pygeodesy 24.3.24__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. PyGeodesy-24.3.24.dist-info/METADATA +272 -0
  2. PyGeodesy-24.3.24.dist-info/RECORD +115 -0
  3. PyGeodesy-24.3.24.dist-info/WHEEL +6 -0
  4. PyGeodesy-24.3.24.dist-info/top_level.txt +1 -0
  5. pygeodesy/LICENSE +21 -0
  6. pygeodesy/__init__.py +615 -0
  7. pygeodesy/__main__.py +103 -0
  8. pygeodesy/albers.py +867 -0
  9. pygeodesy/auxilats/_CX_4.py +218 -0
  10. pygeodesy/auxilats/_CX_6.py +314 -0
  11. pygeodesy/auxilats/_CX_8.py +475 -0
  12. pygeodesy/auxilats/__init__.py +54 -0
  13. pygeodesy/auxilats/__main__.py +86 -0
  14. pygeodesy/auxilats/auxAngle.py +548 -0
  15. pygeodesy/auxilats/auxDLat.py +302 -0
  16. pygeodesy/auxilats/auxDST.py +296 -0
  17. pygeodesy/auxilats/auxLat.py +848 -0
  18. pygeodesy/auxilats/auxily.py +272 -0
  19. pygeodesy/azimuthal.py +1150 -0
  20. pygeodesy/basics.py +892 -0
  21. pygeodesy/booleans.py +2031 -0
  22. pygeodesy/cartesianBase.py +1062 -0
  23. pygeodesy/clipy.py +704 -0
  24. pygeodesy/constants.py +516 -0
  25. pygeodesy/css.py +660 -0
  26. pygeodesy/datums.py +752 -0
  27. pygeodesy/deprecated/__init__.py +61 -0
  28. pygeodesy/deprecated/bases.py +40 -0
  29. pygeodesy/deprecated/classes.py +262 -0
  30. pygeodesy/deprecated/consterns.py +54 -0
  31. pygeodesy/deprecated/datum.py +40 -0
  32. pygeodesy/deprecated/functions.py +375 -0
  33. pygeodesy/deprecated/nvector.py +48 -0
  34. pygeodesy/deprecated/rhumbBase.py +32 -0
  35. pygeodesy/deprecated/rhumbaux.py +33 -0
  36. pygeodesy/deprecated/rhumbsolve.py +33 -0
  37. pygeodesy/deprecated/rhumbx.py +33 -0
  38. pygeodesy/dms.py +986 -0
  39. pygeodesy/ecef.py +1348 -0
  40. pygeodesy/elevations.py +279 -0
  41. pygeodesy/ellipsoidalBase.py +1224 -0
  42. pygeodesy/ellipsoidalBaseDI.py +913 -0
  43. pygeodesy/ellipsoidalExact.py +343 -0
  44. pygeodesy/ellipsoidalGeodSolve.py +343 -0
  45. pygeodesy/ellipsoidalKarney.py +403 -0
  46. pygeodesy/ellipsoidalNvector.py +685 -0
  47. pygeodesy/ellipsoidalVincenty.py +590 -0
  48. pygeodesy/ellipsoids.py +2476 -0
  49. pygeodesy/elliptic.py +1198 -0
  50. pygeodesy/epsg.py +243 -0
  51. pygeodesy/errors.py +804 -0
  52. pygeodesy/etm.py +1190 -0
  53. pygeodesy/fmath.py +1013 -0
  54. pygeodesy/formy.py +1818 -0
  55. pygeodesy/frechet.py +865 -0
  56. pygeodesy/fstats.py +760 -0
  57. pygeodesy/fsums.py +1898 -0
  58. pygeodesy/gars.py +358 -0
  59. pygeodesy/geodesicw.py +581 -0
  60. pygeodesy/geodesicx/_C4_24.py +1699 -0
  61. pygeodesy/geodesicx/_C4_27.py +2395 -0
  62. pygeodesy/geodesicx/_C4_30.py +3301 -0
  63. pygeodesy/geodesicx/__init__.py +48 -0
  64. pygeodesy/geodesicx/__main__.py +91 -0
  65. pygeodesy/geodesicx/gx.py +1382 -0
  66. pygeodesy/geodesicx/gxarea.py +535 -0
  67. pygeodesy/geodesicx/gxbases.py +154 -0
  68. pygeodesy/geodesicx/gxline.py +669 -0
  69. pygeodesy/geodsolve.py +426 -0
  70. pygeodesy/geohash.py +914 -0
  71. pygeodesy/geoids.py +1884 -0
  72. pygeodesy/hausdorff.py +892 -0
  73. pygeodesy/heights.py +1155 -0
  74. pygeodesy/interns.py +687 -0
  75. pygeodesy/iters.py +545 -0
  76. pygeodesy/karney.py +919 -0
  77. pygeodesy/ktm.py +633 -0
  78. pygeodesy/latlonBase.py +1766 -0
  79. pygeodesy/lazily.py +960 -0
  80. pygeodesy/lcc.py +684 -0
  81. pygeodesy/ltp.py +1107 -0
  82. pygeodesy/ltpTuples.py +1563 -0
  83. pygeodesy/mgrs.py +721 -0
  84. pygeodesy/named.py +1324 -0
  85. pygeodesy/namedTuples.py +683 -0
  86. pygeodesy/nvectorBase.py +695 -0
  87. pygeodesy/osgr.py +781 -0
  88. pygeodesy/points.py +1686 -0
  89. pygeodesy/props.py +628 -0
  90. pygeodesy/resections.py +1048 -0
  91. pygeodesy/rhumb/__init__.py +46 -0
  92. pygeodesy/rhumb/aux_.py +397 -0
  93. pygeodesy/rhumb/bases.py +1148 -0
  94. pygeodesy/rhumb/ekx.py +563 -0
  95. pygeodesy/rhumb/solve.py +572 -0
  96. pygeodesy/simplify.py +647 -0
  97. pygeodesy/solveBase.py +472 -0
  98. pygeodesy/sphericalBase.py +724 -0
  99. pygeodesy/sphericalNvector.py +1264 -0
  100. pygeodesy/sphericalTrigonometry.py +1447 -0
  101. pygeodesy/streprs.py +627 -0
  102. pygeodesy/trf.py +2079 -0
  103. pygeodesy/triaxials.py +1484 -0
  104. pygeodesy/units.py +969 -0
  105. pygeodesy/unitsBase.py +349 -0
  106. pygeodesy/ups.py +538 -0
  107. pygeodesy/utily.py +1231 -0
  108. pygeodesy/utm.py +762 -0
  109. pygeodesy/utmups.py +318 -0
  110. pygeodesy/utmupsBase.py +517 -0
  111. pygeodesy/vector2d.py +785 -0
  112. pygeodesy/vector3d.py +968 -0
  113. pygeodesy/vector3dBase.py +1049 -0
  114. pygeodesy/webmercator.py +383 -0
  115. pygeodesy/wgrs.py +439 -0
@@ -0,0 +1,343 @@
1
+
2
+ # -*- coding: utf-8 -*-
3
+
4
+ u'''Exact ellipsoidal geodesy, intended I{for testing purposes only}.
5
+
6
+ Ellipsoidal geodetic (lat-/longitude) L{LatLon} and geocentric
7
+ (ECEF) L{Cartesian} classes and functions L{areaOf}, L{intersections2},
8
+ L{isclockwise}, L{nearestOn} and L{perimeterOf} based on module
9
+ L{geodsolve}, a wrapper invoking I{Karney}'s U{GeodSolve
10
+ <https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>} utility.
11
+ '''
12
+
13
+ # from pygeodesy.datums import _WGS84 # from .ellipsoidalBase
14
+ from pygeodesy.ellipsoidalBase import CartesianEllipsoidalBase, \
15
+ _nearestOn, _WGS84
16
+ from pygeodesy.ellipsoidalBaseDI import LatLonEllipsoidalBaseDI, _TOL_M, \
17
+ _intersection3, _intersections2
18
+ # from pygeodesy.errors import _xkwds # from .karney
19
+ from pygeodesy.karney import fabs, _polygon, Property_RO, _xkwds
20
+ from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS, _ALL_OTHER
21
+ from pygeodesy.points import _areaError, ispolar # PYCHOK exported
22
+ # from pygeodesy.props import Property_RO # from .karney
23
+
24
+ # from math import fabs # from .karney
25
+
26
+ __all__ = _ALL_LAZY.ellipsoidalGeodSolve
27
+ __version__ = '24.02.21'
28
+
29
+
30
+ class Cartesian(CartesianEllipsoidalBase):
31
+ '''Extended to convert exact L{Cartesian} to exact L{LatLon} points.
32
+ '''
33
+
34
+ def toLatLon(self, **LatLon_and_kwds): # PYCHOK LatLon=LatLon, datum=None
35
+ '''Convert this cartesian point to an exact geodetic point.
36
+
37
+ @kwarg LatLon_and_kwds: Optional L{LatLon} and L{LatLon} keyword
38
+ arguments as C{datum}. Use C{B{LatLon}=...,
39
+ B{datum}=...} to override this L{LatLon}
40
+ class or specify C{B{LatLon}=None}.
41
+
42
+ @return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is C{None},
43
+ an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
44
+ with C{C} and C{M} if available.
45
+
46
+ @raise TypeError: Invalid B{C{LatLon_and_kwds}} argument.
47
+ '''
48
+ kwds = _xkwds(LatLon_and_kwds, LatLon=LatLon, datum=self.datum)
49
+ return CartesianEllipsoidalBase.toLatLon(self, **kwds)
50
+
51
+
52
+ class LatLon(LatLonEllipsoidalBaseDI):
53
+ '''An ellipsoidal L{LatLon} like L{ellipsoidalKarney.LatLon} but using (exact)
54
+ geodesic I{wrapper} L{GeodesicSolve} to compute the geodesic distance,
55
+ initial and final bearing (azimuths) between two given points or the
56
+ destination point given a start point and an (initial) bearing.
57
+ '''
58
+
59
+ @Property_RO
60
+ def Equidistant(self):
61
+ '''Get the prefered azimuthal equidistant projection I{class} (L{EquidistantGeodSolve}).
62
+ '''
63
+ return _MODS.azimuthal.EquidistantGeodSolve
64
+
65
+ @Property_RO
66
+ def geodesicx(self):
67
+ '''Get this C{LatLon}'s (exact) geodesic (L{GeodesicSolve}).
68
+ '''
69
+ return self.datum.ellipsoid.geodsolve
70
+
71
+ geodesic = geodesicx # for C{._Direct} and C{._Inverse}
72
+
73
+ def toCartesian(self, **Cartesian_datum_kwds): # PYCHOK Cartesian=Cartesian, datum=None
74
+ '''Convert this point to exact cartesian (ECEF) coordinates.
75
+
76
+ @kwarg Cartesian_datum_kwds: Optional L{Cartesian}, B{C{datum}}
77
+ and other keyword arguments, ignored if C{B{Cartesian} is None}.
78
+ Use C{B{Cartesian}=...} to override this L{Cartesian} class
79
+ or set C{B{Cartesian} is None}.
80
+
81
+ @return: The cartesian (ECEF) coordinates (L{Cartesian}) or if
82
+ B{C{Cartesian}} is C{None}, an L{Ecef9Tuple}C{(x, y, z,
83
+ lat, lon, height, C, M, datum)} with C{C} and C{M} if
84
+ available.
85
+
86
+ @raise TypeError: Invalid B{C{Cartesian}}, B{C{datum}} or other
87
+ B{C{Cartesian_datum_kwds}}.
88
+ '''
89
+ kwds = _xkwds(Cartesian_datum_kwds, Cartesian=Cartesian, datum=self.datum)
90
+ return LatLonEllipsoidalBaseDI.toCartesian(self, **kwds)
91
+
92
+
93
+ def areaOf(points, datum=_WGS84, wrap=True):
94
+ '''Compute the area of an (ellipsoidal) polygon or composite.
95
+
96
+ @arg points: The polygon points (L{LatLon}[], L{BooleanFHP} or
97
+ L{BooleanGH}).
98
+ @kwarg datum: Optional datum (L{Datum}).
99
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
100
+ B{C{points}} (C{bool}).
101
+
102
+ @return: Area (C{meter}, same as units of the B{C{datum}}'s
103
+ ellipsoid axes, I{squared}).
104
+
105
+ @raise PointsError: Insufficient number of B{C{points}}.
106
+
107
+ @raise TypeError: Some B{C{points}} are not L{LatLon}.
108
+
109
+ @raise ValueError: Invalid C{B{wrap}=False}, unwrapped, unrolled
110
+ longitudes not supported.
111
+
112
+ @see: Functions L{pygeodesy.areaOf}, L{ellipsoidalExact.areaOf},
113
+ L{ellipsoidalKarney.areaOf}, L{sphericalNvector.areaOf}
114
+ and L{sphericalTrigonometry.areaOf}.
115
+ '''
116
+ return fabs(_polygon(datum.ellipsoid.geodsolve, points, True, False, wrap))
117
+
118
+
119
+ def intersection3(start1, end1, start2, end2, height=None, wrap=False, # was=True
120
+ equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
121
+ '''I{Iteratively} compute the intersection point of two lines, each defined
122
+ by two (ellipsoidal) points or by an (ellipsoidal) start point and an
123
+ (initial) bearing from North.
124
+
125
+ @arg start1: Start point of the first line (L{LatLon}).
126
+ @arg end1: End point of the first line (L{LatLon}) or the initial bearing
127
+ at the first point (compass C{degrees360}).
128
+ @arg start2: Start point of the second line (L{LatLon}).
129
+ @arg end2: End point of the second line (L{LatLon}) or the initial bearing
130
+ at the second point (compass C{degrees360}).
131
+ @kwarg height: Optional height at the intersection (C{meter}, conventionally)
132
+ or C{None} for the mean height.
133
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the B{C{start2}}
134
+ and B{C{end*}} points (C{bool}).
135
+ @kwarg equidistant: An azimuthal equidistant projection (I{class} or function
136
+ L{pygeodesy.equidistant}) or C{None} for the preferred
137
+ C{B{start1}.Equidistant}.
138
+ @kwarg tol: Tolerance for convergence and for skew line distance and length
139
+ (C{meter}, conventionally).
140
+ @kwarg LatLon: Optional class to return the intersection points (L{LatLon})
141
+ or C{None}.
142
+ @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments,
143
+ ignored if C{B{LatLon} is None}.
144
+
145
+ @return: An L{Intersection3Tuple}C{(point, outside1, outside2)} with C{point}
146
+ a B{C{LatLon}} or if C{B{LatLon} is None}, a L{LatLon4Tuple}C{(lat,
147
+ lon, height, datum)}.
148
+
149
+ @raise IntersectionError: Skew, colinear, parallel or otherwise
150
+ non-intersecting lines or no convergence
151
+ for the given B{C{tol}}.
152
+
153
+ @raise TypeError: Invalid or non-ellipsoidal B{C{start1}}, B{C{end1}},
154
+ B{C{start2}} or B{C{end2}} or invalid B{C{equidistant}}.
155
+
156
+ @note: For each line specified with an initial bearing, a pseudo-end point
157
+ is computed as the C{destination} along that bearing at about 1.5
158
+ times the distance from the start point to an initial gu-/estimate
159
+ of the intersection point (and between 1/8 and 3/8 of the authalic
160
+ earth perimeter).
161
+
162
+ @see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
163
+ calculating-intersection-of-two-circles>} and U{Karney's paper
164
+ <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME
165
+ BOUNDARIES} for more details about the iteration algorithm.
166
+ '''
167
+ return _intersection3(start1, end1, start2, end2, height=height, wrap=wrap,
168
+ equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
169
+
170
+
171
+ def intersections2(center1, radius1, center2, radius2, height=None, wrap=False, # was=True
172
+ equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
173
+ '''I{Iteratively} compute the intersection points of two circles, each defined
174
+ by an (ellipsoidal) center point and a radius.
175
+
176
+ @arg center1: Center of the first circle (L{LatLon}).
177
+ @arg radius1: Radius of the first circle (C{meter}, conventionally).
178
+ @arg center2: Center of the second circle (L{LatLon}).
179
+ @arg radius2: Radius of the second circle (C{meter}, same units as
180
+ B{C{radius1}}).
181
+ @kwarg height: Optional height for the intersection points (C{meter},
182
+ conventionally) or C{None} for the I{"radical height"}
183
+ at the I{radical line} between both centers.
184
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll B{C{center2}}
185
+ (C{bool}).
186
+ @kwarg equidistant: An azimuthal equidistant projection (I{class} or
187
+ function L{pygeodesy.equidistant}) or C{None} for
188
+ the preferred C{B{center1}.Equidistant}.
189
+ @kwarg tol: Convergence tolerance (C{meter}, same units as B{C{radius1}}
190
+ and B{C{radius2}}).
191
+ @kwarg LatLon: Optional class to return the intersection points (L{LatLon})
192
+ or C{None}.
193
+ @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments,
194
+ ignored if C{B{LatLon} is None}.
195
+
196
+ @return: 2-Tuple of the intersection points, each a B{C{LatLon}} instance
197
+ or L{LatLon4Tuple}C{(lat, lon, height, datum)} if C{B{LatLon} is
198
+ None}. For abutting circles, both points are the same instance,
199
+ aka the I{radical center}.
200
+
201
+ @raise IntersectionError: Concentric, antipodal, invalid or non-intersecting
202
+ circles or no convergence for the B{C{tol}}.
203
+
204
+ @raise TypeError: Invalid or non-ellipsoidal B{C{center1}} or B{C{center2}}
205
+ or invalid B{C{equidistant}}.
206
+
207
+ @raise UnitError: Invalid B{C{radius1}}, B{C{radius2}} or B{C{height}}.
208
+
209
+ @see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
210
+ calculating-intersection-of-two-circles>}, U{Karney's paper
211
+ <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME BOUNDARIES},
212
+ U{Circle-Circle<https://MathWorld.Wolfram.com/Circle-CircleIntersection.html>} and
213
+ U{Sphere-Sphere<https://MathWorld.Wolfram.com/Sphere-SphereIntersection.html>}
214
+ intersections.
215
+ '''
216
+ return _intersections2(center1, radius1, center2, radius2, height=height, wrap=wrap,
217
+ equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
218
+
219
+
220
+ def isclockwise(points, datum=_WGS84, wrap=True):
221
+ '''Determine the direction of a path or polygon.
222
+
223
+ @arg points: The path or polygon points (C{LatLon}[]).
224
+ @kwarg datum: Optional datum (L{Datum}).
225
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
226
+ B{C{points}} (C{bool}).
227
+
228
+ @return: C{True} if B{C{points}} are clockwise, C{False} otherwise.
229
+
230
+ @raise PointsError: Insufficient number of B{C{points}}.
231
+
232
+ @raise TypeError: Some B{C{points}} are not C{LatLon}.
233
+
234
+ @raise ValueError: The B{C{points}} enclose a pole or zero
235
+ area.
236
+
237
+ @see: L{pygeodesy.isclockwise}.
238
+ '''
239
+ a = _polygon(datum.ellipsoid.geodsolve, points, True, False, wrap)
240
+ if a < 0:
241
+ return True
242
+ elif a > 0:
243
+ return False
244
+ raise _areaError(points)
245
+
246
+
247
+ def nearestOn(point, point1, point2, within=True, height=None, wrap=False,
248
+ equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds):
249
+ '''I{Iteratively} locate the closest point on the geodesic between
250
+ two other (ellipsoidal) points.
251
+
252
+ @arg point: Reference point (C{LatLon}).
253
+ @arg point1: Start point of the geodesic (C{LatLon}).
254
+ @arg point2: End point of the geodesic (C{LatLon}).
255
+ @kwarg within: If C{True} return the closest point I{between}
256
+ B{C{point1}} and B{C{point2}}, otherwise the
257
+ closest point elsewhere on the geodesic (C{bool}).
258
+ @kwarg height: Optional height for the closest point (C{meter},
259
+ conventionally) or C{None} or C{False} for the
260
+ interpolated height. If C{False}, the closest
261
+ takes the heights of the points into account.
262
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll both
263
+ B{C{point1}} and B{C{point2}} (C{bool}).
264
+ @kwarg equidistant: An azimuthal equidistant projection (I{class}
265
+ or function L{pygeodesy.equidistant}) or C{None}
266
+ for the preferred C{B{point}.Equidistant}.
267
+ @kwarg tol: Convergence tolerance (C{meter}).
268
+ @kwarg LatLon: Optional class to return the closest point
269
+ (L{LatLon}) or C{None}.
270
+ @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
271
+ arguments, ignored if C{B{LatLon} is None}.
272
+
273
+ @return: Closest point, a B{C{LatLon}} instance or if C{B{LatLon}
274
+ is None}, a L{LatLon4Tuple}C{(lat, lon, height, datum)}.
275
+
276
+ @raise TypeError: Invalid or non-ellipsoidal B{C{point}}, B{C{point1}}
277
+ or B{C{point2}} or invalid B{C{equidistant}}.
278
+
279
+ @raise ValueError: No convergence for the B{C{tol}}.
280
+
281
+ @see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/
282
+ calculating-intersection-of-two-circles>} and U{Karney's paper
283
+ <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME
284
+ BOUNDARIES} for more details about the iteration algorithm.
285
+ '''
286
+ return _nearestOn(point, point1, point2, within=within, height=height, wrap=wrap,
287
+ equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds)
288
+
289
+
290
+ def perimeterOf(points, closed=False, datum=_WGS84, wrap=True):
291
+ '''Compute the perimeter of an (ellipsoidal) polygon or composite.
292
+
293
+ @arg points: The polygon points (L{LatLon}[], L{BooleanFHP} or
294
+ L{BooleanGH}).
295
+ @kwarg closed: Optionally, close the polygon (C{bool}).
296
+ @kwarg datum: Optional datum (L{Datum}).
297
+ @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the
298
+ B{C{points}} (C{bool}).
299
+
300
+ @return: Perimeter (C{meter}, same as units of the B{C{datum}}'s
301
+ ellipsoid axes).
302
+
303
+ @raise PointsError: Insufficient number of B{C{points}}.
304
+
305
+ @raise TypeError: Some B{C{points}} are not L{LatLon}.
306
+
307
+ @raise ValueError: Invalid C{B{wrap}=False}, unwrapped, unrolled
308
+ longitudes not supported or C{B{closed}=False}
309
+ with C{B{points}} a composite.
310
+
311
+ @see: Functions L{pygeodesy.perimeterOf}, L{ellipsoidalExact.perimeterOf},
312
+ L{ellipsoidalKarney.perimeterOf}, L{sphericalNvector.perimeterOf}
313
+ and L{sphericalTrigonometry.perimeterOf}.
314
+ '''
315
+ return _polygon(datum.ellipsoid.geodsolve, points, closed, True, wrap)
316
+
317
+
318
+ __all__ += _ALL_OTHER(Cartesian, LatLon, # classes
319
+ areaOf, # functions
320
+ intersection3, intersections2, isclockwise, ispolar,
321
+ nearestOn, perimeterOf)
322
+
323
+ # **) MIT License
324
+ #
325
+ # Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
326
+ #
327
+ # Permission is hereby granted, free of charge, to any person obtaining a
328
+ # copy of this software and associated documentation files (the "Software"),
329
+ # to deal in the Software without restriction, including without limitation
330
+ # the rights to use, copy, modify, merge, publish, distribute, sublicense,
331
+ # and/or sell copies of the Software, and to permit persons to whom the
332
+ # Software is furnished to do so, subject to the following conditions:
333
+ #
334
+ # The above copyright notice and this permission notice shall be included
335
+ # in all copies or substantial portions of the Software.
336
+ #
337
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
338
+ # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
339
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
340
+ # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
341
+ # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
342
+ # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
343
+ # OTHER DEALINGS IN THE SOFTWARE.