pygeodesy 24.3.24__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. PyGeodesy-24.3.24.dist-info/METADATA +272 -0
  2. PyGeodesy-24.3.24.dist-info/RECORD +115 -0
  3. PyGeodesy-24.3.24.dist-info/WHEEL +6 -0
  4. PyGeodesy-24.3.24.dist-info/top_level.txt +1 -0
  5. pygeodesy/LICENSE +21 -0
  6. pygeodesy/__init__.py +615 -0
  7. pygeodesy/__main__.py +103 -0
  8. pygeodesy/albers.py +867 -0
  9. pygeodesy/auxilats/_CX_4.py +218 -0
  10. pygeodesy/auxilats/_CX_6.py +314 -0
  11. pygeodesy/auxilats/_CX_8.py +475 -0
  12. pygeodesy/auxilats/__init__.py +54 -0
  13. pygeodesy/auxilats/__main__.py +86 -0
  14. pygeodesy/auxilats/auxAngle.py +548 -0
  15. pygeodesy/auxilats/auxDLat.py +302 -0
  16. pygeodesy/auxilats/auxDST.py +296 -0
  17. pygeodesy/auxilats/auxLat.py +848 -0
  18. pygeodesy/auxilats/auxily.py +272 -0
  19. pygeodesy/azimuthal.py +1150 -0
  20. pygeodesy/basics.py +892 -0
  21. pygeodesy/booleans.py +2031 -0
  22. pygeodesy/cartesianBase.py +1062 -0
  23. pygeodesy/clipy.py +704 -0
  24. pygeodesy/constants.py +516 -0
  25. pygeodesy/css.py +660 -0
  26. pygeodesy/datums.py +752 -0
  27. pygeodesy/deprecated/__init__.py +61 -0
  28. pygeodesy/deprecated/bases.py +40 -0
  29. pygeodesy/deprecated/classes.py +262 -0
  30. pygeodesy/deprecated/consterns.py +54 -0
  31. pygeodesy/deprecated/datum.py +40 -0
  32. pygeodesy/deprecated/functions.py +375 -0
  33. pygeodesy/deprecated/nvector.py +48 -0
  34. pygeodesy/deprecated/rhumbBase.py +32 -0
  35. pygeodesy/deprecated/rhumbaux.py +33 -0
  36. pygeodesy/deprecated/rhumbsolve.py +33 -0
  37. pygeodesy/deprecated/rhumbx.py +33 -0
  38. pygeodesy/dms.py +986 -0
  39. pygeodesy/ecef.py +1348 -0
  40. pygeodesy/elevations.py +279 -0
  41. pygeodesy/ellipsoidalBase.py +1224 -0
  42. pygeodesy/ellipsoidalBaseDI.py +913 -0
  43. pygeodesy/ellipsoidalExact.py +343 -0
  44. pygeodesy/ellipsoidalGeodSolve.py +343 -0
  45. pygeodesy/ellipsoidalKarney.py +403 -0
  46. pygeodesy/ellipsoidalNvector.py +685 -0
  47. pygeodesy/ellipsoidalVincenty.py +590 -0
  48. pygeodesy/ellipsoids.py +2476 -0
  49. pygeodesy/elliptic.py +1198 -0
  50. pygeodesy/epsg.py +243 -0
  51. pygeodesy/errors.py +804 -0
  52. pygeodesy/etm.py +1190 -0
  53. pygeodesy/fmath.py +1013 -0
  54. pygeodesy/formy.py +1818 -0
  55. pygeodesy/frechet.py +865 -0
  56. pygeodesy/fstats.py +760 -0
  57. pygeodesy/fsums.py +1898 -0
  58. pygeodesy/gars.py +358 -0
  59. pygeodesy/geodesicw.py +581 -0
  60. pygeodesy/geodesicx/_C4_24.py +1699 -0
  61. pygeodesy/geodesicx/_C4_27.py +2395 -0
  62. pygeodesy/geodesicx/_C4_30.py +3301 -0
  63. pygeodesy/geodesicx/__init__.py +48 -0
  64. pygeodesy/geodesicx/__main__.py +91 -0
  65. pygeodesy/geodesicx/gx.py +1382 -0
  66. pygeodesy/geodesicx/gxarea.py +535 -0
  67. pygeodesy/geodesicx/gxbases.py +154 -0
  68. pygeodesy/geodesicx/gxline.py +669 -0
  69. pygeodesy/geodsolve.py +426 -0
  70. pygeodesy/geohash.py +914 -0
  71. pygeodesy/geoids.py +1884 -0
  72. pygeodesy/hausdorff.py +892 -0
  73. pygeodesy/heights.py +1155 -0
  74. pygeodesy/interns.py +687 -0
  75. pygeodesy/iters.py +545 -0
  76. pygeodesy/karney.py +919 -0
  77. pygeodesy/ktm.py +633 -0
  78. pygeodesy/latlonBase.py +1766 -0
  79. pygeodesy/lazily.py +960 -0
  80. pygeodesy/lcc.py +684 -0
  81. pygeodesy/ltp.py +1107 -0
  82. pygeodesy/ltpTuples.py +1563 -0
  83. pygeodesy/mgrs.py +721 -0
  84. pygeodesy/named.py +1324 -0
  85. pygeodesy/namedTuples.py +683 -0
  86. pygeodesy/nvectorBase.py +695 -0
  87. pygeodesy/osgr.py +781 -0
  88. pygeodesy/points.py +1686 -0
  89. pygeodesy/props.py +628 -0
  90. pygeodesy/resections.py +1048 -0
  91. pygeodesy/rhumb/__init__.py +46 -0
  92. pygeodesy/rhumb/aux_.py +397 -0
  93. pygeodesy/rhumb/bases.py +1148 -0
  94. pygeodesy/rhumb/ekx.py +563 -0
  95. pygeodesy/rhumb/solve.py +572 -0
  96. pygeodesy/simplify.py +647 -0
  97. pygeodesy/solveBase.py +472 -0
  98. pygeodesy/sphericalBase.py +724 -0
  99. pygeodesy/sphericalNvector.py +1264 -0
  100. pygeodesy/sphericalTrigonometry.py +1447 -0
  101. pygeodesy/streprs.py +627 -0
  102. pygeodesy/trf.py +2079 -0
  103. pygeodesy/triaxials.py +1484 -0
  104. pygeodesy/units.py +969 -0
  105. pygeodesy/unitsBase.py +349 -0
  106. pygeodesy/ups.py +538 -0
  107. pygeodesy/utily.py +1231 -0
  108. pygeodesy/utm.py +762 -0
  109. pygeodesy/utmups.py +318 -0
  110. pygeodesy/utmupsBase.py +517 -0
  111. pygeodesy/vector2d.py +785 -0
  112. pygeodesy/vector3d.py +968 -0
  113. pygeodesy/vector3dBase.py +1049 -0
  114. pygeodesy/webmercator.py +383 -0
  115. pygeodesy/wgrs.py +439 -0
@@ -0,0 +1,724 @@
1
+
2
+ # -*- coding: utf-8 -*-
3
+
4
+ u'''(INTERNAL) Private spherical base classes C{CartesianSphericalBase} and
5
+ C{LatLonSphericalBase} for L{sphericalNvector} and L{sphericalTrigonometry}.
6
+
7
+ A pure Python implementation of geodetic (lat-/longitude) functions,
8
+ transcoded in part from JavaScript originals by I{(C) Chris Veness 2011-2016}
9
+ and published under the same MIT Licence**, see
10
+ U{Latitude/Longitude<https://www.Movable-Type.co.UK/scripts/latlong.html>}.
11
+ '''
12
+ # make sure int/int division yields float quotient, see .basics
13
+ from __future__ import division as _; del _ # PYCHOK semicolon
14
+
15
+ from pygeodesy.basics import _copysign, isbool, isinstanceof, map1
16
+ from pygeodesy.cartesianBase import CartesianBase, Bearing2Tuple
17
+ from pygeodesy.constants import EPS, EPS0, PI, PI2, PI_2, R_M, \
18
+ _0_0, _0_5, _1_0, _180_0, _360_0, \
19
+ _over, isnear0, isnon0
20
+ from pygeodesy.datums import Datums, _earth_ellipsoid, _spherical_datum
21
+ from pygeodesy.errors import IntersectionError, _ValueError, \
22
+ _xattr, _xError
23
+ from pygeodesy.fmath import favg, fdot, hypot, sqrt_a
24
+ from pygeodesy.interns import NN, _COMMA_, _concentric_, _datum_, \
25
+ _distant_, _exceed_PI_radians_, _name_, \
26
+ _near_, _radius_, _too_
27
+ from pygeodesy.latlonBase import LatLonBase, _trilaterate5 # PYCHOK passed
28
+ from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS
29
+ # from pygeodesy.namedTuples import Bearing2Tuple # from .cartesianBase
30
+ from pygeodesy.nvectorBase import NvectorBase, Fmt, _xattrs
31
+ from pygeodesy.props import deprecated_method, property_doc_, \
32
+ property_RO, _update_all
33
+ # from pygeodesy.streprs import Fmt, _xattrs # from .nvectorBase
34
+ from pygeodesy.units import _isRadius, Bearing, Bearing_, Radians_, \
35
+ Radius, Radius_, Scalar_, _100km
36
+ from pygeodesy.utily import acos1, asin1, atan2b, atan2d, degrees90, \
37
+ degrees180, sincos2, sincos2d, _unrollon, \
38
+ tanPI_2_2, wrapPI
39
+
40
+ from math import cos, fabs, log, sin, sqrt
41
+
42
+ __all__ = _ALL_LAZY.sphericalBase
43
+ __version__ = '23.12.18'
44
+
45
+
46
+ class CartesianSphericalBase(CartesianBase):
47
+ '''(INTERNAL) Base class for spherical C{Cartesian}s.
48
+ '''
49
+ _datum = Datums.Sphere # L{Datum}
50
+
51
+ def intersections2(self, rad1, other, rad2, radius=R_M):
52
+ '''Compute the intersection points of two circles each defined
53
+ by a center point and a radius.
54
+
55
+ @arg rad1: Radius of the this circle (C{meter} or C{radians},
56
+ see B{C{radius}}).
57
+ @arg other: Center of the other circle (C{Cartesian}).
58
+ @arg rad2: Radius of the other circle (C{meter} or C{radians},
59
+ see B{C{radius}}).
60
+ @kwarg radius: Mean earth radius (C{meter} or C{None} if both
61
+ B{C{rad1}} and B{C{rad2}} are given in C{radians}).
62
+
63
+ @return: 2-Tuple of the intersection points, each C{Cartesian}.
64
+ For abutting circles, the intersection points are the
65
+ same C{Cartesian} instance, aka the I{radical center}.
66
+
67
+ @raise IntersectionError: Concentric, antipodal, invalid or
68
+ non-intersecting circles.
69
+
70
+ @raise TypeError: If B{C{other}} is not C{Cartesian}.
71
+
72
+ @raise ValueError: Invalid B{C{rad1}}, B{C{rad2}} or B{C{radius}}.
73
+
74
+ @see: U{Calculating intersection of two Circles
75
+ <https://GIS.StackExchange.com/questions/48937/
76
+ calculating-intersection-of-two-circles>} and method
77
+ or function C{trilaterate3d2}.
78
+ '''
79
+ x1, x2 = self, self.others(other)
80
+ r1, r2, x = _rads3(rad1, rad2, radius)
81
+ if x:
82
+ x1, x2 = x2, x1
83
+ try:
84
+ n, q = x1.cross(x2), x1.dot(x2)
85
+ n2, q1 = n.length2, (_1_0 - q**2)
86
+ if n2 < EPS or isnear0(q1):
87
+ raise ValueError(_near_(_concentric_))
88
+ c1, c2 = cos(r1), cos(r2)
89
+ x0 = x1.times((c1 - q * c2) / q1).plus(
90
+ x2.times((c2 - q * c1) / q1))
91
+ n1 = _1_0 - x0.length2
92
+ if n1 < EPS:
93
+ raise ValueError(_too_(_distant_))
94
+ except ValueError as x:
95
+ raise IntersectionError(center=self, rad1=rad1,
96
+ other=other, rad2=rad2, cause=x)
97
+ n = n.times(sqrt(n1 / n2))
98
+ if n.length > EPS:
99
+ x1 = x0.plus(n)
100
+ x2 = x0.minus(n)
101
+ else: # abutting circles
102
+ x1 = x2 = x0
103
+
104
+ return (_xattrs(x1, self, _datum_, _name_),
105
+ _xattrs(x2, self, _datum_, _name_))
106
+
107
+ @property_RO
108
+ def sphericalCartesian(self):
109
+ '''Get this C{Cartesian}'s spherical class.
110
+ '''
111
+ return type(self)
112
+
113
+
114
+ class LatLonSphericalBase(LatLonBase):
115
+ '''(INTERNAL) Base class for spherical C{LatLon}s.
116
+ '''
117
+ _datum = Datums.Sphere # spherical L{Datum}
118
+ _napieradius = _100km
119
+
120
+ def __init__(self, latlonh, lon=None, height=0, datum=None, wrap=False, name=NN):
121
+ '''Create a spherical C{LatLon} point frome the given lat-, longitude and
122
+ height on the given datum.
123
+
124
+ @arg latlonh: Latitude (C{degrees} or DMS C{str} with N or S suffix) or
125
+ a previous C{LatLon} instance provided C{B{lon}=None}.
126
+ @kwarg lon: Longitude (C{degrees} or DMS C{str} with E or W suffix) or
127
+ C(None), indicating B{C{latlonh}} is a C{LatLon}.
128
+ @kwarg height: Optional height above (or below) the earth surface (C{meter},
129
+ same units as the datum's ellipsoid axes or radius).
130
+ @kwarg datum: Optional, spherical datum to use (L{Datum}, L{Ellipsoid},
131
+ L{Ellipsoid2}, L{a_f2Tuple}) or earth radius in C{meter},
132
+ conventionally).
133
+ @kwarg wrap: If C{True}, wrap or I{normalize} B{C{lat}} and B{C{lon}}
134
+ (C{bool}).
135
+ @kwarg name: Optional name (C{str}).
136
+
137
+ @raise TypeError: If B{C{latlonh}} is not a C{LatLon} or B{C{datum}} not
138
+ spherical.
139
+ '''
140
+ LatLonBase.__init__(self, latlonh, lon=lon, height=height, wrap=wrap, name=name)
141
+ if datum not in (None, self.datum):
142
+ self.datum = datum
143
+
144
+ def bearingTo2(self, other, wrap=False, raiser=False):
145
+ '''Return the initial and final bearing (forward and reverse
146
+ azimuth) from this to an other point.
147
+
148
+ @arg other: The other point (C{LatLon}).
149
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
150
+ B{C{other}} point (C{bool}).
151
+
152
+ @return: A L{Bearing2Tuple}C{(initial, final)}.
153
+
154
+ @raise TypeError: The B{C{other}} point is not spherical.
155
+
156
+ @see: Methods C{initialBearingTo} and C{finalBearingTo}.
157
+ '''
158
+ # .initialBearingTo is inside .-Nvector and .-Trigonometry
159
+ i = self.initialBearingTo(other, wrap=wrap, raiser=raiser) # PYCHOK .initialBearingTo
160
+ f = self.finalBearingTo( other, wrap=wrap, raiser=raiser)
161
+ return Bearing2Tuple(i, f, name=self.name)
162
+
163
+ @property_doc_(''' this point's datum (L{Datum}).''')
164
+ def datum(self):
165
+ '''Get this point's datum (L{Datum}).
166
+ '''
167
+ return self._datum
168
+
169
+ @datum.setter # PYCHOK setter!
170
+ def datum(self, datum):
171
+ '''Set this point's datum I{without conversion} (L{Datum}, L{Ellipsoid},
172
+ L{Ellipsoid2}, L{a_f2Tuple}) or C{scalar} spherical earth radius).
173
+
174
+ @raise TypeError: If B{C{datum}} invalid or not not spherical.
175
+ '''
176
+ d = _spherical_datum(datum, name=self.name, raiser=_datum_)
177
+ if self._datum != d:
178
+ _update_all(self)
179
+ self._datum = d
180
+
181
+ def finalBearingTo(self, other, wrap=False, raiser=False):
182
+ '''Return the final bearing (reverse azimuth) from this to
183
+ an other point.
184
+
185
+ @arg other: The other point (spherical C{LatLon}).
186
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
187
+ the B{C{other}} point (C{bool}).
188
+
189
+ @return: Final bearing (compass C{degrees360}).
190
+
191
+ @raise TypeError: The B{C{other}} point is not spherical.
192
+ '''
193
+ p = self.others(other)
194
+ if wrap:
195
+ p = _unrollon(self, p, wrap=wrap)
196
+ # final bearing is the reverse of the other, initial one
197
+ b = p.initialBearingTo(self, wrap=False, raiser=raiser) + _180_0
198
+ return b if b < 360 else (b - _360_0)
199
+
200
+ def intersecant2(self, circle, point, other, radius=R_M, exact=False, # PYCHOK signature
201
+ height=None, wrap=False):
202
+ '''Compute the intersections of a circle and a (great circle) line
203
+ given as two points or as a point and bearing.
204
+
205
+ @arg circle: Radius of the circle centered at this location (C{meter},
206
+ same units as B{C{radius}}) or a point on the circle
207
+ (this C{LatLon}).
208
+ @arg point: A point on the (great circle) line (this C{LatLon}).
209
+ @arg other: An other point I{on} (this {LatLon}) or the bearing at
210
+ B{C{point}} I{of} the (great circle) line (compass
211
+ C{degrees}).
212
+ @kwarg radius: Mean earth radius (C{meter}, conventionally).
213
+ @kwarg exact: If C{True} use the I{exact} rhumb methods for azimuth,
214
+ destination and distance, if C{False} use the basic
215
+ rhumb methods (C{bool}) or if C{None} use the I{great
216
+ circle} methods.
217
+ @kwarg height: Optional height for the intersection points (C{meter},
218
+ conventionally) or C{None} for interpolated heights.
219
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the points
220
+ B{C{circle}}, B{C{point}} and/or B{C{other}} (C{bool}).
221
+
222
+ @return: 2-Tuple of the intersection points (representing a chord), each
223
+ an instance of the B{C{point}} class. Both points are the same
224
+ instance if the (great circle) line is tangent to the circle.
225
+
226
+ @raise IntersectionError: The circle and line do not intersect.
227
+
228
+ @raise TypeError: If B{C{point}} is not this C{LatLon} or B{C{circle}}
229
+ or B{C{other}} invalid.
230
+
231
+ @raise UnitError: Invalid B{C{circle}}, B{C{other}}, B{C{radius}},
232
+ B{C{exact}}, B{C{height}} or B{C{napieradius}}.
233
+ '''
234
+ p = self.others(point=point)
235
+ try:
236
+ return _intersecant2(self, circle, p, other, radius=radius, exact=exact,
237
+ height=height, wrap=wrap)
238
+ except (TypeError, ValueError) as x:
239
+ raise _xError(x, center=self, circle=circle, point=point, other=other,
240
+ radius=radius, exact=exact, height=height, wrap=wrap)
241
+
242
+ def maxLat(self, bearing):
243
+ '''Return the maximum latitude reached when travelling on a great circle
244
+ on given bearing from this point based on Clairaut's formula.
245
+
246
+ The maximum latitude is independent of longitude and the same for all
247
+ points on a given latitude.
248
+
249
+ Negate the result for the minimum latitude (on the Southern hemisphere).
250
+
251
+ @arg bearing: Initial bearing (compass C{degrees360}).
252
+
253
+ @return: Maximum latitude (C{degrees90}).
254
+
255
+ @raise ValueError: Invalid B{C{bearing}}.
256
+ '''
257
+ r = acos1(fabs(sin(Bearing_(bearing)) * cos(self.phi)))
258
+ return degrees90(r)
259
+
260
+ def minLat(self, bearing):
261
+ '''Return the minimum latitude reached when travelling on a great circle
262
+ on given bearing from this point.
263
+
264
+ @arg bearing: Initial bearing (compass C{degrees360}).
265
+
266
+ @return: Minimum latitude (C{degrees90}).
267
+
268
+ @see: Method L{maxLat} for more details.
269
+
270
+ @raise ValueError: Invalid B{C{bearing}}.
271
+ '''
272
+ return -self.maxLat(bearing)
273
+
274
+ def _mpr(self, radius=R_M, exact=None): # meter per radian
275
+ if exact and not _isRadius(radius): # see .rhumb.ekx.Rhumb._mpr
276
+ radius = _earth_ellipsoid(radius)._Lpr
277
+ return radius
278
+
279
+ @property_doc_(''' the I{Napier} radius to apply spherical trigonometry.''')
280
+ def napieradius(self):
281
+ '''Get the I{Napier} radius (C{meter}, conventionally).
282
+ '''
283
+ return self._napieradius
284
+
285
+ @napieradius.setter # PYCHOK setter!
286
+ def napieradius(self, radius):
287
+ '''Set this I{Napier} radius (C{meter}, conventionally) or C{0}.
288
+
289
+ In methods L{intersecant2} and L{rhumbIntersecant2}, I{Napier}'s
290
+ spherical trigonometry is applied if the circle radius exceeds
291
+ the I{Napier} radius, otherwise planar trigonometry is used.
292
+
293
+ @raise UnitError: Invalid B{C{radius}}.
294
+ '''
295
+ self._napieradius = Radius(napieradius=radius or 0)
296
+
297
+ # def nearestTo(self, point, other, **radius_exact_height_wrap): # PYCHOK signature
298
+ # p = self.others(point=point)
299
+ # try:
300
+ # p, q = _intersecant2(self, p, p, other, **radius_exact_height_wrap)
301
+ # except (TypeError, ValueError) as x:
302
+ # raise _xError(x, this=self, point=point, other=other, **radius_exact_height_wrap)
303
+ # return p.midpointTo(q)
304
+
305
+ def parse(self, strllh, height=0, sep=_COMMA_, name=NN):
306
+ '''Parse a string representing a similar, spherical C{LatLon}
307
+ point, consisting of C{"lat, lon[, height]"}.
308
+
309
+ @arg strllh: Lat, lon and optional height (C{str}),
310
+ see function L{pygeodesy.parse3llh}.
311
+ @kwarg height: Optional, default height (C{meter}).
312
+ @kwarg sep: Optional separator (C{str}).
313
+ @kwarg name: Optional instance name (C{str}),
314
+ overriding this name.
315
+
316
+ @return: The similar point (spherical C{LatLon}).
317
+
318
+ @raise ParseError: Invalid B{C{strllh}}.
319
+ '''
320
+ t = _MODS.dms.parse3llh(strllh, height=height, sep=sep)
321
+ r = self.classof(*t)
322
+ if name:
323
+ r.rename(name)
324
+ return r
325
+
326
+ @property_RO
327
+ def _radius(self):
328
+ '''(INTERNAL) Get this sphere's radius.
329
+ '''
330
+ return self.datum.ellipsoid.equatoradius
331
+
332
+ def _rhumbs3(self, other, wrap, r=False): # != .latlonBase._rhumbx3
333
+ '''(INTERNAL) Rhumb_ helper function.
334
+
335
+ @arg other: The other point (spherical C{LatLon}).
336
+ '''
337
+ p = self.others(other, up=2)
338
+ if wrap:
339
+ p = _unrollon(self, p, wrap=wrap)
340
+ a2, b2 = p.philam
341
+ a1, b1 = self.philam
342
+ # if |db| > 180 take shorter rhumb
343
+ # line across the anti-meridian
344
+ db = wrapPI(b2 - b1)
345
+ dp = _logPI_2_2(a2, a1)
346
+ da = a2 - a1
347
+ if r:
348
+ # on Mercator projection, longitude distances shrink
349
+ # by latitude; the 'stretch factor' q becomes ill-
350
+ # conditioned along E-W line (0/0); use an empirical
351
+ # tolerance to avoid it
352
+ q = (da / dp) if fabs(dp) > EPS else cos(a1)
353
+ da = hypot(da, q * db) # angular distance radians
354
+ return da, db, dp
355
+
356
+ def rhumbAzimuthTo(self, other, radius=R_M, exact=False, wrap=False, b360=False):
357
+ '''Return the azimuth (bearing) of a rhumb line (loxodrome) between
358
+ this and an other (spherical) point.
359
+
360
+ @arg other: The other point (spherical C{LatLon}).
361
+ @kwarg radius: Earth radius (C{meter}) or earth model (L{Datum},
362
+ L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}).
363
+ @kwarg exact: If C{True}, use I{Elliptic, Krüger} L{Rhumb} (C{bool}),
364
+ default C{False} for backward compatibility.
365
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
366
+ B{C{other}} point (C{bool}).
367
+ @kwarg b360: If C{True}, return the azimuth in the bearing range.
368
+
369
+ @return: Rhumb azimuth (compass C{degrees180} or C{degrees360}).
370
+
371
+ @raise TypeError: The B{C{other}} point is incompatible or
372
+ B{C{radius}} is invalid.
373
+ '''
374
+ if exact: # use series, always
375
+ z = LatLonBase.rhumbAzimuthTo(self, other, exact=False, # Krüger
376
+ radius=radius, wrap=wrap, b360=b360)
377
+ else:
378
+ _, db, dp = self._rhumbs3(other, wrap)
379
+ z = (atan2b if b360 else atan2d)(db, dp) # see .rhumbBase.RhumbBase.Inverse
380
+ return z
381
+
382
+ @deprecated_method
383
+ def rhumbBearingTo(self, other): # unwrapped
384
+ '''DEPRECATED, use method C{.rhumbAzimuthTo}.'''
385
+ return self.rhumbAzimuthTo(other, b360=True) # [0..360)
386
+
387
+ def rhumbDestination(self, distance, azimuth, radius=R_M, height=None, exact=False):
388
+ '''Return the destination point having travelled the given distance from
389
+ this point along a rhumb line (loxodrome) of the given azimuth.
390
+
391
+ @arg distance: Distance travelled (C{meter}, same units as B{C{radius}}),
392
+ may be negative if C{B{exact}=True}.
393
+ @arg azimuth: Azimuth (bearing) of the rhumb line (compass C{degrees}).
394
+ @kwarg radius: Earth radius (C{meter}) or earth model (L{Datum},
395
+ L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}) if
396
+ C{B{exact}=True}.
397
+ @kwarg height: Optional height, overriding the default height (C{meter}.
398
+ @kwarg exact: If C{True}, use I{Elliptic, Krüger} L{Rhumb} (C{bool}),
399
+ default C{False} for backward compatibility.
400
+
401
+ @return: The destination point (spherical C{LatLon}).
402
+
403
+ @raise ValueError: Invalid B{C{distance}}, B{C{azimuth}}, B{C{radius}}
404
+ or B{C{height}}.
405
+ '''
406
+ if exact: # use series, always
407
+ r = LatLonBase.rhumbDestination(self, distance, azimuth, exact=False, # Krüger
408
+ radius=radius, height=height)
409
+ else: # radius=None from .rhumbMidpointTo
410
+ if radius in (None, self._radius):
411
+ d, r = self.datum, radius
412
+ else:
413
+ d = _spherical_datum(radius, raiser=_radius_) # spherical only
414
+ r = d.ellipsoid.equatoradius
415
+ r = _m2radians(distance, r, low=-EPS) # distance=0 from .rhumbMidpointTo
416
+
417
+ a1, b1 = self.philam
418
+ sb, cb = sincos2(Bearing_(azimuth)) # radians
419
+
420
+ da = r * cb
421
+ a2 = a1 + da
422
+ # normalize latitude if past pole
423
+ if fabs(a2) > PI_2:
424
+ a2 = _copysign(PI, a2) - a2
425
+
426
+ dp = _logPI_2_2(a2, a1)
427
+ # q becomes ill-conditioned on E-W course 0/0
428
+ q = cos(a1) if isnear0(dp) else (da / dp)
429
+ b2 = b1 if isnear0(q) else (b1 + r * sb / q)
430
+
431
+ h = self._heigHt(height)
432
+ r = self.classof(degrees90(a2), degrees180(b2), datum=d, height=h)
433
+ return r
434
+
435
+ def rhumbDistanceTo(self, other, radius=R_M, exact=False, wrap=False):
436
+ '''Return the distance from this to an other point along
437
+ a rhumb line (loxodrome).
438
+
439
+ @arg other: The other point (spherical C{LatLon}).
440
+ @kwarg radius: Earth radius (C{meter}) or earth model (L{Datum},
441
+ L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}) if
442
+ C{B{exact}=True}.
443
+ @kwarg exact: If C{True}, use I{Elliptic, Krüger} L{Rhumb} (C{bool}),
444
+ default C{False} for backward compatibility.
445
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
446
+ B{C{other}} point (C{bool}).
447
+
448
+ @return: Distance (C{meter}, the same units as B{C{radius}}
449
+ or C{radians} if B{C{radius}} is C{None}).
450
+
451
+ @raise TypeError: The B{C{other}} point is incompatible.
452
+
453
+ @raise ValueError: Invalid B{C{radius}}.
454
+ '''
455
+ if exact: # use series, always
456
+ r = LatLonBase.rhumbDistanceTo(self, other, exact=False, # Krüger
457
+ radius=radius, wrap=wrap)
458
+ if radius is None: # angular distance in radians
459
+ r = r / self._radius # /= chokes PyChecker
460
+ else:
461
+ # see <https://www.EdWilliams.org/avform.htm#Rhumb>
462
+ r, _, _ = self._rhumbs3(other, wrap, r=True)
463
+ if radius is not None:
464
+ r *= Radius(radius)
465
+ return r
466
+
467
+ def rhumbIntersecant2(self, circle, point, other, radius=R_M, exact=True, # PYCHOK signature
468
+ height=None, wrap=False):
469
+ '''Compute the intersections of a circle and a rhumb line given as two
470
+ points and as a point and azimuth.
471
+
472
+ @arg circle: Radius of the circle centered at this location (C{meter},
473
+ same units as B{C{radius}}) or a point on the circle
474
+ (this C{LatLon}).
475
+ @arg point: The rhumb line's start point (this C{LatLon}).
476
+ @arg other: An other point (this I{on} C{LatLon}) or the azimuth I{of}
477
+ (compass C{degrees}) the rhumb line.
478
+ @kwarg radius: Mean earth radius (C{meter}, conventionally).
479
+ @kwarg exact: If C{True} use the I{exact} rhumb methods for azimuth,
480
+ destination and distance, if C{False} use the basic
481
+ rhumb methods (C{bool}) or if C{None} use the I{great
482
+ circle} methods.
483
+ @kwarg height: Optional height for the intersection points (C{meter},
484
+ conventionally) or C{None}.
485
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the points
486
+ B{C{circle}}, B{C{point}} and/or B{C{other}} (C{bool}).
487
+
488
+ @return: 2-Tuple of the intersection points (representing a chord),
489
+ each an instance of this class. For a tangent line, both
490
+ points are the same instance, wrapped or I{normalized}.
491
+
492
+ @raise IntersectionError: The circle and line do not intersect.
493
+
494
+ @raise TypeError: If B{C{point}} is not this C{LatLon} or B{C{circle}}
495
+ or B{C{other}} invalid.
496
+
497
+ @raise UnitError: Invalid B{C{circle}}, B{C{other}}, B{C{radius}},
498
+ B{C{exact}} or B{C{height}}.
499
+ '''
500
+ m = LatLonBase.rhumbIntersecant2 if exact else \
501
+ LatLonSphericalBase.intersecant2
502
+ return m(self, circle, point, other, radius=radius, exact=exact,
503
+ height=height, wrap=wrap)
504
+
505
+ def rhumbMidpointTo(self, other, height=None, radius=R_M, exact=False,
506
+ fraction=_0_5, wrap=False):
507
+ '''Return the (loxodromic) midpoint on the rhumb line between
508
+ this and an other point.
509
+
510
+ @arg other: The other point (spherical LatLon).
511
+ @kwarg height: Optional height, overriding the mean height (C{meter}).
512
+ @kwarg radius: Earth radius (C{meter}) or earth model (L{Datum},
513
+ L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}).
514
+ @kwarg exact: If C{True}, use I{Elliptic, Krüger} L{Rhumb} (C{bool}),
515
+ default C{False} for backward compatibility.
516
+ @kwarg fraction: Midpoint location from this point (C{scalar}), may
517
+ be negative if C{B{exact}=True}.
518
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{other}}
519
+ point (C{bool}).
520
+
521
+ @return: The (mid)point at the given B{C{fraction}} along the rhumb
522
+ line (spherical C{LatLon}).
523
+
524
+ @raise TypeError: The B{C{other}} point is incompatible.
525
+
526
+ @raise ValueError: Invalid B{C{height}} or B{C{fraction}}
527
+ '''
528
+ if exact: # use series, always
529
+ r = LatLonBase.rhumbMidpointTo(self, other, exact=False, # Krüger
530
+ radius=radius, height=height,
531
+ fraction=fraction, wrap=wrap)
532
+ elif fraction is not _0_5:
533
+ f = Scalar_(fraction=fraction) # low=_0_0
534
+ r, db, dp = self._rhumbs3(other, wrap, r=True) # radians
535
+ z = atan2b(db, dp)
536
+ h = self._havg(other, f=f, h=height)
537
+ r = self.rhumbDestination(r * f, z, radius=None, height=h)
538
+
539
+ else: # for backward compatibility, unwrapped
540
+ # see <https://MathForum.org/library/drmath/view/51822.html>
541
+ a1, b1 = self.philam
542
+ a2, b2 = self.others(other).philam
543
+
544
+ if fabs(b2 - b1) > PI:
545
+ b1 += PI2 # crossing anti-meridian
546
+
547
+ a3 = favg(a1, a2)
548
+ b3 = favg(b1, b2)
549
+
550
+ f1 = tanPI_2_2(a1)
551
+ if isnon0(f1):
552
+ f2 = tanPI_2_2(a2)
553
+ f = f2 / f1
554
+ if isnon0(f):
555
+ f = log(f)
556
+ if isnon0(f):
557
+ f3 = tanPI_2_2(a3)
558
+ b3 = fdot(map1(log, f1, f2, f3),
559
+ -b2, b1, b2 - b1) / f
560
+
561
+ d = self.datum if radius in (None, self._radius) else \
562
+ _spherical_datum(radius, name=self.name, raiser=_radius_)
563
+ h = self._havg(other, h=height)
564
+ r = self.classof(degrees90(a3), degrees180(b3), datum=d, height=h)
565
+ return r
566
+
567
+ @property_RO
568
+ def sphericalLatLon(self):
569
+ '''Get this C{LatLon}'s spherical class.
570
+ '''
571
+ return type(self)
572
+
573
+ def toNvector(self, Nvector=NvectorBase, **Nvector_kwds): # PYCHOK signature
574
+ '''Convert this point to C{Nvector} components, I{including
575
+ height}.
576
+
577
+ @kwarg Nvector_kwds: Optional, additional B{C{Nvector}}
578
+ keyword arguments, ignored if
579
+ C{B{Nvector} is None}.
580
+
581
+ @return: An B{C{Nvector}} or a L{Vector4Tuple}C{(x, y, z, h)}
582
+ if B{C{Nvector}} is C{None}.
583
+
584
+ @raise TypeError: Invalid B{C{Nvector}} or B{C{Nvector_kwds}}.
585
+ '''
586
+ return LatLonBase.toNvector(self, Nvector=Nvector, **Nvector_kwds)
587
+
588
+
589
+ def _intersecant2(c, r, p, b, radius=R_M, exact=False, height=None, wrap=False):
590
+ # (INTERNAL) Intersect a circle and line, see L{intersecant2}
591
+ # above, separated to allow callers to embellish any exceptions
592
+
593
+ if wrap:
594
+ p = _unrollon(c, p, wrap=wrap)
595
+ nonexact = exact is None
596
+
597
+ if not isinstanceof(r, c.__class__, p.__class__):
598
+ r = Radius_(circle=r)
599
+ elif nonexact:
600
+ r = c.distanceTo(r, radius=radius, wrap=wrap)
601
+ elif isbool(exact):
602
+ r = c.rhumbDistanceTo(r, radius=radius, exact=exact, wrap=wrap)
603
+ else:
604
+ raise _ValueError(exact=exact)
605
+
606
+ if not isinstanceof(b, c.__class__, p.__class__):
607
+ b = Bearing(b)
608
+ elif nonexact:
609
+ b = p.initialBearingTo(b, wrap=wrap)
610
+ else:
611
+ b = p.rhumbAzimuthTo(b, radius=radius, exact=exact, wrap=wrap,
612
+ b360=True)
613
+
614
+ d = p.distanceTo(c, radius=radius) if nonexact else \
615
+ p.rhumbDistanceTo(c, radius=radius, exact=exact)
616
+ if d > EPS0:
617
+ n = _xattr(c, napieradius=0)
618
+ a = p.initialBearingTo(c) if nonexact else \
619
+ p.rhumbAzimuthTo(c, radius=radius, exact=exact, b360=True)
620
+ s, c = sincos2d(b - a) # Napier's sin(A), cos(A)
621
+ if r > n:
622
+ # Napier's right spherical triangle rules (R2) and (R1)
623
+ # <https://WikiPedia.org/wiki/Spherical_trigonometry>
624
+ m = p._mpr(radius=radius, exact=exact) # meter per radian
625
+ if fabs(c) > EPS0:
626
+ d = d / m # /= chokes PyChecker
627
+ a = asin1(sin(d) * fabs(s)) # Napier's a
628
+ c = _copysign(cos(a), c)
629
+ d = acos1(cos(d) / c) * m
630
+ a *= m # meter
631
+ else: # point and chord center coincident
632
+ a, d = d, 0
633
+ c = cos(a / m)
634
+ h = (acos1(cos(r / m) / c) * m) if a < r else 0
635
+ else: # distance from the chord center to ...
636
+ a = fabs(d * s) # ... the cicle center ...
637
+ d *= c # ... and to the point
638
+ h = sqrt_a(r, a) if a < r else 0 # half chord length
639
+ if a > r:
640
+ raise IntersectionError(_too_(Fmt.distant(a)))
641
+ else:
642
+ d, h = 0, r # point and circle center coincident
643
+
644
+ _intersecant1, kwds = (p.destination, {}) if nonexact else \
645
+ (p.rhumbDestination, dict(exact=exact))
646
+ kwds.update(radius=radius, height=height)
647
+ t = (_intersecant1(d + h, b, **kwds),)
648
+ if h:
649
+ t += (_intersecant1(d - h, b, **kwds),)
650
+ else: # same instance twice
651
+ t *= 2
652
+ return t
653
+
654
+
655
+ def _logPI_2_2(a2, a1):
656
+ '''(INTERNAL) C{log} of C{tanPI_2_2}'s quotient.
657
+ '''
658
+ return log(_over(tanPI_2_2(a2), tanPI_2_2(a1)))
659
+
660
+
661
+ def _m2radians(distance, radius, low=EPS): # PYCHOK in .spherical*
662
+ '''(INTERNAL) Distance in C{meter} to angular distance in C{radians}.
663
+
664
+ @raise UnitError: Invalid B{C{distance}} or B{C{radius}}.
665
+ '''
666
+ r = float(distance)
667
+ if radius:
668
+ r = r / Radius_(radius=radius) # /= chokes PyChecker
669
+ if low is not None:
670
+ # small near0 values from .rhumbDestination not exact OK
671
+ r = _0_0 if low < 0 and r < 0 else Radians_(r, low=low)
672
+ # _0_0 if low < 0 and low < r < 0 else Radians_(r, low=low)
673
+ return r
674
+
675
+
676
+ def _radians2m(rad, radius):
677
+ '''(INTERNAL) Angular distance in C{radians} to distance in C{meter}.
678
+ '''
679
+ if radius is not None: # not in (None, _0_0)
680
+ rad *= R_M if radius is R_M else Radius(radius)
681
+ return rad
682
+
683
+
684
+ def _rads3(rad1, rad2, radius): # in .sphericalTrigonometry
685
+ '''(INTERNAL) Convert radii to radians.
686
+ '''
687
+ r1 = Radius_(rad1=rad1)
688
+ r2 = Radius_(rad2=rad2)
689
+ if radius is not None: # convert radii to radians
690
+ r1 = _m2radians(r1, radius)
691
+ r2 = _m2radians(r2, radius)
692
+
693
+ x = r1 < r2
694
+ if x:
695
+ r1, r2 = r2, r1
696
+ if r1 > PI:
697
+ raise IntersectionError(rad1=rad1, rad2=rad2,
698
+ txt=_exceed_PI_radians_)
699
+ return r1, r2, x
700
+
701
+
702
+ __all__ += _ALL_DOCS(CartesianSphericalBase, LatLonSphericalBase)
703
+
704
+ # **) MIT License
705
+ #
706
+ # Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
707
+ #
708
+ # Permission is hereby granted, free of charge, to any person obtaining a
709
+ # copy of this software and associated documentation files (the "Software"),
710
+ # to deal in the Software without restriction, including without limitation
711
+ # the rights to use, copy, modify, merge, publish, distribute, sublicense,
712
+ # and/or sell copies of the Software, and to permit persons to whom the
713
+ # Software is furnished to do so, subject to the following conditions:
714
+ #
715
+ # The above copyright notice and this permission notice shall be included
716
+ # in all copies or substantial portions of the Software.
717
+ #
718
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
719
+ # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
720
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
721
+ # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
722
+ # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
723
+ # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
724
+ # OTHER DEALINGS IN THE SOFTWARE.