pygeodesy 24.3.24__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (115) hide show
  1. PyGeodesy-24.3.24.dist-info/METADATA +272 -0
  2. PyGeodesy-24.3.24.dist-info/RECORD +115 -0
  3. PyGeodesy-24.3.24.dist-info/WHEEL +6 -0
  4. PyGeodesy-24.3.24.dist-info/top_level.txt +1 -0
  5. pygeodesy/LICENSE +21 -0
  6. pygeodesy/__init__.py +615 -0
  7. pygeodesy/__main__.py +103 -0
  8. pygeodesy/albers.py +867 -0
  9. pygeodesy/auxilats/_CX_4.py +218 -0
  10. pygeodesy/auxilats/_CX_6.py +314 -0
  11. pygeodesy/auxilats/_CX_8.py +475 -0
  12. pygeodesy/auxilats/__init__.py +54 -0
  13. pygeodesy/auxilats/__main__.py +86 -0
  14. pygeodesy/auxilats/auxAngle.py +548 -0
  15. pygeodesy/auxilats/auxDLat.py +302 -0
  16. pygeodesy/auxilats/auxDST.py +296 -0
  17. pygeodesy/auxilats/auxLat.py +848 -0
  18. pygeodesy/auxilats/auxily.py +272 -0
  19. pygeodesy/azimuthal.py +1150 -0
  20. pygeodesy/basics.py +892 -0
  21. pygeodesy/booleans.py +2031 -0
  22. pygeodesy/cartesianBase.py +1062 -0
  23. pygeodesy/clipy.py +704 -0
  24. pygeodesy/constants.py +516 -0
  25. pygeodesy/css.py +660 -0
  26. pygeodesy/datums.py +752 -0
  27. pygeodesy/deprecated/__init__.py +61 -0
  28. pygeodesy/deprecated/bases.py +40 -0
  29. pygeodesy/deprecated/classes.py +262 -0
  30. pygeodesy/deprecated/consterns.py +54 -0
  31. pygeodesy/deprecated/datum.py +40 -0
  32. pygeodesy/deprecated/functions.py +375 -0
  33. pygeodesy/deprecated/nvector.py +48 -0
  34. pygeodesy/deprecated/rhumbBase.py +32 -0
  35. pygeodesy/deprecated/rhumbaux.py +33 -0
  36. pygeodesy/deprecated/rhumbsolve.py +33 -0
  37. pygeodesy/deprecated/rhumbx.py +33 -0
  38. pygeodesy/dms.py +986 -0
  39. pygeodesy/ecef.py +1348 -0
  40. pygeodesy/elevations.py +279 -0
  41. pygeodesy/ellipsoidalBase.py +1224 -0
  42. pygeodesy/ellipsoidalBaseDI.py +913 -0
  43. pygeodesy/ellipsoidalExact.py +343 -0
  44. pygeodesy/ellipsoidalGeodSolve.py +343 -0
  45. pygeodesy/ellipsoidalKarney.py +403 -0
  46. pygeodesy/ellipsoidalNvector.py +685 -0
  47. pygeodesy/ellipsoidalVincenty.py +590 -0
  48. pygeodesy/ellipsoids.py +2476 -0
  49. pygeodesy/elliptic.py +1198 -0
  50. pygeodesy/epsg.py +243 -0
  51. pygeodesy/errors.py +804 -0
  52. pygeodesy/etm.py +1190 -0
  53. pygeodesy/fmath.py +1013 -0
  54. pygeodesy/formy.py +1818 -0
  55. pygeodesy/frechet.py +865 -0
  56. pygeodesy/fstats.py +760 -0
  57. pygeodesy/fsums.py +1898 -0
  58. pygeodesy/gars.py +358 -0
  59. pygeodesy/geodesicw.py +581 -0
  60. pygeodesy/geodesicx/_C4_24.py +1699 -0
  61. pygeodesy/geodesicx/_C4_27.py +2395 -0
  62. pygeodesy/geodesicx/_C4_30.py +3301 -0
  63. pygeodesy/geodesicx/__init__.py +48 -0
  64. pygeodesy/geodesicx/__main__.py +91 -0
  65. pygeodesy/geodesicx/gx.py +1382 -0
  66. pygeodesy/geodesicx/gxarea.py +535 -0
  67. pygeodesy/geodesicx/gxbases.py +154 -0
  68. pygeodesy/geodesicx/gxline.py +669 -0
  69. pygeodesy/geodsolve.py +426 -0
  70. pygeodesy/geohash.py +914 -0
  71. pygeodesy/geoids.py +1884 -0
  72. pygeodesy/hausdorff.py +892 -0
  73. pygeodesy/heights.py +1155 -0
  74. pygeodesy/interns.py +687 -0
  75. pygeodesy/iters.py +545 -0
  76. pygeodesy/karney.py +919 -0
  77. pygeodesy/ktm.py +633 -0
  78. pygeodesy/latlonBase.py +1766 -0
  79. pygeodesy/lazily.py +960 -0
  80. pygeodesy/lcc.py +684 -0
  81. pygeodesy/ltp.py +1107 -0
  82. pygeodesy/ltpTuples.py +1563 -0
  83. pygeodesy/mgrs.py +721 -0
  84. pygeodesy/named.py +1324 -0
  85. pygeodesy/namedTuples.py +683 -0
  86. pygeodesy/nvectorBase.py +695 -0
  87. pygeodesy/osgr.py +781 -0
  88. pygeodesy/points.py +1686 -0
  89. pygeodesy/props.py +628 -0
  90. pygeodesy/resections.py +1048 -0
  91. pygeodesy/rhumb/__init__.py +46 -0
  92. pygeodesy/rhumb/aux_.py +397 -0
  93. pygeodesy/rhumb/bases.py +1148 -0
  94. pygeodesy/rhumb/ekx.py +563 -0
  95. pygeodesy/rhumb/solve.py +572 -0
  96. pygeodesy/simplify.py +647 -0
  97. pygeodesy/solveBase.py +472 -0
  98. pygeodesy/sphericalBase.py +724 -0
  99. pygeodesy/sphericalNvector.py +1264 -0
  100. pygeodesy/sphericalTrigonometry.py +1447 -0
  101. pygeodesy/streprs.py +627 -0
  102. pygeodesy/trf.py +2079 -0
  103. pygeodesy/triaxials.py +1484 -0
  104. pygeodesy/units.py +969 -0
  105. pygeodesy/unitsBase.py +349 -0
  106. pygeodesy/ups.py +538 -0
  107. pygeodesy/utily.py +1231 -0
  108. pygeodesy/utm.py +762 -0
  109. pygeodesy/utmups.py +318 -0
  110. pygeodesy/utmupsBase.py +517 -0
  111. pygeodesy/vector2d.py +785 -0
  112. pygeodesy/vector3d.py +968 -0
  113. pygeodesy/vector3dBase.py +1049 -0
  114. pygeodesy/webmercator.py +383 -0
  115. pygeodesy/wgrs.py +439 -0
@@ -0,0 +1,1699 @@
1
+
2
+ # -*- coding: utf-8 -*-
3
+
4
+ u'''A Python version of part of I{Karney}'s C++ module U{GeodesicExactC4
5
+ <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1GeodesicExactC4.html>}.
6
+
7
+ Copyright (C) U{Charles Karney<mailto:Karney@Alum.MIT.edu>} (2008-2023)
8
+ and licensed under the MIT/X11 License. For more information, see the
9
+ U{GeographicLib<https://GeographicLib.SourceForge.io>} documentation.
10
+ '''
11
+ # See C{.geodesicx._C4_30.py} for a copy of comments from Karney's C{GeodesicExactC4.cpp}:
12
+
13
+ from pygeodesy.geodesicx.gxbases import _Gfloats, _f, _f2
14
+
15
+ __all__ = ()
16
+ __version__ = '23.08.19'
17
+
18
+ _g = _Gfloats(24)
19
+ _coeffs_24 = _g(( # GEOGRAPHICLIB_GEODESICEXACT_ORDER == 24
20
+ # Generated by Maxima on 2017-05-27 10:17:57-04:00
21
+ # C4[0], coeff of eps^23, polynomial in n of order 0
22
+ 2113, _f(34165005),
23
+ # C4[0], coeff of eps^22, polynomial in n of order 1
24
+ 5189536, 1279278, _f(54629842995),
25
+ # C4[0], coeff of eps^21, polynomial in n of order 2
26
+ _f(19420000), -9609488, 7145551, _f(87882790905),
27
+ # C4[0], coeff of eps^20, polynomial in n of order 3
28
+ _f(223285780800), -_f(146003016320), _f(72167144896),
29
+ _f(17737080900), _f(0x205dc0bcbd6d7),
30
+ # C4[0], coeff of eps^19, polynomial in n of order 4
31
+ _f(0x4114538e4c0), -_f(0x2f55bac3db0), _f(0x1ee26e63c60),
32
+ -_f(0xf3f108c690), _f(777582423783), _f(0x19244124e56e27),
33
+ # C4[0], coeff of eps^18, polynomial in n of order 5
34
+ _f(0x303f35e1bc93a0), -_f(0x24e1f056b1d580),
35
+ _f(0x1ab9fe0d1d4d60), -_f(0x1164c583e996c0),
36
+ _f(0x892da1e80cb20), _f(0x2194519fdb596),
37
+ _f2(3071, 0xfdd7cc41833d5),
38
+ # C4[0], coeff of eps^17, polynomial in n of order 6
39
+ _f(0x4aad22c875ed20), -_f(0x3a4801a1c6bad0),
40
+ _f(0x2c487fb318d4c0), -_f(0x1ff24d7cfd75b0),
41
+ _f(0x14ba39245f1460), -_f(0xa32e190328e90),
42
+ _f(0x78c93074dfcff), _f2(3071, 0xfdd7cc41833d5),
43
+ # C4[0], coeff of eps^16, polynomial in n of order 7
44
+ _f(0x33d84b92096e100), -_f(0x286d35d824ffe00),
45
+ _f(0x1f3d33e2e951300), -_f(0x178f58435181400),
46
+ _f(0x10e7992a3756500), -_f(0xaed7fa8609aa00),
47
+ _f(0x55d8ac87b09700), _f(0x14e51e43945a10),
48
+ _f2(21503, 0xf0e695ca96ad3),
49
+ # C4[0], coeff of eps^15, polynomial in n of order 8
50
+ _f(0x577cdb6aaee0d80), -_f(0x4283c1e96325470),
51
+ _f(0x32feef20b794020), -_f(0x26ea2e388de1a50),
52
+ _f(0x1d13f6131e5d6c0), -_f(0x14b9aa66e270230),
53
+ _f(0xd5657196ac0560), -_f(0x6880b0118a9810),
54
+ _f(0x4d0f1755168ee7), _f2(21503, 0xf0e695ca96ad3),
55
+ # C4[0], coeff of eps^14, polynomial in n of order 9
56
+ _f(0xa82410caed14920), -_f(0x774e0539d2de300),
57
+ _f(0x57ddc01c62bc8e0), -_f(0x41de50dfff43e40),
58
+ _f(0x31742450a1bdca0), -_f(0x248524531975180),
59
+ _f(0x19d013c6e35ec60), -_f(0x1084c003a0434c0),
60
+ _f(0x8103758ad86020), _f(0x1f2409edf5e286),
61
+ _f2(21503, 0xf0e695ca96ad3),
62
+ # C4[0], coeff of eps^13, polynomial in n of order 10
63
+ _f(0x1c6d2d6120015ca0), -_f(0x104cedef383403b0),
64
+ _f(0xab9dd58c3e3d880), -_f(0x78a4e83e5604750),
65
+ _f(0x57aa7cf5406e460), -_f(0x4067a93ceeb2cf0),
66
+ _f(0x2ed62190d975c40), -_f(0x20c076adcb21890),
67
+ _f(0x14cfa9cb9e01c20), -_f(0xa1e25734956e30),
68
+ _f(0x76afbfe4ae6c4d), _f2(21503, 0xf0e695ca96ad3),
69
+ # C4[0], coeff of eps^12, polynomial in n of order 11
70
+ _f(0x500e39e18e75c40), -_f(0xb866fe4aaa63680),
71
+ _f(0x4337db32e526ac0), -_f(0x264cce8c21af200),
72
+ _f(0x18fb7ba247a4140), -_f(0x115709558576d80),
73
+ _f(0xc5be96cd3dcfc0), -_f(0x8cdca1395db900),
74
+ _f(0x611fe1a7e00640), -_f(0x3d26e46827e480),
75
+ _f(0x1d93970a8fd4c0), _f(0x70bf87cc17354),
76
+ _f2(3071, 0xfdd7cc41833d5),
77
+ # C4[0], coeff of eps^11, polynomial in n of order 12
78
+ -_f(0x158a522ca96a9f40), _f(0x14d4e49882e048f0),
79
+ _f(0x51a6258bc6026a0), -_f(0xc07af3677bdc6b0),
80
+ _f(0x45ac09bc3b66080), -_f(0x275e4ef59a8b450),
81
+ _f(0x195f928e5402a60), -_f(0x114aa7eeb31a3f0),
82
+ _f(0xbf706c784da040), -_f(0x817ec7d97ab990),
83
+ _f(0x508b8ca80cde20), -_f(0x26b120ea091930),
84
+ _f(0x1c1ab3faf18ecd), _f2(3071, 0xfdd7cc41833d5),
85
+ # C4[0], coeff of eps^10, polynomial in n of order 13
86
+ _f(0x85cd94c7a43620), _f(0x41534458719f180),
87
+ -_f(0x1688b497e3eabf20), _f(0x15fa3ad6bcd8bd40),
88
+ _f(0x531c27984875fa0), -_f(0xc9b33381ee39f00),
89
+ _f(0x485a2b8a7ad1a60), -_f(0x286be979df41b40),
90
+ _f(0x199b6e19072f920), -_f(0x10f769bc7a1af80),
91
+ _f(0xb2b30e0b2b83e0), -_f(0x6d4c30bc0953c0),
92
+ _f(0x3405b9397b42a0), _f(0xc1ffd0ada51be),
93
+ _f2(3071, 0xfdd7cc41833d5),
94
+ # C4[0], coeff of eps^9, polynomial in n of order 14
95
+ _f(0x77c3b2fb788360), _f(0x12370e8b6ebba50),
96
+ _f(0x3ce89570a2d35c0), _f(0x1ddd463aa5801f30),
97
+ -_f2(2652, 0xb61760f09fe0), _f2(2613, 0x24df88b461210),
98
+ _f(0x24dea39341926e80), -_f(0x5ce704fae2f44110),
99
+ _f(0x20ecef343dc3cce0), -_f(0x121947a4ab4bae30),
100
+ _f(0xb2a76f84c78e740), -_f(0x70dd3a5c9a20950),
101
+ _f(0x43604f2667d29a0), -_f(0x1fa7f2abdd82670),
102
+ _f(0x169d55eb03244c1), _f2(21503, 0xf0e695ca96ad3),
103
+ # C4[0], coeff of eps^8, polynomial in n of order 15
104
+ _f(0x21331eec152c80), _f(0x3c94fa87392d00),
105
+ _f(0x7bff534019c580), _f(0x12eee208e5fe200),
106
+ _f(0x3f965ae4945ee80), _f(0x1f56cb06e4e85700),
107
+ -_f2(2802, 0x46e8e19f880), _f2(2796, 0xadb20bd4ec00),
108
+ _f(0x251d0efe774e7080), -_f(0x625b74d58e27ff00),
109
+ _f(0x224674d7e8ab8980), -_f(0x1260f3bdc69c0a00),
110
+ _f(0xad7256a98d1b280), -_f(0x63bd65ce944d500),
111
+ _f(0x2df89c0cd0d4b80), _f(0xa46618fc50ff08),
112
+ _f2(21503, 0xf0e695ca96ad3),
113
+ # C4[0], coeff of eps^7, polynomial in n of order 16
114
+ _f(0xcb641c2517300), _f(0x1435342f6c1790),
115
+ _f(0x2223c168d902a0), _f(0x3e90a70fac72b0),
116
+ _f(0x80a310c4f84640), _f(0x13bcb7c20d40bd0),
117
+ _f(0x42a5540b0e391e0), _f(0x210e40977bd376f0),
118
+ -_f2(2980, 0x94d9def1cc680), _f2(3022, 0x503caf61c4810),
119
+ _f(0x24d397da2b859120), -_f(0x68d822cc2f04ecd0),
120
+ _f(0x23a043b28810ecc0), -_f(0x125159fafe6e93b0),
121
+ _f(0x9e1bc8a31f5a060), -_f(0x46aed7b45d01890),
122
+ _f(0x30c71f0f146542f), _f2(21503, 0xf0e695ca96ad3),
123
+ # C4[0], coeff of eps^6, polynomial in n of order 17
124
+ _f(0x5c9c64c833ea0), _f(0x87cba49bc6200), _f(0xcee016a8ff560),
125
+ _f(0x14a860e941a1c0), _f(0x231567934bf020),
126
+ _f(0x40a648fc642980), _f(0x85b2123b2c36e0),
127
+ _f(0x14a4159e5b98140), _f(0x462d226dee7d1a0),
128
+ _f(0x2316888f6f2f3100), -_f2(3198, 0x3491a799c37a0),
129
+ _f2(3311, 0xbf8f265e6c0c0), _f(0x2372de10575f2320),
130
+ -_f(0x70af5543c56e4780), _f(0x24bbd6e6395ee9e0),
131
+ -_f(0x116009bab4325fc0), _f(0x75b7dfa9c5a24a0),
132
+ _f(0x17de90e4beab49e), _f2(21503, 0xf0e695ca96ad3),
133
+ # C4[0], coeff of eps^5, polynomial in n of order 18
134
+ _f(0x6a525328e6e0), _f(0x93f17033fb30), _f(0xd36a04706f00),
135
+ _f(0x137db4aaadad0), _f(0x1de17febed720), _f(0x300ece09a4c70),
136
+ _f(0x5230537724340), _f(0x98911a7bab410), _f(0x13df6f0042d760),
137
+ _f(0x317f809c6f75b0), _f(0xa9d28ba9acb780),
138
+ _f(0x55d121ad9d8f550), -_f(0x1efee1555125f860),
139
+ _f(0x21073529064696f0), _f(0x486394f46ccebc0),
140
+ -_f(0x11777145e6374170), _f(0x54159fc268987e0),
141
+ -_f(0x1fa4dd5835d2fd0), _f(0x13d87fc86cca643),
142
+ _f2(3071, 0xfdd7cc41833d5),
143
+ # C4[0], coeff of eps^4, polynomial in n of order 19
144
+ _f(0x3804d31f10c0), _f(0x4b2ec20ad280), _f(0x66f0ea418040),
145
+ _f(0x903f2204b400), _f(0xcfad72d447c0), _f(0x134cb9fa41580),
146
+ _f(0x1dd70e331b740), _f(0x306dd8a084700), _f(0x53a0a0b201ec0),
147
+ _f(0x9cd7c33c89880), _f(0x14a7b599a9ce40),
148
+ _f(0x340e256f2c5a00), _f(0xb4e7d2cf7515c0),
149
+ _f(0x5cc8e678862db80), -_f(0x22304c48df63bac0),
150
+ _f(0x25f7d3a888bb6d00), _f(0x3210c8a6905acc0),
151
+ -_f(0x131873ea3222a180), _f(0x4a33217f63b9c40),
152
+ _f(0xaa39109cb79b1c), _f2(3071, 0xfdd7cc41833d5),
153
+ # C4[0], coeff of eps^3, polynomial in n of order 20
154
+ _f(0x1d8a60744340), _f(0x26a12f47d0f0), _f(0x3353c9ffe420),
155
+ _f(0x4570fd193850), _f(0x5fe8194aa900), _f(0x87a7057de1b0),
156
+ _f(0xc54ab4558de0), _f(0x12897a64b8910), _f(0x1d013b7f18ec0),
157
+ _f(0x2fb033b96ea70), _f(0x5384f3e45a7a0), _f(0x9f10eb531c1d0),
158
+ _f(0x154d17c994d480), _f(0x36ab828088cb30),
159
+ _f(0xc1d47f99841160), _f(0x65b5717bb21c290),
160
+ -_f(0x269fd1ef6edfa5c0), _f(0x2dc2d3f3f9f963f0),
161
+ -_f(0xf46c321c1b54e0), -_f(0x14642b52c5fe94b0),
162
+ _f(0x6b46a122c3b5c05), _f2(3071, 0xfdd7cc41833d5),
163
+ # C4[0], coeff of eps^2, polynomial in n of order 21
164
+ _f(0x65e46db33460), _f(0x82b39a7b3380), _f(0xa9e8c6cf36a0),
165
+ _f(0xe0317d0fa0c0), _f(0x12cd0399df4e0), _f(0x19b576ed17600),
166
+ _f(0x23ecb07d1c720), _f(0x33785d3e48b40), _f(0x4bedad56b0560),
167
+ _f(0x73f4d1eccb880), _f(0xb8a5a1bdc07a0), _f(0x1359aad161d5c0),
168
+ _f(0x22a518d96d25e0), _f(0x43a50f3643bb00),
169
+ _f(0x95133a4d60b820), _f(0x18b02de0f4e4040),
170
+ _f(0x5ac287501571660), _f(0x31a5fa2db58d3d80),
171
+ -_f2(5087, 0xbd2e8f8d6760), _f2(6752, 0x2ce8487308ac0),
172
+ -_f2(2184, 0x86ffdb3446920), -_f(0x199994ff919cd3b6),
173
+ _f2(21503, 0xf0e695ca96ad3),
174
+ # C4[0], coeff of eps^1, polynomial in n of order 22
175
+ _f(0xd0da1980ba0), _f(0x10803fb20d70), _f(0x151a70ced0c0),
176
+ _f(0x1b569dc61a10), _f(0x23ecd2ce6de0), _f(0x2ff80cba60b0),
177
+ _f(0x413672596700), _f(0x5a7b8b75a550), _f(0x8082f2984020),
178
+ _f(0xbb859b75abf0), _f(0x11a6bf1637d40), _f(0x1b9a143813890),
179
+ _f(0x2d2aacb8da260), _f(0x4e2c5253a0f30), _f(0x914a9e2ed3380),
180
+ _f(0x128a302f4ef3d0), _f(0x2b2226f5e6b4a0),
181
+ _f(0x7a36190e0daa70), _f(0x1e8d8643836a9c0),
182
+ _f(0x129e3dd12414f710), -_f2(2184, 0x86ffdb3446920),
183
+ _f2(3276, 0xca7fc8ce69db0), -_f(0x5999897e7da4e4fd),
184
+ _f2(7167, 0xfaf78743878f1),
185
+ # C4[0], coeff of eps^0, polynomial in n of order 23
186
+ _f(0x71a68037fdf14), _f(0x81ebac5d53b48), _f(0x957440e8ac5fc),
187
+ _f(0xad1ce56088670), _f(0xca0c260c189e4), _f(0xedd10e292f598),
188
+ _f(0x11a912af9e18cc), _f(0x1534f4af92bec0),
189
+ _f(0x19c5b078ed00b4), _f(0x1fc05a701dd7e8),
190
+ _f(0x27bd1031afaf9c), _f(0x32a7dc61183710),
191
+ _f(0x41fc58560eb384), _f(0x583759590a1238),
192
+ _f(0x79bd058a3bfa6c), _f(0xaecdc650561f60),
193
+ _f(0x108312ea2251254), _f(0x1abbd57b12fd488),
194
+ _f(0x2fbd21c97d5693c), _f(0x634bf45b6b1a7b0),
195
+ _f(0x11110dffb6688d24), _f(0x666653fe46734ed8),
196
+ -_f2(5734, 0x625f9f69393f4), _f2(14335, 0xf5ef0e870f1e2),
197
+ _f2(21503, 0xf0e695ca96ad3),
198
+ # C4[1], coeff of eps^23, polynomial in n of order 0
199
+ 3401, _f(512475075),
200
+ # C4[1], coeff of eps^22, polynomial in n of order 1
201
+ -5479232, 3837834, _f(163889528985),
202
+ # C4[1], coeff of eps^21, polynomial in n of order 2
203
+ -_f(1286021216), _f(571443856), _f(142575393), _f(0xef8343fb2e1),
204
+ # C4[1], coeff of eps^20, polynomial in n of order 3
205
+ -_f(237999188352), _f(138477414656), -_f(77042430080),
206
+ _f(53211242700), _f(0x6119423638485),
207
+ # C4[1], coeff of eps^19, polynomial in n of order 4
208
+ -_f(0x2066cb6031fc0), _f(0x14c85e7394470), -_f(0xf6b8f35571e0),
209
+ _f(0x6ad3f08040d0), _f(0x1aa3b2832565), _f(0x230f8ed873f29c63),
210
+ # C4[1], coeff of eps^18, polynomial in n of order 5
211
+ -_f(0x33e9644cad5b40), _f(0x22b6849ca6a500),
212
+ -_f(0x1ce364ad2a4ec0), _f(0x104aaed8cf4680),
213
+ -_f(0x949f0f8a89e40), _f(0x64bcf4df920c2),
214
+ _f2(9215, 0xf98764c489b7f),
215
+ # C4[1], coeff of eps^17, polynomial in n of order 6
216
+ -_f(0x50a85b2e2e4060), _f(0x36bb9aa442c6f0),
217
+ -_f(0x3029aafbbe0440), _f(0x1dc29c0bd6ce90),
218
+ -_f(0x16a422844d9020), _f(0x9763b8d8ca030),
219
+ _f(0x25b8d7edff7eb), _f2(9215, 0xf98764c489b7f),
220
+ # C4[1], coeff of eps^16, polynomial in n of order 7
221
+ -_f(0x3822c174e5c7e00), _f(0x25fbaf973d78c00),
222
+ -_f(0x222a860fbdb7a00), _f(0x15dabd7a0984800),
223
+ -_f(0x129f00215535600), _f(0xa0e9e0ae9b8400),
224
+ -_f(0x5ee97a6d2d5200), _f(0x3eaf5acabd0e30),
225
+ _f2(64511, 0xd2b3c15fc4079),
226
+ # C4[1], coeff of eps^15, polynomial in n of order 8
227
+ -_f(0x5ec1dcd7666b480), _f(0x3ed4935a3fd8cd0),
228
+ -_f(0x38014f5e5d79960), _f(0x240af6a53256570),
229
+ -_f(0x2049d0fb0404a40), _f(0x12efbc065d3f410),
230
+ -_f(0xee9d804d5d8320), _f(0x5ed209adebbcb0),
231
+ _f(0x1798ea7fdd6773), _f2(64511, 0xd2b3c15fc4079),
232
+ # C4[1], coeff of eps^14, polynomial in n of order 9
233
+ -_f(0x19f69929deb8bc0), _f(0x1054723730b1600),
234
+ -_f(0xdce6aeb616e040), _f(0x8c0069813d6480),
235
+ -_f(0x7e59f70027c8c0), _f(0x4bea01551feb00),
236
+ -_f(0x42bb28790cad40), _f(0x21dd61f97d4180),
237
+ -_f(0x14f93d4343f5c0), _f(0xd58968a8df35e),
238
+ _f2(9215, 0xf98764c489b7f),
239
+ # C4[1], coeff of eps^13, polynomial in n of order 10
240
+ -_f(0x1ecd4a3794400de0), _f(0x101df33ec1bb0110),
241
+ -_f(0xbc64ec7794b2980), _f(0x71d5f4e2a637ff0),
242
+ -_f(0x625888ecafc7520), _f(0x3aa6879742ff4d0),
243
+ -_f(0x3585f7f60d164c0), _f(0x1d18174ef21abb0),
244
+ -_f(0x18117eb39416c60), _f(0x8df7a42ab2f090),
245
+ _f(0x23413de9276581), _f2(64511, 0xd2b3c15fc4079),
246
+ # C4[1], coeff of eps^12, polynomial in n of order 11
247
+ -_f(0x113775cb09582880), _f(0x5790112bb17c4700),
248
+ -_f(0x204e01ed2b929d80), _f(0x1063af9e8d99cc00),
249
+ -_f(0xc3ef805036ada80), _f(0x701a56aa2d31100),
250
+ -_f(0x63910631abdcf80), _f(0x368e0c562512600),
251
+ -_f(0x31ed34307286c80), _f(0x170e89cb9dd1b00),
252
+ -_f(0xf5f0efdd07a180), _f(0x93fb623bde75e4),
253
+ _f2(64511, 0xd2b3c15fc4079),
254
+ # C4[1], coeff of eps^11, polynomial in n of order 12
255
+ _f(0x13635f7860ae69c0), -_f(0x169d904d9d4691d0),
256
+ -_f(0x2254277308cd9e0), _f(0xd20446e8d8a9710),
257
+ -_f(0x4df2aedeefd1980), _f(0x25e2aff2baec9f0),
258
+ -_f(0x1d3856fa2b08920), _f(0xf7cadc640f92d0),
259
+ -_f(0xe3d2f6c9ad5cc0), _f(0x6e412eaf297db0),
260
+ -_f(0x62000ef613c860), _f(0x201266fb021690),
261
+ _f(0x7ee4c480c21e1), _f2(9215, 0xf98764c489b7f),
262
+ # C4[1], coeff of eps^10, polynomial in n of order 13
263
+ -_f(0x5fe482817c4c40), -_f(0x3373730b4b79d00),
264
+ _f(0x140f919171472640), -_f(0x17f10e5417ef9980),
265
+ -_f(0x1b454cf244cf340), _f(0xdd42319af5c0200),
266
+ -_f(0x530205145e450c0), _f(0x25eec00584a7d80),
267
+ -_f(0x1e9e562555aaa40), _f(0xe85806d73b2100),
268
+ -_f(0xde44387c5bb7c0), _f(0x581f06023d3480),
269
+ -_f(0x421ccd71c33140), _f(0x245ff7208ef53a),
270
+ _f2(9215, 0xf98764c489b7f),
271
+ # C4[1], coeff of eps^9, polynomial in n of order 14
272
+ -_f(0x47f3709eaa4320), -_f(0xbb640bc2e1ae70),
273
+ -_f(0x2a7854a3ead7b40), -_f(0x1701de8d91314210),
274
+ _f2(2329, 0x5f8472b9624a0), -_f2(2855, 0xe7c1182872fb0),
275
+ -_f(0x785bf95be998780), _f(0x66690260b30024b0),
276
+ -_f(0x272595745774a3a0), _f(0x104f772bee315710),
277
+ -_f(0xe11ad02f34b53c0), _f(0x5a192e055800370),
278
+ -_f(0x58d8bfb781fbbe0), _f(0x17a156426e4c5d0),
279
+ _f(0x5c88907e67c575), _f2(64511, 0xd2b3c15fc4079),
280
+ # C4[1], coeff of eps^8, polynomial in n of order 15
281
+ -_f(0x1138d3e7324700), -_f(0x210a1008a4f200),
282
+ -_f(0x47b7d2285e8500), -_f(0xbbe3dba17a1400),
283
+ -_f(0x2aeb63e9e4cb300), -_f(0x1781d8a9c80b7600),
284
+ _f2(2419, 0xe4212c9be8f00), -_f2(3063, 0xd7c230ad9b800),
285
+ -_f(0x116171a56015f00), _f(0x6cc31b4079da8600),
286
+ -_f(0x2af22cc657d11d00), _f(0xf75e4ec12d0a400),
287
+ -_f(0xeb60cc0dd754b00), _f(0x472a49a74880200),
288
+ -_f(0x4174f343c328900), _f(0x1ed324af4f2fd18),
289
+ _f2(64511, 0xd2b3c15fc4079),
290
+ # C4[1], coeff of eps^7, polynomial in n of order 16
291
+ -_f(0xd56426d4f700), -_f(0x15fa65017d450),
292
+ -_f(0x26ba18ad11e20), -_f(0x4a9605f1a58f0),
293
+ -_f(0xa2b494aee2940), -_f(0x1ad07f38fd2390),
294
+ -_f(0x62deb836d71c60), -_f(0x36d68c47bf27830),
295
+ _f(0x167d3fa4abc50480), -_f(0x1d9b2fd161b99ad0),
296
+ _f(0x13a59aea9293560), _f(0x10886ca52ccf3090),
297
+ -_f(0x6e8a4c27dbf8dc0), _f(0x1f02cd8f1f8a5f0),
298
+ -_f(0x2216230a1ac48e0), _f(0x5f13c815b08150),
299
+ _f(0x1666b06ca8f56d), _f2(9215, 0xf98764c489b7f),
300
+ # C4[1], coeff of eps^6, polynomial in n of order 17
301
+ -_f(0x2678d0ed9f140), -_f(0x39d0dbe263c00),
302
+ -_f(0x5aa623a5216c0), -_f(0x95d2f30c44880),
303
+ -_f(0x108ea4db631840), -_f(0x2005d27e0acd00),
304
+ -_f(0x463ad5e0e22dc0), -_f(0xba80ab02c40180),
305
+ -_f(0x2b67c47d5d48f40), -_f(0x186d6a49f7da1e00),
306
+ _f2(2625, 0x9832921f08b40), -_f2(3627, 0xa72ee4675a80),
307
+ _f(0x17be252bac67e9c0), _f(0x7a8f5366d9ba1100),
308
+ -_f(0x38a15d77b043abc0), _f(0x9cd4e0bf35fec80),
309
+ -_f(0xceae5004f176d40), _f(0x479bb2ae3c01dda),
310
+ _f2(64511, 0xd2b3c15fc4079),
311
+ # C4[1], coeff of eps^5, polynomial in n of order 18
312
+ -_f(0x11dc9e54dea60), -_f(0x193ec5647cdf0),
313
+ -_f(0x24bda460ceb00), -_f(0x3760182d9a010),
314
+ -_f(0x5717ea0e54ba0), -_f(0x907095ecddc30),
315
+ -_f(0x10063188dee040), -_f(0x1f228e862f9650),
316
+ -_f(0x44adcde9a37ce0), -_f(0xb7cbf8f2d0e270),
317
+ -_f(0x2b3f803c770f580), -_f(0x18c05d008644d490),
318
+ _f2(2737, 0x3ce4b1d74e1e0), -_f2(4017, 0xdf79eceb980b0),
319
+ _f(0x30ac41edd5123540), _f(0x7e3ade121a8e0530),
320
+ -_f(0x45ec5d28a0fecf60), _f(0x3577aaf625fa910),
321
+ _f(0x7292b77d2ccfc9), _f2(64511, 0xd2b3c15fc4079),
322
+ # C4[1], coeff of eps^4, polynomial in n of order 19
323
+ -_f(0x14469ef39280), -_f(0x1b74a6d65900), -_f(0x25fc6724f380),
324
+ -_f(0x35e25bf6c800), -_f(0x4eb76c6a3c80), -_f(0x771a92ddb700),
325
+ -_f(0xbc1644489d80), -_f(0x13946cde25600),
326
+ -_f(0x22eaf36054680), -_f(0x44349dbbbd500),
327
+ -_f(0x976a625a56780), -_f(0x1989ef99e16400),
328
+ -_f(0x6150e2c16e3080), -_f(0x38c68feccea3300),
329
+ _f(0x1963a1a8e71b2e80), -_f(0x2849f713f5ed7200),
330
+ _f(0xd30bac57bb18580), _f(0x105e1a36741daf00),
331
+ -_f(0xc8c696e03b05b80), _f(0x1feab31d626d154),
332
+ _f2(9215, 0xf98764c489b7f),
333
+ # C4[1], coeff of eps^3, polynomial in n of order 20
334
+ -_f(0xa4172dfa1c0), -_f(0xd77fb109ed0), -_f(0x11fc3eda7860),
335
+ -_f(0x1879b9235cf0), -_f(0x2209eb95db00), -_f(0x308bcfa5f110),
336
+ -_f(0x47510fa29da0), -_f(0x6c88ffcf6f30), -_f(0xac6dd3019440),
337
+ -_f(0x120fcca63eb50), -_f(0x206b8121592e0),
338
+ -_f(0x3fc3a9ace7970), -_f(0x8ea4f3b556d80),
339
+ -_f(0x18488ccc5b2d90), -_f(0x5db9d9787df820),
340
+ -_f(0x37d6c7544511bb0), _f(0x1a02f9f8abfbf940),
341
+ -_f(0x2d9fe91163ac57d0), _f(0x18b01234447992a0),
342
+ _f(0x46ed1c414c80a10), -_f(0x57c56c90ceabfa7),
343
+ _f2(9215, 0xf98764c489b7f),
344
+ # C4[1], coeff of eps^2, polynomial in n of order 21
345
+ -_f(0x2271f7278cc0), -_f(0x2c3f5c6ec900), -_f(0x399dc5a18140),
346
+ -_f(0x4c2bebb96280), -_f(0x6670101499c0), -_f(0x8c75450f5400),
347
+ -_f(0xc4e9f8733e40), -_f(0x11b3ff75a0580),
348
+ -_f(0x1a3e7cf3fd6c0), -_f(0x2853a9e02df00),
349
+ -_f(0x40b8bca6ccb40), -_f(0x6da2a9d234880),
350
+ -_f(0xc6fc7477c83c0), -_f(0x18bdddb834aa00),
351
+ -_f(0x37ff6cf7616840), -_f(0x9a5f4811c06b80),
352
+ -_f(0x25bde21729de0c0), -_f(0x16ea24b2a28ff500),
353
+ _f2(2841, 0x69c686bdbaac0), -_f2(5560, 0x9d73ff6dcae80),
354
+ _f2(4369, 0xdffb6688d240), -_f(0x4cccbefeb4d67b22),
355
+ _f2(64511, 0xd2b3c15fc4079),
356
+ # C4[1], coeff of eps^1, polynomial in n of order 22
357
+ -_f(0xd0da1980ba0), -_f(0x10803fb20d70), -_f(0x151a70ced0c0),
358
+ -_f(0x1b569dc61a10), -_f(0x23ecd2ce6de0), -_f(0x2ff80cba60b0),
359
+ -_f(0x413672596700), -_f(0x5a7b8b75a550), -_f(0x8082f2984020),
360
+ -_f(0xbb859b75abf0), -_f(0x11a6bf1637d40),
361
+ -_f(0x1b9a143813890), -_f(0x2d2aacb8da260),
362
+ -_f(0x4e2c5253a0f30), -_f(0x914a9e2ed3380),
363
+ -_f(0x128a302f4ef3d0), -_f(0x2b2226f5e6b4a0),
364
+ -_f(0x7a36190e0daa70), -_f(0x1e8d8643836a9c0),
365
+ -_f(0x129e3dd12414f710), _f2(2184, 0x86ffdb3446920),
366
+ -_f2(3276, 0xca7fc8ce69db0), _f(0x5999897e7da4e4fd),
367
+ _f2(64511, 0xd2b3c15fc4079),
368
+ # C4[2], coeff of eps^23, polynomial in n of order 0
369
+ 10384, _f(854125125),
370
+ # C4[2], coeff of eps^22, polynomial in n of order 1
371
+ _f(61416608), 15713412, _f(0x35f1be97217),
372
+ # C4[2], coeff of eps^21, polynomial in n of order 2
373
+ _f(1053643008), -_f(709188480), _f(436906360), _f(0x18f301bf7f77),
374
+ # C4[2], coeff of eps^20, polynomial in n of order 3
375
+ _f(0x45823cb069c0), -_f(0x3dc56cd10180), _f(0x15b4532d4340),
376
+ _f(0x5946b207ad8), _f(0xf72bf6e15a9abe5),
377
+ # C4[2], coeff of eps^19, polynomial in n of order 4
378
+ _f(0x1b1b08a8c6e00), -_f(0x1a1dea5249180), _f(0xc1b857255700),
379
+ -_f(0x8a94db95d080), _f(0x5209b9749ec8),
380
+ _f(0x3a6f4368c13f04a5),
381
+ # C4[2], coeff of eps^18, polynomial in n of order 5
382
+ _f(0x13c972f90d64d60), -_f(0x12d8369dbbbb080),
383
+ _f(0xa013fa80d7c1a0), -_f(0x95d1a2bb4de840),
384
+ _f(0x30a495fb9aa5e0), _f(0xc95efc891d64c),
385
+ _f2(107519, 0xb480ecf4f161f),
386
+ # C4[2], coeff of eps^17, polynomial in n of order 6
387
+ _f(0x4b31e4eff4bc00), -_f(0x4190c8b5d5de00),
388
+ _f(0x27770ac0842800), -_f(0x270a0d33995200),
389
+ _f(0x10c9f01b859400), -_f(0xd056352974600),
390
+ _f(0x74f9dc1f6f260), _f2(15359, 0xf536fd4790329),
391
+ # C4[2], coeff of eps^16, polynomial in n of order 7
392
+ _f(0x39908ef33285d00), -_f(0x2a7d467835cbe00),
393
+ _f(0x1e0505551ade700), -_f(0x1bf3204cf26d400),
394
+ _f(0xe195527d96f100), -_f(0xe0af5ccd52ea00),
395
+ _f(0x41681113e87b00), _f(0x1112b429bab2a0),
396
+ _f2(107519, 0xb480ecf4f161f),
397
+ # C4[2], coeff of eps^15, polynomial in n of order 8
398
+ _f(0xf8fa0142055000), -_f(0x8f8aa7832e8a00),
399
+ _f(0x7d6f3ddfb47c00), -_f(0x62d1e182b7be00),
400
+ _f(0x3bb149eddea800), -_f(0x3be3b3e26a7200),
401
+ _f(0x175d0d17dad400), -_f(0x14371cfc4fa600),
402
+ _f(0xa8f8f5855a060), _f2(15359, 0xf536fd4790329),
403
+ # C4[2], coeff of eps^14, polynomial in n of order 9
404
+ _f(0x21490cd145715e0), -_f(0xe087822f191900),
405
+ _f(0xf91f2bb3d29820), -_f(0x949428c90dc2c0),
406
+ _f(0x7371ad50b34a60), -_f(0x63c52e9a850c80),
407
+ _f(0x301579a22c8ca0), -_f(0x33552a69ca1640),
408
+ _f(0xcc2c8c733bee0), _f(0x35f5f30acfbec),
409
+ _f2(15359, 0xf536fd4790329),
410
+ # C4[2], coeff of eps^13, polynomial in n of order 10
411
+ _f(0x29bb6acaa073ef00), -_f(0xc930d526d728e80),
412
+ _f(0xf55c2b3103d0c00), -_f(0x63b9281a5449980),
413
+ _f(0x6acdfd5dbb92900), -_f(0x441c8fce3be0480),
414
+ _f(0x2be797a45cb8600), -_f(0x2aec3395f438f80),
415
+ _f(0xec70ff5d376300), -_f(0xedc27143c9fa80),
416
+ _f(0x7039bcd0124e68), _f2(107519, 0xb480ecf4f161f),
417
+ # C4[2], coeff of eps^12, polynomial in n of order 11
418
+ -_f(0x17ce935fc610ad40), -_f(0x5d5bbde81a902580),
419
+ _f(0x2dcc12fb45c89240), -_f(0xc1c61e98a479e00),
420
+ _f(0x10183633a5ddf1c0), -_f(0x672de318faa1680),
421
+ _f(0x64ee85310393140), -_f(0x481cf983db0cf00),
422
+ _f(0x2299f24f52810c0), -_f(0x271fc56086d0780),
423
+ _f(0x79dac155045040), _f(0x20c44d35dada38),
424
+ _f2(107519, 0xb480ecf4f161f),
425
+ # C4[2], coeff of eps^11, polynomial in n of order 12
426
+ -_f(0x6b8bdbaa2666e600), _f2(2706, 0x6d4e4332c7e80),
427
+ -_f(0x201eb2939ffc7500), -_f(0x605f6d97c740b880),
428
+ _f(0x32fb1ca66ccebc00), -_f(0xb85f2dd585e0f80),
429
+ _f(0x10b7dbe9dec0ed00), -_f(0x6e454f6a0fd4680),
430
+ _f(0x594f6f139205e00), -_f(0x4c204810d601d80),
431
+ _f(0x16a875347934f00), -_f(0x1be72589c185480),
432
+ _f(0xb5a396e2ccd788), _f2(107519, 0xb480ecf4f161f),
433
+ # C4[2], coeff of eps^10, polynomial in n of order 13
434
+ _f(0x332d666e095e20), _f(0x205e97ebfb32780),
435
+ -_f(0xf80bf36cd359f20), _f(0x19615ff8d71e0640),
436
+ -_f(0x61aef235a414c60), -_f(0xe1fda0393083b00),
437
+ _f(0x83e2ad192fc7660), -_f(0x18ece140ef0fc40),
438
+ _f(0x26bbb213037c920), -_f(0x11a4c9418dd9d80),
439
+ _f(0x9ec708de66cbe0), -_f(0xaee5994e9b7ec0),
440
+ _f(0x1626e135e59ea0), _f(0x610ef2b6b35c4),
441
+ _f2(15359, 0xf536fd4790329),
442
+ # C4[2], coeff of eps^9, polynomial in n of order 14
443
+ _f(0x1b709db1871200), _f(0x51a2a024c26b00),
444
+ _f(0x157c554050bb400), _f(0xddb41f944653d00),
445
+ -_f(0x6d182f563006aa00), _f2(2991, 0xf7eb0ae304f00),
446
+ -_f(0x387b65599c618800), -_f(0x64242336a83ddf00),
447
+ _f(0x4282c6eaa3899a00), -_f(0xa8fc3afb1e6cd00),
448
+ _f(0x1040dddbf0493c00), -_f(0x9184bc07b2bfb00),
449
+ _f(0x281ea22622bde00), -_f(0x3dc59bc648ee900),
450
+ _f(0x13fb78815b4ca90), _f2(107519, 0xb480ecf4f161f),
451
+ # C4[2], coeff of eps^8, polynomial in n of order 15
452
+ _f(0xacc0646b5180), _f(0x1753663f74b00), _f(0x3994d0061e480),
453
+ _f(0xadc1fbdd72e00), _f(0x2e87a44adab780),
454
+ _f(0x1eaeb3451821100), -_f(0xf937e414930b580),
455
+ _f(0x1c27d8b21df37400), -_f(0xaa5908f76fee280),
456
+ -_f(0xe1c8d327ee92900), _f(0xb2675f22d49b080),
457
+ -_f(0x19e66cd66684600), _f(0x1f3a47aa5ea8380),
458
+ -_f(0x18da246c74e6300), _f(0x10dd3b80dd1680),
459
+ _f(0x3f21f272d2a30), _f2(15359, 0xf536fd4790329),
460
+ # C4[2], coeff of eps^7, polynomial in n of order 16
461
+ _f(0x2957d7da1000), _f(0x4c28ba8a3700), _f(0x9714a6610e00),
462
+ _f(0x14a5ff52a4500), _f(0x33af2f78d8c00), _f(0x9e87298409300),
463
+ _f(0x2b4e15dbd10a00), _f(0x1d4c6da210ea100),
464
+ -_f(0xf6c4a6847e2f800), _f(0x1da98c51a6b5ef00),
465
+ -_f(0xe1270d810dcfa00), -_f(0xd23a021f3080300),
466
+ _f(0xd3b280b26948400), -_f(0x22fd890d309b500),
467
+ _f(0x119ef453c630200), -_f(0x1959af9980da700),
468
+ _f(0x5959078fa70870), _f2(15359, 0xf536fd4790329),
469
+ # C4[2], coeff of eps^6, polynomial in n of order 17
470
+ _f(0x511612baa2a0), _f(0x87a79de92a00), _f(0xee2dd20af160),
471
+ _f(0x1bbcfaf32f4c0), _f(0x37ba524fb5020), _f(0x7b9b8f2a45f80),
472
+ _f(0x13a76fcf6fdee0), _f(0x3d717a0fbe0a40),
473
+ _f(0x112dc752f02bda0), _f(0xbfa002cc4689500),
474
+ -_f(0x694405622017f3a0), _f2(3484, 0x979f3cbb89fc0),
475
+ -_f2(2088, 0x4fe2045ae14e0), -_f(0x49f87439584d3580),
476
+ _f(0x6c3e90c1455479e0), -_f(0x1afff07538f04ac0),
477
+ -_f(0x1a0f4cdf3b62760), -_f(0x112f9b85f9ebf7c),
478
+ _f2(107519, 0xb480ecf4f161f),
479
+ # C4[2], coeff of eps^5, polynomial in n of order 18
480
+ _f(0x181437e05500), _f(0x25c7b1fe6a80), _f(0x3d5ebd606800),
481
+ _f(0x67dd27f0e580), _f(0xb8ac7d2a7b00), _f(0x15ce71e5cc080),
482
+ _f(0x2c7c6a3654e00), _f(0x6460c05d0bb80), _f(0x1046637cd7a100),
483
+ _f(0x340d46956b9680), _f(0xef5f1bde883400),
484
+ _f(0xacec6aed73c1180), -_f(0x63ea680d7ea23900),
485
+ _f2(3605, 0xecc3861a0ec80), -_f2(2759, 0xc804a6c40e600),
486
+ -_f(0x212a787bd0571880), _f(0x70c6a0884332ed00),
487
+ -_f(0x31a5fa2db58d3d80), _f(0x5033807138f7d98),
488
+ _f2(107519, 0xb480ecf4f161f),
489
+ # C4[2], coeff of eps^4, polynomial in n of order 19
490
+ _f(0x6f3f0983c40), _f(0xa6cf9192980), _f(0x100e50e166c0),
491
+ _f(0x197f658cec00), _f(0x29f706a6f140), _f(0x480b7a0eae80),
492
+ _f(0x821ecd9c1bc0), _f(0xfa1d1da0b100), _f(0x2081a78802640),
493
+ _f(0x4aefd4add3380), _f(0xc730805b650c0), _f(0x28f491e04e7600),
494
+ _f(0xc2d07512dddb40), _f(0x92e539684c6b880),
495
+ -_f(0x5a2096cfc695fa40), _f2(3598, 0x9cd1e91b83b00),
496
+ -_f2(3553, 0x1d49601c5efc0), _f(0x31a5fa2db58d3d80),
497
+ _f(0x3760835a5e313ac0), -_f(0x1bed5cb9b61f7298),
498
+ _f2(107519, 0xb480ecf4f161f),
499
+ # C4[2], coeff of eps^3, polynomial in n of order 20
500
+ _f(273006835200), _f(395945493120), _f(586817304320),
501
+ _f(891220401024), _f(0x1440886f800), _f(0x20a73015480),
502
+ _f(0x36a4a027900), _f(0x5f8b4acad80), _f(0xb01798c3a00),
503
+ _f(0x15a2eb8a6680), _f(0x2e235b147b00), _f(0x6d6a30f2bf80),
504
+ _f(0x12c54474b7c00), _f(0x40129870df880), _f(0x13e41ecc817d00),
505
+ _f(0xfcf67c8cf45180), -_f(0xa65f288fe794200),
506
+ _f(0x1cea83a477ce0a80), -_f(0x240239aaff748100),
507
+ _f(0x1547221396f36380), -_f(0x4e04d247d427178),
508
+ _f2(15359, 0xf536fd4790329),
509
+ # C4[2], coeff of eps^2, polynomial in n of order 21
510
+ _f(317370445920), _f(448806691200), _f(646426411680),
511
+ _f(950282020800), _f(0x14ccaecc4e0), _f(0x201acdf4e00),
512
+ _f(0x33093819720), _f(0x53ed06eb440), _f(0x8f8eb441960),
513
+ _f(0x1013bf0bfa80), _f(0x1e750d7baba0), _f(0x3dc4346800c0),
514
+ _f(0x88729901ade0), _f(0x150e863aba700), _f(0x3c89c1e8d8020),
515
+ _f(0xd9efed463cd40), _f(0x47e39644808260),
516
+ _f(0x3d1b0c8706d5380), -_f(0x2af704cef0cdeb60),
517
+ _f(0x7c1ef17245e119c0), -_f2(2184, 0x86ffdb3446920),
518
+ _f(0x333329ff2339a76c), _f2(107519, 0xb480ecf4f161f),
519
+ # C4[3], coeff of eps^23, polynomial in n of order 0
520
+ 70576, _f(29211079275),
521
+ # C4[3], coeff of eps^22, polynomial in n of order 1
522
+ -_f(31178752), _f(16812224), _f(0x192c8c2464f),
523
+ # C4[3], coeff of eps^21, polynomial in n of order 2
524
+ -_f(135977211392), _f(37023086848), _f(9903771944),
525
+ _f(0xb98f5d0044051),
526
+ # C4[3], coeff of eps^20, polynomial in n of order 3
527
+ -_f(0x30f8b0f5c00), _f(0x12d79f66800), -_f(0x115c7023400),
528
+ _f(606224480400), _f(0xa7c6f527b4f7c7),
529
+ # C4[3], coeff of eps^19, polynomial in n of order 4
530
+ -_f(0x3317d68847dc00), _f(0x19fc69dd236700),
531
+ -_f(0x1c6d14df7ace00), _f(0x6cfe4fac52d00),
532
+ _f(0x1d99f24357808), _f2(30105, 0x847604e86c8c1),
533
+ # C4[3], coeff of eps^18, polynomial in n of order 5
534
+ -_f(0x15b0eba45ef8000), _f(0xf79bdd24a10000),
535
+ -_f(0xf32a8559288000), _f(0x563281b24a8000),
536
+ -_f(0x5920796c2f8000), _f(0x29f7b73471c480),
537
+ _f2(150527, 0x964e188a1ebc5),
538
+ # C4[3], coeff of eps^17, polynomial in n of order 6
539
+ -_f(0x1c02d0336ef1800), _f(0x1d91ba24525dc00),
540
+ -_f(0x163d203e4811000), _f(0xb8e8b252aa8400),
541
+ -_f(0xd2485de6110800), _f(0x2a40e341b4ac00),
542
+ _f(0xbb70f2cbcf360), _f2(150527, 0x964e188a1ebc5),
543
+ # C4[3], coeff of eps^16, polynomial in n of order 7
544
+ -_f(0x58b4aa16ae3000), _f(0x7fa0a14380e000),
545
+ -_f(0x429ab6e3829000), _f(0x383428ed0d4000),
546
+ -_f(0x32e93ebd99f000), _f(0x108fe88bbda000),
547
+ -_f(0x13ba86ffa65000), _f(0x868b4ab8e3340),
548
+ _f2(21503, 0xf0e695ca96ad3),
549
+ # C4[3], coeff of eps^15, polynomial in n of order 8
550
+ -_f(0xaedfc7febee000), _f(0xe403ca9386ec00),
551
+ -_f(0x5568aa53f7a800), _f(0x76f3d9af940400),
552
+ -_f(0x475f28b7bb7000), _f(0x29018461d69c00),
553
+ -_f(0x2ed89591f13800), _f(0x74380445fb400),
554
+ _f(0x21274712bcba0), _f2(21503, 0xf0e695ca96ad3),
555
+ # C4[3], coeff of eps^14, polynomial in n of order 9
556
+ -_f(0x231ca125e5c8000), _f(753027184687 << 17),
557
+ -_f(0x97f88531f38000), _f(0xee839ade908000),
558
+ -_f(0x572a9cdd748000), _f(0x65a05d4f5f0000),
559
+ -_f(0x4ce11756538000), _f(0x177f524c958000),
560
+ -_f(0x20e57338048000), _f(0xc4518e260f380),
561
+ _f2(21503, 0xf0e695ca96ad3),
562
+ # C4[3], coeff of eps^13, polynomial in n of order 10
563
+ -_f(0x44ebd4477ad4f200), _f(0x9a6a6024b320f00),
564
+ -_f(0xe915ce102d6a800), _f(0xb28d5273bcee100),
565
+ -_f(0x37fa968ec235e00), _f(0x68974b850671300),
566
+ -_f(0x2a735b9bf505400), _f(0x20513dd7a7f6500),
567
+ -_f(0x220360a9be2ca00), _f(0x36d1c1a3f49700),
568
+ _f(0x10369a2227fd98), _f2(150527, 0x964e188a1ebc5),
569
+ # C4[3], coeff of eps^12, polynomial in n of order 11
570
+ _f(0x52462bb828351400), _f(0x4a4d1c14e6172800),
571
+ -_f(0x4ced32c430d22400), _f(0xb52b1b0c2492000),
572
+ -_f(0xd058359466b1c00), _f(0xd07709dd3bd1800),
573
+ -_f(0x30072e56aae5400), _f(0x605c027d5629000),
574
+ -_f(0x32e58b8ebb44c00), _f(0x108221f23a90800),
575
+ -_f(0x1a7ac7295958400), _f(0x836be4086f28d0),
576
+ _f2(150527, 0x964e188a1ebc5),
577
+ # C4[3], coeff of eps^11, polynomial in n of order 12
578
+ _f(0x48f7bc8748dd3400), -_f2(2561, 0x7f9f9673a4700),
579
+ _f(0x601d0ed1c7f2b600), _f(0x449204e4f86d4300),
580
+ -_f(0x56194f80f81a8800), _f(0xea108cfa6f6ed00),
581
+ -_f(0xa7ad46bd016c600), _f(0xef32c344e507700),
582
+ -_f(0x30a1762ff0e4400), _f(0x4a78ea25c4fa100),
583
+ -_f(0x3c3cca9d1bd4200), _f(0x22cbd76a022b00),
584
+ _f(0x9df3abb037278), _f2(150527, 0x964e188a1ebc5),
585
+ # C4[3], coeff of eps^10, polynomial in n of order 13
586
+ -_f(0x9607df2a17c000), -_f(0x739371b7f3d8000),
587
+ _f(0x4688c366039fc000), -_f2(2611, 0x8a66cbfc04000),
588
+ _f(0x7056fbc7b1c24000), _f(0x3af7506941670000),
589
+ -_f(0x601cadbaecf24000), _f(0x14affbea17164000),
590
+ -_f(0x6daccbfd0bfc000), _f(0x1036680bb42b8000),
591
+ -_f(0x42f04a7d6e84000), _f(0x246d9b6ab84c000),
592
+ -_f(0x37cce3b53adc000), _f(0xd43660c7def0c0),
593
+ _f2(150527, 0x964e188a1ebc5),
594
+ # C4[3], coeff of eps^9, polynomial in n of order 14
595
+ -_f(0x115a7e31ff400), -_f(0x3c90c47c29600),
596
+ -_f(0x1311ab10640800), -_f(0xf2246746703a00),
597
+ _f(0x99b5e8c5c68e400), -_f(0x179a6d9c8ead9e00),
598
+ _f(0x12bd250608495000), _f(0x63777cc9563be00),
599
+ -_f(0xf1ef7972c204400), _f(0x47367775d725a00),
600
+ -_f(0x63378c7bb15800), _f(0x22d63078c5cb600),
601
+ -_f(0xf8707c83e76c00), -_f(0xb0e06786eae00),
602
+ -_f(0x5e4438ea922f0), _f2(21503, 0xf0e695ca96ad3),
603
+ # C4[3], coeff of eps^8, polynomial in n of order 15
604
+ -_f(0x1fe011d85800), -_f(0x4f422fb05000), -_f(0xe40060fc8800),
605
+ -_f(0x32e664e9c2000), -_f(0x1078ec0ef63800),
606
+ -_f(0xd864902b71f000), _f(0x8fab71292d19800),
607
+ -_f(0x179bbec0170ac000), _f(0x15c925f1e4f1e800),
608
+ _f(0x2c36e0d96c07000), -_f(0x100d07856dfe4800),
609
+ _f(0x6d9c3efea16a000), -_f(0x13ac4a3567f800),
610
+ _f(0x15b22a4de1ed000), -_f(0x1452d18e2b42800),
611
+ _f(0x32eab893d697a0), _f2(21503, 0xf0e695ca96ad3),
612
+ # C4[3], coeff of eps^7, polynomial in n of order 16
613
+ -_f(0x5003ad66000), -_f(0xa79ae296200), -_f(0x17d9e9f5d400),
614
+ -_f(0x3c8762ad2600), -_f(0xb232a56ac800), -_f(0x28dbf6ee52a00),
615
+ -_f(0xda6199e36bc00), -_f(0xba74c6aa46ee00),
616
+ _f(0x825959cb764d000), -_f(0x17232e4c4e57f200),
617
+ _f(0x190bf0598fc65c00), -_f(0x27c51cb844db600),
618
+ -_f(0xf8735fc98339800), _f(0xa28217eef524600),
619
+ -_f(0xfc87c9cb4a8c00), -_f(0x3228ffc0ed7e00),
620
+ -_f(0x387bf611406670), _f2(21503, 0xf0e695ca96ad3),
621
+ # C4[3], coeff of eps^6, polynomial in n of order 17
622
+ -_f(0x62d694dc000), -_f(97716157 << 17), -_f(0x173b38f24000),
623
+ -_f(0x319b0ca1c000), -_f(0x7361a893c000), -_f(0x12be5bef38000),
624
+ -_f(0x38b3402cc4000), -_f(0xd6a4403694000),
625
+ -_f(0x4a69cc1535c000), -_f(0x42816c266fd0000),
626
+ _f(0x315cb6a39d95c000), -_f2(2449, 0xcf91c36a8c000),
627
+ _f2(3143, 0x2391393fc4000), -_f(0x466890d45f668000),
628
+ -_f(0x50368754849c4000), _f(0x594b313771cfc000),
629
+ -_f(0x1cc16f4e99cdc000), _f(0x1e8d8643836a9c0),
630
+ _f2(150527, 0x964e188a1ebc5),
631
+ # C4[3], coeff of eps^5, polynomial in n of order 18
632
+ -_f(0x1136c8f5600), -_f(0x1e3b013df00), -_f(0x37550c23000),
633
+ -_f(0x6a508e10100), -_f(0xd872daf0a00), -_f(0x1d8dd6618300),
634
+ -_f(0x468422b6a400), -_f(0xbc9d06f02500), -_f(0x24d784d09be00),
635
+ -_f(0x90d122dffa700), -_f(0x347ca809f91800),
636
+ -_f(0x31861ec3b2ac900), _f(0x276d051382ba8e00),
637
+ -_f2(2163, 0x55347fa444b00), _f2(3319, 0x8d7da907400),
638
+ -_f2(2191, 0xdbae56666ed00), -_f(0x47e396448082600),
639
+ _f(0x3577aaf625fa9100), -_f(0x1449fb28d544cb98),
640
+ _f2(150527, 0x964e188a1ebc5),
641
+ # C4[3], coeff of eps^4, polynomial in n of order 19
642
+ -_f(58538142720), -_f(97662466048), -_f(168340530176),
643
+ -_f(301206585344), -_f(562729180160), -_f(0x1017e988800),
644
+ -_f(0x21987b95400), -_f(0x4b78a99d000), -_f(0xb9ccd9f8c00),
645
+ -_f(0x202de3701800), -_f(0x68b6655d0400), -_f(0x1af3df037e000),
646
+ -_f(0xa515b5f563c00), -_f(0xa65924698da800),
647
+ _f(0x8fc72c890104c00), -_f(0x226e597c6e0df000),
648
+ _f(0x3ee7237bf0721400), -_f(0x3d1b0c8706d53800),
649
+ _f(0x1e8d8643836a9c00), -_f(0x634bf45b6b1a7b0),
650
+ _f2(50175, 0xdcc4b2d8b4e97),
651
+ # C4[3], coeff of eps^3, polynomial in n of order 20
652
+ -_f(16545868800), -_f(26558972160), -_f(43799006720),
653
+ -_f(74458311424), -_f(131016159232), -_f(239806362880),
654
+ -_f(459418505728), -_f(928488660736), -_f(0x1d19ea9f400),
655
+ -_f(0x43b761f2900), -_f(0xad7cf6b5600), -_f(0x1f71d9841300),
656
+ -_f(0x6bcf7c0df800), -_f(0x1d7abbebd1d00),
657
+ -_f(0xc1b8d2e919a00), -_f(0xd3e226aef40700),
658
+ _f(0xc94a0b2634a0400), -_f(0x3577aaf625fa9100),
659
+ _f(0x6aef55ec4bf52200), -_f(0x634bf45b6b1a7b00),
660
+ _f(0x22221bff6cd11a48), _f2(150527, 0x964e188a1ebc5),
661
+ # C4[4], coeff of eps^23, polynomial in n of order 0
662
+ 567424, _f(87633237825),
663
+ # C4[4], coeff of eps^22, polynomial in n of order 1
664
+ _f(2135226368), _f(598833664), _f(0x1358168b64fd9),
665
+ # C4[4], coeff of eps^21, polynomial in n of order 2
666
+ _f(23101878272), -_f(26986989568), _f(11760203136),
667
+ _f(0x4f869592664b5),
668
+ # C4[4], coeff of eps^20, polynomial in n of order 3
669
+ _f(0xa4d4b674a00), -_f(0xbdc38ed8400), _f(0x20274dfee00),
670
+ _f(635330794560), _f(0x436914c918b5d6d),
671
+ # C4[4], coeff of eps^19, polynomial in n of order 4
672
+ _f(0x481bf9079c000), -_f(0x3c015f7917000), _f(0x133447522e000),
673
+ -_f(0x195b19983d000), _f(0xa0f15f7a8700),
674
+ _f2(3518, 0xd3a367a37a66d),
675
+ # C4[4], coeff of eps^18, polynomial in n of order 5
676
+ _f(0x1e9f26efa689000), -_f(0x100c94382c2c000),
677
+ _f(0xabead3c2e1f000), -_f(0xc04c79a6f96000),
678
+ _f(0x18fb8548735000), _f(0x76d40a3ef6c00),
679
+ _f2(193535, 0x781b441f4c16b),
680
+ # C4[4], coeff of eps^17, polynomial in n of order 6
681
+ _f(0x780536a0606000), -_f(0x28779739e97000),
682
+ _f(0x3a9fdf130c4000), -_f(0x2860390cb81000),
683
+ _f(0xcce73d3902000), -_f(0x1322aa5844b000),
684
+ _f(0x6bd0a3ad69900), _f2(27647, 0xec962e4d9d27d),
685
+ # C4[4], coeff of eps^16, polynomial in n of order 7
686
+ _f(0x45af61c2ad1f800), -_f(0x1b140a5252fd000),
687
+ _f(0x348e789bd7f6800), -_f(0x137ac7aed3be000),
688
+ _f(0x11da35dc2ded800), -_f(0x12097ef153ff000),
689
+ _f(0x186b19645c4800), _f(0x7935fe20ccb00),
690
+ _f2(193535, 0x781b441f4c16b),
691
+ # C4[4], coeff of eps^15, polynomial in n of order 8
692
+ _f(0x788485be348000), -_f(0xbf417480965000),
693
+ _f(0xbdad05e3bd6000), -_f(0x306dcc448df000),
694
+ _f(0x6c08266aea4000), -_f(0x364dbd52879000),
695
+ _f(0x13468d692f2000), -_f(0x1f6575294f3000),
696
+ _f(0x97982d7211100), _f2(27647, 0xec962e4d9d27d),
697
+ # C4[4], coeff of eps^14, polynomial in n of order 9
698
+ _f(0x99754be5293000), -_f(0x273b2ae73028000),
699
+ _f(0xa610233e31d000), -_f(0x8ee7336f99e000),
700
+ _f(0xd7a1a110827000), -_f(0x2f0d74b9c14000),
701
+ _f(0x4f375451ab1000), -_f(0x4002b6db48a000),
702
+ _f(0x20d804cbbb000), _f(0xa41d3b221400),
703
+ _f2(27647, 0xec962e4d9d27d),
704
+ # C4[4], coeff of eps^13, polynomial in n of order 10
705
+ _f(0x6016f6408271a000), -_f(0x1e7546e7a0d1b000),
706
+ _f(0x18e4e98f72c8000), -_f(0x113f96068e695000),
707
+ _f(0x6af41cd57176000), -_f(0x2590480c1d6f000),
708
+ _f(0x61253410a664000), -_f(0x1c92661c6269000),
709
+ _f(0xfa686d5b4d2000), -_f(0x188238347643000),
710
+ _f(0x60544135abb900), _f2(193535, 0x781b441f4c16b),
711
+ # C4[4], coeff of eps^12, polynomial in n of order 11
712
+ -_f2(2096, 0xf9dac0e4d8600), -_f(0xa96847f4d191400),
713
+ _f(0x644f115411ee9e00), -_f(0x2912ee32dfa61000),
714
+ -_f(0x81eeabcb01be00), -_f(0xfba8345c9670c00),
715
+ _f(0x9bbda8340726600), -_f(0x11537009b3f0800),
716
+ _f(0x51c2ea8aa8c0a00), -_f(0x2bb89caf7310400),
717
+ -_f(0x162bd9b163d200), -_f(0xac0895744a3c0),
718
+ _f2(193535, 0x781b441f4c16b),
719
+ # C4[4], coeff of eps^11, polynomial in n of order 12
720
+ -_f(0x296aa6e320b86000), _f(0x7d9f9f72af514800),
721
+ -_f2(2284, 0xfefdd7e855000), _f(0x8d22edc50949800),
722
+ _f(0x6581767b41ffc000), -_f(0x371ad32683bb1800),
723
+ -_f(0x915b5d6cd33000), -_f(0xbce7db3a027c800),
724
+ _f(0xd0ebaf65b57e000), -_f(0x1274db255bb7800),
725
+ _f(0x2970a5137d6f000), -_f(0x30b8535f9002800),
726
+ _f(0x8fa21d365c3780), _f2(193535, 0x781b441f4c16b),
727
+ # C4[4], coeff of eps^10, polynomial in n of order 13
728
+ _f(0x73aaee373e800), _f(0x6d942f05126000),
729
+ -_f(0x55d059f7fa72800), _f(0x114ee97e0f335000),
730
+ -_f(0x16053fa9ce763800), _f(0x4d23952dbcc4000),
731
+ _f(0xdda0de6f17eb800), -_f(0xa56bf33e63ad000),
732
+ _f(0x90dadc83efa800), -_f(0xbf52dd8df9e000),
733
+ _f(0x2172ab2d7549800), -_f(0x85ae20f708f000),
734
+ -_f(0x10c904999a7800), -_f(0xae78582fbfa00),
735
+ _f2(27647, 0xec962e4d9d27d),
736
+ # C4[4], coeff of eps^9, polynomial in n of order 14
737
+ _f(0x19fde85a2f000), _f(0x6b4aa2bef4800), _f(0x28c46a7eab6000),
738
+ _f(0x2827ed076a87800), -_f(0x210a7394d5283000),
739
+ _f(0x72396f4bbfb2a800), -_f2(2620, 0x4dc0771ddc000),
740
+ _f(0x40dce91ee367d800), _f(0x52592d2deb84b000),
741
+ -_f(0x5a9bf1fdd05df800), _f(0x10e48562d1f92000),
742
+ _f(0x1d4b91258bb3800), _f(0xaa81c5529799000),
743
+ -_f(0x6eadf18b1729800), _f(0xd0db43634fa080),
744
+ _f2(193535, 0x781b441f4c16b),
745
+ # C4[4], coeff of eps^8, polynomial in n of order 15
746
+ _f(0x45bda664400), _f(0xc8c97088800), _f(0x2a5a46b84c00),
747
+ _f(0xb467fe915000), _f(0x471c8a3c15400), _f(0x49361b74ae1800),
748
+ -_f(0x3fb304ab7e4a400), _f(0xedcc81cc3d0e000),
749
+ -_f(0x1834aac92fbf9c00), _f(0xe864613c6aba800),
750
+ _f(0x759492ec34a6c00), -_f(0xea1e49c1b0f9000),
751
+ _f(0x5db63d617b37400), _f(0x31083890113800),
752
+ -_f(0xa60c227ea8400), -_f(0x3b3da9a3dab180),
753
+ _f2(27647, 0xec962e4d9d27d),
754
+ # C4[4], coeff of eps^7, polynomial in n of order 16
755
+ _f(469241266176), _f(0x10545cac800), _f(0x2adf04bd000),
756
+ _f(0x7eec6985800), _f(0x1ba16d402000), _f(0x7a072d7ae800),
757
+ _f(0x322ca20e07000), _f(0x3657aa17207800),
758
+ -_f(0x3263434d5c54000), _f(0xcd0703e8db70800),
759
+ -_f(0x17ea571d4aa2f000), _f(0x141161dbf7ec9800),
760
+ -_f(0x57d62fedaaa000), -_f(0xce7cd449810d800),
761
+ _f(0x99132fccc31b000), -_f(0x27598ad75934800),
762
+ _f(0x18a5cd1eccf980), _f2(27647, 0xec962e4d9d27d),
763
+ # C4[4], coeff of eps^6, polynomial in n of order 17
764
+ _f(341540329472), _f(727668064256), _f(0x180da872800),
765
+ _f(0x3b0b3acd000), _f(0x9f94c3e7800), _f(0x1e8177ec2000),
766
+ _f(0x6e3ee471c800), _f(0x1fbe99a5b7000), _f(0xdb641b5c91800),
767
+ _f(0xfc08a38932c000), -_f(0xfb6a7929bd39800),
768
+ _f(0x466e762d282a1000), -_f2(2430, 0x8d7c552bc4800),
769
+ _f2(2721, 0xe81cb8f96000), -_f(0x4dc0eea70f08f800),
770
+ -_f(0x1b9eda123c275000), _f(0x2eba54dfb9ee5800),
771
+ -_f(0xf46c321c1b54e00), _f2(193535, 0x781b441f4c16b),
772
+ # C4[4], coeff of eps^5, polynomial in n of order 18
773
+ _f(31160807424), _f(61322082304), _f(3864763 << 15),
774
+ _f(276675840000), _f(646157094912), _f(0x17cd936d800),
775
+ _f(0x429614e2000), _f(0xd3b41886800), _f(0x31f7c0917000),
776
+ _f(0xf21fb6ecf800), _f(0x6ee892beec000), _f(0x889688d5b28800),
777
+ -_f(0x944ac482b6bf000), _f(0x2e4469f00aa71800),
778
+ -_f(0x73c7760d5050a000), _f2(2642, 0x7d1cf3a18a800),
779
+ -_f2(2185, 0x6d0b55a915000), _f(0x3d1b0c8706d53800),
780
+ -_f(0xb7512595147fa80), _f2(193535, 0x781b441f4c16b),
781
+ # C4[4], coeff of eps^4, polynomial in n of order 19
782
+ _f(1806732800), _f(3354817536), _f(6474635776),
783
+ _f(13058088960), _f(27705484800), _f(62364503040),
784
+ _f(150565728768), _f(395569133568), _f(0x10ca075be00),
785
+ _f(0x37f6c332400), _f(0xdf0e61c4a00), _f(0x47dfa8095000),
786
+ _f(0x236014b495600), _f(0x2f60ae04237c00),
787
+ -_f(0x38c125ca4a81e00), _f(0x13dd33a066e0a800),
788
+ -_f(0x389cd322becd1200), _f(0x5ba892ca8a3fd400),
789
+ -_f(0x4c61cfa8c88a8600), _f(0x18d2fd16dac69ec0),
790
+ _f2(193535, 0x781b441f4c16b),
791
+ # C4[5], coeff of eps^23, polynomial in n of order 0
792
+ 14777984, _f(0xd190230980f),
793
+ # C4[5], coeff of eps^22, polynomial in n of order 1
794
+ -_f(104833024), _f(39440128), _f(0x62c2748ec71),
795
+ # C4[5], coeff of eps^21, polynomial in n of order 2
796
+ -_f(45133008896), _f(5079242752), _f(1557031040),
797
+ _f(0x4f869592664b5),
798
+ # C4[5], coeff of eps^20, polynomial in n of order 3
799
+ -_f(0xecd417f0000), _f(40869997 << 17), -_f(0x78cb3050000),
800
+ _f(0x28d58610800), _f(0x5263fcf5c8de3f7),
801
+ # C4[5], coeff of eps^19, polynomial in n of order 4
802
+ -_f(0xf4977948ac000), _f(0xfebd5b2ac3000),
803
+ -_f(0xf90c852576000), _f(0x1257a8b1e1000), _f(0x5e1a6b95fb00),
804
+ _f2(21503, 0xf0e695ca96ad3),
805
+ # C4[5], coeff of eps^18, polynomial in n of order 5
806
+ -_f(0x25dd48c154000), _f(0x596953f850000),
807
+ -_f(0x2b40cdd44c000), _f(8741106765 << 15), -_f(0x1ab27f0a04000),
808
+ _f(0x7e701f145600), _f2(3071, 0xfdd7cc41833d5),
809
+ # C4[5], coeff of eps^17, polynomial in n of order 6
810
+ -_f(0x4776cd8c606000), _f(0x6d8a47bfe9f000),
811
+ -_f(0x187da0ea944000), _f(0x2b758d37739000),
812
+ -_f(0x22fd5e6d302000), _f(0x107133def3000), _f(0x56ef801cd100),
813
+ _f2(33791, 0xe845c6d0a3a27),
814
+ # C4[5], coeff of eps^16, polynomial in n of order 7
815
+ -_f(0x6b41dfbb0208000), _f(0x3281e67a9bd0000),
816
+ -_f(0x11e76a3ab618000), _f(0x2fa8791e0ae0000),
817
+ -_f(0xef00faafea8000), _f(0x82642584ff0000),
818
+ -_f(0xce6c8b206b8000), _f(0x33a2c6e1f0cc00),
819
+ _f2(236543, 0x59e86fb479711),
820
+ # C4[5], coeff of eps^15, polynomial in n of order 8
821
+ -_f(0xd8a9f7e5e7f8000), _f(0x75ff062faeb000),
822
+ -_f(0x57d41a79bb5a000), _f(0x470a22b15ed1000),
823
+ -_f(0x941305430fc000), _f(0x2571b5b524d7000),
824
+ -_f(0x15ee8622281e000), -_f(0x810fd11a43000),
825
+ -_f(0x3b143f8fcc100), _f2(236543, 0x59e86fb479711),
826
+ # C4[5], coeff of eps^14, polynomial in n of order 9
827
+ -_f(0x11e2c065bec000), _f(597104820847 << 17),
828
+ -_f(0x2505ead2add4000), _f(0x375d7cf9da8000),
829
+ -_f(0x7d85d31b2fc000), _f(0xc6e2597bcf0000),
830
+ -_f(0x1c3d1fca5e4000), _f(0x26eff911138000),
831
+ -_f(0x32d040ac10c000), _f(0xa3358a5620200),
832
+ _f2(33791, 0xe845c6d0a3a27),
833
+ # C4[5], coeff of eps^13, polynomial in n of order 10
834
+ -_f(0x4e0fa2600780a000), _f(0x4e911c6aabd6b000),
835
+ -_f(0x693532675088000), _f(0x218ccc46e845000),
836
+ -_f(0x117da33185e06000), _f(0x4517905378bf000),
837
+ -_f(0x10ba1c1d3344000), _f(0x5399b73b0419000),
838
+ -_f(0x1d57ddd62302000), -_f(0x2b67cba006d000),
839
+ -_f(0x17851f6bed3f00), _f2(236543, 0x59e86fb479711),
840
+ # C4[5], coeff of eps^12, polynomial in n of order 11
841
+ _f2(2256, 0x5da9961330000), -_f(0x4ad304d1312a0000),
842
+ -_f(0x4061e93f2b8f0000), _f(0xb6157e3bfe7 << 19),
843
+ -_f(0x11e106d1afa10000), -_f(0x36aeeaeb6e60000),
844
+ -_f(0xfcdce3949630000), _f(0x8af39fd661c0000),
845
+ _f(0x3d8b99e8cb0000), _f(0x2f252d98fde0000),
846
+ -_f(0x29a890537770000), _f(0x62af9738c95800),
847
+ _f2(236543, 0x59e86fb479711),
848
+ # C4[5], coeff of eps^11, polynomial in n of order 12
849
+ _f(0x2c14f5cef5da000), -_f(0xb44f7f3a7637800),
850
+ _f(0x144dd8529649b000), -_f(0xdf6b3f6a9dda800),
851
+ -_f(0x611b67a2b3c4000), _f(0xe4e2f0fafbb2800),
852
+ -_f(0x51c03e2adea3000), -_f(0xd7c7b9cb0f0800),
853
+ -_f(0x16096a592762000), _f(0x1c9393e7a4dc800),
854
+ -_f(0x381de14f961000), -_f(0xdc6f16ca46800),
855
+ -_f(0xd4311572ebf80), _f2(33791, 0xe845c6d0a3a27),
856
+ # C4[5], coeff of eps^10, polynomial in n of order 13
857
+ -_f(0x1f7df788da000), -_f(0x249f1260a08000),
858
+ _f(0x2485dbf6336a000), -_f(0x9fd55d1961bc000),
859
+ _f(0x13ee6db114d4e000), -_f(0x114ab28a688b0000),
860
+ -_f(0x1759d6f434ee000), _f(0xe5435dae775c000),
861
+ -_f(0x883ae4654d0a000), _f(0x6d085594a8000),
862
+ -_f(0x3b594ff4c6000), _f(0x18b250a1c574000),
863
+ -_f(0xc2af3f725e2000), _f(0x11b5d0e5824b00),
864
+ _f2(33791, 0xe845c6d0a3a27),
865
+ # C4[5], coeff of eps^9, polynomial in n of order 14
866
+ -_f(0x45be4df1f000), -_f(0x154928d5d8800),
867
+ -_f(0x9c093f54d6000), -_f(0xbe1dac855c3800),
868
+ _f(0xc8c35d9371b3000), -_f(0x3b27b3be7f71e800),
869
+ _f2(2105, 0xa27ce5e51c000), -_f2(2266, 0x2251e75549800),
870
+ _f(0x215c4ca42d605000), _f(0x52b0fbc40a45b800),
871
+ -_f(0x52abb6acf6af2000), _f(0x14cab8bdb5a70800),
872
+ _f(0x422bb90412d7000), _f(0xaa8f3f42195800),
873
+ -_f(0x18c864fb5207380), _f2(236543, 0x59e86fb479711),
874
+ # C4[5], coeff of eps^8, polynomial in n of order 15
875
+ -_f(0x323b5354000), -_f(0xa77c1e58000), -_f(0x297150a3c000),
876
+ -_f(0xd25b36ef0000), -_f(0x64c6f9d464000),
877
+ -_f(0x816d981c288000), _f(0x91bbe6aceeb4000),
878
+ -_f(0x2ea0d03ef98a0000), _f(0x748c356a9df8c000),
879
+ -_f2(2463, 0x44f7c770b8000), _f(0x55038197b9ea4000),
880
+ _f(0x24c2f502435b0000), -_f(0x557a28e333384000),
881
+ _f(0x319d6c472db18000), -_f(0xa981b88bf66c000),
882
+ _f(0x2452a78bb4ce00), _f2(236543, 0x59e86fb479711),
883
+ # C4[5], coeff of eps^7, polynomial in n of order 16
884
+ -_f(864347 << 15), -_f(77318326272), -_f(233990443008),
885
+ -_f(807704598528), -_f(0x306255a2000), -_f(0x100b9fcf2800),
886
+ -_f(0x8171cf3d7000), -_f(0xb08a440213800),
887
+ _f(0xd5be3a4ba94000), -_f(0x4af12ff99ea4800),
888
+ _f(0xd4237986197f000), -_f(0x15530c89262c5800),
889
+ _f(0x12c48ba350cca000), -_f(0x590f07b7ee96800),
890
+ -_f(0x53e376c2a7ab000), _f(0x5b3d559eedc8800),
891
+ -_f(0x1b37127cacfe280), _f2(33791, 0xe845c6d0a3a27),
892
+ # C4[5], coeff of eps^6, polynomial in n of order 17
893
+ -_f(10859667456), -_f(199353 << 17), -_f(67565166592),
894
+ -_f(190510645248), -_f(597656199168), -_f(65543051 << 15),
895
+ -_f(0x869fe272000), -_f(0x2f027b014000), -_f(0x19275e39a6000),
896
+ -_f(0x24c57351390000), _f(0x305c8c1f55c6000),
897
+ -_f(0x12c56d86cea0c000), _f(0x3c958c9a69892000),
898
+ -_f(0x75427b7d716c8000), _f2(2264, 0x2021045b7e000),
899
+ -_f(0x686da1b1a7d04000), _f(0x2b2226f5e6b4a000),
900
+ -_f(0x7a36190e0daa700), _f2(236543, 0x59e86fb479711),
901
+ # C4[5], coeff of eps^5, polynomial in n of order 18
902
+ -_f(392933376), -_f(865908736), -_f(61523 << 15), -_f(5002905600),
903
+ -_f(13385551872), -_f(39200544768), -_f(128292691968),
904
+ -_f(483473385472), -_f(0x1ffab8af000), -_f(0xbdf5200f800),
905
+ -_f(0x6d0cb854c000), -_f(0xacf22c5668800),
906
+ _f(0xfa276dd8697000), -_f(0x6c92e41ed151800),
907
+ _f(0x18f8d3300c4da000), -_f(0x382fdb2c1baea800),
908
+ _f(0x4f13f21826f5d000), -_f(0x3d1b0c8706d53800),
909
+ _f(0x131873ea3222a180), _f2(236543, 0x59e86fb479711),
910
+ # C4[6], coeff of eps^23, polynomial in n of order 0
911
+ _f(20016128), _f(0x45dab658805),
912
+ # C4[6], coeff of eps^22, polynomial in n of order 1
913
+ _f(12387831808), _f(4069857792), _f(0x1b45118f2c973b),
914
+ # C4[6], coeff of eps^21, polynomial in n of order 2
915
+ _f(828267 << 17), -_f(2724645 << 16), _f(52104335360),
916
+ _f(0x22cae1700cc0f3),
917
+ # C4[6], coeff of eps^20, polynomial in n of order 3
918
+ _f(0x94a2566a8000), -_f(0x7736ce990000), _f(0x345f5a38000),
919
+ _f(0x11f45dc9000), _f(0x36c560e36413be89),
920
+ # C4[6], coeff of eps^19, polynomial in n of order 4
921
+ _f(6043548407 << 18), -_f(7867012491 << 16), _f(0xfe56696e0000),
922
+ -_f(6798211929 << 16), _f(0x66855efe5000),
923
+ _f2(3630, 0x89164e7bf8313),
924
+ # C4[6], coeff of eps^18, polynomial in n of order 5
925
+ _f(0x588efe4c176000), -_f(0xcc317e9b08000),
926
+ _f(0x2e65271667a000), -_f(0x1cb46908f84000),
927
+ -_f(0x7bc8d2682000), -_f(0x36524dd3a400),
928
+ _f2(39935, 0xe3f55f53aa1d1),
929
+ # C4[6], coeff of eps^17, polynomial in n of order 6
930
+ _f(0x2dbd6ef2050000), -_f(0x356ee7ee5e8000),
931
+ _f(0x65e2c9482e0000), -_f(0x1247a684858000),
932
+ _f(84899613015 << 16), -_f(0x1b548eba6c8000),
933
+ _f(0x5c900466be800), _f2(39935, 0xe3f55f53aa1d1),
934
+ # C4[6], coeff of eps^16, polynomial in n of order 7
935
+ -_f(0x3fff5b5aa54000), -_f(0x6a2cbaeaf348000),
936
+ _f(0x2b55e8782dc4000), -_f(0x69f22faba30000),
937
+ _f(0x26e11f54b9dc000), -_f(0x105d41b83118000),
938
+ -_f(0x12eb1ab4e0c000), -_f(0x9530f9646a800),
939
+ _f2(279551, 0x3bb59b49a6cb7),
940
+ # C4[6], coeff of eps^15, polynomial in n of order 8
941
+ _f(0xf488f4012440000), -_f(0xb16a4f02dfc8000),
942
+ -_f(0x103bba4a90d0000), -_f(0x4da08c72a3d8000),
943
+ _f(0x45a11acaf220000), -_f(0x25f21bc63e8000),
944
+ _f(0x12fccd9d4510000), -_f(0x13e0eb3687f8000),
945
+ _f(0x356c2e9517d800), _f2(279551, 0x3bb59b49a6cb7),
946
+ # C4[6], coeff of eps^14, polynomial in n of order 9
947
+ _f(0x28c5c3199aad2000), _f(0x80d5fb17a810000),
948
+ _f(0x9c623a70694e000), -_f(0xf23c0600f3f4000),
949
+ _f(0x6928769f1ca000), -_f(0x1e8f96869bf8000),
950
+ _f(0x4f9253e0b846000), -_f(0x11e4e806cbfc000),
951
+ -_f(0x2dad19c0f3e000), -_f(0x1f2fac1e88dc00),
952
+ _f2(279551, 0x3bb59b49a6cb7),
953
+ # C4[6], coeff of eps^13, polynomial in n of order 10
954
+ -_f(0xdb139b99ca0000), -_f(0x5dbaf74a92790000),
955
+ _f(0x76a096067df << 19), _f(0x39f346109690000),
956
+ _f(964470918621 << 17), -_f(0x10aa5a9917350000),
957
+ _f(0x49bc5039b7c0000), _f(0x92ae304aad0000),
958
+ _f(0x32f3e8ddd3e0000), -_f(0x233311e51f10000),
959
+ _f(0x4483a6a16dd000), _f2(279551, 0x3bb59b49a6cb7),
960
+ # C4[6], coeff of eps^12, polynomial in n of order 11
961
+ -_f(0xfbf5c5edd078000), _f(0x1202fde81d5f0000),
962
+ -_f(0x454a07e84fa8000), -_f(0xbd470dafdb40000),
963
+ _f(0xb3ba7d182928000), -_f(0x155dacd6cc70000),
964
+ -_f(0xdc21a82d608000), -_f(0xe96f98256d << 17),
965
+ _f(0x167a9a9742c8000), -_f(0x7d81f52ed0000),
966
+ -_f(0x7ffde3fc68000), -_f(0xe287c62fa3000),
967
+ _f2(39935, 0xe3f55f53aa1d1),
968
+ # C4[6], coeff of eps^11, polynomial in n of order 12
969
+ -_f(283480971297 << 18), _f(0x5885fb25bf70000),
970
+ -_f(0xe5dec7019ee0000), _f(0x13305b31e4ed0000),
971
+ -_f(0x9278e6008580000), -_f(0x855a0cffe9d0000),
972
+ _f(0xd3d848f453e0000), -_f(0x4a9f485fda70000),
973
+ -_f(0xfb7b0fc02c0000), -_f(0x691c2e87310000),
974
+ _f(806997945397 << 17), -_f(0x9585db4a3b0000),
975
+ _f(0xa77dc54c8f000), _f2(39935, 0xe3f55f53aa1d1),
976
+ # C4[6], coeff of eps^10, polynomial in n of order 13
977
+ _f(0x6d0001099000), _f(0x9a74d7ec5c000), -_f(0xc18676170e1000),
978
+ _f(0x45ad31c7f8a2000), -_f(0xc7369375e55b000),
979
+ _f(0x1364b97f822e8000), -_f(0xe19539447ad5000),
980
+ -_f(0x26bf9b041ad2000), _f(0xce71cc8200b1000),
981
+ -_f(0x8c822446468c000), _f(0x12e554ec5f37000),
982
+ _f(0xa6c4f3e59ba000), _f(0x30bb36a52bd000),
983
+ -_f(0x34440d2d335600), _f2(39935, 0xe3f55f53aa1d1),
984
+ # C4[6], coeff of eps^9, polynomial in n of order 14
985
+ _f(0x8fcb3bf8000), _f(0x33bb5d994000), _f(7630295323 << 16),
986
+ _f(0x2a77da91fcc000), -_f(0x38ac5a4a0098000),
987
+ _f(0x160f7571fbc04000), -_f(0x45e92df7f7ee0000),
988
+ _f(0x7f01d3c372a3c000), -_f(0x7edcf27daed28000),
989
+ _f(0x27dfe4585e674000), _f(0x38a548f303090000),
990
+ -_f(0x4b87231069354000), _f(0x24d2adef05648000),
991
+ -_f(0x6a5625dbc71c000), -_f(0x18371a5d233400),
992
+ _f2(279551, 0x3bb59b49a6cb7),
993
+ # C4[6], coeff of eps^8, polynomial in n of order 15
994
+ _f(257397153792), _f(991547604992), _f(0x42cbc6ea000),
995
+ _f(843451707 << 15), _f(0xe8a206ec6000), _f(0x170dd449e34000),
996
+ -_f(0x2102346c3b5e000), _f(0xe0052eca6690000),
997
+ -_f(0x318a0eacb0b82000), _f(0x690a1407d3eec000),
998
+ -_f2(2182, 0xb601e615a6000), _f(0x61bf435eea348000),
999
+ -_f(0xe133a8622dca000), -_f(0x2748b26bf705c000),
1000
+ _f(0x220d7d12f9812000), -_f(0x98dbd66bee38400),
1001
+ _f2(279551, 0x3bb59b49a6cb7),
1002
+ # C4[6], coeff of eps^7, polynomial in n of order 16
1003
+ _f(9867 << 18), _f(8045019136), _f(854413 << 15),
1004
+ _f(6856031 << 14), _f(8304289 << 16), _f(0x3232f0a4000),
1005
+ _f(0x1ec960fb8000), _f(0x3439f07dcc000), -_f(0x50f0148aea0000),
1006
+ _f(0x25bf6de530f4000), -_f(0x9635a567bcf8000),
1007
+ _f(0x1735ee17e1e1c000), -_f(0x25a38fef60750000),
1008
+ _f(0x2834884b55944000), -_f(0x1b3dfda8c79a8000),
1009
+ _f(0xa981b88bf66c000), -_f(0x1cc16f4e99cdc00),
1010
+ _f2(93183, 0xbe91de6de243d),
1011
+ # C4[6], coeff of eps^6, polynomial in n of order 17
1012
+ _f(169275392), _f(7007 << 16), _f(1348931584), _f(4358086656),
1013
+ _f(15819288576), _f(66522136576), _f(339738054656),
1014
+ _f(0x214230b6000), _f(0x15d36ff77000), _f(0x2803a29af8000),
1015
+ -_f(0x43d629aab87000), _f(0x232131018d3a000),
1016
+ -_f(0x9e155c86fb85000), _f(0x1c3aabf38857c000),
1017
+ -_f(0x361b1ee81aa83000), _f(0x44dcb2f8dc1be000),
1018
+ -_f(0x325282c98d281000), _f(0xf46c321c1b54e00),
1019
+ _f2(279551, 0x3bb59b49a6cb7),
1020
+ # C4[7], coeff of eps^23, polynomial in n of order 0
1021
+ _f(383798272), _f(0x7ee24536c1115),
1022
+ # C4[7], coeff of eps^22, polynomial in n of order 1
1023
+ -_f(127523 << 20), _f(34096398336), _f(0x1f771442bd4c09),
1024
+ # C4[7], coeff of eps^21, polynomial in n of order 2
1025
+ -_f(197998999 << 19), -_f(4877411 << 18), -_f(541336621056),
1026
+ _f(0x3b1ebd1165abdce9),
1027
+ # C4[7], coeff of eps^20, polynomial in n of order 3
1028
+ -_f(72076029 << 20), _f(33625235 << 21), -_f(96370351 << 20),
1029
+ _f(0x142b356fa000), _f(0x3f32837c872a7963),
1030
+ # C4[7], coeff of eps^19, polynomial in n of order 4
1031
+ -_f(2249063181 << 20), _f(51883720989 << 18), -_f(12233087197 << 19),
1032
+ -_f(1430728833 << 18), -_f(0x9e5c3c48b000),
1033
+ _f2(46079, 0xdfa4f7d6b097b),
1034
+ # C4[7], coeff of eps^18, polynomial in n of order 5
1035
+ -_f(19747083035 << 20), _f(5938781185 << 22), -_f(1899464157 << 20),
1036
+ _f(2895955713 << 21), -_f(6730130079 << 20), _f(0x490d94cd2c000),
1037
+ _f2(46079, 0xdfa4f7d6b097b),
1038
+ # C4[7], coeff of eps^17, polynomial in n of order 6
1039
+ -_f(0xf7ed31ddbc0000), _f(90436020675 << 17),
1040
+ -_f(11671406741 << 19), _f(0x58222c9a6a0000),
1041
+ -_f(28407954085 << 18), -_f(6936211449 << 17),
1042
+ -_f(0x1e088e877c800), _f2(46079, 0xdfa4f7d6b097b),
1043
+ # C4[7], coeff of eps^16, polynomial in n of order 7
1044
+ -_f(688523975841 << 19), -_f(83606333811 << 20),
1045
+ -_f(805224840035 << 19), _f(106897379463 << 21),
1046
+ _f(22163836107 << 19), _f(88997602799 << 20),
1047
+ -_f(151227539575 << 19), _f(0x28435aa5d4b000),
1048
+ _f2(322559, 0x1d82c6ded425d),
1049
+ # C4[7], coeff of eps^15, polynomial in n of order 8
1050
+ _f(557482450381 << 20), _f(0xfbb72a664ee0000),
1051
+ -_f(0xa9b81eb4ea40000), -_f(914196917515 << 17),
1052
+ -_f(409568792563 << 19), _f(0x4780d431da60000),
1053
+ -_f(0x94b9eca98c0000), -_f(82946761135 << 17),
1054
+ -_f(0x238b221440f800), _f2(322559, 0x1d82c6ded425d),
1055
+ # C4[7], coeff of eps^14, polynomial in n of order 9
1056
+ -_f(0x59ec90b7ba5 << 20), _f(233491821731 << 23),
1057
+ _f(762388756437 << 20), _f(284558585577 << 21),
1058
+ -_f(0xf0573a4eb1 << 20), _f(25275836579 << 22),
1059
+ _f(22761999561 << 20), _f(112734627747 << 21),
1060
+ -_f(126941809085 << 20), _f(0x2fd680f7c84000),
1061
+ _f2(322559, 0x1d82c6ded425d),
1062
+ # C4[7], coeff of eps^13, polynomial in n of order 10
1063
+ _f(0xaca84931355 << 19), _f(0x66fb36095ad << 18),
1064
+ -_f(0x2e7424117bf << 21), _f(0xcac2488dd23 << 18),
1065
+ _f(762738574899 << 19), -_f(579380269895 << 18),
1066
+ -_f(968587667327 << 20), _f(0x73cbed27abc0000),
1067
+ _f(75006191505 << 19), -_f(0xdb0f0aaec0000),
1068
+ -_f(0x63c3eeba719000), _f2(322559, 0x1d82c6ded425d),
1069
+ # C4[7], coeff of eps^12, polynomial in n of order 11
1070
+ _f(626455667783 << 20), -_f(567623567285 << 21),
1071
+ _f(0xf5d2e8872d << 20), -_f(13896712169 << 23),
1072
+ -_f(798923144989 << 20), _f(364556664237 << 21),
1073
+ -_f(129034049335 << 20), -_f(20826366601 << 22),
1074
+ -_f(51607570881 << 20), _f(46156477135 << 21),
1075
+ -_f(30888509275 << 20), _f(0x6042659ec2000),
1076
+ _f2(46079, 0xdfa4f7d6b097b),
1077
+ # C4[7], coeff of eps^11, polynomial in n of order 12
1078
+ _f(20777559885 << 20), -_f(569775860071 << 18),
1079
+ _f(0xe9ac41f6db << 19), -_f(0xef8ba34c8740000),
1080
+ _f(598911876783 << 21), -_f(0x7cf99a74ecc0000),
1081
+ -_f(957375911139 << 19), _f(0xc30e342965c0000),
1082
+ -_f(423483761553 << 20), _f(35714168193 << 18),
1083
+ _f(79169625311 << 19), _f(68905136075 << 18),
1084
+ -_f(0x2f872ef9963000), _f2(46079, 0xdfa4f7d6b097b),
1085
+ # C4[7], coeff of eps^10, polynomial in n of order 13
1086
+ -_f(18988489 << 20), -_f(129894471 << 22), _f(12886996881 << 20),
1087
+ -_f(47548938145 << 21), _f(367560238059 << 20),
1088
+ -_f(106884143981 << 23), _f(0x11c056e4d45 << 20),
1089
+ -_f(470740881351 << 21), _f(64061082015 << 20),
1090
+ _f(158992278163 << 22), -_f(634972709127 << 20),
1091
+ _f(135054066707 << 21), -_f(41343081645 << 20),
1092
+ -_f(0x7382e0581c000), _f2(46079, 0xdfa4f7d6b097b),
1093
+ # C4[7], coeff of eps^9, polynomial in n of order 14
1094
+ -_f(7074089 << 17), -_f(95481295 << 16), -_f(249804765 << 18),
1095
+ -_f(0x6befb7d790000), _f(0xb301172bea0000),
1096
+ -_f(0x5978c2137030000), _f(0x2fbc3e73e21 << 19),
1097
+ -_f(0x3f35c80b0f2d0000), _f(0x6ce3ff0d91260000),
1098
+ -_f(0x7761d1ce42b70000), _f(0x468057c8ed840000),
1099
+ _f(0x1bcb7dfb99f0000), -_f(0x26d98474089e0000),
1100
+ _f(0x1d375a3e49150000), -_f(0x7d9dd8c3269dc00),
1101
+ _f2(322559, 0x1d82c6ded425d),
1102
+ # C4[7], coeff of eps^8, polynomial in n of order 15
1103
+ -_f(47805 << 18), -_f(105987 << 19), -_f(1141959 << 18),
1104
+ -_f(2026311 << 20), -_f(89791009 << 18), -_f(1389164665 << 19),
1105
+ _f(79467759189 << 18), -_f(86766818957 << 21),
1106
+ _f(0xbfc5c91f6ec0000), -_f(0x487b27f822f << 19),
1107
+ _f(0x4a699e0854c40000), -_f(0x69d85e75b6d << 20),
1108
+ _f(0x66f7a9fb575c0000), -_f(0x828d4038ea5 << 19),
1109
+ _f(0x60dc69748cd << 18), -_f(0x3f90a5347c68800),
1110
+ _f2(322559, 0x1d82c6ded425d),
1111
+ # C4[7], coeff of eps^7, polynomial in n of order 16
1112
+ -_f(143 << 20), -_f(8085 << 16), -_f(16121 << 17), -_f(9810411520),
1113
+ -_f(212205 << 18), -_f(6380297 << 16), -_f(37701755 << 17),
1114
+ -_f(0x95a9db330000), _f(9764754545 << 19), -_f(0xaf0fe765fd0000),
1115
+ _f(0x3a2548493060000), -_f(0xc8bdaa520270000),
1116
+ _f(0x7871cc979b1 << 18), -_f(0x3353672f26710000),
1117
+ _f(0x3c89c1e8d8020000), -_f(0x2a606e22fd9b0000),
1118
+ _f(0xc94a0b2634a0400), _f2(322559, 0x1d82c6ded425d),
1119
+ # C4[8], coeff of eps^23, polynomial in n of order 0
1120
+ _f(7579 << 15), _f(0x4f56c0c24f87),
1121
+ # C4[8], coeff of eps^22, polynomial in n of order 1
1122
+ -_f(1660549 << 21), -_f(23648625 << 16), _f(0x38232f25bccb5275),
1123
+ # C4[8], coeff of eps^21, polynomial in n of order 2
1124
+ _f(9646043 << 20), -_f(24019457 << 19), _f(74048359 << 15),
1125
+ _f(0x99262e0aeeff091),
1126
+ # C4[8], coeff of eps^20, polynomial in n of order 3
1127
+ _f(183351957435 << 19), -_f(32827160863 << 20),
1128
+ -_f(6509093591 << 19), -_f(0x6677b4e9b0000),
1129
+ _f2(365566, 0xff4ff27401803),
1130
+ # C4[8], coeff of eps^19, polynomial in n of order 4
1131
+ _f(67207908275 << 21), -_f(201042891 << 19), _f(44011096899 << 20),
1132
+ -_f(85786308153 << 19), _f(0x195ba7c1ef8000),
1133
+ _f2(365566, 0xff4ff27401803),
1134
+ # C4[8], coeff of eps^18, polynomial in n of order 5
1135
+ -_f(13677739 << 21), -_f(1155605701 << 23), _f(11263093395 << 21),
1136
+ -_f(1170886701 << 22), -_f(422863935 << 21), -_f(9609473031 << 16),
1137
+ _f2(52223, 0xdb549059b7125),
1138
+ # C4[8], coeff of eps^17, polynomial in n of order 6
1139
+ -_f(105328611 << 20), -_f(0xe3d4e1d7080000), _f(9484526351 << 21),
1140
+ _f(4879307961 << 19), _f(13462873311 << 20), -_f(19014362253 << 19),
1141
+ _f(0x45bace6718000), _f2(52223, 0xdb549059b7125),
1142
+ # C4[8], coeff of eps^16, polynomial in n of order 7
1143
+ _f(0x4802f7e045b << 18), -_f(787109524929 << 19),
1144
+ -_f(616781829503 << 18), -_f(267630157067 << 20),
1145
+ _f(0xf57f439a67 << 18), -_f(26811748075 << 19),
1146
+ -_f(29646920051 << 18), -_f(0x25c0cef2988000),
1147
+ _f2(365566, 0xff4ff27401803),
1148
+ # C4[8], coeff of eps^15, polynomial in n of order 8
1149
+ _f(61397460605 << 22), _f(0x9d011c37ef80000),
1150
+ _f(907553463943 << 20), -_f(0xc0a473ee4980000),
1151
+ -_f(21778698179 << 21), -_f(22179652453 << 19),
1152
+ _f(224024408237 << 20), -_f(212571195095 << 19),
1153
+ _f(0x216a7bfadc8000), _f2(365566, 0xff4ff27401803),
1154
+ # C4[8], coeff of eps^14, polynomial in n of order 9
1155
+ _f(304663697949 << 21), -_f(51558232553 << 24),
1156
+ _f(126037118963 << 21), _f(28559389965 << 22), _f(12939195833 << 21),
1157
+ -_f(17167224841 << 23), _f(24466781775 << 21), _f(2302458607 << 22),
1158
+ _f(456812693 << 21), -_f(0xde9c5a4230000),
1159
+ _f2(52223, 0xdb549059b7125),
1160
+ # C4[8], coeff of eps^13, polynomial in n of order 10
1161
+ -_f(0x71eca5b57e5 << 20), _f(0x8d98ab5c54b << 19),
1162
+ _f(497026592783 << 22), -_f(0xacc7c9e1d9b << 19),
1163
+ _f(0x35a7c7b51dd << 20), -_f(81233361377 << 19),
1164
+ -_f(253988603057 << 21), -_f(954606696519 << 19),
1165
+ _f(577751554079 << 20), -_f(333997527437 << 19),
1166
+ _f(0x1689b847558000), _f2(365566, 0xff4ff27401803),
1167
+ # C4[8], coeff of eps^12, polynomial in n of order 11
1168
+ -_f(0x367f7beda59 << 19), _f(0x45996b8ba21 << 20),
1169
+ -_f(0xdceb5493fc3 << 19), _f(0x18843cb160d << 22),
1170
+ -_f(0x21789a51fed << 19), -_f(0x41cde5aa8b9 << 20),
1171
+ _f(0x95638f58ea9 << 19), -_f(984566251123 << 21),
1172
+ -_f(435207598721 << 19), _f(219309948781 << 20),
1173
+ _f(274765170197 << 19), -_f(0x12cf88fa6ff0000),
1174
+ _f2(365566, 0xff4ff27401803),
1175
+ # C4[8], coeff of eps^11, polynomial in n of order 12
1176
+ -_f(2296713447 << 21), _f(78660216877 << 19),
1177
+ -_f(180155131441 << 20), _f(0xeee01825bf << 19),
1178
+ -_f(237440161933 << 22), _f(0x2042cbdcd31 << 19),
1179
+ -_f(652079196855 << 20), -_f(325903664957 << 19),
1180
+ _f(324695717299 << 21), -_f(0xf97e21ed4b << 19),
1181
+ _f(203483994947 << 20), -_f(52367903417 << 19),
1182
+ -_f(0x8a9d0d3688000), _f2(52223, 0xdb549059b7125),
1183
+ # C4[8], coeff of eps^10, polynomial in n of order 13
1184
+ _f(1140139 << 21), _f(9315711 << 23), -_f(1126319139 << 21),
1185
+ _f(5199009105 << 22), -_f(52132384161 << 21), _f(20770352565 << 24),
1186
+ -_f(357583911087 << 21), _f(262213551639 << 22),
1187
+ -_f(498523677485 << 21), _f(60302341333 << 23),
1188
+ _f(57310064901 << 21), -_f(90954779619 << 22),
1189
+ _f(124029244935 << 21), -_f(0xf0a5fe0ce50000),
1190
+ _f2(52223, 0xdb549059b7125),
1191
+ # C4[8], coeff of eps^9, polynomial in n of order 14
1192
+ _f(54009 << 20), _f(849303 << 19), _f(2623117 << 21),
1193
+ _f(364892913 << 19), -_f(5919882885 << 20), _f(0xdd0128d3580000),
1194
+ -_f(81910832913 << 22), _f(0x2229f5f9745 << 19),
1195
+ -_f(0x2a9587ee883 << 20), _f(0x982f47b44bf << 19),
1196
+ -_f(0x30e1739ffd1 << 21), _f(0xb09887dee19 << 19),
1197
+ -_f(0x35101f0ee01 << 20), _f(0x25e6f19ce93 << 19),
1198
+ -_f(0x306e34ba4668000), _f2(365566, 0xff4ff27401803),
1199
+ # C4[8], coeff of eps^8, polynomial in n of order 15
1200
+ _f(2295 << 17), _f(5831 << 18), _f(72709 << 17), _f(151011 << 19),
1201
+ _f(7936467 << 17), _f(147906885 << 18), -_f(0x4d5c1f23e0000),
1202
+ _f(14228642337 << 20), -_f(697203474513 << 17),
1203
+ _f(0x51fe4e56b0c0000), -_f(0xeb59f3d2e860000),
1204
+ _f(0x3e0c14100a1 << 19), -_f(0x305340db42ea0000),
1205
+ _f(0xd6c75923d41 << 18), -_f(0x2452a78bb4ce0000),
1206
+ _f(0xa981b88bf66c000), _f2(365566, 0xff4ff27401803),
1207
+ # C4[9], coeff of eps^23, polynomial in n of order 0
1208
+ -_f(45613 << 15), _f(0xa0b835899f381),
1209
+ # C4[9], coeff of eps^22, polynomial in n of order 1
1210
+ -_f(4663637 << 21), _f(25498473 << 16), _f(0x8f68f0ea15ed989),
1211
+ # C4[9], coeff of eps^21, polynomial in n of order 2
1212
+ -_f(313787291 << 20), -_f(89546863 << 19), -_f(880826107 << 15),
1213
+ _f2(5306, 0x2ad1d52b570cd),
1214
+ # C4[9], coeff of eps^20, polynomial in n of order 3
1215
+ _f(1691751267 << 22), _f(5868457511 << 23), -_f(9710518895 << 22),
1216
+ _f(43389881073 << 17), _f2(408574, 0xe11d1e092eda9),
1217
+ # C4[9], coeff of eps^19, polynomial in n of order 4
1218
+ -_f(45668361181 << 21), _f(290185772373 << 19),
1219
+ -_f(19310638221 << 20), -_f(10267037529 << 19),
1220
+ -_f(0x11435a10568000), _f2(408574, 0xe11d1e092eda9),
1221
+ # C4[9], coeff of eps^18, polynomial in n of order 5
1222
+ -_f(206915608111 << 21), _f(8005795847 << 23), _f(6676372983 << 21),
1223
+ _f(24266221119 << 22), -_f(29173391667 << 21), _f(99595856143 << 16),
1224
+ _f2(408574, 0xe11d1e092eda9),
1225
+ # C4[9], coeff of eps^17, polynomial in n of order 6
1226
+ -_f(15515879355 << 20), -_f(36184750873 << 19),
1227
+ -_f(22177807609 << 21), _f(62194714929 << 19), _f(693176727 << 20),
1228
+ -_f(1189966821 << 19), -_f(0x5829503048000),
1229
+ _f2(58367, 0xd70428dcbd8cf),
1230
+ # C4[9], coeff of eps^16, polynomial in n of order 7
1231
+ _f(38512528273 << 23), _f(67772681235 << 24), -_f(74410968653 << 23),
1232
+ -_f(3984568679 << 25), -_f(6152374683 << 23), _f(13551170801 << 24),
1233
+ -_f(11115057401 << 23), _f(24916219839 << 18),
1234
+ _f2(408574, 0xe11d1e092eda9),
1235
+ # C4[9], coeff of eps^15, polynomial in n of order 8
1236
+ -_f(162298412813 << 22), _f(0xff4317f5080000),
1237
+ _f(119179074953 << 20), _f(0xf6d36e74980000),
1238
+ -_f(63634032589 << 21), _f(61952932453 << 19), _f(10785104899 << 20),
1239
+ _f(4191026519 << 19), -_f(0xd59ae9d0e8000),
1240
+ _f2(58367, 0xd70428dcbd8cf),
1241
+ # C4[9], coeff of eps^14, polynomial in n of order 9
1242
+ _f(162971496591 << 21), _f(33816350309 << 24),
1243
+ -_f(394783736543 << 21), _f(85862751303 << 22),
1244
+ _f(32462900611 << 21), -_f(6369607931 << 23), -_f(39152071083 << 21),
1245
+ _f(18189729581 << 22), -_f(9249690569 << 21), _f(6171570141 << 16),
1246
+ _f2(58367, 0xd70428dcbd8cf),
1247
+ # C4[9], coeff of eps^13, polynomial in n of order 10
1248
+ _f(0x52d38896f8b << 20), -_f(0xd3acdf03195 << 19),
1249
+ _f(0x1195b2a1cff << 22), _f(0xca9586e4a280000),
1250
+ -_f(0x486f0b6e413 << 20), _f(0x7ca2ce8a83f << 19),
1251
+ -_f(610236546241 << 21), -_f(717677267559 << 19),
1252
+ _f(159176229583 << 20), _f(291633515411 << 19),
1253
+ -_f(0x110150274e88000), _f2(408574, 0xe11d1e092eda9),
1254
+ # C4[9], coeff of eps^12, polynomial in n of order 11
1255
+ _f(143956869023 << 22), -_f(243108013001 << 23),
1256
+ _f(0x101d5eb1615 << 22), -_f(213537904349 << 25),
1257
+ _f(0x183f300cffb << 22), -_f(350529456991 << 23),
1258
+ -_f(545724783247 << 22), _f(274121340227 << 24),
1259
+ -_f(785966166377 << 22), _f(135225754699 << 23),
1260
+ -_f(28607511667 << 22), -_f(0x3ee3b308260000),
1261
+ _f2(408574, 0xe11d1e092eda9),
1262
+ # C4[9], coeff of eps^11, polynomial in n of order 12
1263
+ _f(2520290511 << 21), -_f(0xc4ddd05ba80000),
1264
+ _f(304931349961 << 20), -_f(0x21230116cd7 << 19),
1265
+ _f(735928623493 << 22), -_f(0x9d254a11d99 << 19),
1266
+ _f(0x6510e717cdf << 20), -_f(0xa95d67804fb << 19),
1267
+ _f(0x1055dd17e45 << 21), _f(0x239bcd685c3 << 19),
1268
+ -_f(0x22ba072788b << 20), _f(0x2c142a0db61 << 19),
1269
+ -_f(0x59b3a2379f58000), _f2(408574, 0xe11d1e092eda9),
1270
+ # C4[9], coeff of eps^10, polynomial in n of order 13
1271
+ -_f(29393 << 21), -_f(283917 << 23), _f(41246777 << 21),
1272
+ -_f(233407875 << 22), _f(2943398547 << 21), -_f(1525553871 << 24),
1273
+ _f(35837133917 << 21), -_f(38620600629 << 22),
1274
+ _f(123783976375 << 21), -_f(36640057007 << 23),
1275
+ _f(124599494337 << 21), -_f(35830670759 << 22),
1276
+ _f(24805848987 << 21), -_f(0x1ce0b816070000),
1277
+ _f2(19455, 0xf256b84994845),
1278
+ # C4[9], coeff of eps^9, polynomial in n of order 14
1279
+ -_f(1615 << 20), -_f(29393 << 19), -_f(106267 << 21),
1280
+ -_f(17534055 << 19), _f(342711075 << 20), -_f(8430692445 << 19),
1281
+ _f(7306600119 << 22), -_f(270344204403 << 19),
1282
+ _f(450573674005 << 20), -_f(0x20c896b3e69 << 19),
1283
+ _f(0xfa29e850f7 << 21), -_f(0x5aaf3103bff << 19),
1284
+ _f(0x3002653e387 << 20), -_f(0x3f2b92b02f5 << 19),
1285
+ _f(0x914a9e2ed338000), _f2(408574, 0xe11d1e092eda9),
1286
+ # C4[10], coeff of eps^23, polynomial in n of order 0
1287
+ _f(137 << 21), _f(0x8757c14b789b),
1288
+ # C4[10], coeff of eps^22, polynomial in n of order 1
1289
+ -_f(1152691 << 20), -_f(6743919 << 17), _f(0x9e817610332f06f),
1290
+ # C4[10], coeff of eps^21, polynomial in n of order 2
1291
+ _f(79722199 << 23), -_f(113766289 << 22), _f(225212673 << 18),
1292
+ _f2(5864, 0xb6105765cc00b),
1293
+ # C4[10], coeff of eps^20, polynomial in n of order 3
1294
+ _f(64857768639 << 21), -_f(2220489243 << 22), -_f(2012833515 << 21),
1295
+ -_f(19551629405 << 18), _f2(451582, 0xc2ea499e5c34f),
1296
+ # C4[10], coeff of eps^19, polynomial in n of order 4
1297
+ _f(656353407 << 24), _f(1031809317 << 22), _f(12215335391 << 23),
1298
+ -_f(12759999497 << 22), _f(18944346729 << 18),
1299
+ _f2(451582, 0xc2ea499e5c34f),
1300
+ # C4[10], coeff of eps^18, polynomial in n of order 5
1301
+ -_f(62867132873 << 20), -_f(83127481829 << 22),
1302
+ _f(173460262689 << 20), _f(8415873627 << 21), -_f(1024568181 << 20),
1303
+ -_f(82657907689 << 17), _f2(451582, 0xc2ea499e5c34f),
1304
+ # C4[10], coeff of eps^17, polynomial in n of order 6
1305
+ _f(69839518785 << 24), -_f(46975322289 << 23), -_f(5175253237 << 25),
1306
+ -_f(10608265143 << 23), _f(12870275691 << 24), -_f(9303053053 << 23),
1307
+ _f(8528136981 << 19), _f2(451582, 0xc2ea499e5c34f),
1308
+ # C4[10], coeff of eps^16, polynomial in n of order 7
1309
+ -_f(12671764325 << 22), _f(11821938135 << 23), _f(23903917953 << 22),
1310
+ -_f(7023725731 << 24), _f(4254825447 << 22), _f(1372261021 << 23),
1311
+ _f(755775181 << 22), -_f(6809268397 << 19),
1312
+ _f2(64511, 0xd2b3c15fc4079),
1313
+ # C4[10], coeff of eps^15, polynomial in n of order 8
1314
+ _f(10583074157 << 26), -_f(84530118029 << 23), _f(12150058407 << 24),
1315
+ _f(12380362825 << 23), -_f(838454291 << 25), -_f(10410407457 << 23),
1316
+ _f(3974759309 << 24), -_f(1799658059 << 23), _f(156358707 << 19),
1317
+ _f2(64511, 0xd2b3c15fc4079),
1318
+ # C4[10], coeff of eps^14, polynomial in n of order 9
1319
+ -_f(922119298407 << 20), _f(52944024001 << 23),
1320
+ _f(329638564983 << 20), -_f(354979062141 << 21),
1321
+ _f(493120994773 << 20), -_f(24099541823 << 22),
1322
+ -_f(59503561293 << 20), _f(7459230081 << 21), _f(21243323153 << 20),
1323
+ -_f(75576440907 << 17), _f2(64511, 0xd2b3c15fc4079),
1324
+ # C4[10], coeff of eps^13, polynomial in n of order 10
1325
+ -_f(328595996641 << 23), _f(0x1245cb281e3 << 22),
1326
+ -_f(207527442829 << 25), _f(0x13d84cf39cd << 22),
1327
+ -_f(169653271431 << 23), -_f(705690429577 << 22),
1328
+ _f(256163704307 << 24), -_f(657414782367 << 22),
1329
+ _f(103463476179 << 23), -_f(17233182197 << 22),
1330
+ -_f(65863805931 << 18), _f2(451582, 0xc2ea499e5c34f),
1331
+ # C4[10], coeff of eps^12, polynomial in n of order 11
1332
+ -_f(60530460661 << 21), _f(129708905557 << 22),
1333
+ -_f(783916037751 << 21), _f(215690023633 << 24),
1334
+ -_f(0x287cc397f79 << 21), _f(0x174d319d033 << 22),
1335
+ -_f(0x22bf2de15fb << 21), _f(172524970961 << 23),
1336
+ _f(736992166659 << 21), -_f(554058611183 << 22),
1337
+ _f(665956259969 << 21), -_f(0x4d7d212a0a40000),
1338
+ _f2(451582, 0xc2ea499e5c34f),
1339
+ # C4[10], coeff of eps^11, polynomial in n of order 12
1340
+ -_f(31220211 << 24), _f(1576100141 << 22), -_f(5588687797 << 23),
1341
+ _f(52675808031 << 22), -_f(22267080913 << 25),
1342
+ _f(449824279121 << 22), -_f(432213499347 << 23),
1343
+ _f(0x1275ac4a843 << 22), -_f(351080482641 << 24),
1344
+ _f(0x10853170e75 << 22), -_f(314682628337 << 23),
1345
+ _f(212227819111 << 22), -_f(520922828727 << 18),
1346
+ _f2(451582, 0xc2ea499e5c34f),
1347
+ # C4[10], coeff of eps^10, polynomial in n of order 13
1348
+ _f(46189 << 20), _f(522291 << 22), -_f(90008149 << 20),
1349
+ _f(613691925 << 21), -_f(9499950999 << 20), _f(6182507793 << 23),
1350
+ -_f(187536069721 << 20), _f(270344204403 << 21),
1351
+ -_f(0x11a7161219b << 20), _f(533756506129 << 22),
1352
+ -_f(0x2a7db4d305d << 20), _f(0x159e458acd1 << 21),
1353
+ -_f(0x1bcb7dfb99f << 20), _f(0x7e5725605ea0000),
1354
+ _f2(451582, 0xc2ea499e5c34f),
1355
+ # C4[11], coeff of eps^23, polynomial in n of order 0
1356
+ -_f(7309 << 21), _f(0x2c95e8ad321065),
1357
+ # C4[11], coeff of eps^22, polynomial in n of order 1
1358
+ -_f(118877 << 30), _f(1675947 << 23), _f(0x7759dcb5574d50a7),
1359
+ # C4[11], coeff of eps^21, polynomial in n of order 2
1360
+ -_f(9105745 << 24), -_f(49846181 << 23), -_f(2866583251 << 18),
1361
+ _f2(70655, 0xce6359e2ca823),
1362
+ # C4[11], coeff of eps^20, polynomial in n of order 3
1363
+ -_f(239228553 << 25), _f(1509768547 << 26), -_f(1393694995 << 25),
1364
+ _f(7195205325 << 19), _f2(494590, 0xa4b77533898f5),
1365
+ # C4[11], coeff of eps^19, polynomial in n of order 4
1366
+ -_f(10520646403 << 25), _f(16651704531 << 23), _f(1510969677 << 24),
1367
+ _f(227849937 << 23), -_f(40629886913 << 18),
1368
+ _f2(494590, 0xa4b77533898f5),
1369
+ # C4[11], coeff of eps^18, polynomial in n of order 5
1370
+ -_f(737236949 << 28), -_f(83959015 << 31), -_f(449296547 << 28),
1371
+ _f(188420603 << 30), -_f(243597193 << 28), _f(1420486123 << 21),
1372
+ _f2(494590, 0xa4b77533898f5),
1373
+ # C4[11], coeff of eps^17, polynomial in n of order 6
1374
+ _f(1797306345 << 25), _f(7110272827 << 24), -_f(1494242189 << 26),
1375
+ _f(407981949 << 24), _f(324085539 << 25), _f(232922271 << 24),
1376
+ -_f(6431919403 << 19), _f2(70655, 0xce6359e2ca823),
1377
+ # C4[11], coeff of eps^16, polynomial in n of order 7
1378
+ -_f(59422002475 << 26), _f(4462082415 << 27), _f(11958968063 << 26),
1379
+ -_f(116564371 << 28), -_f(9243946887 << 26), _f(3024840805 << 27),
1380
+ -_f(1229077213 << 26), -_f(836978961 << 20),
1381
+ _f2(494590, 0xa4b77533898f5),
1382
+ # C4[11], coeff of eps^15, polynomial in n of order 8
1383
+ _f(1450234755 << 27), _f(28955596425 << 24), -_f(20916501415 << 25),
1384
+ _f(24148276875 << 24), -_f(639979965 << 26), -_f(3796939603 << 24),
1385
+ _f(257117683 << 25), _f(1321384367 << 24), -_f(17153469915 << 19),
1386
+ _f2(70655, 0xce6359e2ca823),
1387
+ # C4[11], coeff of eps^14, polynomial in n of order 9
1388
+ _f(2991071409 << 28), -_f(215656441 << 32), _f(2375561279 << 28),
1389
+ -_f(29715609 << 30), -_f(1772722171 << 28), _f(262089343 << 31),
1390
+ -_f(1227751437 << 28), _f(88909853 << 30), -_f(21460999 << 28),
1391
+ -_f(1112906091 << 21), _f2(70655, 0xce6359e2ca823),
1392
+ # C4[11], coeff of eps^13, polynomial in n of order 10
1393
+ _f(48251719021 << 24), -_f(247802667483 << 23),
1394
+ _f(59903451769 << 26), -_f(693923403733 << 23),
1395
+ _f(362458490331 << 24), -_f(482970502063 << 23),
1396
+ _f(22585671353 << 25), _f(201583163607 << 23),
1397
+ -_f(128100703031 << 24), _f(147544368125 << 23),
1398
+ -_f(0x43bae67ca340000), _f2(494590, 0xa4b77533898f5),
1399
+ # C4[11], coeff of eps^12, polynomial in n of order 11
1400
+ _f(488107587 << 25), -_f(1288790349 << 26), _f(9866997217 << 25),
1401
+ -_f(3570890001 << 28), _f(64004720367 << 25), -_f(56017267579 << 26),
1402
+ _f(152843494797 << 25), -_f(39981841137 << 27),
1403
+ _f(123894347227 << 25), -_f(33286009449 << 26),
1404
+ _f(21954601977 << 25), -_f(212227819111 << 19),
1405
+ _f2(494590, 0xa4b77533898f5),
1406
+ # C4[11], coeff of eps^11, polynomial in n of order 12
1407
+ _f(735471 << 25), -_f(44046541 << 23), _f(188198857 << 24),
1408
+ -_f(2177729631 << 23), _f(1156078693 << 26), -_f(30163144081 << 23),
1409
+ _f(38781185247 << 24), -_f(159433761571 << 23),
1410
+ _f(65649195941 << 25), -_f(342066863061 << 23),
1411
+ _f(168318615157 << 24), -_f(212227819111 << 23),
1412
+ _f(0x6f2df7ee67c0000), _f2(494590, 0xa4b77533898f5),
1413
+ # C4[12], coeff of eps^23, polynomial in n of order 0
1414
+ _f(173 << 24), _f(0x88d5e64011771),
1415
+ # C4[12], coeff of eps^22, polynomial in n of order 1
1416
+ -_f(163369 << 28), -_f(266903 << 29), _f2(14529, 0xb09bccfe817bf),
1417
+ # C4[12], coeff of eps^21, polynomial in n of order 2
1418
+ _f(26283479 << 29), -_f(21738605 << 28), _f(24285135 << 24),
1419
+ _f2(76799, 0xca12f265d0fcd),
1420
+ # C4[12], coeff of eps^20, polynomial in n of order 3
1421
+ _f(6122492151 << 24), _f(880448149 << 25), _f(269123645 << 24),
1422
+ -_f(4943792525 << 21), _f2(537598, 0x8684a0c8b6e9b),
1423
+ # C4[12], coeff of eps^19, polynomial in n of order 4
1424
+ -_f(616982441 << 28), -_f(2168310039 << 26), _f(1398586567 << 27),
1425
+ -_f(817632445 << 26), _f(450511215 << 22),
1426
+ _f2(537598, 0x8684a0c8b6e9b),
1427
+ # C4[12], coeff of eps^18, polynomial in n of order 5
1428
+ _f(1912616275 << 26), -_f(308159801 << 28), -_f(17594779 << 26),
1429
+ _f(72918855 << 27), _f(66311031 << 26), -_f(47313631 << 26),
1430
+ _f2(76799, 0xca12f265d0fcd),
1431
+ # C4[12], coeff of eps^17, polynomial in n of order 6
1432
+ _f(9134109 << 27), _f(1642561735 << 26), _f(58767343 << 28),
1433
+ -_f(1299624495 << 26), _f(374812639 << 27), -_f(137300677 << 26),
1434
+ -_f(61400001 << 22), _f2(76799, 0xca12f265d0fcd),
1435
+ # C4[12], coeff of eps^16, polynomial in n of order 7
1436
+ _f(118127909265 << 25), -_f(66457563795 << 26),
1437
+ _f(64469127555 << 25), -_f(134108625 << 27), -_f(12700511691 << 25),
1438
+ _f(295233743 << 26), _f(4531750951 << 25), -_f(13670656363 << 22),
1439
+ _f2(537598, 0x8684a0c8b6e9b),
1440
+ # C4[12], coeff of eps^15, polynomial in n of order 8
1441
+ -_f(10859744975 << 29), _f(49132517315 << 26), _f(5188275715 << 27),
1442
+ -_f(52074703975 << 26), _f(13295845745 << 28),
1443
+ -_f(28808201009 << 26), _f(3853119361 << 27), -_f(278992987 << 26),
1444
+ -_f(3626908831 << 22), _f2(537598, 0x8684a0c8b6e9b),
1445
+ # C4[12], coeff of eps^14, polynomial in n of order 9
1446
+ -_f(5262740745 << 26), _f(1142543055 << 29), -_f(12070462215 << 26),
1447
+ _f(5779723245 << 27), -_f(6878321925 << 26), _f(125534415 << 28),
1448
+ _f(3745400061 << 26), -_f(2112375473 << 27), _f(2351512319 << 26),
1449
+ -_f(573315259 << 26), _f2(76799, 0xca12f265d0fcd),
1450
+ # C4[12], coeff of eps^13, polynomial in n of order 10
1451
+ -_f(345262775 << 27), _f(2254590065 << 26), -_f(721021595 << 29),
1452
+ _f(11719656095 << 26), -_f(9489736865 << 27), _f(24346633325 << 26),
1453
+ -_f(6069982555 << 28), _f(18134544155 << 26), -_f(4742880779 << 27),
1454
+ _f(3068922857 << 26), -_f(7318200659 << 22),
1455
+ _f2(179199, 0x822c35983cf89),
1456
+ # C4[12], coeff of eps^12, polynomial in n of order 11
1457
+ -_f(58429085 << 24), _f(185910725 << 25), -_f(1747560815 << 24),
1458
+ _f(794345825 << 27), -_f(18392161025 << 24), _f(21545102915 << 25),
1459
+ -_f(82378334675 << 24), _f(32084193505 << 26),
1460
+ -_f(160420967525 << 24), _f(76723071425 << 25),
1461
+ -_f(95136608567 << 24), _f(212227819111 << 21),
1462
+ _f2(537598, 0x8684a0c8b6e9b),
1463
+ # C4[13], coeff of eps^23, polynomial in n of order 0
1464
+ -_f(34717 << 24), _f(0x4013d857859e5ad),
1465
+ # C4[13], coeff of eps^22, polynomial in n of order 1
1466
+ -_f(52837 << 30), _f(101283 << 25), _f(0x39b1009e5dec691d),
1467
+ # C4[13], coeff of eps^21, polynomial in n of order 2
1468
+ _f(58223275 << 29), _f(25058159 << 28), -_f(597584743 << 24),
1469
+ _f2(580606, 0x6851cc5de4441),
1470
+ # C4[13], coeff of eps^20, polynomial in n of order 3
1471
+ -_f(38160201 << 32), _f(20133099 << 33), -_f(10736915 << 32),
1472
+ _f(8118075 << 27), _f2(580606, 0x6851cc5de4441),
1473
+ # C4[13], coeff of eps^19, polynomial in n of order 4
1474
+ -_f(246943573 << 28), -_f(102114339 << 26), _f(63266747 << 27),
1475
+ _f(72037887 << 26), -_f(711672919 << 22),
1476
+ _f2(82943, 0xc5c28ae8d7777),
1477
+ # C4[13], coeff of eps^18, polynomial in n of order 5
1478
+ _f(362438863 << 28), _f(29917105 << 30), -_f(313139991 << 28),
1479
+ _f(81176473 << 29), -_f(26857069 << 28), -_f(40519029 << 23),
1480
+ _f2(82943, 0xc5c28ae8d7777),
1481
+ # C4[13], coeff of eps^17, polynomial in n of order 6
1482
+ -_f(4194208665 << 27), _f(3411193933 << 26), _f(92059229 << 28),
1483
+ -_f(832792389 << 26), -_f(13821619 << 27), _f(313960329 << 26),
1484
+ -_f(1784908801 << 22), _f2(82943, 0xc5c28ae8d7777),
1485
+ # C4[13], coeff of eps^16, polynomial in n of order 7
1486
+ _f(4206195495 << 29), _f(1286394165 << 30), -_f(6553065099 << 29),
1487
+ _f(1494451903 << 31), -_f(3024727629 << 29), _f(374117415 << 30),
1488
+ -_f(7540351 << 29), -_f(836978961 << 24),
1489
+ _f2(580606, 0x6851cc5de4441),
1490
+ # C4[13], coeff of eps^15, polynomial in n of order 8
1491
+ _f(8293864515 << 29), -_f(80835230175 << 26), _f(35736027705 << 27),
1492
+ -_f(37780361325 << 26), -_f(587595645 << 28), _f(26485772901 << 26),
1493
+ -_f(13655575661 << 27), _f(14786628311 << 26),
1494
+ -_f(57193562335 << 22), _f2(580606, 0x6851cc5de4441),
1495
+ # C4[13], coeff of eps^14, polynomial in n of order 9
1496
+ _f(2173316805 << 28), -_f(627936225 << 31), _f(9404910795 << 28),
1497
+ -_f(7129362555 << 29), _f(17350941825 << 28), -_f(4150093185 << 30),
1498
+ _f(12011779143 << 28), -_f(3068922857 << 29), _f(1952950909 << 28),
1499
+ -_f(9206768571 << 23), _f2(580606, 0x6851cc5de4441),
1500
+ # C4[13], coeff of eps^13, polynomial in n of order 10
1501
+ _f(79676025 << 27), -_f(638856855 << 26), _f(256634805 << 29),
1502
+ -_f(5389330905 << 26), _f(5842215855 << 27), -_f(21011478075 << 26),
1503
+ _f(7804263285 << 28), -_f(37664053245 << 26), _f(17576558181 << 27),
1504
+ -_f(21482459999 << 26), _f(95136608567 << 22),
1505
+ _f2(580606, 0x6851cc5de4441),
1506
+ # C4[14], coeff of eps^23, polynomial in n of order 0
1507
+ _f(433 << 27), _f(0x16f0fb486be35c9),
1508
+ # C4[14], coeff of eps^22, polynomial in n of order 1
1509
+ _f(938669 << 29), -_f(8460179 << 26), _f2(36683, 0x318959e11f277),
1510
+ # C4[14], coeff of eps^21, polynomial in n of order 2
1511
+ _f(1085551 << 33), -_f(531601 << 32), _f(109557 << 28),
1512
+ _f2(36683, 0x318959e11f277),
1513
+ # C4[14], coeff of eps^20, polynomial in n of order 3
1514
+ -_f(34899909 << 31), _f(11630633 << 32), _f(16602985 << 31),
1515
+ -_f(73138345 << 28), _f2(623614, 0x4a1ef7f3119e7),
1516
+ # C4[14], coeff of eps^19, polynomial in n of order 4
1517
+ _f(2603869 << 34), -_f(18588201 << 32), _f(4394077 << 33),
1518
+ -_f(1312099 << 32), -_f(1449057 << 28), _f2(89087, 0xc172236bddf21),
1519
+ # C4[14], coeff of eps^18, polynomial in n of order 5
1520
+ _f(1218191717 << 27), _f(79106081 << 29), -_f(371875421 << 27),
1521
+ -_f(20795103 << 28), _f(151229409 << 27), -_f(409250479 << 24),
1522
+ _f2(89087, 0xc172236bddf21),
1523
+ # C4[14], coeff of eps^17, polynomial in n of order 6
1524
+ _f(249532965 << 30), -_f(917899213 << 29), _f(191097911 << 31),
1525
+ -_f(363925371 << 29), _f(41606327 << 30), _f(1574359 << 29),
1526
+ -_f(54936843 << 25), _f2(89087, 0xc172236bddf21),
1527
+ # C4[14], coeff of eps^16, polynomial in n of order 7
1528
+ -_f(19067218845 << 28), _f(7820446095 << 29), -_f(7262714151 << 28),
1529
+ -_f(421931643 << 30), _f(6566089551 << 28), -_f(3155926907 << 29),
1530
+ _f(3340375493 << 28), -_f(6416838701 << 25),
1531
+ _f2(623614, 0x4a1ef7f3119e7),
1532
+ # C4[14], coeff of eps^15, polynomial in n of order 8
1533
+ -_f(353006415 << 32), _f(4931374455 << 29), -_f(3531935085 << 30),
1534
+ _f(8211223125 << 29), -_f(1894184271 << 31), _f(5332188211 << 29),
1535
+ -_f(1334642127 << 30), _f(836978961 << 29), -_f(1952950909 << 25),
1536
+ _f2(623614, 0x4a1ef7f3119e7),
1537
+ # C4[14], coeff of eps^14, polynomial in n of order 9
1538
+ -_f(436268025 << 27), _f(158349135 << 30), -_f(3064521495 << 27),
1539
+ _f(3110604525 << 28), -_f(10615555125 << 27), _f(3784676175 << 29),
1540
+ -_f(17712284499 << 27), _f(8090796623 << 28), -_f(9764754545 << 27),
1541
+ _f(21482459999 << 24), _f2(623614, 0x4a1ef7f3119e7),
1542
+ # C4[15], coeff of eps^23, polynomial in n of order 0
1543
+ -_f(11003 << 27), _f(0x6a44bb11ad2310d),
1544
+ # C4[15], coeff of eps^22, polynomial in n of order 1
1545
+ -_f(28003 << 36), _f(3549 << 30), _f2(39213, 0x11a47a8f8b3bd),
1546
+ # C4[15], coeff of eps^21, polynomial in n of order 2
1547
+ _f(1243 << 38), _f(2249 << 37), -_f(577583 << 28),
1548
+ _f2(5601, 0xddf2ecefef51b),
1549
+ # C4[15], coeff of eps^20, polynomial in n of order 3
1550
+ -_f(28101 << 40), _f(24493 << 39), -_f(1645 << 40),
1551
+ -_f(318801 << 29), _f2(39213, 0x11a47a8f8b3bd),
1552
+ # C4[15], coeff of eps^19, polynomial in n of order 4
1553
+ _f(1359187 << 38), -_f(4447191 << 36), -_f(433293 << 37),
1554
+ _f(1982883 << 36), -_f(164770109 << 28),
1555
+ _f2(666622, 0x2bec23883ef8d),
1556
+ # C4[15], coeff of eps^18, polynomial in n of order 5
1557
+ -_f(6907451 << 36), _f(1332757 << 38), -_f(2401277 << 36),
1558
+ _f(253189 << 37), _f(26273 << 36), -_f(1574359 << 30),
1559
+ _f2(95231, 0xbd21bbeee46cb),
1560
+ # C4[15], coeff of eps^17, polynomial in n of order 6
1561
+ _f(60642045 << 33), -_f(48519929 << 32), -_f(5596337 << 34),
1562
+ _f(57431697 << 32), -_f(26089089 << 33), _f(27095547 << 32),
1563
+ -_f(828361417 << 25), _f2(95231, 0xbd21bbeee46cb),
1564
+ # C4[15], coeff of eps^16, polynomial in n of order 7
1565
+ _f(53036505 << 34), -_f(36153285 << 35), _f(80745483 << 34),
1566
+ -_f(18042031 << 36), _f(49556941 << 34), -_f(12180567 << 35),
1567
+ _f(7540351 << 34), -_f(278992987 << 26),
1568
+ _f2(222207, 0x63f9612d6a52f),
1569
+ # C4[15], coeff of eps^15, polynomial in n of order 8
1570
+ _f(5892945 << 35), -_f(106383165 << 32), _f(102040995 << 33),
1571
+ -_f(332742375 << 32), _f(114463377 << 34), -_f(521444273 << 32),
1572
+ _f(233750881 << 33), -_f(278992987 << 32), _f(9764754545 << 25),
1573
+ _f2(666622, 0x2bec23883ef8d),
1574
+ # C4[16], coeff of eps^23, polynomial in n of order 0
1575
+ -_f(1 << 31), _f(0x5f43434b6401e1),
1576
+ # C4[16], coeff of eps^22, polynomial in n of order 1
1577
+ _f(4571 << 36), -_f(33945 << 32), _f2(5963, 0x471b5f51fec25),
1578
+ # C4[16], coeff of eps^21, polynomial in n of order 2
1579
+ _f(24269 << 36), -_f(5831 << 35), -_f(11703 << 31),
1580
+ _f2(5963, 0x471b5f51fec25),
1581
+ # C4[16], coeff of eps^20, polynomial in n of order 3
1582
+ -_f(224895 << 36), -_f(32277 << 37), _f(111531 << 36),
1583
+ -_f(139825 << 34), _f2(41742, 0xf1bf9b3df7503),
1584
+ # C4[16], coeff of eps^19, polynomial in n of order 4
1585
+ _f(978405 << 37), -_f(1674813 << 35), _f(162197 << 36),
1586
+ _f(29281 << 35), -_f(297087 << 31), _f2(41742, 0xf1bf9b3df7503),
1587
+ # C4[16], coeff of eps^18, polynomial in n of order 5
1588
+ -_f(15263501 << 36), -_f(3038189 << 38), _f(24413445 << 36),
1589
+ -_f(10587549 << 37), _f(10822455 << 36), -_f(41181917 << 32),
1590
+ _f2(709630, 0xdb94f1d6c533),
1591
+ # C4[16], coeff of eps^17, polynomial in n of order 6
1592
+ -_f(7565085 << 36), _f(16306961 << 35), -_f(3541967 << 37),
1593
+ _f(9518487 << 35), -_f(2301919 << 36), _f(1408637 << 35),
1594
+ -_f(3231579 << 31), _f2(101375, 0xb8d15471eae75),
1595
+ # C4[16], coeff of eps^16, polynomial in n of order 7
1596
+ -_f(57998985 << 33), _f(52955595 << 34), -_f(165927531 << 33),
1597
+ _f(55309177 << 35), -_f(246030477 << 33), _f(108465049 << 34),
1598
+ -_f(128185967 << 33), _f(278992987 << 30),
1599
+ _f2(709630, 0xdb94f1d6c533),
1600
+ # C4[17], coeff of eps^23, polynomial in n of order 0
1601
+ -_f(1121 << 31), _f(0x6ef59e61feaaea7),
1602
+ # C4[17], coeff of eps^22, polynomial in n of order 1
1603
+ -_f(59 << 37), -_f(309 << 32), _f(0x14ce0db25fc00bf5),
1604
+ # C4[17], coeff of eps^21, polynomial in n of order 2
1605
+ -_f(10703 << 36), _f(30413 << 35), -_f(148003 << 31),
1606
+ _f2(6324, 0xb043d1b40e32f),
1607
+ # C4[17], coeff of eps^20, polynomial in n of order 3
1608
+ -_f(177777 << 38), _f(15715 << 39), _f(4277 << 38),
1609
+ -_f(68103 << 33), _f2(44272, 0xd1dabbec63649),
1610
+ # C4[17], coeff of eps^19, polynomial in n of order 4
1611
+ -_f(407783 << 37), _f(2775087 << 35), -_f(1157751 << 36),
1612
+ _f(1167621 << 35), -_f(4428011 << 31), _f2(44272, 0xd1dabbec63649),
1613
+ # C4[17], coeff of eps^18, polynomial in n of order 5
1614
+ _f(1580535 << 37), -_f(334719 << 39), _f(882049 << 37),
1615
+ -_f(210231 << 38), _f(127323 << 37), -_f(580027 << 32),
1616
+ _f2(44272, 0xd1dabbec63649),
1617
+ # C4[17], coeff of eps^17, polynomial in n of order 6
1618
+ _f(801009 << 36), -_f(2422805 << 35), _f(785323 << 37),
1619
+ -_f(3419955 << 35), _f(1485435 << 36), -_f(1740081 << 35),
1620
+ _f(7540351 << 31), _f2(44272, 0xd1dabbec63649),
1621
+ # C4[18], coeff of eps^23, polynomial in n of order 0
1622
+ -_f(89 << 35), _f(0x3351994085c8a607),
1623
+ # C4[18], coeff of eps^22, polynomial in n of order 1
1624
+ _f(763 << 36), -_f(1809 << 33), _f(0x15fe66403955fe03),
1625
+ # C4[18], coeff of eps^21, polynomial in n of order 2
1626
+ _f(91 << 39), _f(35 << 38), -_f(235 << 34),
1627
+ _f(0x15fe66403955fe03),
1628
+ # C4[18], coeff of eps^20, polynomial in n of order 3
1629
+ _f(667755 << 37), -_f(269591 << 38), _f(268793 << 37),
1630
+ -_f(508305 << 34), _f2(46802, 0xb1f5dc9acf78f),
1631
+ # C4[18], coeff of eps^19, polynomial in n of order 4
1632
+ -_f(51319 << 40), _f(132867 << 38), -_f(31255 << 39),
1633
+ _f(18753 << 38), -_f(42441 << 34), _f2(15600, 0xe5fc9ede45285),
1634
+ # C4[18], coeff of eps^18, polynomial in n of order 5
1635
+ -_f(1198615 << 36), _f(378917 << 38), -_f(1619009 << 36),
1636
+ _f(693861 << 37), -_f(806379 << 36), _f(1740081 << 33),
1637
+ _f2(46802, 0xb1f5dc9acf78f),
1638
+ # C4[19], coeff of eps^23, polynomial in n of order 0
1639
+ -_f(983 << 35), _f(0x3617bd362c26857d),
1640
+ # C4[19], coeff of eps^22, polynomial in n of order 1
1641
+ _f(1 << 46), -_f(189 << 37), _f2(2596, 0x737a284739077),
1642
+ # C4[19], coeff of eps^21, polynomial in n of order 2
1643
+ -_f(473 << 40), _f(467 << 39), -_f(3525 << 34),
1644
+ _f(0x172ebece12ebf011),
1645
+ # C4[19], coeff of eps^20, polynomial in n of order 3
1646
+ _f(2379 << 41), -_f(553 << 42), _f(329 << 41), -_f(2961 << 35),
1647
+ _f2(2596, 0x737a284739077),
1648
+ # C4[19], coeff of eps^19, polynomial in n of order 4
1649
+ _f(2405 << 41), -_f(10101 << 39), _f(4277 << 40), -_f(4935 << 39),
1650
+ _f(42441 << 34), _f2(2596, 0x737a284739077),
1651
+ # C4[20], coeff of eps^23, polynomial in n of order 0
1652
+ -_f(1 << 38), _f(0x1f5feefdb1f0c4f),
1653
+ # C4[20], coeff of eps^22, polynomial in n of order 1
1654
+ _f(379 << 42), -_f(357 << 40), _f2(2729, 0x9a383778d2ed9),
1655
+ # C4[20], coeff of eps^21, polynomial in n of order 2
1656
+ -_f(249 << 43), _f(147 << 42), -_f(329 << 38),
1657
+ _f2(2729, 0x9a383778d2ed9),
1658
+ # C4[20], coeff of eps^20, polynomial in n of order 3
1659
+ -_f(4797 << 40), _f(2009 << 41), -_f(2303 << 40), _f(4935 << 37),
1660
+ _f2(2729, 0x9a383778d2ed9),
1661
+ # C4[21], coeff of eps^23, polynomial in n of order 0
1662
+ -_f(1327 << 38), _f2(2862, 0xc0f646aa6cd3b),
1663
+ # C4[21], coeff of eps^22, polynomial in n of order 1
1664
+ _f(11 << 44), -_f(49 << 39), _f(0x3ba4052178e24469),
1665
+ # C4[21], coeff of eps^21, polynomial in n of order 2
1666
+ _f(473 << 43), -_f(539 << 42), _f(2303 << 38),
1667
+ _f2(2862, 0xc0f646aa6cd3b),
1668
+ # C4[22], coeff of eps^23, polynomial in n of order 0
1669
+ -_f(1 << 41), _f(0x5ac8f5f3162ebfd),
1670
+ # C4[22], coeff of eps^22, polynomial in n of order 1
1671
+ -_f(23 << 43), _f(49 << 40), _f(0x1105ae1d9428c3f7),
1672
+ # C4[23], coeff of eps^23, polynomial in n of order 0
1673
+ _f(1 << 41), _f(0xc5e28ed2c935ab), # PYCHOK exported
1674
+ )) # 2900 / 2708
1675
+ if __name__ == '__main__':
1676
+ _g.prints()
1677
+ del _g, _Gfloats, _f, _f2
1678
+
1679
+ # **) MIT License
1680
+ #
1681
+ # Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
1682
+ #
1683
+ # Permission is hereby granted, free of charge, to any person obtaining a
1684
+ # copy of this software and associated documentation files (the "Software"),
1685
+ # to deal in the Software without restriction, including without limitation
1686
+ # the rights to use, copy, modify, merge, publish, distribute, sublicense,
1687
+ # and/or sell copies of the Software, and to permit persons to whom the
1688
+ # Software is furnished to do so, subject to the following conditions:
1689
+ #
1690
+ # The above copyright notice and this permission notice shall be included
1691
+ # in all copies or substantial portions of the Software.
1692
+ #
1693
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
1694
+ # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1695
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1696
+ # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
1697
+ # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1698
+ # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
1699
+ # OTHER DEALINGS IN THE SOFTWARE.