pygeodesy 24.3.24__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- PyGeodesy-24.3.24.dist-info/METADATA +272 -0
- PyGeodesy-24.3.24.dist-info/RECORD +115 -0
- PyGeodesy-24.3.24.dist-info/WHEEL +6 -0
- PyGeodesy-24.3.24.dist-info/top_level.txt +1 -0
- pygeodesy/LICENSE +21 -0
- pygeodesy/__init__.py +615 -0
- pygeodesy/__main__.py +103 -0
- pygeodesy/albers.py +867 -0
- pygeodesy/auxilats/_CX_4.py +218 -0
- pygeodesy/auxilats/_CX_6.py +314 -0
- pygeodesy/auxilats/_CX_8.py +475 -0
- pygeodesy/auxilats/__init__.py +54 -0
- pygeodesy/auxilats/__main__.py +86 -0
- pygeodesy/auxilats/auxAngle.py +548 -0
- pygeodesy/auxilats/auxDLat.py +302 -0
- pygeodesy/auxilats/auxDST.py +296 -0
- pygeodesy/auxilats/auxLat.py +848 -0
- pygeodesy/auxilats/auxily.py +272 -0
- pygeodesy/azimuthal.py +1150 -0
- pygeodesy/basics.py +892 -0
- pygeodesy/booleans.py +2031 -0
- pygeodesy/cartesianBase.py +1062 -0
- pygeodesy/clipy.py +704 -0
- pygeodesy/constants.py +516 -0
- pygeodesy/css.py +660 -0
- pygeodesy/datums.py +752 -0
- pygeodesy/deprecated/__init__.py +61 -0
- pygeodesy/deprecated/bases.py +40 -0
- pygeodesy/deprecated/classes.py +262 -0
- pygeodesy/deprecated/consterns.py +54 -0
- pygeodesy/deprecated/datum.py +40 -0
- pygeodesy/deprecated/functions.py +375 -0
- pygeodesy/deprecated/nvector.py +48 -0
- pygeodesy/deprecated/rhumbBase.py +32 -0
- pygeodesy/deprecated/rhumbaux.py +33 -0
- pygeodesy/deprecated/rhumbsolve.py +33 -0
- pygeodesy/deprecated/rhumbx.py +33 -0
- pygeodesy/dms.py +986 -0
- pygeodesy/ecef.py +1348 -0
- pygeodesy/elevations.py +279 -0
- pygeodesy/ellipsoidalBase.py +1224 -0
- pygeodesy/ellipsoidalBaseDI.py +913 -0
- pygeodesy/ellipsoidalExact.py +343 -0
- pygeodesy/ellipsoidalGeodSolve.py +343 -0
- pygeodesy/ellipsoidalKarney.py +403 -0
- pygeodesy/ellipsoidalNvector.py +685 -0
- pygeodesy/ellipsoidalVincenty.py +590 -0
- pygeodesy/ellipsoids.py +2476 -0
- pygeodesy/elliptic.py +1198 -0
- pygeodesy/epsg.py +243 -0
- pygeodesy/errors.py +804 -0
- pygeodesy/etm.py +1190 -0
- pygeodesy/fmath.py +1013 -0
- pygeodesy/formy.py +1818 -0
- pygeodesy/frechet.py +865 -0
- pygeodesy/fstats.py +760 -0
- pygeodesy/fsums.py +1898 -0
- pygeodesy/gars.py +358 -0
- pygeodesy/geodesicw.py +581 -0
- pygeodesy/geodesicx/_C4_24.py +1699 -0
- pygeodesy/geodesicx/_C4_27.py +2395 -0
- pygeodesy/geodesicx/_C4_30.py +3301 -0
- pygeodesy/geodesicx/__init__.py +48 -0
- pygeodesy/geodesicx/__main__.py +91 -0
- pygeodesy/geodesicx/gx.py +1382 -0
- pygeodesy/geodesicx/gxarea.py +535 -0
- pygeodesy/geodesicx/gxbases.py +154 -0
- pygeodesy/geodesicx/gxline.py +669 -0
- pygeodesy/geodsolve.py +426 -0
- pygeodesy/geohash.py +914 -0
- pygeodesy/geoids.py +1884 -0
- pygeodesy/hausdorff.py +892 -0
- pygeodesy/heights.py +1155 -0
- pygeodesy/interns.py +687 -0
- pygeodesy/iters.py +545 -0
- pygeodesy/karney.py +919 -0
- pygeodesy/ktm.py +633 -0
- pygeodesy/latlonBase.py +1766 -0
- pygeodesy/lazily.py +960 -0
- pygeodesy/lcc.py +684 -0
- pygeodesy/ltp.py +1107 -0
- pygeodesy/ltpTuples.py +1563 -0
- pygeodesy/mgrs.py +721 -0
- pygeodesy/named.py +1324 -0
- pygeodesy/namedTuples.py +683 -0
- pygeodesy/nvectorBase.py +695 -0
- pygeodesy/osgr.py +781 -0
- pygeodesy/points.py +1686 -0
- pygeodesy/props.py +628 -0
- pygeodesy/resections.py +1048 -0
- pygeodesy/rhumb/__init__.py +46 -0
- pygeodesy/rhumb/aux_.py +397 -0
- pygeodesy/rhumb/bases.py +1148 -0
- pygeodesy/rhumb/ekx.py +563 -0
- pygeodesy/rhumb/solve.py +572 -0
- pygeodesy/simplify.py +647 -0
- pygeodesy/solveBase.py +472 -0
- pygeodesy/sphericalBase.py +724 -0
- pygeodesy/sphericalNvector.py +1264 -0
- pygeodesy/sphericalTrigonometry.py +1447 -0
- pygeodesy/streprs.py +627 -0
- pygeodesy/trf.py +2079 -0
- pygeodesy/triaxials.py +1484 -0
- pygeodesy/units.py +969 -0
- pygeodesy/unitsBase.py +349 -0
- pygeodesy/ups.py +538 -0
- pygeodesy/utily.py +1231 -0
- pygeodesy/utm.py +762 -0
- pygeodesy/utmups.py +318 -0
- pygeodesy/utmupsBase.py +517 -0
- pygeodesy/vector2d.py +785 -0
- pygeodesy/vector3d.py +968 -0
- pygeodesy/vector3dBase.py +1049 -0
- pygeodesy/webmercator.py +383 -0
- pygeodesy/wgrs.py +439 -0
pygeodesy/fmath.py
ADDED
|
@@ -0,0 +1,1013 @@
|
|
|
1
|
+
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
u'''Utilities using precision floating point summation.
|
|
5
|
+
'''
|
|
6
|
+
# make sure int/int division yields float quotient, see .basics
|
|
7
|
+
from __future__ import division as _; del _ # PYCHOK semicolon
|
|
8
|
+
|
|
9
|
+
from pygeodesy.basics import _copysign, copysign0, isint, len2
|
|
10
|
+
from pygeodesy.constants import EPS0, EPS02, EPS1, NAN, PI, PI_2, PI_4, \
|
|
11
|
+
_0_0, _0_125, _0_25, _0_5, _1_0, _N_1_0, \
|
|
12
|
+
_1_3rd, _1_5, _1_6th, _2_0, _2_3rd, _3_0, \
|
|
13
|
+
_isfinite, isnear0, isnear1, _over, remainder
|
|
14
|
+
from pygeodesy.errors import _IsnotError, LenError, _TypeError, _ValueError, \
|
|
15
|
+
_xError, _xkwds_get, _xkwds_pop2
|
|
16
|
+
from pygeodesy.fsums import _2float, _Powers, Fsum, _fsum, fsum, fsum1_, \
|
|
17
|
+
_pow_op_, Fmt, unstr
|
|
18
|
+
from pygeodesy.interns import MISSING, _few_, _h_, _invokation_, _negative_, \
|
|
19
|
+
_not_scalar_, _SPACE_, _too_
|
|
20
|
+
from pygeodesy.lazily import _ALL_LAZY, _sys_version_info2
|
|
21
|
+
# from pygeodesy.streprs import Fmt, unstr # from .fsums
|
|
22
|
+
from pygeodesy.units import Int_, _isHeight, _isRadius, Float_ # PYCHOK for .heights
|
|
23
|
+
|
|
24
|
+
from math import fabs, sqrt # pow
|
|
25
|
+
import operator as _operator # in .datums, .trf, .utm
|
|
26
|
+
|
|
27
|
+
__all__ = _ALL_LAZY.fmath
|
|
28
|
+
__version__ = '24.03.14'
|
|
29
|
+
|
|
30
|
+
# sqrt(2) <https://WikiPedia.org/wiki/Square_root_of_2>
|
|
31
|
+
_0_4142 = 0.41421356237309504880 # ... sqrt(2) - 1
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class Fdot(Fsum):
|
|
35
|
+
'''Precision dot product.
|
|
36
|
+
'''
|
|
37
|
+
def __init__(self, a, *b, **name):
|
|
38
|
+
'''New L{Fdot} precision dot product M{sum(a[i] * b[i]
|
|
39
|
+
for i=0..len(a))}.
|
|
40
|
+
|
|
41
|
+
@arg a: Iterable, list, tuple, etc. (C{scalar}s).
|
|
42
|
+
@arg b: Other values (C{scalar}s), all positional.
|
|
43
|
+
@kwarg name: Optional name (C{str}).
|
|
44
|
+
|
|
45
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
46
|
+
|
|
47
|
+
@raise LenError: Unequal C{len(B{a})} and C{len(B{b})}.
|
|
48
|
+
|
|
49
|
+
@see: Function L{fdot} and method L{Fsum.fadd}.
|
|
50
|
+
'''
|
|
51
|
+
Fsum.__init__(self, **name)
|
|
52
|
+
self.fadd(_map_mul(a, b, Fdot))
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class Fhorner(Fsum):
|
|
56
|
+
'''Precision polynomial evaluation using the Horner form.
|
|
57
|
+
'''
|
|
58
|
+
def __init__(self, x, *cs, **name):
|
|
59
|
+
'''New L{Fhorner} evaluation of the polynomial
|
|
60
|
+
M{sum(cs[i] * x**i for i=0..len(cs))}.
|
|
61
|
+
|
|
62
|
+
@arg x: Polynomial argument (C{scalar}).
|
|
63
|
+
@arg cs: Polynomial coeffients (C{scalar} or C{Fsum}
|
|
64
|
+
instances), all positional.
|
|
65
|
+
@kwarg name: Optional name (C{str}).
|
|
66
|
+
|
|
67
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
68
|
+
|
|
69
|
+
@raise TypeError: Non-scalar B{C{x}}.
|
|
70
|
+
|
|
71
|
+
@raise ValueError: Non-finite B{C{x}}.
|
|
72
|
+
|
|
73
|
+
@see: Function L{fhorner} and methods L{Fsum.fadd} and L{Fsum.fmul}.
|
|
74
|
+
'''
|
|
75
|
+
Fsum.__init__(self, *cs[-1:], **name)
|
|
76
|
+
if len(cs) > 1:
|
|
77
|
+
x = _2float(x=x)
|
|
78
|
+
_a = self._fadd # (other, op)
|
|
79
|
+
_f = self._finite # (other, op)
|
|
80
|
+
op = Fhorner.__name__
|
|
81
|
+
ps = self._ps
|
|
82
|
+
for c in reversed(cs[:-1]): # multiply-accumulate
|
|
83
|
+
ps[:] = [_f(p * x, op) for p in ps]
|
|
84
|
+
_a(c, op)
|
|
85
|
+
# assert self._ps is ps
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
class Fhypot(Fsum):
|
|
89
|
+
'''Precision hypotenuse of summation.
|
|
90
|
+
'''
|
|
91
|
+
def __init__(self, *xs, **power_name_RESIDUAL):
|
|
92
|
+
'''New L{Fhypot} hypotenuse of (the I{power} of) several
|
|
93
|
+
C{scalar} or C{Fsum} values.
|
|
94
|
+
|
|
95
|
+
@arg xs: One or more values to include (each C{scalar}
|
|
96
|
+
or an C{Fsum} instance).
|
|
97
|
+
@kwarg power_name_RESIDUAL: Optional exponent and root
|
|
98
|
+
order C{B{power}=2}, C{B{name}=NN} and
|
|
99
|
+
C{B{RESIDUAL}=None}, see L{Fsum.__init__}.
|
|
100
|
+
'''
|
|
101
|
+
try:
|
|
102
|
+
p, kwds = _xkwds_pop2(power_name_RESIDUAL, power=2)
|
|
103
|
+
Fsum.__init__(self, **kwds)
|
|
104
|
+
if xs:
|
|
105
|
+
self._facc(_Powers(p, xs), up=False) # PYCHOK yield
|
|
106
|
+
self._fset(self._fpow(_1_0 / p, _pow_op_), asis=True)
|
|
107
|
+
except Exception as X:
|
|
108
|
+
raise self._ErrorX(X, xs, power=p)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
class Fpolynomial(Fsum):
|
|
112
|
+
'''Precision polynomial evaluation.
|
|
113
|
+
'''
|
|
114
|
+
def __init__(self, x, *cs, **name):
|
|
115
|
+
'''New L{Fpolynomial} evaluation of the polynomial
|
|
116
|
+
M{sum(cs[i] * x**i for i=0..len(cs))}.
|
|
117
|
+
|
|
118
|
+
@arg x: Polynomial argument (C{scalar}).
|
|
119
|
+
@arg cs: Polynomial coeffients (C{scalar}s), all
|
|
120
|
+
positional.
|
|
121
|
+
@kwarg name: Optional name (C{str}).
|
|
122
|
+
|
|
123
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
124
|
+
|
|
125
|
+
@raise TypeError: Non-scalar B{C{x}}.
|
|
126
|
+
|
|
127
|
+
@raise ValueError: Non-finite B{C{x}}.
|
|
128
|
+
|
|
129
|
+
@see: Function L{fpolynomial} and method L{Fsum.fadd}.
|
|
130
|
+
'''
|
|
131
|
+
Fsum.__init__(self, *cs[:1], **name)
|
|
132
|
+
n = len(cs) - 1
|
|
133
|
+
if n > 0:
|
|
134
|
+
self.fadd(_map_mul(cs[1:], fpowers(x, n), Fpolynomial))
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class Fpowers(Fsum):
|
|
138
|
+
'''Precision summation or powers, optimized for C{power=2}.
|
|
139
|
+
'''
|
|
140
|
+
def __init__(self, power, *xs, **name_RESIDUAL):
|
|
141
|
+
'''New L{Fpowers} sum of (the I{power} of) several C{scalar}
|
|
142
|
+
or C{Fsum} values.
|
|
143
|
+
|
|
144
|
+
@arg power: The exponent (C{scalar} or C{Fsum}).
|
|
145
|
+
@arg xs: One or more values to include (each C{scalar}
|
|
146
|
+
or an C{Fsum} instance).
|
|
147
|
+
@kwarg power_name_RESIDUAL: Optional exponent and root
|
|
148
|
+
order C{B{power}=2}, C{B{name}=NN} and
|
|
149
|
+
C{B{RESIDUAL}=None}, see L{Fsum.__init__}.
|
|
150
|
+
'''
|
|
151
|
+
try:
|
|
152
|
+
Fsum.__init__(self, **name_RESIDUAL)
|
|
153
|
+
if xs:
|
|
154
|
+
self._facc(_Powers(power, xs), up=False) # PYCHOK yield
|
|
155
|
+
except Exception as X:
|
|
156
|
+
raise self._ErrorX(X, xs, power=power)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
class Fn_rt(Fsum):
|
|
160
|
+
'''Precision n-th root of summation.
|
|
161
|
+
'''
|
|
162
|
+
def __init__(self, root, *xs, **name_RESIDUAL):
|
|
163
|
+
'''New L{Fn_rt} root of the precision sum of several
|
|
164
|
+
C{scalar} or C{Fsum} values.
|
|
165
|
+
|
|
166
|
+
@arg root: The order (C{scalar} or C{Fsum}).
|
|
167
|
+
@arg xs: Values to include (each C{scalar} or an
|
|
168
|
+
C{Fsum} instance).
|
|
169
|
+
@kwarg name_RESIDUAL: See L{Fsum.__init__}.
|
|
170
|
+
'''
|
|
171
|
+
try:
|
|
172
|
+
Fsum.__init__(self, *xs, **name_RESIDUAL)
|
|
173
|
+
self._fset(self._fpow(_1_0 / root, _pow_op_), asis=True)
|
|
174
|
+
except Exception as X:
|
|
175
|
+
raise self._ErrorX(X, xs, root=root)
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
class Fcbrt(Fn_rt):
|
|
179
|
+
'''Precision cubic root of summation.
|
|
180
|
+
'''
|
|
181
|
+
def __init__(self, *xs, **name_RESIDUAL):
|
|
182
|
+
'''New L{Fcbrt} cubic root of the precision sum of
|
|
183
|
+
several C{scalar} or C{Fsum} values.
|
|
184
|
+
|
|
185
|
+
@arg xs: Values to include (each C{scalar} or an
|
|
186
|
+
C{Fsum} instance).
|
|
187
|
+
@kwarg name_RESIDUAL: See L{Fsum.__init__}.
|
|
188
|
+
'''
|
|
189
|
+
Fn_rt.__init__(self, _3_0, *xs, **name_RESIDUAL)
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
class Fsqrt(Fn_rt):
|
|
193
|
+
'''Precision square root of summation.
|
|
194
|
+
'''
|
|
195
|
+
def __init__(self, *xs, **name_RESIDUAL):
|
|
196
|
+
'''New L{Fsqrt} square root of the precision sum of
|
|
197
|
+
several C{scalar} or C{Fsum} values.
|
|
198
|
+
|
|
199
|
+
@arg xs: Values to include (each C{scalar} or an
|
|
200
|
+
C{Fsum} instance).
|
|
201
|
+
@kwarg name_RESIDUAL: See L{Fsum.__init__}.
|
|
202
|
+
'''
|
|
203
|
+
Fn_rt.__init__(self, _2_0, *xs, **name_RESIDUAL)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def bqrt(x):
|
|
207
|
+
'''Return the 4-th, I{bi-quadratic} or I{quartic} root, M{x**(1 / 4)}.
|
|
208
|
+
|
|
209
|
+
@arg x: Value (C{scalar}).
|
|
210
|
+
|
|
211
|
+
@return: I{Quartic} root (C{float}).
|
|
212
|
+
|
|
213
|
+
@raise ValueError: Negative B{C{x}}.
|
|
214
|
+
|
|
215
|
+
@see: Functions L{zcrt} and L{zqrt}.
|
|
216
|
+
'''
|
|
217
|
+
return _root(x, _0_25, bqrt)
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
try:
|
|
221
|
+
from math import cbrt # Python 3.11+
|
|
222
|
+
|
|
223
|
+
def cbrt2(x):
|
|
224
|
+
'''Compute the cube root I{squared} M{x**(2/3)}.
|
|
225
|
+
'''
|
|
226
|
+
return cbrt(x)**2 # cbrt(-0.0*2) == -0.0
|
|
227
|
+
|
|
228
|
+
except ImportError: # Python 3.10-
|
|
229
|
+
|
|
230
|
+
def cbrt(x):
|
|
231
|
+
'''Compute the cube root M{x**(1/3)}.
|
|
232
|
+
|
|
233
|
+
@arg x: Value (C{scalar}).
|
|
234
|
+
|
|
235
|
+
@return: Cubic root (C{float}).
|
|
236
|
+
|
|
237
|
+
@see: Functions L{cbrt2} and L{sqrt3}.
|
|
238
|
+
'''
|
|
239
|
+
# <https://archive.lib.MSU.edu/crcmath/math/math/r/r021.htm>
|
|
240
|
+
# simpler and more accurate than Ken Turkowski's CubeRoot, see
|
|
241
|
+
# <https://People.FreeBSD.org/~lstewart/references/apple_tr_kt32_cuberoot.pdf>
|
|
242
|
+
return _copysign(pow(fabs(x), _1_3rd), x) # cbrt(-0.0) == -0.0
|
|
243
|
+
|
|
244
|
+
def cbrt2(x): # PYCHOK attr
|
|
245
|
+
'''Compute the cube root I{squared} M{x**(2/3)}.
|
|
246
|
+
|
|
247
|
+
@arg x: Value (C{scalar}).
|
|
248
|
+
|
|
249
|
+
@return: Cube root I{squared} (C{float}).
|
|
250
|
+
|
|
251
|
+
@see: Functions L{cbrt} and L{sqrt3}.
|
|
252
|
+
'''
|
|
253
|
+
return pow(fabs(x), _2_3rd) # XXX pow(fabs(x), _1_3rd)**2
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
def euclid(x, y):
|
|
257
|
+
'''I{Appoximate} the norm M{sqrt(x**2 + y**2)} by
|
|
258
|
+
M{max(abs(x), abs(y)) + min(abs(x), abs(y)) * 0.4142...}.
|
|
259
|
+
|
|
260
|
+
@arg x: X component (C{scalar}).
|
|
261
|
+
@arg y: Y component (C{scalar}).
|
|
262
|
+
|
|
263
|
+
@return: Appoximate norm (C{float}).
|
|
264
|
+
|
|
265
|
+
@see: Function L{euclid_}.
|
|
266
|
+
'''
|
|
267
|
+
x, y = fabs(x), fabs(y)
|
|
268
|
+
if x < y:
|
|
269
|
+
x, y = y, x
|
|
270
|
+
return x + y * _0_4142 # XXX * _0_5 before 20.10.02
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def euclid_(*xs):
|
|
274
|
+
'''I{Appoximate} the norm M{sqrt(sum(x**2 for x in xs))}
|
|
275
|
+
by cascaded L{euclid}.
|
|
276
|
+
|
|
277
|
+
@arg xs: X arguments, positional (C{scalar}s).
|
|
278
|
+
|
|
279
|
+
@return: Appoximate norm (C{float}).
|
|
280
|
+
|
|
281
|
+
@see: Function L{euclid}.
|
|
282
|
+
'''
|
|
283
|
+
e = _0_0
|
|
284
|
+
for x in sorted(map(fabs, xs)): # XXX not reverse=True
|
|
285
|
+
# e = euclid(x, e)
|
|
286
|
+
if e < x:
|
|
287
|
+
e, x = x, e
|
|
288
|
+
if x:
|
|
289
|
+
e += x * _0_4142
|
|
290
|
+
return e
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
def facos1(x):
|
|
294
|
+
'''Fast approximation of L{pygeodesy.acos1}C{(B{x})}.
|
|
295
|
+
|
|
296
|
+
@see: U{ShaderFastLibs.h<https://GitHub.com/michaldrobot/
|
|
297
|
+
ShaderFastLibs/blob/master/ShaderFastMathLib.h>}.
|
|
298
|
+
'''
|
|
299
|
+
a = fabs(x)
|
|
300
|
+
if a < EPS0:
|
|
301
|
+
r = PI_2
|
|
302
|
+
elif a < EPS1:
|
|
303
|
+
H = Fhorner(-a, 1.5707288, 0.2121144, 0.0742610, 0.0187293)
|
|
304
|
+
r = float(H * sqrt(_1_0 - a))
|
|
305
|
+
if x < 0:
|
|
306
|
+
r = PI - r
|
|
307
|
+
else:
|
|
308
|
+
r = PI if x < 0 else _0_0
|
|
309
|
+
return r
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def fasin1(x): # PYCHOK no cover
|
|
313
|
+
'''Fast approximation of L{pygeodesy.asin1}C{(B{x})}.
|
|
314
|
+
|
|
315
|
+
@see: L{facos1}.
|
|
316
|
+
'''
|
|
317
|
+
return PI_2 - facos1(x)
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
def fatan(x):
|
|
321
|
+
'''Fast approximation of C{atan(B{x})}.
|
|
322
|
+
'''
|
|
323
|
+
a = fabs(x)
|
|
324
|
+
if a < _1_0:
|
|
325
|
+
r = fatan1(a) if a else _0_0
|
|
326
|
+
elif a > _1_0:
|
|
327
|
+
r = PI_2 - fatan1(_1_0 / a) # == fatan2(a, _1_0)
|
|
328
|
+
else:
|
|
329
|
+
r = PI_4
|
|
330
|
+
if x < 0: # copysign0(r, x)
|
|
331
|
+
r = -r
|
|
332
|
+
return r
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
def fatan1(x):
|
|
336
|
+
'''Fast approximation of C{atan(B{x})} for C{0 <= B{x} <= 1}, I{unchecked}.
|
|
337
|
+
|
|
338
|
+
@see: U{ShaderFastLibs.h<https://GitHub.com/michaldrobot/ShaderFastLibs/
|
|
339
|
+
blob/master/ShaderFastMathLib.h>} and U{Efficient approximations
|
|
340
|
+
for the arctangent function<http://www-Labs.IRO.UMontreal.CA/
|
|
341
|
+
~mignotte/IFT2425/Documents/EfficientApproximationArctgFunction.pdf>},
|
|
342
|
+
IEEE Signal Processing Magazine, 111, May 2006.
|
|
343
|
+
'''
|
|
344
|
+
# Eq (9): PI_4 * x - x * (abs(x) - 1) * (0.2447 + 0.0663 * abs(x)), for -1 < x < 1
|
|
345
|
+
# PI_4 * x - (x**2 - x) * (0.2447 + 0.0663 * x), for 0 < x - 1
|
|
346
|
+
# x * (1.0300981633974482 + x * (-0.1784 - x * 0.0663))
|
|
347
|
+
H = Fhorner(x, _0_0, 1.0300982, -0.1784, -0.0663)
|
|
348
|
+
return float(H)
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
def fatan2(y, x):
|
|
352
|
+
'''Fast approximation of C{atan2(B{y}, B{x})}.
|
|
353
|
+
|
|
354
|
+
@see: U{fastApproximateAtan(x, y)<https://GitHub.com/CesiumGS/cesium/blob/
|
|
355
|
+
master/Source/Shaders/Builtin/Functions/fastApproximateAtan.glsl>}
|
|
356
|
+
and L{fatan1}.
|
|
357
|
+
'''
|
|
358
|
+
b, a = fabs(y), fabs(x)
|
|
359
|
+
if a < b:
|
|
360
|
+
r = (PI_2 - fatan1(a / b)) if a else PI_2
|
|
361
|
+
elif b < a:
|
|
362
|
+
r = fatan1(b / a) if b else _0_0
|
|
363
|
+
elif a: # == b != 0
|
|
364
|
+
r = PI_4
|
|
365
|
+
else: # a == b == 0
|
|
366
|
+
return _0_0
|
|
367
|
+
if x < 0:
|
|
368
|
+
r = PI - r
|
|
369
|
+
if y < 0: # copysign0(r, y)
|
|
370
|
+
r = -r
|
|
371
|
+
return r
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def favg(v1, v2, f=_0_5):
|
|
375
|
+
'''Return the average of two values.
|
|
376
|
+
|
|
377
|
+
@arg v1: One value (C{scalar}).
|
|
378
|
+
@arg v2: Other value (C{scalar}).
|
|
379
|
+
@kwarg f: Optional fraction (C{float}).
|
|
380
|
+
|
|
381
|
+
@return: M{v1 + f * (v2 - v1)} (C{float}).
|
|
382
|
+
'''
|
|
383
|
+
# @raise ValueError: Fraction out of range.
|
|
384
|
+
# '''
|
|
385
|
+
# if not 0 <= f <= 1: # XXX restrict fraction?
|
|
386
|
+
# raise _ValueError(fraction=f)
|
|
387
|
+
# v1 + f * (v2 - v1) == v1 * (1 - f) + v2 * f
|
|
388
|
+
return fsum1_(v1, -f * v1, f * v2)
|
|
389
|
+
|
|
390
|
+
|
|
391
|
+
def fdot(a, *b):
|
|
392
|
+
'''Return the precision dot product M{sum(a[i] * b[i] for
|
|
393
|
+
i=0..len(a))}.
|
|
394
|
+
|
|
395
|
+
@arg a: Iterable, list, tuple, etc. (C{scalar}s).
|
|
396
|
+
@arg b: All positional arguments (C{scalar}s).
|
|
397
|
+
|
|
398
|
+
@return: Dot product (C{float}).
|
|
399
|
+
|
|
400
|
+
@raise LenError: Unequal C{len(B{a})} and C{len(B{b})}.
|
|
401
|
+
|
|
402
|
+
@see: Class L{Fdot} and U{Algorithm 5.10 B{DotK}
|
|
403
|
+
<https://www.TUHH.De/ti3/paper/rump/OgRuOi05.pdf>}.
|
|
404
|
+
'''
|
|
405
|
+
return fsum(_map_mul(a, b, fdot))
|
|
406
|
+
|
|
407
|
+
|
|
408
|
+
def fdot3(a, b, c, start=0):
|
|
409
|
+
'''Return the precision dot product M{start +
|
|
410
|
+
sum(a[i] * b[i] * c[i] for i=0..len(a))}.
|
|
411
|
+
|
|
412
|
+
@arg a: Iterable, list, tuple, etc. (C{scalar}s).
|
|
413
|
+
@arg b: Iterable, list, tuple, etc. (C{scalar}s).
|
|
414
|
+
@arg c: Iterable, list, tuple, etc. (C{scalar}s).
|
|
415
|
+
@kwarg start: Optional bias (C{scalar}).
|
|
416
|
+
|
|
417
|
+
@return: Dot product (C{float}).
|
|
418
|
+
|
|
419
|
+
@raise LenError: Unequal C{len(B{a})}, C{len(B{b})}
|
|
420
|
+
and/or C{len(B{c})}.
|
|
421
|
+
|
|
422
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
423
|
+
'''
|
|
424
|
+
def _mul3(a, b, c): # map function
|
|
425
|
+
return a * b * c
|
|
426
|
+
|
|
427
|
+
def _muly(a, b, c, start):
|
|
428
|
+
yield start
|
|
429
|
+
for abc in map(_mul3, a, b, c):
|
|
430
|
+
yield abc
|
|
431
|
+
|
|
432
|
+
if not len(a) == len(b) == len(c):
|
|
433
|
+
raise LenError(fdot3, a=len(a), b=len(b), c=len(c))
|
|
434
|
+
|
|
435
|
+
return fsum(_muly(a, b, c, start) if start else map(_mul3, a, b, c))
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
def fhorner(x, *cs):
|
|
439
|
+
'''Evaluate the polynomial M{sum(cs[i] * x**i for
|
|
440
|
+
i=0..len(cs))} using the Horner form.
|
|
441
|
+
|
|
442
|
+
@arg x: Polynomial argument (C{scalar}).
|
|
443
|
+
@arg cs: Polynomial coeffients (C{scalar}s).
|
|
444
|
+
|
|
445
|
+
@return: Horner value (C{float}).
|
|
446
|
+
|
|
447
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
448
|
+
|
|
449
|
+
@raise TypeError: Non-scalar B{C{x}}.
|
|
450
|
+
|
|
451
|
+
@raise ValueError: No B{C{cs}} coefficients or B{C{x}} is not finite.
|
|
452
|
+
|
|
453
|
+
@see: Function L{fpolynomial} and class L{Fhorner}.
|
|
454
|
+
'''
|
|
455
|
+
H = Fhorner(x, *cs)
|
|
456
|
+
return float(H)
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
def fidw(xs, ds, beta=2):
|
|
460
|
+
'''Interpolate using U{Inverse Distance Weighting
|
|
461
|
+
<https://WikiPedia.org/wiki/Inverse_distance_weighting>} (IDW).
|
|
462
|
+
|
|
463
|
+
@arg xs: Known values (C{scalar}s).
|
|
464
|
+
@arg ds: Non-negative distances (C{scalar}s).
|
|
465
|
+
@kwarg beta: Inverse distance power (C{int}, 0, 1, 2, or 3).
|
|
466
|
+
|
|
467
|
+
@return: Interpolated value C{x} (C{float}).
|
|
468
|
+
|
|
469
|
+
@raise LenError: Unequal or zero C{len(B{ds})} and C{len(B{xs})}.
|
|
470
|
+
|
|
471
|
+
@raise ValueError: Invalid B{C{beta}}, negative B{C{ds}} value,
|
|
472
|
+
weighted B{C{ds}} below L{EPS}.
|
|
473
|
+
|
|
474
|
+
@note: Using C{B{beta}=0} returns the mean of B{C{xs}}.
|
|
475
|
+
'''
|
|
476
|
+
n, xs = len2(xs)
|
|
477
|
+
d, ds = len2(ds)
|
|
478
|
+
if n != d or n < 1:
|
|
479
|
+
raise LenError(fidw, xs=n, ds=d)
|
|
480
|
+
|
|
481
|
+
d, x = min(zip(ds, xs))
|
|
482
|
+
if d > EPS0 and n > 1:
|
|
483
|
+
b = -Int_(beta=beta, low=0, high=3)
|
|
484
|
+
if b < 0:
|
|
485
|
+
ws = tuple(float(d)**b for d in ds)
|
|
486
|
+
t = fsum(_map_mul1(xs, ws)) # fdot(xs, *ws)
|
|
487
|
+
x = _over(t, fsum(ws, floats=True))
|
|
488
|
+
else: # b == 0
|
|
489
|
+
x = fsum(xs) / n # fmean(xs)
|
|
490
|
+
elif d < 0: # PYCHOK no cover
|
|
491
|
+
n = Fmt.INDEX(distance=ds.index(d))
|
|
492
|
+
raise _ValueError(n, d, txt=_negative_)
|
|
493
|
+
return x
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
def fmean(xs):
|
|
497
|
+
'''Compute the accurate mean M{sum(xs[i] for
|
|
498
|
+
i=0..len(xs)) / len(xs)}.
|
|
499
|
+
|
|
500
|
+
@arg xs: Values (C{scalar} or L{Fsum} instances).
|
|
501
|
+
|
|
502
|
+
@return: Mean value (C{float}).
|
|
503
|
+
|
|
504
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
505
|
+
|
|
506
|
+
@raise ValueError: No B{C{xs}} values.
|
|
507
|
+
'''
|
|
508
|
+
n, xs = len2(xs)
|
|
509
|
+
if n > 0:
|
|
510
|
+
return fsum(xs) / n # if n > 1 else _2float(index=0, xs=xs[0])
|
|
511
|
+
raise _ValueError(xs=xs)
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def fmean_(*xs):
|
|
515
|
+
'''Compute the accurate mean M{sum(xs[i] for
|
|
516
|
+
i=0..len(xs)) / len(xs)}.
|
|
517
|
+
|
|
518
|
+
@arg xs: Values (C{scalar} or L{Fsum} instances).
|
|
519
|
+
|
|
520
|
+
@return: Mean value (C{float}).
|
|
521
|
+
|
|
522
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
523
|
+
|
|
524
|
+
@raise ValueError: No B{C{xs}} values.
|
|
525
|
+
'''
|
|
526
|
+
return fmean(xs)
|
|
527
|
+
|
|
528
|
+
|
|
529
|
+
def fpolynomial(x, *cs, **over):
|
|
530
|
+
'''Evaluate the polynomial M{sum(cs[i] * x**i for
|
|
531
|
+
i=0..len(cs)) [/ over]}.
|
|
532
|
+
|
|
533
|
+
@arg x: Polynomial argument (C{scalar}).
|
|
534
|
+
@arg cs: Polynomial coeffients (C{scalar}s), all
|
|
535
|
+
positional.
|
|
536
|
+
@kwarg over: Optional, final divisor (C{scalar}
|
|
537
|
+
|
|
538
|
+
@return: Polynomial value (C{float}).
|
|
539
|
+
|
|
540
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
541
|
+
|
|
542
|
+
@raise TypeError: Non-scalar B{C{x}}.
|
|
543
|
+
|
|
544
|
+
@raise ValueError: No B{C{cs}} coefficients or B{C{x}} is not finite.
|
|
545
|
+
|
|
546
|
+
@see: Function L{fhorner} and class L{Fpolynomial}.
|
|
547
|
+
'''
|
|
548
|
+
P = Fpolynomial(x, *cs)
|
|
549
|
+
d = _xkwds_get(over, over=0) if over else 0
|
|
550
|
+
return P.fover(d) if d else float(P)
|
|
551
|
+
|
|
552
|
+
|
|
553
|
+
def fpowers(x, n, alts=0):
|
|
554
|
+
'''Return a series of powers M{[x**i for i=1..n]}.
|
|
555
|
+
|
|
556
|
+
@arg x: Value (C{scalar}).
|
|
557
|
+
@arg n: Highest exponent (C{int}).
|
|
558
|
+
@kwarg alts: Only alternating powers, starting with
|
|
559
|
+
this exponent (C{int}).
|
|
560
|
+
|
|
561
|
+
@return: Powers of B{C{x}} (C{float}s or C{int}s).
|
|
562
|
+
|
|
563
|
+
@raise TypeError: Non-scalar B{C{x}} or B{C{n}} not C{int}.
|
|
564
|
+
|
|
565
|
+
@raise ValueError: Non-finite B{C{x}} or non-positive B{C{n}}.
|
|
566
|
+
'''
|
|
567
|
+
if not isint(n):
|
|
568
|
+
raise _IsnotError(int.__name__, n=n)
|
|
569
|
+
elif n < 1:
|
|
570
|
+
raise _ValueError(n=n)
|
|
571
|
+
|
|
572
|
+
p = t = x if isint(x) else _2float(x=x)
|
|
573
|
+
ps = [p]
|
|
574
|
+
_a = ps.append
|
|
575
|
+
for _ in range(1, n):
|
|
576
|
+
p *= t
|
|
577
|
+
_a(p)
|
|
578
|
+
|
|
579
|
+
if alts > 0: # x**2, x**4, ...
|
|
580
|
+
# ps[alts-1::2] chokes PyChecker
|
|
581
|
+
ps = ps[slice(alts-1, None, 2)]
|
|
582
|
+
|
|
583
|
+
return ps
|
|
584
|
+
|
|
585
|
+
|
|
586
|
+
try:
|
|
587
|
+
from math import prod as fprod # Python 3.8
|
|
588
|
+
except ImportError:
|
|
589
|
+
|
|
590
|
+
def fprod(xs, start=1):
|
|
591
|
+
'''Iterable product, like C{math.prod} or C{numpy.prod}.
|
|
592
|
+
|
|
593
|
+
@arg xs: Terms to be multiplied, an iterable, list,
|
|
594
|
+
tuple, etc. (C{scalar}s).
|
|
595
|
+
@kwarg start: Initial term, also the value returned
|
|
596
|
+
for an empty B{C{xs}} (C{scalar}).
|
|
597
|
+
|
|
598
|
+
@return: The product (C{float}).
|
|
599
|
+
|
|
600
|
+
@see: U{NumPy.prod<https://docs.SciPy.org/doc/
|
|
601
|
+
numpy/reference/generated/numpy.prod.html>}.
|
|
602
|
+
'''
|
|
603
|
+
return freduce(_operator.mul, xs, start)
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
def frange(start, number, step=1):
|
|
607
|
+
'''Generate a range of C{float}s.
|
|
608
|
+
|
|
609
|
+
@arg start: First value (C{float}).
|
|
610
|
+
@arg number: The number of C{float}s to generate (C{int}).
|
|
611
|
+
@kwarg step: Increment value (C{float}).
|
|
612
|
+
|
|
613
|
+
@return: A generator (C{float}s).
|
|
614
|
+
|
|
615
|
+
@see: U{NumPy.prod<https://docs.SciPy.org/doc/
|
|
616
|
+
numpy/reference/generated/numpy.arange.html>}.
|
|
617
|
+
'''
|
|
618
|
+
if not isint(number):
|
|
619
|
+
raise _IsnotError(int.__name__, number=number)
|
|
620
|
+
for i in range(number):
|
|
621
|
+
yield start + i * step
|
|
622
|
+
|
|
623
|
+
|
|
624
|
+
try:
|
|
625
|
+
from functools import reduce as freduce
|
|
626
|
+
except ImportError:
|
|
627
|
+
try:
|
|
628
|
+
freduce = reduce # PYCHOK expected
|
|
629
|
+
except NameError: # Python 3+
|
|
630
|
+
|
|
631
|
+
def freduce(f, xs, *start):
|
|
632
|
+
'''For missing C{functools.reduce}.
|
|
633
|
+
'''
|
|
634
|
+
if start:
|
|
635
|
+
r = v = start[0]
|
|
636
|
+
else:
|
|
637
|
+
r, v = 0, MISSING
|
|
638
|
+
for v in xs:
|
|
639
|
+
r = f(r, v)
|
|
640
|
+
if v is MISSING:
|
|
641
|
+
raise _TypeError(xs=(), start=MISSING)
|
|
642
|
+
return r
|
|
643
|
+
|
|
644
|
+
|
|
645
|
+
def fremainder(x, y):
|
|
646
|
+
'''Remainder in range C{[-B{y / 2}, B{y / 2}]}.
|
|
647
|
+
|
|
648
|
+
@arg x: Numerator (C{scalar}).
|
|
649
|
+
@arg y: Modulus, denominator (C{scalar}).
|
|
650
|
+
|
|
651
|
+
@return: Remainder (C{scalar}, preserving signed
|
|
652
|
+
0.0) or C{NAN} for any non-finite B{C{x}}.
|
|
653
|
+
|
|
654
|
+
@raise ValueError: Infinite or near-zero B{C{y}}.
|
|
655
|
+
|
|
656
|
+
@see: I{Karney}'s U{Math.remainder<https://PyPI.org/
|
|
657
|
+
project/geographiclib/>} and Python 3.7+
|
|
658
|
+
U{math.remainder<https://docs.Python.org/3/
|
|
659
|
+
library/math.html#math.remainder>}.
|
|
660
|
+
'''
|
|
661
|
+
# with Python 2.7.16 and 3.7.3 on macOS 10.13.6 and
|
|
662
|
+
# with Python 3.10.2 on macOS 12.2.1 M1 arm64 native
|
|
663
|
+
# fmod( 0, 360) == 0.0
|
|
664
|
+
# fmod( 360, 360) == 0.0
|
|
665
|
+
# fmod(-0, 360) == 0.0
|
|
666
|
+
# fmod(-0.0, 360) == -0.0
|
|
667
|
+
# fmod(-360, 360) == -0.0
|
|
668
|
+
# however, using the % operator ...
|
|
669
|
+
# 0 % 360 == 0
|
|
670
|
+
# 360 % 360 == 0
|
|
671
|
+
# 360.0 % 360 == 0.0
|
|
672
|
+
# -0 % 360 == 0
|
|
673
|
+
# -360 % 360 == 0 == (-360) % 360
|
|
674
|
+
# -0.0 % 360 == 0.0 == (-0.0) % 360
|
|
675
|
+
# -360.0 % 360 == 0.0 == (-360.0) % 360
|
|
676
|
+
|
|
677
|
+
# On Windows 32-bit with python 2.7, math.fmod(-0.0, 360)
|
|
678
|
+
# == +0.0. This fixes this bug. See also Math::AngNormalize
|
|
679
|
+
# in the C++ library, Math.sincosd has a similar fix.
|
|
680
|
+
if _isfinite(x):
|
|
681
|
+
try:
|
|
682
|
+
r = remainder(x, y) if x else x
|
|
683
|
+
except Exception as e:
|
|
684
|
+
raise _xError(e, unstr(fremainder, x, y))
|
|
685
|
+
else: # handle x INF and NINF as NAN
|
|
686
|
+
r = NAN
|
|
687
|
+
return r
|
|
688
|
+
|
|
689
|
+
|
|
690
|
+
if _sys_version_info2 < (3, 8): # PYCHOK no cover
|
|
691
|
+
from math import hypot # OK in Python 3.7-
|
|
692
|
+
|
|
693
|
+
def hypot_(*xs):
|
|
694
|
+
'''Compute the norm M{sqrt(sum(x**2 for x in xs))}.
|
|
695
|
+
|
|
696
|
+
Similar to Python 3.8+ n-dimension U{math.hypot
|
|
697
|
+
<https://docs.Python.org/3.8/library/math.html#math.hypot>},
|
|
698
|
+
but exceptions, C{nan} and C{infinite} values are
|
|
699
|
+
handled differently.
|
|
700
|
+
|
|
701
|
+
@arg xs: X arguments (C{scalar}s), all positional.
|
|
702
|
+
|
|
703
|
+
@return: Norm (C{float}).
|
|
704
|
+
|
|
705
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
706
|
+
|
|
707
|
+
@raise ValueError: Invalid or no B{C{xs}} values.
|
|
708
|
+
|
|
709
|
+
@note: The Python 3.8+ Euclidian distance U{math.dist
|
|
710
|
+
<https://docs.Python.org/3.8/library/math.html#math.dist>}
|
|
711
|
+
between 2 I{n}-dimensional points I{p1} and I{p2} can be
|
|
712
|
+
computed as M{hypot_(*((c1 - c2) for c1, c2 in zip(p1, p2)))},
|
|
713
|
+
provided I{p1} and I{p2} have the same, non-zero length I{n}.
|
|
714
|
+
'''
|
|
715
|
+
h, x2 = _h_x2(xs)
|
|
716
|
+
return (h * sqrt(x2)) if x2 else _0_0
|
|
717
|
+
|
|
718
|
+
elif _sys_version_info2 < (3, 10):
|
|
719
|
+
# In Python 3.8 and 3.9 C{math.hypot} is inaccurate, see
|
|
720
|
+
# U{agdhruv<https://GitHub.com/geopy/geopy/issues/466>},
|
|
721
|
+
# U{cffk<https://Bugs.Python.org/issue43088>} and module
|
|
722
|
+
# U{geomath.py<https://PyPI.org/project/geographiclib/1.52>}
|
|
723
|
+
|
|
724
|
+
def hypot(x, y):
|
|
725
|
+
'''Compute the norm M{sqrt(x**2 + y**2)}.
|
|
726
|
+
|
|
727
|
+
@arg x: X argument (C{scalar}).
|
|
728
|
+
@arg y: Y argument (C{scalar}).
|
|
729
|
+
|
|
730
|
+
@return: C{sqrt(B{x}**2 + B{y}**2)} (C{float}).
|
|
731
|
+
'''
|
|
732
|
+
if x:
|
|
733
|
+
h = sqrt(x**2 + y**2) if y else fabs(x)
|
|
734
|
+
elif y:
|
|
735
|
+
h = fabs(y)
|
|
736
|
+
else:
|
|
737
|
+
h = _0_0
|
|
738
|
+
return h
|
|
739
|
+
|
|
740
|
+
from math import hypot as hypot_ # PYCHOK in Python 3.8 and 3.9
|
|
741
|
+
else:
|
|
742
|
+
from math import hypot # PYCHOK in Python 3.10+
|
|
743
|
+
hypot_ = hypot
|
|
744
|
+
|
|
745
|
+
|
|
746
|
+
def _h_x2(xs):
|
|
747
|
+
'''(INTERNAL) Helper for L{hypot_} and L{hypot2_}.
|
|
748
|
+
'''
|
|
749
|
+
if xs:
|
|
750
|
+
n, xs = len2(xs)
|
|
751
|
+
if n > 0:
|
|
752
|
+
h = float(max(map(fabs, xs)))
|
|
753
|
+
if h < EPS0:
|
|
754
|
+
x2 = _0_0
|
|
755
|
+
else: # math.fsum, see C{_hypot21_} below
|
|
756
|
+
x2 = _fsum(_x2_h2(_1_0, xs, h, _N_1_0))
|
|
757
|
+
return h, x2
|
|
758
|
+
|
|
759
|
+
raise _ValueError(xs=xs, txt=_too_(_few_))
|
|
760
|
+
|
|
761
|
+
|
|
762
|
+
def hypot1(x):
|
|
763
|
+
'''Compute the norm M{sqrt(1 + x**2)}.
|
|
764
|
+
|
|
765
|
+
@arg x: Argument (C{scalar}).
|
|
766
|
+
|
|
767
|
+
@return: Norm (C{float}).
|
|
768
|
+
'''
|
|
769
|
+
return hypot(_1_0, x) if x else _1_0
|
|
770
|
+
|
|
771
|
+
|
|
772
|
+
def hypot2(x, y):
|
|
773
|
+
'''Compute the I{squared} norm M{x**2 + y**2}.
|
|
774
|
+
|
|
775
|
+
@arg x: X argument (C{scalar}).
|
|
776
|
+
@arg y: Y argument (C{scalar}).
|
|
777
|
+
|
|
778
|
+
@return: C{B{x}**2 + B{y}**2} (C{float}).
|
|
779
|
+
'''
|
|
780
|
+
if x:
|
|
781
|
+
if y:
|
|
782
|
+
if fabs(x) < fabs(y):
|
|
783
|
+
x, y = y, x
|
|
784
|
+
h2 = x**2 * ((y / x)**2 + _1_0)
|
|
785
|
+
else:
|
|
786
|
+
h2 = x**2
|
|
787
|
+
elif y:
|
|
788
|
+
h2 = y**2
|
|
789
|
+
else:
|
|
790
|
+
h2 = _0_0
|
|
791
|
+
return h2
|
|
792
|
+
|
|
793
|
+
|
|
794
|
+
def hypot2_(*xs):
|
|
795
|
+
'''Compute the I{squared} norm C{sum(x**2 for x in B{xs})}.
|
|
796
|
+
|
|
797
|
+
@arg xs: X arguments (C{scalar}s), all positional.
|
|
798
|
+
|
|
799
|
+
@return: Squared norm (C{float}).
|
|
800
|
+
|
|
801
|
+
@raise OverflowError: Partial C{2sum} overflow.
|
|
802
|
+
|
|
803
|
+
@raise ValueError: Invalid or no B{C{xs}} value.
|
|
804
|
+
|
|
805
|
+
@see: Function L{hypot_}.
|
|
806
|
+
'''
|
|
807
|
+
h, x2 = _h_x2(xs)
|
|
808
|
+
return (h**2 * x2) if x2 else _0_0
|
|
809
|
+
|
|
810
|
+
|
|
811
|
+
def _map_mul(a, b, where):
|
|
812
|
+
'''(INTERNAL) Yield each B{C{a * b}}.
|
|
813
|
+
'''
|
|
814
|
+
n = len(b)
|
|
815
|
+
if len(a) != n: # PYCHOK no cover
|
|
816
|
+
raise LenError(where, a=len(a), b=n)
|
|
817
|
+
return map(_operator.mul, a, b) if n > 3 else _map_mul1(a, b)
|
|
818
|
+
|
|
819
|
+
|
|
820
|
+
def _map_mul1(a, b):
|
|
821
|
+
'''(INTERNAL) Yield each B{C{a * b}}, 1-primed.
|
|
822
|
+
'''
|
|
823
|
+
yield _1_0
|
|
824
|
+
for ab in map(_operator.mul, a, b):
|
|
825
|
+
if ab:
|
|
826
|
+
yield ab
|
|
827
|
+
yield _N_1_0
|
|
828
|
+
|
|
829
|
+
|
|
830
|
+
def norm2(x, y):
|
|
831
|
+
'''Normalize a 2-dimensional vector.
|
|
832
|
+
|
|
833
|
+
@arg x: X component (C{scalar}).
|
|
834
|
+
@arg y: Y component (C{scalar}).
|
|
835
|
+
|
|
836
|
+
@return: 2-Tuple C{(x, y)}, normalized.
|
|
837
|
+
|
|
838
|
+
@raise ValueError: Invalid B{C{x}} or B{C{y}}
|
|
839
|
+
or zero norm.
|
|
840
|
+
'''
|
|
841
|
+
h = hypot(x, y)
|
|
842
|
+
if not h:
|
|
843
|
+
x = y = _0_0 # pass?
|
|
844
|
+
elif not isnear1(h):
|
|
845
|
+
try:
|
|
846
|
+
x, y = x / h, y / h
|
|
847
|
+
except Exception as e:
|
|
848
|
+
raise _xError(e, x=x, y=y, h=h)
|
|
849
|
+
return x, y
|
|
850
|
+
|
|
851
|
+
|
|
852
|
+
def norm_(*xs):
|
|
853
|
+
'''Normalize all n-dimensional vector components.
|
|
854
|
+
|
|
855
|
+
@arg xs: Components (C{scalar}s), all positional.
|
|
856
|
+
|
|
857
|
+
@return: Yield each component, normalized.
|
|
858
|
+
|
|
859
|
+
@raise ValueError: Invalid or insufficent B{C{xs}}
|
|
860
|
+
or zero norm.
|
|
861
|
+
'''
|
|
862
|
+
h = hypot_(*xs)
|
|
863
|
+
if h:
|
|
864
|
+
try:
|
|
865
|
+
for i, x in enumerate(xs):
|
|
866
|
+
yield x / h
|
|
867
|
+
except Exception as e:
|
|
868
|
+
raise _xError(e, Fmt.SQUARE(xs=i), x, _h_, h)
|
|
869
|
+
else:
|
|
870
|
+
for _ in xs:
|
|
871
|
+
yield _0_0
|
|
872
|
+
|
|
873
|
+
|
|
874
|
+
def _root(x, p, where):
|
|
875
|
+
'''(INTERNAL) Raise C{x} to power C{0 < p < 1}.
|
|
876
|
+
'''
|
|
877
|
+
if x < 0:
|
|
878
|
+
t = _SPACE_(_invokation_, where.__name__)
|
|
879
|
+
raise _ValueError(unstr(t, x), txt=_negative_)
|
|
880
|
+
return pow(x, p) if x else _0_0
|
|
881
|
+
|
|
882
|
+
|
|
883
|
+
def sqrt0(x, Error=None):
|
|
884
|
+
'''Return the square root iff C{B{x} >} L{EPS02}.
|
|
885
|
+
|
|
886
|
+
@arg x: Value (C{scalar}).
|
|
887
|
+
@kwarg Error: Error to raise for negative B{C{x}}.
|
|
888
|
+
|
|
889
|
+
@return: Square root (C{float}) or C{0.0}.
|
|
890
|
+
|
|
891
|
+
@note: Any C{B{x} < }L{EPS02} I{including} C{B{x} < 0}
|
|
892
|
+
returns C{0.0}.
|
|
893
|
+
'''
|
|
894
|
+
if Error and x < 0:
|
|
895
|
+
raise Error(Fmt.PAREN(sqrt=x))
|
|
896
|
+
return sqrt(x) if x > EPS02 else (_0_0 if x < EPS02 else EPS0)
|
|
897
|
+
|
|
898
|
+
|
|
899
|
+
def sqrt3(x):
|
|
900
|
+
'''Return the square root, I{cubed} M{sqrt(x)**3} or M{sqrt(x**3)}.
|
|
901
|
+
|
|
902
|
+
@arg x: Value (C{scalar}).
|
|
903
|
+
|
|
904
|
+
@return: Square root I{cubed} (C{float}).
|
|
905
|
+
|
|
906
|
+
@raise ValueError: Negative B{C{x}}.
|
|
907
|
+
|
|
908
|
+
@see: Functions L{cbrt} and L{cbrt2}.
|
|
909
|
+
'''
|
|
910
|
+
return _root(x, _1_5, sqrt3)
|
|
911
|
+
|
|
912
|
+
|
|
913
|
+
def sqrt_a(h, b):
|
|
914
|
+
'''Compute C{I{a}} side of a right-angled triangle from
|
|
915
|
+
C{sqrt(B{h}**2 - B{b}**2)}.
|
|
916
|
+
|
|
917
|
+
@arg h: Hypotenuse or outer annulus radius (C{scalar}).
|
|
918
|
+
@arg b: Triangle side or inner annulus radius (C{scalar}).
|
|
919
|
+
|
|
920
|
+
@return: C{copysign(I{a}, B{h})} or C{unsigned 0.0} (C{float}).
|
|
921
|
+
|
|
922
|
+
@raise TypeError: Non-scalar B{C{h}} or B{C{b}}.
|
|
923
|
+
|
|
924
|
+
@raise ValueError: If C{abs(B{h}) < abs(B{b})}.
|
|
925
|
+
|
|
926
|
+
@see: Inner tangent chord B{I{d}} of an U{annulus
|
|
927
|
+
<https://WikiPedia.org/wiki/Annulus_(mathematics)>}
|
|
928
|
+
and function U{annulus_area<https://People.SC.FSU.edu/
|
|
929
|
+
~jburkardt/py_src/geometry/geometry.py>}.
|
|
930
|
+
'''
|
|
931
|
+
try:
|
|
932
|
+
if not (_isHeight(h) and _isRadius(b)):
|
|
933
|
+
raise TypeError(_not_scalar_)
|
|
934
|
+
elif isnear0(h): # PYCHOK no cover
|
|
935
|
+
c, b = fabs(h), fabs(b)
|
|
936
|
+
d = c - b
|
|
937
|
+
if d < 0:
|
|
938
|
+
raise ValueError('abs(h) < abs(b)')
|
|
939
|
+
a = copysign0(sqrt((c + b) * d), h) if d > 0 else _0_0
|
|
940
|
+
else:
|
|
941
|
+
c = float(h)
|
|
942
|
+
s = _1_0 - (b / c)**2
|
|
943
|
+
if s < 0:
|
|
944
|
+
raise ValueError('abs(h) < abs(b)')
|
|
945
|
+
a = (sqrt(s) * c) if 0 < s < 1 else (c if s else _0_0)
|
|
946
|
+
except Exception as x:
|
|
947
|
+
raise _xError(x, h=h, b=b)
|
|
948
|
+
return a
|
|
949
|
+
|
|
950
|
+
|
|
951
|
+
def _x2_h2(s, xs, h, e):
|
|
952
|
+
'''(INTERNAL) Yield M{(x / h)**2 for x in xs}.
|
|
953
|
+
'''
|
|
954
|
+
yield s
|
|
955
|
+
if h in (_0_0, _1_0):
|
|
956
|
+
for x in xs:
|
|
957
|
+
if x:
|
|
958
|
+
yield x**2
|
|
959
|
+
else:
|
|
960
|
+
for x in xs:
|
|
961
|
+
if x:
|
|
962
|
+
yield (x / h)**2
|
|
963
|
+
yield e
|
|
964
|
+
|
|
965
|
+
|
|
966
|
+
def zcrt(x):
|
|
967
|
+
'''Return the 6-th, I{zenzi-cubic} root, M{x**(1 / 6)}.
|
|
968
|
+
|
|
969
|
+
@arg x: Value (C{scalar}).
|
|
970
|
+
|
|
971
|
+
@return: I{Zenzi-cubic} root (C{float}).
|
|
972
|
+
|
|
973
|
+
@see: Functions L{bqrt} and L{zqrt}.
|
|
974
|
+
|
|
975
|
+
@raise ValueError: Negative B{C{x}}.
|
|
976
|
+
'''
|
|
977
|
+
return _root(x, _1_6th, zcrt)
|
|
978
|
+
|
|
979
|
+
|
|
980
|
+
def zqrt(x):
|
|
981
|
+
'''Return the 8-th, I{zenzi-quartic} or I{squared-quartic} root, M{x**(1 / 8)}.
|
|
982
|
+
|
|
983
|
+
@arg x: Value (C{scalar}).
|
|
984
|
+
|
|
985
|
+
@return: I{Zenzi-quartic} root (C{float}).
|
|
986
|
+
|
|
987
|
+
@see: Functions L{bqrt} and L{zcrt}.
|
|
988
|
+
|
|
989
|
+
@raise ValueError: Negative B{C{x}}.
|
|
990
|
+
'''
|
|
991
|
+
return _root(x, _0_125, zqrt)
|
|
992
|
+
|
|
993
|
+
# **) MIT License
|
|
994
|
+
#
|
|
995
|
+
# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
|
|
996
|
+
#
|
|
997
|
+
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
998
|
+
# copy of this software and associated documentation files (the "Software"),
|
|
999
|
+
# to deal in the Software without restriction, including without limitation
|
|
1000
|
+
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
1001
|
+
# and/or sell copies of the Software, and to permit persons to whom the
|
|
1002
|
+
# Software is furnished to do so, subject to the following conditions:
|
|
1003
|
+
#
|
|
1004
|
+
# The above copyright notice and this permission notice shall be included
|
|
1005
|
+
# in all copies or substantial portions of the Software.
|
|
1006
|
+
#
|
|
1007
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
1008
|
+
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
1009
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
1010
|
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
1011
|
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
1012
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
1013
|
+
# OTHER DEALINGS IN THE SOFTWARE.
|