pygeodesy 24.3.24__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PyGeodesy-24.3.24.dist-info/METADATA +272 -0
- PyGeodesy-24.3.24.dist-info/RECORD +115 -0
- PyGeodesy-24.3.24.dist-info/WHEEL +6 -0
- PyGeodesy-24.3.24.dist-info/top_level.txt +1 -0
- pygeodesy/LICENSE +21 -0
- pygeodesy/__init__.py +615 -0
- pygeodesy/__main__.py +103 -0
- pygeodesy/albers.py +867 -0
- pygeodesy/auxilats/_CX_4.py +218 -0
- pygeodesy/auxilats/_CX_6.py +314 -0
- pygeodesy/auxilats/_CX_8.py +475 -0
- pygeodesy/auxilats/__init__.py +54 -0
- pygeodesy/auxilats/__main__.py +86 -0
- pygeodesy/auxilats/auxAngle.py +548 -0
- pygeodesy/auxilats/auxDLat.py +302 -0
- pygeodesy/auxilats/auxDST.py +296 -0
- pygeodesy/auxilats/auxLat.py +848 -0
- pygeodesy/auxilats/auxily.py +272 -0
- pygeodesy/azimuthal.py +1150 -0
- pygeodesy/basics.py +892 -0
- pygeodesy/booleans.py +2031 -0
- pygeodesy/cartesianBase.py +1062 -0
- pygeodesy/clipy.py +704 -0
- pygeodesy/constants.py +516 -0
- pygeodesy/css.py +660 -0
- pygeodesy/datums.py +752 -0
- pygeodesy/deprecated/__init__.py +61 -0
- pygeodesy/deprecated/bases.py +40 -0
- pygeodesy/deprecated/classes.py +262 -0
- pygeodesy/deprecated/consterns.py +54 -0
- pygeodesy/deprecated/datum.py +40 -0
- pygeodesy/deprecated/functions.py +375 -0
- pygeodesy/deprecated/nvector.py +48 -0
- pygeodesy/deprecated/rhumbBase.py +32 -0
- pygeodesy/deprecated/rhumbaux.py +33 -0
- pygeodesy/deprecated/rhumbsolve.py +33 -0
- pygeodesy/deprecated/rhumbx.py +33 -0
- pygeodesy/dms.py +986 -0
- pygeodesy/ecef.py +1348 -0
- pygeodesy/elevations.py +279 -0
- pygeodesy/ellipsoidalBase.py +1224 -0
- pygeodesy/ellipsoidalBaseDI.py +913 -0
- pygeodesy/ellipsoidalExact.py +343 -0
- pygeodesy/ellipsoidalGeodSolve.py +343 -0
- pygeodesy/ellipsoidalKarney.py +403 -0
- pygeodesy/ellipsoidalNvector.py +685 -0
- pygeodesy/ellipsoidalVincenty.py +590 -0
- pygeodesy/ellipsoids.py +2476 -0
- pygeodesy/elliptic.py +1198 -0
- pygeodesy/epsg.py +243 -0
- pygeodesy/errors.py +804 -0
- pygeodesy/etm.py +1190 -0
- pygeodesy/fmath.py +1013 -0
- pygeodesy/formy.py +1818 -0
- pygeodesy/frechet.py +865 -0
- pygeodesy/fstats.py +760 -0
- pygeodesy/fsums.py +1898 -0
- pygeodesy/gars.py +358 -0
- pygeodesy/geodesicw.py +581 -0
- pygeodesy/geodesicx/_C4_24.py +1699 -0
- pygeodesy/geodesicx/_C4_27.py +2395 -0
- pygeodesy/geodesicx/_C4_30.py +3301 -0
- pygeodesy/geodesicx/__init__.py +48 -0
- pygeodesy/geodesicx/__main__.py +91 -0
- pygeodesy/geodesicx/gx.py +1382 -0
- pygeodesy/geodesicx/gxarea.py +535 -0
- pygeodesy/geodesicx/gxbases.py +154 -0
- pygeodesy/geodesicx/gxline.py +669 -0
- pygeodesy/geodsolve.py +426 -0
- pygeodesy/geohash.py +914 -0
- pygeodesy/geoids.py +1884 -0
- pygeodesy/hausdorff.py +892 -0
- pygeodesy/heights.py +1155 -0
- pygeodesy/interns.py +687 -0
- pygeodesy/iters.py +545 -0
- pygeodesy/karney.py +919 -0
- pygeodesy/ktm.py +633 -0
- pygeodesy/latlonBase.py +1766 -0
- pygeodesy/lazily.py +960 -0
- pygeodesy/lcc.py +684 -0
- pygeodesy/ltp.py +1107 -0
- pygeodesy/ltpTuples.py +1563 -0
- pygeodesy/mgrs.py +721 -0
- pygeodesy/named.py +1324 -0
- pygeodesy/namedTuples.py +683 -0
- pygeodesy/nvectorBase.py +695 -0
- pygeodesy/osgr.py +781 -0
- pygeodesy/points.py +1686 -0
- pygeodesy/props.py +628 -0
- pygeodesy/resections.py +1048 -0
- pygeodesy/rhumb/__init__.py +46 -0
- pygeodesy/rhumb/aux_.py +397 -0
- pygeodesy/rhumb/bases.py +1148 -0
- pygeodesy/rhumb/ekx.py +563 -0
- pygeodesy/rhumb/solve.py +572 -0
- pygeodesy/simplify.py +647 -0
- pygeodesy/solveBase.py +472 -0
- pygeodesy/sphericalBase.py +724 -0
- pygeodesy/sphericalNvector.py +1264 -0
- pygeodesy/sphericalTrigonometry.py +1447 -0
- pygeodesy/streprs.py +627 -0
- pygeodesy/trf.py +2079 -0
- pygeodesy/triaxials.py +1484 -0
- pygeodesy/units.py +969 -0
- pygeodesy/unitsBase.py +349 -0
- pygeodesy/ups.py +538 -0
- pygeodesy/utily.py +1231 -0
- pygeodesy/utm.py +762 -0
- pygeodesy/utmups.py +318 -0
- pygeodesy/utmupsBase.py +517 -0
- pygeodesy/vector2d.py +785 -0
- pygeodesy/vector3d.py +968 -0
- pygeodesy/vector3dBase.py +1049 -0
- pygeodesy/webmercator.py +383 -0
- pygeodesy/wgrs.py +439 -0
|
@@ -0,0 +1,590 @@
|
|
|
1
|
+
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
u'''Ellipsoidal, I{Vincenty}-based geodesy.
|
|
5
|
+
|
|
6
|
+
I{Thaddeus Vincenty}'s geodetic (lat-/longitude) L{LatLon}, geocentric
|
|
7
|
+
(ECEF) L{Cartesian} and L{VincentyError} classes and functions L{areaOf},
|
|
8
|
+
L{intersections2}, L{nearestOn} and L{perimeterOf}.
|
|
9
|
+
|
|
10
|
+
Pure Python implementation of geodesy tools for ellipsoidal earth models,
|
|
11
|
+
transcoded from JavaScript originals by I{(C) Chris Veness 2005-2016}
|
|
12
|
+
and published under the same MIT Licence**, see U{Vincenty geodesics
|
|
13
|
+
<https://www.Movable-Type.co.UK/scripts/LatLongVincenty.html>}. More
|
|
14
|
+
at U{geographiclib<https://PyPI.org/project/geographiclib>} and
|
|
15
|
+
U{GeoPy<https://PyPI.org/project/geopy>}.
|
|
16
|
+
|
|
17
|
+
Calculate geodesic distance between two points using the U{Vincenty
|
|
18
|
+
<https://WikiPedia.org/wiki/Vincenty's_formulae>} formulae and one of
|
|
19
|
+
several ellipsoidal earth models. The default model is WGS-84, the
|
|
20
|
+
most widely used globally-applicable model for the earth ellipsoid.
|
|
21
|
+
|
|
22
|
+
Other ellipsoids offering a better fit to the local geoid include Airy
|
|
23
|
+
(1830) in the UK, Clarke (1880) in Africa, International 1924 in much
|
|
24
|
+
of Europe, and GRS-67 in South America. North America (NAD83) and
|
|
25
|
+
Australia (GDA) use GRS-80, which is equivalent to the WGS-84 model.
|
|
26
|
+
|
|
27
|
+
Great-circle distance uses a I{spherical} model of the earth with the
|
|
28
|
+
mean earth radius defined by the International Union of Geodesy and
|
|
29
|
+
Geophysics (IUGG) as M{(2 * a + b) / 3 = 6371008.7714150598} or about
|
|
30
|
+
6,371,009 meter (for WGS-84, resulting in an error of up to about 0.5%).
|
|
31
|
+
|
|
32
|
+
Here's an example usage of C{ellipsoidalVincenty}:
|
|
33
|
+
|
|
34
|
+
>>> from pygeodesy.ellipsoidalVincenty import LatLon
|
|
35
|
+
>>> Newport_RI = LatLon(41.49008, -71.312796)
|
|
36
|
+
>>> Cleveland_OH = LatLon(41.499498, -81.695391)
|
|
37
|
+
>>> Newport_RI.distanceTo(Cleveland_OH)
|
|
38
|
+
866,455.4329158525 # meter
|
|
39
|
+
|
|
40
|
+
To change the ellipsoid model used by the Vincenty formulae use:
|
|
41
|
+
|
|
42
|
+
>>> from pygeodesy import Datums
|
|
43
|
+
>>> from pygeodesy.ellipsoidalVincenty import LatLon
|
|
44
|
+
>>> p = LatLon(0, 0, datum=Datums.OSGB36)
|
|
45
|
+
|
|
46
|
+
or by converting to anothor datum:
|
|
47
|
+
|
|
48
|
+
>>> p = p.toDatum(Datums.OSGB36)
|
|
49
|
+
'''
|
|
50
|
+
# make sure int/int division yields float quotient, see .basics
|
|
51
|
+
from __future__ import division as _; del _ # PYCHOK semicolon
|
|
52
|
+
|
|
53
|
+
from pygeodesy.constants import EPS, EPS0, _0_0, _1_0, _2_0, _3_0, _4_0, _6_0
|
|
54
|
+
from pygeodesy.ellipsoidalBase import CartesianEllipsoidalBase, _nearestOn
|
|
55
|
+
from pygeodesy.ellipsoidalBaseDI import LatLonEllipsoidalBaseDI, \
|
|
56
|
+
_intersection3, _intersections2, \
|
|
57
|
+
_TOL_M, intersecant2
|
|
58
|
+
from pygeodesy.errors import _and, _ValueError, _xkwds
|
|
59
|
+
from pygeodesy.fmath import Fpolynomial, hypot, hypot1
|
|
60
|
+
from pygeodesy.interns import _ambiguous_, _antipodal_, _COLONSPACE_, \
|
|
61
|
+
_to_, _SPACE_, _limit_ # PYCHOK used!
|
|
62
|
+
from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS, _ALL_OTHER
|
|
63
|
+
from pygeodesy.namedTuples import Destination2Tuple, Destination3Tuple, \
|
|
64
|
+
Distance3Tuple
|
|
65
|
+
from pygeodesy.points import Fmt, ispolar # PYCHOK exported
|
|
66
|
+
from pygeodesy.props import deprecated_function, deprecated_method, \
|
|
67
|
+
property_doc_, property_RO
|
|
68
|
+
# from pygeodesy.streprs import Fmt # from .points
|
|
69
|
+
from pygeodesy.units import Number_, Scalar_
|
|
70
|
+
from pygeodesy.utily import atan2b, atan2d, sincos2, sincos2d, unroll180, wrap180
|
|
71
|
+
|
|
72
|
+
from math import atan2, cos, degrees, fabs, radians, tan
|
|
73
|
+
|
|
74
|
+
__all__ = _ALL_LAZY.ellipsoidalVincenty
|
|
75
|
+
__version__ = '23.12.18'
|
|
76
|
+
|
|
77
|
+
_antipodal_to_ = _SPACE_(_antipodal_, _to_)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
class VincentyError(_ValueError):
|
|
81
|
+
'''Error raised by I{Vincenty}'s C{Direct} and C{Inverse} methods
|
|
82
|
+
for coincident points or lack of convergence.
|
|
83
|
+
'''
|
|
84
|
+
pass
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class Cartesian(CartesianEllipsoidalBase):
|
|
88
|
+
'''Extended to convert geocentric, L{Cartesian} points to
|
|
89
|
+
Vincenty-based, ellipsoidal, geodetic L{LatLon}.
|
|
90
|
+
'''
|
|
91
|
+
@property_RO
|
|
92
|
+
def Ecef(self):
|
|
93
|
+
'''Get the ECEF I{class} (L{EcefVeness}), I{once}.
|
|
94
|
+
'''
|
|
95
|
+
return _Ecef()
|
|
96
|
+
|
|
97
|
+
def toLatLon(self, **LatLon_and_kwds): # PYCHOK LatLon=LatLon, datum=None
|
|
98
|
+
'''Convert this cartesian point to a C{Vincenty}-based geodetic point.
|
|
99
|
+
|
|
100
|
+
@kwarg LatLon_and_kwds: Optional L{LatLon} and L{LatLon} keyword
|
|
101
|
+
arguments as C{datum}. Use C{B{LatLon}=...,
|
|
102
|
+
B{datum}=...} to override this L{LatLon}
|
|
103
|
+
class or specify C{B{LatLon}=None}.
|
|
104
|
+
|
|
105
|
+
@return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is C{None},
|
|
106
|
+
an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
|
|
107
|
+
with C{C} and C{M} if available.
|
|
108
|
+
|
|
109
|
+
@raise TypeError: Invalid B{C{LatLon_and_kwds}} argument.
|
|
110
|
+
'''
|
|
111
|
+
kwds = _xkwds(LatLon_and_kwds, LatLon=LatLon, datum=self.datum)
|
|
112
|
+
return CartesianEllipsoidalBase.toLatLon(self, **kwds)
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class LatLon(LatLonEllipsoidalBaseDI):
|
|
116
|
+
'''New point on an (oblate) ellipsoidal earth model, using the formulae devised
|
|
117
|
+
by U{I{Thaddeus Vincenty}<https://WikiPedia.org/wiki/Vincenty's_formulae>}
|
|
118
|
+
(1975) to compute geodesic distances, bearings (azimuths), etc.
|
|
119
|
+
|
|
120
|
+
Set the earth model to be used with the keyword argument datum. The default
|
|
121
|
+
is C{Datums.WGS84}, which is the most globally accurate. For other models,
|
|
122
|
+
see the L{Datums<pygeodesy.datums>}.
|
|
123
|
+
|
|
124
|
+
@note: This implementation of I{Vincenty} methods may not converge for some
|
|
125
|
+
valid points, raising a L{VincentyError}. In that case, a result may
|
|
126
|
+
be obtained by increasing the tolerance C{epsilon} and/or iteration
|
|
127
|
+
C{limit}, see properties L{LatLon.epsilon} and L{LatLon.iterations}.
|
|
128
|
+
'''
|
|
129
|
+
_epsilon = 1e-12 # radians, about 6 um
|
|
130
|
+
# _iteration = None # iteration number from .named._NamedBase
|
|
131
|
+
_iterations = 201 # 5, default max, 200 vs Veness' 1,000
|
|
132
|
+
|
|
133
|
+
@deprecated_method
|
|
134
|
+
def bearingTo(self, other, wrap=False): # PYCHOK no cover
|
|
135
|
+
'''DEPRECATED, use method L{initialBearingTo} or L{bearingTo2}.
|
|
136
|
+
'''
|
|
137
|
+
return self.initialBearingTo(other, wrap=wrap)
|
|
138
|
+
|
|
139
|
+
@property_RO
|
|
140
|
+
def Ecef(self):
|
|
141
|
+
'''Get the ECEF I{class} (L{EcefVeness}), I{once}.
|
|
142
|
+
'''
|
|
143
|
+
return _Ecef()
|
|
144
|
+
|
|
145
|
+
@property_doc_(''' the convergence epsilon (C{radians}).''')
|
|
146
|
+
def epsilon(self):
|
|
147
|
+
'''Get the convergence epsilon (C{radians}).
|
|
148
|
+
'''
|
|
149
|
+
return self._epsilon
|
|
150
|
+
|
|
151
|
+
@epsilon.setter # PYCHOK setter!
|
|
152
|
+
def epsilon(self, epsilon):
|
|
153
|
+
'''Set the convergence epsilon (C{radians}).
|
|
154
|
+
|
|
155
|
+
@raise TypeError: Non-scalar B{C{epsilon}}.
|
|
156
|
+
|
|
157
|
+
@raise ValueError: Out of bounds B{C{epsilon}}.
|
|
158
|
+
'''
|
|
159
|
+
self._epsilon = Scalar_(epsilon=epsilon)
|
|
160
|
+
|
|
161
|
+
@property_doc_(''' the iteration limit (C{int}).''')
|
|
162
|
+
def iterations(self):
|
|
163
|
+
'''Get the iteration limit (C{int}).
|
|
164
|
+
'''
|
|
165
|
+
return self._iterations - 1
|
|
166
|
+
|
|
167
|
+
@iterations.setter # PYCHOK setter!
|
|
168
|
+
def iterations(self, limit):
|
|
169
|
+
'''Set the iteration limit (C{int}).
|
|
170
|
+
|
|
171
|
+
@raise TypeError: Non-scalar B{C{limit}}.
|
|
172
|
+
|
|
173
|
+
@raise ValueError: Out-of-bounds B{C{limit}}.
|
|
174
|
+
'''
|
|
175
|
+
self._iterations = Number_(limit, name=_limit_, low=4, high=1000) + 1
|
|
176
|
+
|
|
177
|
+
def toCartesian(self, **Cartesian_datum_kwds): # PYCHOK Cartesian=Cartesian, datum=None
|
|
178
|
+
'''Convert this point to C{Vincenty}-based cartesian (ECEF)
|
|
179
|
+
coordinates.
|
|
180
|
+
|
|
181
|
+
@kwarg Cartesian_datum_kwds: Optional L{Cartesian}, B{C{datum}} and other
|
|
182
|
+
keyword arguments, ignored if C{B{Cartesian}=None}. Use
|
|
183
|
+
C{B{Cartesian}=...} to override this L{Cartesian} class
|
|
184
|
+
or specify C{B{Cartesian}=None}.
|
|
185
|
+
|
|
186
|
+
@return: The cartesian point (L{Cartesian}) or if B{C{Cartesian}}
|
|
187
|
+
is C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height,
|
|
188
|
+
C, M, datum)} with C{C} and C{M} if available.
|
|
189
|
+
|
|
190
|
+
@raise TypeError: Invalid B{C{Cartesian}}, B{C{datum}} or other
|
|
191
|
+
B{C{Cartesian_datum_kwds}}.
|
|
192
|
+
'''
|
|
193
|
+
kwds = _xkwds(Cartesian_datum_kwds, Cartesian=Cartesian,
|
|
194
|
+
datum=self.datum)
|
|
195
|
+
return LatLonEllipsoidalBaseDI.toCartesian(self, **kwds)
|
|
196
|
+
|
|
197
|
+
def _Direct(self, distance, bearing, llr, height):
|
|
198
|
+
'''(INTERNAL) Direct Vincenty method.
|
|
199
|
+
|
|
200
|
+
@raise TypeError: The B{C{other}} point is not L{LatLon}.
|
|
201
|
+
|
|
202
|
+
@raise ValueError: If this and the B{C{other}} point's L{Datum}
|
|
203
|
+
ellipsoids are not compatible.
|
|
204
|
+
|
|
205
|
+
@raise VincentyError: Vincenty fails to converge for the current
|
|
206
|
+
L{LatLon.epsilon} and L{LatLon.iterations}
|
|
207
|
+
limits.
|
|
208
|
+
'''
|
|
209
|
+
E = self.ellipsoid()
|
|
210
|
+
f = E.f
|
|
211
|
+
|
|
212
|
+
sb, cb = sincos2d(bearing)
|
|
213
|
+
s1, c1, t1 = _sincostan3r(self.phi, f)
|
|
214
|
+
|
|
215
|
+
eps = self.epsilon
|
|
216
|
+
s12 = atan2(t1, cb) * _2_0
|
|
217
|
+
sa, ca2 = _sincos22(c1 * sb)
|
|
218
|
+
A, B = _AB2(ca2 * E.e22) # e22 == (a / b)**2 - 1
|
|
219
|
+
s = d = distance / (A * E.b)
|
|
220
|
+
for i in range(1, self._iterations): # 1-origin
|
|
221
|
+
ss, cs = sincos2(s)
|
|
222
|
+
c2sm, e = cos(s12 + s), s
|
|
223
|
+
s = _Ds(B, cs, ss, c2sm, d)
|
|
224
|
+
e = fabs(s - e)
|
|
225
|
+
if e < eps:
|
|
226
|
+
self._iteration = i
|
|
227
|
+
break
|
|
228
|
+
else:
|
|
229
|
+
t = self._no_convergence(e)
|
|
230
|
+
raise VincentyError(t, txt=repr(self)) # self.toRepr()
|
|
231
|
+
|
|
232
|
+
t = s1 * ss - c1 * cs * cb
|
|
233
|
+
# final bearing (reverse azimuth +/- 180)
|
|
234
|
+
d = atan2b(sa, -t)
|
|
235
|
+
if llr:
|
|
236
|
+
b = cb * ss
|
|
237
|
+
a = atan2d(s1 * cs + c1 * b, hypot(sa, t) * E.b_a)
|
|
238
|
+
b = atan2d(sb * ss, -s1 * b + c1 * cs) + self.lon \
|
|
239
|
+
- degrees(_Dl(f, ca2, sa, s, cs, ss, c2sm))
|
|
240
|
+
t = Destination3Tuple(a, wrap180(b), d)
|
|
241
|
+
r = self._Direct2Tuple(self.classof, height, t)
|
|
242
|
+
else:
|
|
243
|
+
r = Destination2Tuple(None, d, name=self.name)
|
|
244
|
+
r._iteration = i
|
|
245
|
+
return r
|
|
246
|
+
|
|
247
|
+
def _Inverse(self, other, wrap, azis=True): # PYCHOK signature
|
|
248
|
+
'''(INTERNAL) Inverse Vincenty method.
|
|
249
|
+
|
|
250
|
+
@raise TypeError: The B{C{other}} point is not L{LatLon}.
|
|
251
|
+
|
|
252
|
+
@raise ValueError: If this and the B{C{other}} point's L{Datum}
|
|
253
|
+
ellipsoids are not compatible.
|
|
254
|
+
|
|
255
|
+
@raise VincentyError: Vincenty fails to converge for the current
|
|
256
|
+
L{LatLon.epsilon} and L{LatLon.iterations}
|
|
257
|
+
limits and/or if this and the B{C{other}}
|
|
258
|
+
point are coincident or near-antipodal.
|
|
259
|
+
'''
|
|
260
|
+
E = self.ellipsoids(other)
|
|
261
|
+
f = E.f
|
|
262
|
+
|
|
263
|
+
s1, c1, _ = _sincostan3r( self.phi, f)
|
|
264
|
+
s2, c2, _ = _sincostan3r(other.phi, f)
|
|
265
|
+
|
|
266
|
+
c1c2, s1c2 = c1 * c2, s1 * c2
|
|
267
|
+
c1s2, s1s2 = c1 * s2, s1 * s2
|
|
268
|
+
|
|
269
|
+
eps = self.epsilon
|
|
270
|
+
d, _ = unroll180(self.lon, other.lon, wrap=wrap)
|
|
271
|
+
dl = ll = radians(d)
|
|
272
|
+
for i in range(1, self._iterations): # 1-origin
|
|
273
|
+
sll, cll = sincos2(ll)
|
|
274
|
+
|
|
275
|
+
ss = hypot(c2 * sll, c1s2 - s1c2 * cll)
|
|
276
|
+
if ss < EPS: # coincident or antipodal, ...
|
|
277
|
+
if self.isantipodeTo(other, eps=eps):
|
|
278
|
+
t = self._is_to(other, True)
|
|
279
|
+
raise VincentyError(_ambiguous_, txt=t)
|
|
280
|
+
self._iteration = i
|
|
281
|
+
# return zeros like Karney, unlike Veness
|
|
282
|
+
return Distance3Tuple(_0_0, 0, 0, iteration=i)
|
|
283
|
+
|
|
284
|
+
cs = s1s2 + c1c2 * cll
|
|
285
|
+
s, e = atan2(ss, cs), ll
|
|
286
|
+
sa, ca2 = _sincos22(c1c2 * sll / ss)
|
|
287
|
+
if ca2:
|
|
288
|
+
c2sm = cs - _2_0 * s1s2 / ca2
|
|
289
|
+
ll = _Dl(f, ca2, sa, s, cs, ss, c2sm, dl)
|
|
290
|
+
else: # equatorial line
|
|
291
|
+
ll = dl + f * sa * s
|
|
292
|
+
e = fabs(ll - e)
|
|
293
|
+
if e < eps:
|
|
294
|
+
self._iteration = i
|
|
295
|
+
break
|
|
296
|
+
# elif abs(ll) > PI and self.isantipodeTo(other, eps=eps):
|
|
297
|
+
# # omitted and applied *after* failure to converge below,
|
|
298
|
+
# # see footnote under Inverse <https://WikiPedia.org/wiki/
|
|
299
|
+
# # Vincenty's_formulae> and <https://GitHub.com/chrisveness/
|
|
300
|
+
# # geodesy/blob/master/latlon-ellipsoidal-vincenty.js>
|
|
301
|
+
# raise VincentyError(_ambiguous_, self._is_to(other, True))
|
|
302
|
+
else:
|
|
303
|
+
t = self._is_to(other, self.isantipodeTo(other, eps=eps))
|
|
304
|
+
raise VincentyError(self._no_convergence(e), txt=t)
|
|
305
|
+
|
|
306
|
+
if ca2: # e22 == (a / b)**2 - 1
|
|
307
|
+
A, B = _AB2(ca2 * E.e22)
|
|
308
|
+
s = -A * _Ds(B, cs, ss, c2sm, -s)
|
|
309
|
+
|
|
310
|
+
b = E.b
|
|
311
|
+
# if self.height or other.height:
|
|
312
|
+
# b += self._havg(other)
|
|
313
|
+
d = b * s
|
|
314
|
+
|
|
315
|
+
if azis: # forward and reverse azimuth
|
|
316
|
+
s, c = sincos2(ll)
|
|
317
|
+
f = atan2b(c2 * s, c1s2 - s1c2 * c)
|
|
318
|
+
r = atan2b(c1 * s, -s1c2 + c1s2 * c)
|
|
319
|
+
else:
|
|
320
|
+
f = r = _0_0 # NAN
|
|
321
|
+
return Distance3Tuple(d, f, r, name=self.name, iteration=i)
|
|
322
|
+
|
|
323
|
+
def _is_to(self, other, anti):
|
|
324
|
+
'''(INTERNAL) Return I{'<self> [antipodal] to <other>'} text (C{str}).
|
|
325
|
+
'''
|
|
326
|
+
t = _antipodal_to_ if anti else _to_
|
|
327
|
+
return _SPACE_(repr(self), t, repr(other))
|
|
328
|
+
|
|
329
|
+
def _no_convergence(self, e):
|
|
330
|
+
'''(INTERNAL) Return I{'no convergence (..): ...'} text (C{str}).
|
|
331
|
+
'''
|
|
332
|
+
t = (Fmt.PARENSPACED(*t) for t in ((LatLon.epsilon.name, self.epsilon),
|
|
333
|
+
(LatLon.iterations.name, self.iterations)))
|
|
334
|
+
return _COLONSPACE_(Fmt.no_convergence(e), _and(*t))
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
def _AB2(u2): # WGS84 e22 = 0.00673949674227643
|
|
338
|
+
# 2-Tuple C{(A, B)} polynomials
|
|
339
|
+
if u2:
|
|
340
|
+
A = Fpolynomial(u2, 16384, 4096, -768, 320, -175).fover(16384)
|
|
341
|
+
B = Fpolynomial(u2, 0, 256, -128, 74, -47).fover( 1024)
|
|
342
|
+
return A, B
|
|
343
|
+
return _1_0, _0_0
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
def _c2sm2(c2sm):
|
|
347
|
+
# C{2 * c2sm**2 - 1}
|
|
348
|
+
return c2sm**2 * _2_0 - _1_0
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
def _Dl(f, ca2, sa, s, cs, ss, c2sm, dl=_0_0):
|
|
352
|
+
# C{Dl}
|
|
353
|
+
if f and sa:
|
|
354
|
+
C = f * ca2 / _4_0
|
|
355
|
+
C *= f - C * _3_0 + _1_0
|
|
356
|
+
if C and ss:
|
|
357
|
+
s += C * ss * (c2sm +
|
|
358
|
+
C * cs * _c2sm2(c2sm))
|
|
359
|
+
dl += (_1_0 - C) * f * sa * s
|
|
360
|
+
return dl
|
|
361
|
+
|
|
362
|
+
|
|
363
|
+
def _Ds(B, cs, ss, c2sm, d):
|
|
364
|
+
# C{Ds - d}
|
|
365
|
+
if B and ss:
|
|
366
|
+
c2sm2 = _c2sm2(c2sm)
|
|
367
|
+
ss2 = (ss**2 * _4_0 - _3_0) * (c2sm2 * _2_0 - _1_0)
|
|
368
|
+
B *= ss * (c2sm + B / _4_0 * (c2sm2 * cs -
|
|
369
|
+
B / _6_0 * c2sm * ss2))
|
|
370
|
+
d += B
|
|
371
|
+
return d
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def _Ecef():
|
|
375
|
+
# get the Ecef class and overwrite property_RO
|
|
376
|
+
Cartesian.Ecef = LatLon.Ecef = E = _MODS.ecef.EcefVeness
|
|
377
|
+
return E
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def _sincos22(sa):
|
|
381
|
+
# 2-Tuple C{(sin(a), cos(a)**2)}
|
|
382
|
+
ca2 = _1_0 - sa**2
|
|
383
|
+
return sa, (_0_0 if ca2 < EPS0 else ca2) # XXX EPS?
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def _sincostan3r(a, f):
|
|
387
|
+
# I{Reduced} 3-tuple C{(sin(B{a}), cos(B{a}), tan(B{a}))}
|
|
388
|
+
if a: # see L{sincostan3}
|
|
389
|
+
t = (_1_0 - f) * tan(a)
|
|
390
|
+
if t:
|
|
391
|
+
c = _1_0 / hypot1(t)
|
|
392
|
+
s = c * t
|
|
393
|
+
return s, c, t
|
|
394
|
+
return _0_0, _1_0, _0_0
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
@deprecated_function
|
|
398
|
+
def areaOf(points, **datum_wrap):
|
|
399
|
+
'''DEPRECATED, use function L{ellipsoidalExact.areaOf} or L{ellipsoidalKarney.areaOf}.
|
|
400
|
+
'''
|
|
401
|
+
try:
|
|
402
|
+
return _MODS.ellipsoidalKarney.areaOf(points, **datum_wrap)
|
|
403
|
+
except ImportError:
|
|
404
|
+
return _MODS.ellipsoidalExact.areaOf(points, **datum_wrap)
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
def intersection3(start1, end1, start2, end2, height=None, wrap=False, # was=True
|
|
408
|
+
equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
|
|
409
|
+
'''I{Iteratively} compute the intersection point of two lines, each defined
|
|
410
|
+
by two (ellipsoidal) points or by an (ellipsoidal) start point and an
|
|
411
|
+
(initial) bearing from North.
|
|
412
|
+
|
|
413
|
+
@arg start1: Start point of the first line (L{LatLon}).
|
|
414
|
+
@arg end1: End point of the first line (L{LatLon}) or the initial bearing
|
|
415
|
+
at the first point (compass C{degrees360}).
|
|
416
|
+
@arg start2: Start point of the second line (L{LatLon}).
|
|
417
|
+
@arg end2: End point of the second line (L{LatLon}) or the initial bearing
|
|
418
|
+
at the second point (compass C{degrees360}).
|
|
419
|
+
@kwarg height: Optional height at the intersection (C{meter}, conventionally)
|
|
420
|
+
or C{None} for the mean height.
|
|
421
|
+
@kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{start2}}
|
|
422
|
+
and B{C{end*}} points (C{bool}).
|
|
423
|
+
@kwarg equidistant: An azimuthal equidistant projection (I{class} or function
|
|
424
|
+
L{pygeodesy.equidistant}) or C{None} for the preferred
|
|
425
|
+
C{B{start1}.Equidistant}.
|
|
426
|
+
@kwarg tol: Tolerance for convergence and for skew line distance and length
|
|
427
|
+
(C{meter}, conventionally).
|
|
428
|
+
@kwarg LatLon: Optional class to return the intersection points (L{LatLon})
|
|
429
|
+
or C{None}.
|
|
430
|
+
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments,
|
|
431
|
+
ignored if C{B{LatLon} is None}.
|
|
432
|
+
|
|
433
|
+
@return: An L{Intersection3Tuple}C{(point, outside1, outside2)} with C{point}
|
|
434
|
+
a B{C{LatLon}} or if C{B{LatLon} is None}, a L{LatLon4Tuple}C{(lat,
|
|
435
|
+
lon, height, datum)}.
|
|
436
|
+
|
|
437
|
+
@raise IntersectionError: Skew, colinear, parallel or otherwise
|
|
438
|
+
non-intersecting lines or no convergence
|
|
439
|
+
for the given B{C{tol}}.
|
|
440
|
+
|
|
441
|
+
@raise TypeError: Invalid or non-ellipsoidal B{C{start1}}, B{C{end1}},
|
|
442
|
+
B{C{start2}} or B{C{end2}} or invalid B{C{equidistant}}.
|
|
443
|
+
|
|
444
|
+
@note: For each line specified with an initial bearing, a pseudo-end point
|
|
445
|
+
is computed as the C{destination} along that bearing at about 1.5
|
|
446
|
+
times the distance from the start point to an initial gu-/estimate
|
|
447
|
+
of the intersection point (and between 1/8 and 3/8 of the authalic
|
|
448
|
+
earth perimeter).
|
|
449
|
+
|
|
450
|
+
@see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
|
|
451
|
+
calculating-intersection-of-two-circles>} and U{Karney's paper
|
|
452
|
+
<https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME
|
|
453
|
+
BOUNDARIES} for more details about the iteration algorithm.
|
|
454
|
+
'''
|
|
455
|
+
return _intersection3(start1, end1, start2, end2, height=height, wrap=wrap,
|
|
456
|
+
equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
def intersections2(center1, radius1, center2, radius2, height=None, wrap=False, # was=True
|
|
460
|
+
equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
|
|
461
|
+
'''I{Iteratively} compute the intersection points of two circles, each defined
|
|
462
|
+
by an (ellipsoidal) center point and a radius.
|
|
463
|
+
|
|
464
|
+
@arg center1: Center of the first circle (L{LatLon}).
|
|
465
|
+
@arg radius1: Radius of the first circle (C{meter}, conventionally).
|
|
466
|
+
@arg center2: Center of the second circle (L{LatLon}).
|
|
467
|
+
@arg radius2: Radius of the second circle (C{meter}, same units as
|
|
468
|
+
B{C{radius1}}).
|
|
469
|
+
@kwarg height: Optional height for the intersection points (C{meter},
|
|
470
|
+
conventionally) or C{None} for the I{"radical height"}
|
|
471
|
+
at the I{radical line} between both centers.
|
|
472
|
+
@kwarg wrap: If C{True}, wrap or I{normalize} and unroll B{C{center2}}
|
|
473
|
+
(C{bool}).
|
|
474
|
+
@kwarg equidistant: An azimuthal equidistant projection (I{class} or
|
|
475
|
+
function L{pygeodesy.equidistant}) or C{None} for
|
|
476
|
+
the preferred C{B{center1}.Equidistant}.
|
|
477
|
+
@kwarg tol: Convergence tolerance (C{meter}, same units as B{C{radius1}}
|
|
478
|
+
and B{C{radius2}}).
|
|
479
|
+
@kwarg LatLon: Optional class to return the intersection points (L{LatLon})
|
|
480
|
+
or C{None}.
|
|
481
|
+
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments,
|
|
482
|
+
ignored if C{B{LatLon} is None}.
|
|
483
|
+
|
|
484
|
+
@return: 2-Tuple of the intersection points, each a B{C{LatLon}} instance
|
|
485
|
+
or L{LatLon4Tuple}C{(lat, lon, height, datum)} if C{B{LatLon} is
|
|
486
|
+
None}. For abutting circles, both points are the same instance,
|
|
487
|
+
aka the I{radical center}.
|
|
488
|
+
|
|
489
|
+
@raise IntersectionError: Concentric, antipodal, invalid or non-intersecting
|
|
490
|
+
circles or no convergence for the B{C{tol}}.
|
|
491
|
+
|
|
492
|
+
@raise TypeError: Invalid or non-ellipsoidal B{C{center1}} or B{C{center2}}
|
|
493
|
+
or invalid B{C{equidistant}}.
|
|
494
|
+
|
|
495
|
+
@raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{height}}.
|
|
496
|
+
|
|
497
|
+
@see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
|
|
498
|
+
calculating-intersection-of-two-circles>}, U{Karney's paper
|
|
499
|
+
<https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME BOUNDARIES},
|
|
500
|
+
U{circle-circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} and
|
|
501
|
+
U{sphere-sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>}
|
|
502
|
+
intersections.
|
|
503
|
+
'''
|
|
504
|
+
return _intersections2(center1, radius1, center2, radius2, height=height, wrap=wrap,
|
|
505
|
+
equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
|
|
506
|
+
|
|
507
|
+
|
|
508
|
+
def nearestOn(point, point1, point2, within=True, height=None, wrap=False,
|
|
509
|
+
equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
|
|
510
|
+
'''I{Iteratively} locate the closest point on the geodesic between
|
|
511
|
+
two other (ellipsoidal) points.
|
|
512
|
+
|
|
513
|
+
@arg point: Reference point (C{LatLon}).
|
|
514
|
+
@arg point1: Start point of the geodesic (C{LatLon}).
|
|
515
|
+
@arg point2: End point of the geodesic (C{LatLon}).
|
|
516
|
+
@kwarg within: If C{True} return the closest point I{between}
|
|
517
|
+
B{C{point1}} and B{C{point2}}, otherwise the
|
|
518
|
+
closest point elsewhere on the geodesic (C{bool}).
|
|
519
|
+
@kwarg height: Optional height for the closest point (C{meter},
|
|
520
|
+
conventionally) or C{None} or C{False} for the
|
|
521
|
+
interpolated height. If C{False}, the closest
|
|
522
|
+
takes the heights of the points into account.
|
|
523
|
+
@kwarg wrap: If C{True}, wrap or I{normalize} and unroll both
|
|
524
|
+
B{C{point1}} and B{C{point2}} (C{bool}).
|
|
525
|
+
@kwarg equidistant: An azimuthal equidistant projection (I{class}
|
|
526
|
+
or function L{pygeodesy.equidistant}) or C{None}
|
|
527
|
+
for the preferred C{B{point}.Equidistant}.
|
|
528
|
+
@kwarg tol: Convergence tolerance (C{meter}).
|
|
529
|
+
@kwarg LatLon: Optional class to return the closest point
|
|
530
|
+
(L{LatLon}) or C{None}.
|
|
531
|
+
@kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
|
|
532
|
+
arguments, ignored if C{B{LatLon} is None}.
|
|
533
|
+
|
|
534
|
+
@return: Closest point, a B{C{LatLon}} instance or if C{B{LatLon}
|
|
535
|
+
is None}, a L{LatLon4Tuple}C{(lat, lon, height, datum)}.
|
|
536
|
+
|
|
537
|
+
@raise ImportError: Package U{geographiclib
|
|
538
|
+
<https://PyPI.org/project/geographiclib>}
|
|
539
|
+
not installed or not found, but only if
|
|
540
|
+
C{B{equidistant}=}L{EquidistantKarney}.
|
|
541
|
+
|
|
542
|
+
@raise TypeError: Invalid or non-ellipsoidal B{C{point}}, B{C{point1}}
|
|
543
|
+
or B{C{point2}} or invalid B{C{equidistant}}.
|
|
544
|
+
|
|
545
|
+
@raise ValueError: No convergence for the B{C{tol}}.
|
|
546
|
+
|
|
547
|
+
@see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
|
|
548
|
+
calculating-intersection-of-two-circles>} and U{Karney's paper
|
|
549
|
+
<https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME
|
|
550
|
+
BOUNDARIES} for more details about the iteration algorithm.
|
|
551
|
+
'''
|
|
552
|
+
return _nearestOn(point, point1, point2, within=within, height=height, wrap=wrap,
|
|
553
|
+
equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
|
|
554
|
+
|
|
555
|
+
|
|
556
|
+
@deprecated_function
|
|
557
|
+
def perimeterOf(points, **closed_datum_wrap):
|
|
558
|
+
'''DEPRECATED, use function L{ellipsoidalExact.perimeterOf} or L{ellipsoidalKarney.perimeterOf}.
|
|
559
|
+
'''
|
|
560
|
+
try:
|
|
561
|
+
return _MODS.ellipsoidalKarney.perimeterOf(points, **closed_datum_wrap)
|
|
562
|
+
except ImportError:
|
|
563
|
+
return _MODS.ellipsoidalExact.perimeterOf(points, **closed_datum_wrap)
|
|
564
|
+
|
|
565
|
+
|
|
566
|
+
__all__ += _ALL_OTHER(Cartesian, LatLon, intersecant2, # from .ellipsoidalBaseDI
|
|
567
|
+
intersection3, intersections2, ispolar, # from .points
|
|
568
|
+
nearestOn) + _ALL_DOCS(areaOf, perimeterOf) # deprecated
|
|
569
|
+
|
|
570
|
+
# **) MIT License
|
|
571
|
+
#
|
|
572
|
+
# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
|
|
573
|
+
#
|
|
574
|
+
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
575
|
+
# copy of this software and associated documentation files (the "Software"),
|
|
576
|
+
# to deal in the Software without restriction, including without limitation
|
|
577
|
+
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
578
|
+
# and/or sell copies of the Software, and to permit persons to whom the
|
|
579
|
+
# Software is furnished to do so, subject to the following conditions:
|
|
580
|
+
#
|
|
581
|
+
# The above copyright notice and this permission notice shall be included
|
|
582
|
+
# in all copies or substantial portions of the Software.
|
|
583
|
+
#
|
|
584
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
585
|
+
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
586
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
587
|
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
588
|
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
589
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
590
|
+
# OTHER DEALINGS IN THE SOFTWARE.
|