf7RbNCts3Fxxpmpda7oicY22kS1alFb0MQDzU4ohc,1931
90
+ onedal/covariance/tests/test_incremental_covariance.py,sha256=m6MmVyeUFxxH_ITsy-Yw8FbrvSyvSgVK2c_7Ny68Epc,6858
91
+ onedal/datatypes/__init__.py,sha256=0gzobmK_Ppmn1GkyQyT7J-nfxQHQOiho9GmFcVp5oAc,833
92
+ onedal/datatypes/_data_conversion.py,sha256=KrJVZo3o0Uf20j-2VIN8-QnAcskkb3NELAI-V23tMLc,4566
93
+ onedal/datatypes/tests/common.py,sha256=nHAvZ_B-5t93j0beXACkPN1nzVGaBNxvVI3HKOu22OE,6078
94
+ onedal/datatypes/tests/test_data.py,sha256=6MzBRHsfa_gi9HRLf9jcEGUEft02loD7l-kfKikGZYE,16888
95
+ onedal/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
96
+ onedal/decomposition/incremental_pca.py,sha256=EJ6yZBD9BtlVL8GhpLmfUqa9oSOAFRp7xSr5LQe5vUI,7780
97
+ onedal/decomposition/pca.py,sha256=swIGzlMGasU5Etm-tjcJFzSgZSINbi_czoIruy4D_RI,7249
98
+ onedal/decomposition/tests/test_incremental_pca.py,sha256=1rzU7CDYPgp7DuC9xLE5ynAqspU_-zZNjIGtrqWmCSA,11535
99
+ onedal/ensemble/__init__.py,sha256=zPG_906z717pMYeSxVJR8aZhUqHin45K5gOuvh3ZEsQ,1003
100
+ onedal/ensemble/forest.py,sha256=G2Yomem20r7bttRGAy2UT1oRlNfq7EXb4oFWt3WWNbg,26523
101
+ onedal/ensemble/tests/test_random_forest.py,sha256=S0mNfDUSZ8tazitB3bb-ZiNdcbslpHO8wKyJJT7Cgio,3910
102
+ onedal/linear_model/__init__.py,sha256=VgNBLO71sBhXqvQUwN9h9pEadCg5trDzuN7Z6UDp4ck,1096
103
+ onedal/linear_model/incremental_linear_model.py,sha256=8OTZv-VbIX4b4dpwevyJl0l98ez_Rw4ZLhlD1Z-M_Rg,9944
104
+ onedal/linear_model/linear_model.py,sha256=X8A1IMF4c9wrrfMQTNJAV4cwHcDepMvF9IhGs5RcPpw,10281
105
+ onedal/linear_model/logistic_regression.py,sha256=o5m7kgGoHPV3H6434uh580zLOMvbKTj8H2ao_YpoR88,7817
106
+ onedal/linear_model/tests/test_incremental_linear_regression.py,sha256=Trs0xAtHSnUhlP62VdX8Do5TxeLXOSXn40c9jnuuUGA,7887
107
+ onedal/linear_model/tests/test_incremental_ridge_regression.py,sha256=el2VQSoLlhpBuqB16zNfy0wg0uYmJKJGTrrgP3TZ2Hg,6914
108
+ onedal/linear_model/tests/test_linear_regression.py,sha256=p97GJhLbaem_wZHwH3fStqciVWoGoEuQmSAwloQqTdI,9057
109
+ onedal/linear_model/tests/test_logistic_regression.py,sha256=AkkFycXvXSWPg9jgRGzGXjpq0GExLHbO0n9wddxpqzk,3860
110
+ onedal/linear_model/tests/test_ridge.py,sha256=6OaiavZisFAXyvQrz9haEYLvtrok1Gv1_3zkCK6C39I,3712
111
+ onedal/neighbors/__init__.py,sha256=0uhV1DilaCFEGJOhoQhcr6hduHQDVyuKMeP6broamKk,927
112
+ onedal/neighbors/neighbors.py,sha256=L-SJKJm5EGve-1XxpGFc2sJO7FnvxTQu3uRBcYy-bJ4,27809
113
+ onedal/neighbors/tests/test_knn_classification.py,sha256=wjzIQgwIIEspA8fct0iVv0UvBuDLVIdl1IPN_GAGDJk,1881
114
+ onedal/primitives/__init__.py,sha256=JZjEiUEtXMnZ40Sv59Uydl5qeaSwEhDS8ktRVyQQat0,1037
115
+ onedal/primitives/get_tree.py,sha256=SDB1RG5Zr6sAGpYjxxRFCGqJdAS0ATgMP3TVU9u5MhM,1038
116
+ onedal/primitives/kernel_functions.py,sha256=1nL3q2qNmQ61PvEx2tPnNqruvB5O5WV5vr547LYlZC4,4462
117
+ onedal/primitives/tests/test_kernel_functions.py,sha256=fAdAIGwNvBWAkjdvocqS3X8JjZCYClvvJkANrdxXz0o,6101
118
+ onedal/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
119
+ onedal/spmd/_base.py,sha256=b_E2sdBgnlYArAmBDTzX1tVQolv8efkZ6WZFLm0AqQ8,1172
120
+ onedal/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
121
+ onedal/spmd/basic_statistics/basic_statistics.py,sha256=CSb1IGj-RSxXucoaI_AUt76vOn3u_eSiyYuFd1SFIGc,1290
122
+ onedal/spmd/basic_statistics/incremental_basic_statistics.py,sha256=XQ-CkMkOIFJwWXmCV0uoWu8OaurDpB6Hh_Fc1zcs6lw,2588
123
+ onedal/spmd/cluster/__init__.py,sha256=oDnWnrClkTH9dVx8tAw_hdVZBDROOSMD1__3AZwp42g,981
124
+ onedal/spmd/cluster/dbscan.py,sha256=Gi28SjQ-Kqhs2u4ZXJx7TyvS3mLrKwKiahrr3E_Daqk,891
125
+ onedal/spmd/cluster/kmeans.py,sha256=_eYOojTS_twoBdq4AhPjeYi7foUADzRavIDpBHl6VAo,1966
126
+ onedal/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
127
+ onedal/spmd/covariance/covariance.py,sha256=WOIiZGePCsaA0Wg9sViro2PFr-EE73ip0LQcFzPq7_0,1102
128
+ onedal/spmd/covariance/incremental_covariance.py,sha256=aBnz_Na1hGcXTvqEjMhAMNbCHHgQYVX6wen9pIpXTzI,2759
129
+ onedal/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
130
+ onedal/spmd/decomposition/incremental_pca.py,sha256=UizD3Mvmf0Pxv3BNU9ebVatyyUQBStLMyV5AFX4dxmg,4255
131
+ onedal/spmd/decomposition/pca.py,sha256=igamsO8J5b9rpsngaQ2fHXCLJ2vew6fU3sbKUqBEEVw,1043
132
+ onedal/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
133
+ onedal/spmd/ensemble/forest.py,sha256=r8plwKIyQaE8pF7pYwTRFZyCTU6Cdc1-5FqRI7IMKz0,1125
134
+ onedal/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
135
+ onedal/spmd/linear_model/incremental_linear_model.py,sha256=qYD7nKvpFb4m_StT9n_bWIFJHWIqMNxzGeRvbsOxYMI,3610
136
+ onedal/spmd/linear_model/linear_model.py,sha256=wCVXzju4orFSyw65Urdzc7BDuVNc4jBV_6BEpOXt66k,1204
137
+ onedal/spmd/linear_model/logistic_regression.py,sha256=EE2tlaQR7BmyMcghkR7vXgDtEjZ_Z-hI1wpqxpKgges,1472
138
+ onedal/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
139
+ onedal/spmd/neighbors/neighbors.py,sha256=-YQTGAyre4aVK_urKfr0LuCYIS_AH8YWm9lEWG1xgO0,2960
140
+ onedal/svm/__init__.py,sha256=xxEw0IY_UHIfcDW86SfBShD_x78OZxRqSUM0EUxzP-w,848
141
+ onedal/svm/svm.py,sha256=3wE2PSYEr4JN2A16fdr2k1Oa7V5tyeMMiElNnke3tNE,17416
142
+ onedal/svm/tests/test_csr_svm.py,sha256=VoKhuFUZ-2bHFOG3jUBnceuXzpk5ix_79frVxLJf5Qk,8924
143
+ onedal/svm/tests/test_nusvc.py,sha256=WxATmJ6GWHMzPJw6qF4HSEU1bVTaQ-qlWKeqphF5roY,7538
144
+ onedal/svm/tests/test_nusvr.py,sha256=oQ8yZiPVz4VXDFKnDuW03rnQco3dDrHAFa7eSXlAQPA,7703
145
+ onedal/svm/tests/test_svc.py,sha256=BmPzRVcHxrECpQjRCG5U2i_0APPmsyIMdZZOADn92Vk,6523
146
+ onedal/svm/tests/test_svr.py,sha256=EakCy0mvvpZ8DJtlmcx0FXa6rJ-zJ4Glt_btLdvx9EI,8934
147
+ onedal/tests/test_common.py,sha256=iX6fA1bIgChvMBIyekXEiPfA1_tYL40IwgF9Gq5cVHU,1990
148
+ onedal/tests/utils/_dataframes_support.py,sha256=hqbWymmv40wUnuJagEdmBkx9eU9boOgSZ3oXAtienZM,5449
149
+ onedal/tests/utils/_device_selection.py,sha256=28OSRokAizriXD8R3gmb5UIwHqv7VIeOI-JbpSsj1F0,2968
150
+ onedal/utils/__init__.py,sha256=10xcH75SnCfeRROvzzzbcK7S_My41GwKJIo3e1MV1TA,1411
151
+ onedal/utils/_array_api.py,sha256=mo3rnvKaW7-eOwddGvYJY949K6jxRDnYYGZZDt83Lts,2953
152
+ onedal/utils/_dpep_helpers.py,sha256=b-GslMlDRfv7qapJNTjF6hxRZa7j7MP5yMNTLCpgeNU,1889
153
+ onedal/utils/validation.py,sha256=R3-S7gBDyIMTcO-YmrxFR31qy4HvJ6VjIstNnMyqx6w,15150
154
+ onedal/utils/tests/test_validation.py,sha256=FKqQqzz6rhEd1R1VADs7Nd0u7CKgZz1vJWV5Vo4Kg5Q,4765
155
+ sklearnex/__init__.py,sha256=JmyKzBQs3ug2RxHN8RQ1bspzfBrYkGAFRW4DYrY4cww,1798
156
+ sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
157
+ sklearnex/_config.py,sha256=gNLOR945IboVS-aBdfgQM4s7th0B0FYdbmxUf4WAgRo,4276
158
+ sklearnex/_device_offload.py,sha256=lPvcy8kBagniN0updIygzWad7cOxjfZgUtUdPQzAecQ,5487
159
+ sklearnex/_utils.py,sha256=yxdeCbnFZ8jJQr2N4tS29a-Rn-caVfmzBkt0yiy9H0M,6794
160
+ sklearnex/conftest.py,sha256=Y_-4MPhPv2eNYWD7cPA94CymFG6tsXfTTYfjPLjDq_0,2619
161
+ sklearnex/dispatcher.py,sha256=QFe4yppmsPJ2tgEq-T3AIVaW4VGqIEA6BK1qYOXOZq8,18638
162
+ sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
163
+ sklearnex/basic_statistics/basic_statistics.py,sha256=4Tgg5voxzPa7xVGm4G3K99nguSt3w3H2ZDak97oaBlA,9412
164
+ sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=P4oDSCL2H1tkX8_Ch2jQDqKqVxcMnwhhrh4Ph5S_EEE,12296
165
+ sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=2juzqbS8MfivPEiCCWEaZyZU8BrXj9_dJ9YmZ96ms7M,14395
166
+ sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=rvsPiJPLfPn5h61TtX9I8BmRZ3qzbY_bm-TKGpb36OM,18192
167
+ sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
168
+ sklearnex/cluster/dbscan.py,sha256=s_yJ2Jy0fd95XaWUyOCzLaGuGzCDGsniOdJBU0lnh4U,7021
169
+ sklearnex/cluster/k_means.py,sha256=sK8c6l2XEGAMXP7sHMTUfDdZa91tIjfvDDiHJl9MnOk,14226
170
+ sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
171
+ sklearnex/cluster/tests/test_kmeans.py,sha256=IoAKkq2g4DWxLm8LrD9Ck0q6Q7RT-u1gL9r70pp6ugA,6114
172
+ sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
173
+ sklearnex/covariance/incremental_covariance.py,sha256=dyl1ZczR5JdLJHb8HSJKit2goUJG090jHw69a0pYQcU,14399
174
+ sklearnex/covariance/tests/test_incremental_covariance.py,sha256=9xXkVPgKL8qTCzSbbQuObxuvqEB0EOPPO2DHCCv1Yag,10943
175
+ sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
176
+ sklearnex/decomposition/pca.py,sha256=HzHi6o3CyuM5aEkaawEKW7PNk176W6TdtxxFzQksQOw,16995
177
+ sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
178
+ sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
179
+ sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
180
+ sklearnex/ensemble/_forest.py,sha256=1mauUIVNM4oCoiLhaoHp-rvrjcqjZWOETyILtxh-ylM,72855
181
+ sklearnex/ensemble/tests/test_forest.py,sha256=lBZb9MlTtHezmYn8ZWHb7A1p3_2FNTas4xJ3MHZZyn4,5791
182
+ sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
183
+ sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
184
+ sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
185
+ sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
186
+ sklearnex/linear_model/incremental_linear.py,sha256=Sbc-xQVU6cg8shJiN9Ska2twI4tUUWp00N6McvbF99I,16970
187
+ sklearnex/linear_model/incremental_ridge.py,sha256=PauZPUkzYP6SjzB3rgw3JMzbHvQzhAeY4ItbtvRgACc,14978
188
+ sklearnex/linear_model/linear.py,sha256=BsZ7VezKu8wNOMq4l5F27sheH3P7p8wn2hU7MYpOAkM,12443
189
+ sklearnex/linear_model/logistic_regression.py,sha256=z8zq_UxZNfzsMOkibjy0KCNKQCF1D9L19ZXX4IBopqc,15179
190
+ sklearnex/linear_model/ridge.py,sha256=2PSj4zRq2naV1rspQ_SsugxxGPzZPJG-6I-Z5gvjj1k,15143
191
+ sklearnex/linear_model/tests/test_incremental_linear.py,sha256=vo1l9HhXa16dT7Q0Mf5NzUqnB454AlPbOwibK_ZNux4,10125
192
+ sklearnex/linear_model/tests/test_incremental_ridge.py,sha256=lerzk8T1IOe0e58qucTPWj7ssrJa9gFpaqFrz6XGkU0,9096
193
+ sklearnex/linear_model/tests/test_linear.py,sha256=OZUTBqlXpMwgXYOe2YgrDPUibr5EGewJ3avMwKx0QZ0,5701
194
+ sklearnex/linear_model/tests/test_logreg.py,sha256=8kTIMl1Hcuu0NSPcEle0oAdRerqMtUAWrRlLjS-n4EI,4924
195
+ sklearnex/linear_model/tests/test_ridge.py,sha256=YbfyVrRi-FOoV7BtzX0-ChPavBSFAmr35BJcm2kx7nI,9596
196
+ sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
197
+ sklearnex/manifold/t_sne.py,sha256=pK9QfX0rfh4grDK4AVd1Uswgvjm7xBKLtIyI3eag65M,1211
198
+ sklearnex/manifold/tests/test_tsne.py,sha256=gEMfvH63zMsrmrmsmDzvFfepJJrJUt2B7nNQAm9nMM8,8928
199
+ sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
200
+ sklearnex/metrics/pairwise.py,sha256=HeBOE8sRBZMiF9pup8HBypDGfizQ-UCrQdX2C6YGvbg,982
201
+ sklearnex/metrics/ranking.py,sha256=6rrOcmQBVwDWiuh6uMg3eLUWEdOGCBr3HieKaP3Hvxk,959
202
+ sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
203
+ sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
204
+ sklearnex/model_selection/split.py,sha256=yvYnmNaKJs-Tr8tGBB-2R9CuhjESYih-CN6Wb3I3z3I,984
205
+ sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
206
+ sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
207
+ sklearnex/neighbors/_lof.py,sha256=aiarmfDU5ndpp_JN06NUW2Ny0APjJr3zY9Kuq5nYFWM,9312
208
+ sklearnex/neighbors/common.py,sha256=61D8NOkzphq1QQoDrHOO0zlCQMo-RONXZ68Ma27UDcY,12582
209
+ sklearnex/neighbors/knn_classification.py,sha256=wxsyPFMlAim60LtK39salu7Cpgwiq0hkduv7IuItwEg,8015
210
+ sklearnex/neighbors/knn_regression.py,sha256=TIh6kf1bX07uFw02IuDsG9DKCiiKG1Fsp7jiMXk81jo,6870
211
+ sklearnex/neighbors/knn_unsupervised.py,sha256=L8oBoVnp-H52ns2k2MNr-KMgAK5zu6crYgwMZt4roQM,6316
212
+ sklearnex/neighbors/tests/test_neighbors.py,sha256=gUmnRiY-xH3oGclv6VPxSIHWchgbygGt6p-vcflvYZ0,3540
213
+ sklearnex/preview/__init__.py,sha256=6qlqN3HFx8-MpnRALaD0vmfMBJapfz_enkaB37SqPtg,786
214
+ sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
215
+ sklearnex/preview/covariance/covariance.py,sha256=szfEuFD7LCQ4piqgDf5uzj1zqaj9XywhVSmRajVhIBg,5358
216
+ sklearnex/preview/covariance/tests/test_covariance.py,sha256=gFgP1or32zELL9n2qKTgPBq95hm2ivqaNgFuLNB8W90,2500
217
+ sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
218
+ sklearnex/preview/decomposition/incremental_pca.py,sha256=qV8G87BkakoI-S_6bFD4cqegDx7BFZasFirUAOvsE4o,8432
219
+ sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=sV4H8E1Dm5d8sBhprexRzzkhUC5e5nhwXBa27sGkiJk,13789
220
+ sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
221
+ sklearnex/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
222
+ sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
223
+ sklearnex/spmd/basic_statistics/incremental_basic_statistics.py,sha256=KrTeV84fnwKzh0dlvTOfJYW9gmid_99dqqE5VQ-BKIo,1145
224
+ sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py,sha256=VigoG7lhg6-oBxI_E8AZZTRbZaogYmrcdtjJh06stBg,3730
225
+ sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py,sha256=NBDZFFAqUI4SvLLtiEzT8T-a_tKdkjZiYSu424yuXq8,11120
226
+ sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
227
+ sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
228
+ sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
229
+ sklearnex/spmd/cluster/tests/test_dbscan_spmd.py,sha256=q9Kbs9kaTMhG-6OvOAg6mNj3DZw-He0qFpR1nTZ_UXQ,3493
230
+ sklearnex/spmd/cluster/tests/test_kmeans_spmd.py,sha256=irZUlPFrRlQ0XvrIwj9fxQBekxn9K8z_cfiDDoMN4NE,5901
231
+ sklearnex/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
232
+ sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
233
+ sklearnex/spmd/covariance/incremental_covariance.py,sha256=Sr8T5Fgvs4KDnRckwlyHskWe0ILeVNd4cgeOHy7omxE,1441
234
+ sklearnex/spmd/covariance/tests/test_covariance_spmd.py,sha256=-EZBzziL0pU3sVahqkc9q_1xH0LTIjVyYOV6Iy61d90,3917
235
+ sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py,sha256=gRhsq1oKO79JnXoMk4UaFTJ_QKwYjSjGZLyHVjBmPqE,6379
236
+ sklearnex/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
237
+ sklearnex/spmd/decomposition/incremental_pca.py,sha256=HT2MLxUy3zSEnTI5aECYtfqWO88YztPRROPjMJnGtS4,1258
238
+ sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
239
+ sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py,sha256=N8ZeanfNyosDkjyW2HwY3pH4OzHBVoknPcGJMDV41fY,9178
240
+ sklearnex/spmd/decomposition/tests/test_pca_spmd.py,sha256=4AX9fWFJ-9BDPd6fgKU8qzztPtUFgUB4iGz2ymC8xJI,4708
241
+ sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
242
+ sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
243
+ sklearnex/spmd/ensemble/tests/test_forest_spmd.py,sha256=H0Ykl_lCl758Z3E70dQgEWU7d5F-mSOGBcYRxc9meco,9244
244
+ sklearnex/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
245
+ sklearnex/spmd/linear_model/incremental_linear_model.py,sha256=K1GuXhn9ccrxQBLExBBh2d4v08W3lK_CPbke9cass38,1368
246
+ sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
247
+ sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
248
+ sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py,sha256=wvAYZaM9G2lvvbF9B0J9Ga1sEnihd5bt7OQwKry6HNo,12228
249
+ sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py,sha256=SFGM_f1e7yr7iQxJPLcE1lMUC2wcYFNJwG1X08AhxhA,5201
250
+ sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py,sha256=Y9Zhs6s10C0EKJaVf7pEv-m5XESa4A0aVw7HB2dWRE0,6097
251
+ sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
252
+ sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
253
+ sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=RLddVdNbKHIND4khAzSSpM_yi9j2VMuHmI9TZUtdS3Y,10487
254
+ sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
255
+ sklearnex/svm/_common.py,sha256=4tvR09qz01g27thlJZIfYrj821Q0JeRUQ3m8x-Ghw30,13046
256
+ sklearnex/svm/nusvc.py,sha256=yBOYo8BSJcMjvmCsuR9xMaJmZcs9Olvabw8VmUjZLBc,12143
257
+ sklearnex/svm/nusvr.py,sha256=IUOt0576uvNy1rAt-uslpo4CrYDClNIS8FZb8PJ-HnY,5245
258
+ sklearnex/svm/svc.py,sha256=bYO9a9DFx8AhyUgW_Zg_kTbT2Vsj8eQKI6yfrwPheh8,13452
259
+ sklearnex/svm/svr.py,sha256=vYIDnTswrhqYYTQ2tpIgRvafylAWJaAGp-5Zrvnacck,5184
260
+ sklearnex/svm/tests/test_svm.py,sha256=KnjWVfmHzU0sJqlhDdfLdhFJA_BV_tULPqNlOLXShXg,4194
261
+ sklearnex/tests/test_common.py,sha256=vK91BRP6Xp8V6Z67iFkc0deJ4bQj0T0t-K0XErVZGlM,20454
262
+ sklearnex/tests/test_config.py,sha256=SCdTMzM9ui-M3UyS7C0nw-wr3sM06k5I9L5XSAp6NW4,4885
263
+ sklearnex/tests/test_hyperparameters.py,sha256=bp-JP6MGm7uCgRS_tcOOoiHIffQk1oimD4FFpquM35M,1442
264
+ sklearnex/tests/test_memory_usage.py,sha256=U2bu2TchtTzHyNugO8ICY4Ozvb48FDCNZ6KiIwRnccA,12669
265
+ sklearnex/tests/test_monkeypatch.py,sha256=GnSZLgP6X-pq4G7FQvMY-d92tAXpLFaVXgEtl5j6lWk,9671
266
+ sklearnex/tests/test_n_jobs_support.py,sha256=HUVu013fQSqADa5oC_S2gmyNUs-SEXDlT_gcICR6ajY,4264
267
+ sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
268
+ sklearnex/tests/test_patching.py,sha256=H2kB-h-nAaRik5fyPUxZq3lksUtg0gHOvBeh9AtiVsg,14622
269
+ sklearnex/tests/test_run_to_run_stability.py,sha256=NkADyND_KRj0X21aa4ofCx1nUc3mcKL7Ew_NSo9pQCc,12085
270
+ sklearnex/tests/utils/__init__.py,sha256=6LM0DwW16CqH-Rz4MH5N00Cieh3g9w2LXOs8LI4Hky8,1379
271
+ sklearnex/tests/utils/base.py,sha256=shajN0PyqFrfim3tH61R2k0FhUIgOv5xXDhmgF_1ldc,13958
272
+ sklearnex/tests/utils/spmd.py,sha256=MS-Jz_tiTC_3OI64TciaAofeTqUN2JOVWxIUAHESVdM,7150
273
+ sklearnex/utils/__init__.py,sha256=-_0J5-hX-_gE7a4AAf3qIgngOaiqQW78sEqs_NpIfh4,840
274
+ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI,2694
275
+ sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
276
+ sklearnex/utils/validation.py,sha256=-kluLYjGq7I43VgNWHI7Xm0TcandkRASWFzdFrEBhoo,7729
277
+ sklearnex/utils/tests/test_validation.py,sha256=2eSq6Tqb2YmUDaL8OnvclKc0qbpuIkv-9WOvY6K_Cz0,8667
278
+ scikit_learn_intelex-2025.4.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
279
+ scikit_learn_intelex-2025.4.0.dist-info/METADATA,sha256=yZynNZQSXHne8X-xCXvaczzwGRpr4BmNcGoNO9el35k,11544
280
+ scikit_learn_intelex-2025.4.0.dist-info/WHEEL,sha256=sBt-1F4l5ttKvZ2-GQh6foVjyEeCxIjnTk0is1Gyy9o,112
281
+ scikit_learn_intelex-2025.4.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
282
+ scikit_learn_intelex-2025.4.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py313-none-manylinux_2_28_x86_64
5
+
@@ -0,0 +1,3 @@
1
+ daal4py
2
+ onedal
3
+ sklearnex
sklearnex/__init__.py ADDED
@@ -0,0 +1,66 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ # Copyright 2024 Fujitsu Limited
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ import os
19
+
20
+ from . import utils
21
+ from ._config import config_context, get_config, set_config
22
+ from .dispatcher import (
23
+ get_patch_map,
24
+ get_patch_names,
25
+ is_patched_instance,
26
+ patch_sklearn,
27
+ sklearn_is_patched,
28
+ unpatch_sklearn,
29
+ )
30
+
31
+ __all__ = [
32
+ "basic_statistics",
33
+ "cluster",
34
+ "config_context",
35
+ "covariance",
36
+ "decomposition",
37
+ "ensemble",
38
+ "get_config",
39
+ "get_hyperparameters",
40
+ "get_patch_map",
41
+ "get_patch_names",
42
+ "is_patched_instance",
43
+ "linear_model",
44
+ "manifold",
45
+ "metrics",
46
+ "model_selection",
47
+ "neighbors",
48
+ "patch_sklearn",
49
+ "set_config",
50
+ "sklearn_is_patched",
51
+ "svm",
52
+ "unpatch_sklearn",
53
+ "utils",
54
+ ]
55
+ onedal_iface_flag = os.environ.get("OFF_ONEDAL_IFACE", "0")
56
+ if onedal_iface_flag == "0":
57
+ from onedal import _is_spmd_backend
58
+ from onedal.common.hyperparameters import get_hyperparameters
59
+
60
+ if _is_spmd_backend:
61
+ __all__.append("spmd")
62
+
63
+
64
+ from ._utils import set_sklearn_ex_verbose
65
+
66
+ set_sklearn_ex_verbose()
sklearnex/__main__.py ADDED
@@ -0,0 +1,58 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import sys
18
+
19
+ from sklearnex import patch_sklearn
20
+
21
+
22
+ def _main():
23
+ import argparse
24
+
25
+ parser = argparse.ArgumentParser(
26
+ prog="python -m sklearnex",
27
+ description="""
28
+ Run your Python script with Intel(R) Extension for
29
+ scikit-learn, optimizing solvers of
30
+ scikit-learn with Intel(R) oneAPI Data Analytics Library.
31
+ """,
32
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter,
33
+ )
34
+
35
+ parser.add_argument(
36
+ "-m", action="store_true", dest="module", help="Executes following as a module"
37
+ )
38
+ parser.add_argument("name", help="Script or module name")
39
+ parser.add_argument("args", nargs=argparse.REMAINDER, help="Command line arguments")
40
+ args = parser.parse_args()
41
+
42
+ try:
43
+ import sklearn
44
+
45
+ patch_sklearn()
46
+ except ImportError:
47
+ print("Scikit-learn could not be imported. Nothing to patch")
48
+
49
+ sys.argv = [args.name] + args.args
50
+ if "_" + args.name in globals():
51
+ return globals()["_" + args.name](*args.args)
52
+ import runpy
53
+
54
+ runf = runpy.run_module if args.module else runpy.run_path
55
+ runf(args.name, run_name="__main__")
56
+
57
+
58
+ sys.exit(_main())