passagemath-singular 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-musl.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +493 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-67059f19.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-30166d29.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-9d37bcf4.4.1.so +0 -0
- passagemath_singular.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_singular.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_singular.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_singular.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_singular.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-e9ff96db.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-8bcf8e7d.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-73bf7623.4.1.so +0 -0
- passagemath_singular.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-musl.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1077 @@
|
|
|
1
|
+
//////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version spcurve.lib 4.3.1.3 Jan_2023 "; // $Id: 0e1ca7c86ed4b5cc9da73dbbc811f1dd98933289 $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: spcurve.lib Deformations and Invariants of CM-codim 2 Singularities
|
|
6
|
+
AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de
|
|
7
|
+
|
|
8
|
+
PROCEDURES:
|
|
9
|
+
isCMcod2(i); presentation matrix of the ideal i, if i is CM
|
|
10
|
+
CMtype(i); Cohen-Macaulay type of the ideal i
|
|
11
|
+
matrixT1(M,n); 1st order deformation T1 in matrix description
|
|
12
|
+
semiCMcod2(M,T1); semiuniversal deformation of maximal minors of M
|
|
13
|
+
discr(sem,n); discriminant of semiuniversal deformation
|
|
14
|
+
qhmatrix(M); weights if M is quasihomogeneous
|
|
15
|
+
relweight(N,W,a); relative matrix weight of N w.r.t. weights (W,a)
|
|
16
|
+
posweight(M,T1,i); deformation of coker(M) of non-negative weight
|
|
17
|
+
KSpencerKernel(M); kernel of the Kodaira-Spencer map
|
|
18
|
+
";
|
|
19
|
+
|
|
20
|
+
LIB "elim.lib";
|
|
21
|
+
LIB "homolog.lib";
|
|
22
|
+
LIB "inout.lib";
|
|
23
|
+
LIB "polylib.lib";
|
|
24
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
25
|
+
|
|
26
|
+
proc isCMcod2(ideal kurve)
|
|
27
|
+
"USAGE: isCMcod2(i); i an ideal
|
|
28
|
+
RETURN: presentation matrix of i, if i is Cohen-Macaulay of codimension 2 @*
|
|
29
|
+
a zero matrix otherwise
|
|
30
|
+
EXAMPLE: example isCMcod2; shows an example"
|
|
31
|
+
{
|
|
32
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
33
|
+
//---------------------------------------------------------------------------
|
|
34
|
+
// Compute a minimal free resolution of the ideal and check if the
|
|
35
|
+
// resolution has the expected structure
|
|
36
|
+
//---------------------------------------------------------------------------
|
|
37
|
+
list kurveres=mres(kurve,0);
|
|
38
|
+
matrix M=kurveres[2];
|
|
39
|
+
if ((size(kurveres)>3) &&
|
|
40
|
+
((size(kurveres[3])>1) ||
|
|
41
|
+
((size(kurveres[3])<=1) && (kurveres[3][1,1]!=0))))
|
|
42
|
+
{
|
|
43
|
+
dbprint(p,"//not Cohen-Macaulay, codim 2");
|
|
44
|
+
matrix ret=0;
|
|
45
|
+
return(ret);
|
|
46
|
+
}
|
|
47
|
+
return(M);
|
|
48
|
+
}
|
|
49
|
+
example
|
|
50
|
+
{ "EXAMPLE:"; echo=2;
|
|
51
|
+
ring r=32003,(x,y,z),ds;
|
|
52
|
+
ideal i=xz,yz,x^3-y^4;
|
|
53
|
+
print(isCMcod2(i));
|
|
54
|
+
}
|
|
55
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
56
|
+
|
|
57
|
+
proc CMtype(ideal kurve)
|
|
58
|
+
"USAGE: CMtype(i); i an ideal, CM of codimension 2
|
|
59
|
+
RETURN: Cohen-Macaulay type of i (integer)
|
|
60
|
+
(-1, if i is not Cohen-Macaulay of codimension 2)
|
|
61
|
+
EXAMPLE: example CMtype; shows an example"
|
|
62
|
+
{
|
|
63
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
64
|
+
int gt = -1;
|
|
65
|
+
//---------------------------------------------------------------------------
|
|
66
|
+
// Compute a minimal free resolution of the ideal and check if the
|
|
67
|
+
// resolution has the expected structure
|
|
68
|
+
//---------------------------------------------------------------------------
|
|
69
|
+
list kurveres;
|
|
70
|
+
kurveres=mres(kurve,0);
|
|
71
|
+
if ((size(kurveres)>3) &&
|
|
72
|
+
((size(kurveres[3])>1) ||
|
|
73
|
+
((size(kurveres[3])<=1) && (kurveres[3][1,1]!=0))))
|
|
74
|
+
{
|
|
75
|
+
dbprint(p,"//not Cohen-Macaulay, codim 2");
|
|
76
|
+
return(gt);
|
|
77
|
+
}
|
|
78
|
+
//---------------------------------------------------------------------------
|
|
79
|
+
// Return the Cohen-Macaulay type of i
|
|
80
|
+
//---------------------------------------------------------------------------
|
|
81
|
+
matrix M = matrix(kurveres[2]);
|
|
82
|
+
gt = ncols(M);
|
|
83
|
+
return(gt);
|
|
84
|
+
}
|
|
85
|
+
example
|
|
86
|
+
{ "EXAMPLE:"; echo=2;
|
|
87
|
+
ring r=32003,(x,y,z),ds;
|
|
88
|
+
ideal i=xy,xz,yz;
|
|
89
|
+
CMtype(i);
|
|
90
|
+
}
|
|
91
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
92
|
+
|
|
93
|
+
proc matrixT1(matrix M ,int n)
|
|
94
|
+
"USAGE: matrixT1(M,n); M matrix, n integer
|
|
95
|
+
ASSUME: M is a presentation matrix of an ideal i, CM of codimension 2;
|
|
96
|
+
consider i as a family of ideals in a ring in the first n
|
|
97
|
+
variables where the remaining variables are considered as
|
|
98
|
+
parameters
|
|
99
|
+
RETURN: list consisting of the k x (k+1) matrix M and a module K_M such that
|
|
100
|
+
T1=Mat(k,k+1;R)/K_M is the space of first order deformations of i
|
|
101
|
+
EXAMPLE: example matrixT1; shows an example"
|
|
102
|
+
{
|
|
103
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
104
|
+
//--------------------------------------------------------------------------
|
|
105
|
+
// Initialization and sanity checks
|
|
106
|
+
//--------------------------------------------------------------------------
|
|
107
|
+
int nr=nrows(M);
|
|
108
|
+
int nc=ncols(M);
|
|
109
|
+
if ( nr < nc )
|
|
110
|
+
{
|
|
111
|
+
M=transpose(M);
|
|
112
|
+
int temp=nc;
|
|
113
|
+
nc=nr;
|
|
114
|
+
nr=temp;
|
|
115
|
+
int tra=1;
|
|
116
|
+
}
|
|
117
|
+
if ( nr != (nc+1) )
|
|
118
|
+
{
|
|
119
|
+
ERROR("not a k x (k+1) matrix");
|
|
120
|
+
}
|
|
121
|
+
//---------------------------------------------------------------------------
|
|
122
|
+
// Construct the denominator - step by step
|
|
123
|
+
// step 1: initialization
|
|
124
|
+
//---------------------------------------------------------------------------
|
|
125
|
+
int gt=nc;
|
|
126
|
+
int i,j;
|
|
127
|
+
ideal m = M;
|
|
128
|
+
ideal dx;
|
|
129
|
+
ideal rv;
|
|
130
|
+
ideal lv;
|
|
131
|
+
matrix R[gt][gt]=0;
|
|
132
|
+
matrix L[gt+1][gt+1]=0;
|
|
133
|
+
matrix T1[n+gt*gt+(gt+1)*(gt+1)][gt*(gt+1)] = 0;
|
|
134
|
+
//---------------------------------------------------------------------------
|
|
135
|
+
// step 2: the derivatives of the matrix are generators of the denominator
|
|
136
|
+
//---------------------------------------------------------------------------
|
|
137
|
+
for( i=1; i<= n; i++ )
|
|
138
|
+
{
|
|
139
|
+
dx=diff(m,var(i));
|
|
140
|
+
T1[i,1..gt*(gt+1)] = dx;
|
|
141
|
+
}
|
|
142
|
+
//---------------------------------------------------------------------------
|
|
143
|
+
// step 3: M*R is a generator as well
|
|
144
|
+
//---------------------------------------------------------------------------
|
|
145
|
+
for( i=1; i <= gt; i++ )
|
|
146
|
+
{
|
|
147
|
+
for ( j=1 ; j <= gt ; j++ )
|
|
148
|
+
{
|
|
149
|
+
R[i,j]=1;
|
|
150
|
+
rv = M * R;
|
|
151
|
+
T1[n+(i-1)*gt+j,1..gt*(gt+1)] = rv;
|
|
152
|
+
R[i,j]=0;
|
|
153
|
+
}
|
|
154
|
+
}
|
|
155
|
+
//---------------------------------------------------------------------------
|
|
156
|
+
// step 4: so is L*M
|
|
157
|
+
//---------------------------------------------------------------------------
|
|
158
|
+
for( i=1; i <= (gt+1); i++)
|
|
159
|
+
{
|
|
160
|
+
for( j=1 ; j <= (gt+1);j++ )
|
|
161
|
+
{
|
|
162
|
+
L[i,j]=1;
|
|
163
|
+
lv = L * M;
|
|
164
|
+
T1[n+gt*gt+(i-1)*(gt+1)+j,1..gt*(gt+1)] = lv;
|
|
165
|
+
L[i,j]=0;
|
|
166
|
+
}
|
|
167
|
+
}
|
|
168
|
+
//---------------------------------------------------------------------------
|
|
169
|
+
// Compute the vectorspace basis of T1
|
|
170
|
+
//---------------------------------------------------------------------------
|
|
171
|
+
module t1 = module(transpose(T1));
|
|
172
|
+
list result=M,t1;
|
|
173
|
+
return(result);
|
|
174
|
+
}
|
|
175
|
+
example
|
|
176
|
+
{ "EXAMPLE:"; echo = 2;
|
|
177
|
+
ring r=32003,(x(1),x(2),x(3)),ds;
|
|
178
|
+
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
|
|
179
|
+
matrix M=isCMcod2(curve);
|
|
180
|
+
matrixT1(M,3);
|
|
181
|
+
}
|
|
182
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
183
|
+
|
|
184
|
+
proc semiCMcod2(matrix M, module t1,list #)
|
|
185
|
+
"USAGE: semiCMcod2(M,t1[,s]); M matrix, t1 module, s any
|
|
186
|
+
ASSUME: M is a presentation matrix of an ideal i, CM of codimension 2,
|
|
187
|
+
and t1 is a presentation of the space of first order deformations
|
|
188
|
+
of i ((M,t1) as returned by the procedure matrixT1)
|
|
189
|
+
RETURN: new ring in which the ideal semi describing the semiuniversal
|
|
190
|
+
deformation of i;
|
|
191
|
+
if the optional third argument is given, the perturbation matrix
|
|
192
|
+
of the semiuniversal deformation is returned instead of the ideal.
|
|
193
|
+
NOTE: The current basering should not contain any variables named
|
|
194
|
+
A(j) where j is some integer!
|
|
195
|
+
EXAMPLE: example semiCMcod2; shows an example"
|
|
196
|
+
{
|
|
197
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
198
|
+
//---------------------------------------------------------------------------
|
|
199
|
+
// Initialization
|
|
200
|
+
//---------------------------------------------------------------------------
|
|
201
|
+
if(!attrib(t1,"isSB")) { t1=std(t1); }
|
|
202
|
+
module t1erz=kbase(t1);
|
|
203
|
+
int tau=vdim(t1);
|
|
204
|
+
int gt=ncols(M);
|
|
205
|
+
int i;
|
|
206
|
+
def r=basering;
|
|
207
|
+
if(size(M)!=gt*(gt+1))
|
|
208
|
+
{
|
|
209
|
+
gt=gt-1;
|
|
210
|
+
}
|
|
211
|
+
for(i=1; i<=size(t1erz); i++)
|
|
212
|
+
{
|
|
213
|
+
if(rvar(A(i)))
|
|
214
|
+
{
|
|
215
|
+
int jj=-1;
|
|
216
|
+
break;
|
|
217
|
+
}
|
|
218
|
+
}
|
|
219
|
+
if (defined(jj)>1)
|
|
220
|
+
{
|
|
221
|
+
if (jj==-1)
|
|
222
|
+
{
|
|
223
|
+
ERROR("Your ring contains a variable T(i)!");
|
|
224
|
+
}
|
|
225
|
+
}
|
|
226
|
+
//---------------------------------------------------------------------------
|
|
227
|
+
// Definition of the new ring and the image of M and t1 in the new ring
|
|
228
|
+
//---------------------------------------------------------------------------
|
|
229
|
+
ring rtemp=0,(A(1..tau)),dp;
|
|
230
|
+
def rneu=r+rtemp;
|
|
231
|
+
setring rneu;
|
|
232
|
+
matrix M=imap(r,M);
|
|
233
|
+
ideal m=M;
|
|
234
|
+
module t1erz=imap(r,t1erz);
|
|
235
|
+
//---------------------------------------------------------------------------
|
|
236
|
+
// Construction of the presentation matrix of the versal deformation
|
|
237
|
+
//---------------------------------------------------------------------------
|
|
238
|
+
matrix N=matrix(m);
|
|
239
|
+
matrix Mtemp[gt*(gt+1)][1];
|
|
240
|
+
for( i=1; i<=tau; i++)
|
|
241
|
+
{
|
|
242
|
+
Mtemp=t1erz[i];
|
|
243
|
+
N=N+A(i)*transpose(Mtemp);
|
|
244
|
+
}
|
|
245
|
+
ideal n=N;
|
|
246
|
+
matrix O[gt+1][gt]=n;
|
|
247
|
+
//---------------------------------------------------------------------------
|
|
248
|
+
// Construction of the return value
|
|
249
|
+
//---------------------------------------------------------------------------
|
|
250
|
+
if(size(#)>0)
|
|
251
|
+
{
|
|
252
|
+
matrix semi=O;
|
|
253
|
+
}
|
|
254
|
+
else
|
|
255
|
+
{
|
|
256
|
+
ideal semi=minor(O,gt);
|
|
257
|
+
}
|
|
258
|
+
export semi;
|
|
259
|
+
return(rneu);
|
|
260
|
+
}
|
|
261
|
+
example
|
|
262
|
+
{ "EXAMPLE:"; echo=2;
|
|
263
|
+
ring r=32003,(x(1),x(2),x(3)),ds;
|
|
264
|
+
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
|
|
265
|
+
matrix M=isCMcod2(curve);
|
|
266
|
+
list l=matrixT1(M,3);
|
|
267
|
+
def rneu=semiCMcod2(l[1],std(l[2]));
|
|
268
|
+
setring rneu;
|
|
269
|
+
semi;
|
|
270
|
+
}
|
|
271
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
272
|
+
|
|
273
|
+
proc discr(ideal kurve, int n)
|
|
274
|
+
"USAGE: discr(sem,n); sem ideal, n integer
|
|
275
|
+
ASSUME: sem is the versal deformation of an ideal of codimension 2. @*
|
|
276
|
+
The first n variables of the ring are treated as variables
|
|
277
|
+
all the others as parameters.
|
|
278
|
+
RETURN: ideal describing the discriminant
|
|
279
|
+
NOTE: This is not a powerful algorithm!
|
|
280
|
+
EXAMPLE: example discr; shows an example"
|
|
281
|
+
{
|
|
282
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
283
|
+
//---------------------------------------------------------------------------
|
|
284
|
+
// some sanity checks and initialization
|
|
285
|
+
//---------------------------------------------------------------------------
|
|
286
|
+
int i;
|
|
287
|
+
ideal sem=std(kurve);
|
|
288
|
+
ideal semdiff;
|
|
289
|
+
ideal J2;
|
|
290
|
+
int ncol=ncols(matrix(sem));
|
|
291
|
+
matrix Jacob[n][ncol];
|
|
292
|
+
//---------------------------------------------------------------------------
|
|
293
|
+
// compute the Jacobian matrix
|
|
294
|
+
//---------------------------------------------------------------------------
|
|
295
|
+
for (i=1; i<=n; i++)
|
|
296
|
+
{
|
|
297
|
+
semdiff=diff(sem,var(i));
|
|
298
|
+
Jacob[i,1..ncol]=semdiff;
|
|
299
|
+
}
|
|
300
|
+
//---------------------------------------------------------------------------
|
|
301
|
+
// eliminate the first n variables in the ideal generated by
|
|
302
|
+
// the versal deformation and the 2x2 minors of the Jacobian
|
|
303
|
+
//---------------------------------------------------------------------------
|
|
304
|
+
semdiff=minor(Jacob,2);
|
|
305
|
+
J2=sem,semdiff;
|
|
306
|
+
J2=std(J2);
|
|
307
|
+
poly eli=1;
|
|
308
|
+
for(i=1; i<=n; i++)
|
|
309
|
+
{
|
|
310
|
+
eli=eli*var(i);
|
|
311
|
+
}
|
|
312
|
+
ideal dis=eliminate(J2,eli);
|
|
313
|
+
return(dis);
|
|
314
|
+
}
|
|
315
|
+
example
|
|
316
|
+
{ "EXAMPLE:"; echo=2;
|
|
317
|
+
ring r=32003,(x(1),x(2),x(3)),ds;
|
|
318
|
+
ideal curve=x(1)*x(2),x(1)*x(3),x(2)*x(3);
|
|
319
|
+
matrix M=isCMcod2(curve);
|
|
320
|
+
list l=matrixT1(M,3);
|
|
321
|
+
def rneu=semiCMcod2(l[1],std(l[2]));
|
|
322
|
+
setring rneu;
|
|
323
|
+
discr(semi,3);
|
|
324
|
+
}
|
|
325
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
326
|
+
|
|
327
|
+
proc qhmatrix(matrix M)
|
|
328
|
+
"USAGE: qhmatrix(M); M a k x (k+1) matrix
|
|
329
|
+
RETURN: list, consisting of an integer vector containing the weights of
|
|
330
|
+
the variables of the basering and an integer matrix giving the
|
|
331
|
+
weights of the entries of M, if M is quasihomogeneous;
|
|
332
|
+
zero integer vector and zero integer matrix, if M is not
|
|
333
|
+
quasihomogeneous, i.e. does not allow row and column weights
|
|
334
|
+
EXAMPLE: example qhmatrix; shows an example"
|
|
335
|
+
{
|
|
336
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
337
|
+
//---------------------------------------------------------------------------
|
|
338
|
+
// Initialization and sanity checks
|
|
339
|
+
//---------------------------------------------------------------------------
|
|
340
|
+
def r=basering;
|
|
341
|
+
int i,j,temp;
|
|
342
|
+
int tra=0;
|
|
343
|
+
int nr=nrows(M);
|
|
344
|
+
int nc=ncols(M);
|
|
345
|
+
if ( nr > nc )
|
|
346
|
+
{
|
|
347
|
+
M=transpose(M);
|
|
348
|
+
temp=nc;
|
|
349
|
+
nc=nr;
|
|
350
|
+
nr=temp;
|
|
351
|
+
tra=1;
|
|
352
|
+
}
|
|
353
|
+
if ( nc != (nr+1) )
|
|
354
|
+
{
|
|
355
|
+
ERROR("not a k x (k+1) matrix");
|
|
356
|
+
}
|
|
357
|
+
ideal m=minor(M,nr);
|
|
358
|
+
//---------------------------------------------------------------------------
|
|
359
|
+
// get the weight using the fact that the matrix is quasihomogeneous, if
|
|
360
|
+
// its maximal minors are, and check, whether M is really quasihomogeneous
|
|
361
|
+
//---------------------------------------------------------------------------
|
|
362
|
+
intvec a=weight(m);
|
|
363
|
+
list l1 = ring_list(r)[2];
|
|
364
|
+
ring rneu = create_ring(ring_list(r)[1], l1, "Ws(" + string(a) + ")", "no_minpoly");
|
|
365
|
+
def M=imap(r,M);
|
|
366
|
+
int difset=0;
|
|
367
|
+
list l;
|
|
368
|
+
int dif;
|
|
369
|
+
int donttest=0;
|
|
370
|
+
int comprow=0;
|
|
371
|
+
intmat W[nr][nc];
|
|
372
|
+
//---------------------------------------------------------------------------
|
|
373
|
+
// find a row not containing a 0
|
|
374
|
+
//---------------------------------------------------------------------------
|
|
375
|
+
for(i=1; i<=nr; i++)
|
|
376
|
+
{
|
|
377
|
+
if(comprow==0)
|
|
378
|
+
{
|
|
379
|
+
comprow=i;
|
|
380
|
+
for(j=1; j<=nc; j++)
|
|
381
|
+
{
|
|
382
|
+
if(M[i,j]==0)
|
|
383
|
+
{
|
|
384
|
+
comprow=0;
|
|
385
|
+
break;
|
|
386
|
+
}
|
|
387
|
+
}
|
|
388
|
+
}
|
|
389
|
+
}
|
|
390
|
+
//---------------------------------------------------------------------------
|
|
391
|
+
// get the weights of the comprow'th row or use emergency exit
|
|
392
|
+
//---------------------------------------------------------------------------
|
|
393
|
+
if(comprow==0)
|
|
394
|
+
{
|
|
395
|
+
intvec v=0;
|
|
396
|
+
intmat V=0
|
|
397
|
+
list ret=v,V;
|
|
398
|
+
return(ret);
|
|
399
|
+
}
|
|
400
|
+
else
|
|
401
|
+
{
|
|
402
|
+
for(j=1; j<=nc; j++)
|
|
403
|
+
{
|
|
404
|
+
l[j]=deg(lead(M[comprow,j]));
|
|
405
|
+
}
|
|
406
|
+
}
|
|
407
|
+
//---------------------------------------------------------------------------
|
|
408
|
+
// do the checks
|
|
409
|
+
//---------------------------------------------------------------------------
|
|
410
|
+
for(i=1; i<=nr; i++)
|
|
411
|
+
{
|
|
412
|
+
if ( i==comprow )
|
|
413
|
+
{
|
|
414
|
+
// this row should not be tested against itself
|
|
415
|
+
donttest=1;
|
|
416
|
+
}
|
|
417
|
+
else
|
|
418
|
+
{
|
|
419
|
+
// initialize the difference of the rows, but ignore 0-entries
|
|
420
|
+
if (M[i,1]!=0)
|
|
421
|
+
{
|
|
422
|
+
dif=deg(lead(M[i,1]))-l[1];
|
|
423
|
+
difset=1;
|
|
424
|
+
}
|
|
425
|
+
else
|
|
426
|
+
{
|
|
427
|
+
list memo;
|
|
428
|
+
memo[1]=1;
|
|
429
|
+
}
|
|
430
|
+
}
|
|
431
|
+
// check column by column
|
|
432
|
+
for(j=1; j<=nc; j++)
|
|
433
|
+
{
|
|
434
|
+
if(M[i,j]==0)
|
|
435
|
+
{
|
|
436
|
+
if(defined(memo)!=0)
|
|
437
|
+
{
|
|
438
|
+
memo[size(memo)+1]=j;
|
|
439
|
+
}
|
|
440
|
+
else
|
|
441
|
+
{
|
|
442
|
+
list memo;
|
|
443
|
+
memo[1]=j;
|
|
444
|
+
}
|
|
445
|
+
}
|
|
446
|
+
temp=deg(lead(M[i,j]));
|
|
447
|
+
if((difset!=1) && (donttest!=1) && (M[i,j]!=0))
|
|
448
|
+
{
|
|
449
|
+
// initialize the difference of the rows, if necessary - still ignore 0s
|
|
450
|
+
dif=deg(lead(M[i,j]))-l[j];
|
|
451
|
+
difset=1;
|
|
452
|
+
}
|
|
453
|
+
// is M[i,j] quasihomogeneous - else emergency exit
|
|
454
|
+
if(M[i,j]!=jet(M[i,j],temp,a)-jet(M[i,j],temp-1,a))
|
|
455
|
+
{
|
|
456
|
+
intvec v=0;
|
|
457
|
+
intmat V=0;
|
|
458
|
+
list ret=v,V;
|
|
459
|
+
return(ret);
|
|
460
|
+
}
|
|
461
|
+
if(donttest!=1)
|
|
462
|
+
{
|
|
463
|
+
// check row and column weights - else emergency exit
|
|
464
|
+
if(((temp-l[j])!=dif) && (M[i,j]!=0) && (difset==1))
|
|
465
|
+
{
|
|
466
|
+
intvec v=0;
|
|
467
|
+
intmat V=0;
|
|
468
|
+
list ret=v,V;
|
|
469
|
+
return(ret);
|
|
470
|
+
}
|
|
471
|
+
}
|
|
472
|
+
// set the weight matrix entry
|
|
473
|
+
W[i,j]=temp;
|
|
474
|
+
}
|
|
475
|
+
// clean up the 0's we left out
|
|
476
|
+
if((difset==1) && (defined(memo)!=0))
|
|
477
|
+
{
|
|
478
|
+
for(j=1; j<=size(memo); j++)
|
|
479
|
+
{
|
|
480
|
+
W[i,memo[j]]=dif+l[memo[j]];
|
|
481
|
+
}
|
|
482
|
+
kill memo;
|
|
483
|
+
}
|
|
484
|
+
donttest=0;
|
|
485
|
+
}
|
|
486
|
+
//---------------------------------------------------------------------------
|
|
487
|
+
// transpose, if M was transposed during initialization, and return the list
|
|
488
|
+
//---------------------------------------------------------------------------
|
|
489
|
+
if ( tra==1 )
|
|
490
|
+
{
|
|
491
|
+
W=transpose(W);
|
|
492
|
+
}
|
|
493
|
+
setring r;
|
|
494
|
+
list ret=a,W;
|
|
495
|
+
return(ret);
|
|
496
|
+
}
|
|
497
|
+
example
|
|
498
|
+
{ "EXAMPLE:"; echo=2;
|
|
499
|
+
ring r=0,(x,y,z),ds;
|
|
500
|
+
matrix M[3][2]=z,0,y,x,x^3,y;
|
|
501
|
+
qhmatrix(M);
|
|
502
|
+
pmat(M);
|
|
503
|
+
}
|
|
504
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
505
|
+
|
|
506
|
+
proc relweight(matrix N, intmat W, intvec a)
|
|
507
|
+
"USAGE: relweight(N,W,a); N matrix, W intmat, a intvec
|
|
508
|
+
ASSUME: N is a non-zero matrix
|
|
509
|
+
W is an integer matrix of the same size as N
|
|
510
|
+
a is an integer vector giving the weights of the variables
|
|
511
|
+
RETURN: integer, max(a-weighted order(N_ij) - W_ij | all entries ij) @*
|
|
512
|
+
string \"ERROR\" if sizes do not match
|
|
513
|
+
EXAMPLE: example relweight; shows an example
|
|
514
|
+
"
|
|
515
|
+
{
|
|
516
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
517
|
+
//---------------------------------------------------------------------------
|
|
518
|
+
// Initialization and sanity checks
|
|
519
|
+
//---------------------------------------------------------------------------
|
|
520
|
+
if ((size(N)!=size(W)) || (ncols(N)!=ncols(W)))
|
|
521
|
+
{
|
|
522
|
+
ERROR("matrix size does not match");
|
|
523
|
+
}
|
|
524
|
+
if (size(a)!=nvars(basering))
|
|
525
|
+
{
|
|
526
|
+
ERROR("length of weight vector != number of variables");
|
|
527
|
+
}
|
|
528
|
+
int i,j,temp;
|
|
529
|
+
def r=basering;
|
|
530
|
+
//---------------------------------------------------------------------------
|
|
531
|
+
// Comparison entry by entry
|
|
532
|
+
//---------------------------------------------------------------------------
|
|
533
|
+
for(i=1; i<=nrows(N); i++)
|
|
534
|
+
{
|
|
535
|
+
for(j=1; j<=ncols(N); j++)
|
|
536
|
+
{
|
|
537
|
+
if (N[i,j]!=0)
|
|
538
|
+
{
|
|
539
|
+
temp=mindeg1(N[i,j],a)-W[i,j];
|
|
540
|
+
if (defined(ret))
|
|
541
|
+
{
|
|
542
|
+
if(temp > ret)
|
|
543
|
+
{
|
|
544
|
+
ret=temp;
|
|
545
|
+
}
|
|
546
|
+
}
|
|
547
|
+
else
|
|
548
|
+
{
|
|
549
|
+
int ret=temp;
|
|
550
|
+
}
|
|
551
|
+
}
|
|
552
|
+
}
|
|
553
|
+
}
|
|
554
|
+
return(ret);
|
|
555
|
+
}
|
|
556
|
+
example
|
|
557
|
+
{ "EXAMPLE:"; echo=2;
|
|
558
|
+
ring r=32003,(x,y,z),ds;
|
|
559
|
+
matrix N[2][3]=z,0,y,x,x^3,y;
|
|
560
|
+
intmat W[2][3]=1,1,1,1,1,1;
|
|
561
|
+
intvec a=1,1,1;
|
|
562
|
+
relweight(N,W,a);
|
|
563
|
+
}
|
|
564
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
565
|
+
|
|
566
|
+
proc posweight(matrix M, module t1, int choose, list #)
|
|
567
|
+
"USAGE: posweight(M,t1,n[,s]); M matrix, t1 module, n int, s string @*
|
|
568
|
+
n=0 : all deformations of non-negative weight @*
|
|
569
|
+
n=1 : only non-constant deformations of non-negative weight @*
|
|
570
|
+
n=2 : all deformations of positive weight @*
|
|
571
|
+
ASSUME: M is a presentation matrix of a Cohen-Macaulay codimension 2
|
|
572
|
+
ideal and t1 is its T1 space in matrix notation
|
|
573
|
+
RETURN: new ring containing a list posw, consisting of a presentation
|
|
574
|
+
matrix describing the deformation given by the generators of T1
|
|
575
|
+
of non-negative/positive weight and the weight vector for the new
|
|
576
|
+
variables
|
|
577
|
+
NOTE: The current basering should not contain any variables named
|
|
578
|
+
T(i) where i is some integer!
|
|
579
|
+
EXAMPLE: example posweight; shows an example"
|
|
580
|
+
{
|
|
581
|
+
//---------------------------------------------------------------------------
|
|
582
|
+
// Initialization and sanity checks
|
|
583
|
+
//---------------------------------------------------------------------------
|
|
584
|
+
if (size(#)>0)
|
|
585
|
+
{
|
|
586
|
+
if (typeof(#[1])=="string")
|
|
587
|
+
{
|
|
588
|
+
string newname=#[1];
|
|
589
|
+
}
|
|
590
|
+
}
|
|
591
|
+
if (attrib(t1,"isSB"))
|
|
592
|
+
{
|
|
593
|
+
module t1erz=kbase(t1);
|
|
594
|
+
int tau=vdim(t1);
|
|
595
|
+
}
|
|
596
|
+
else
|
|
597
|
+
{ module t1erz=kbase(std(t1));
|
|
598
|
+
int tau=vdim(std(t1));
|
|
599
|
+
}
|
|
600
|
+
for(int i=1; i<=size(t1erz); i++)
|
|
601
|
+
{
|
|
602
|
+
if(rvar(T(i)))
|
|
603
|
+
{
|
|
604
|
+
int jj=-1;
|
|
605
|
+
break;
|
|
606
|
+
}
|
|
607
|
+
}
|
|
608
|
+
kill i;
|
|
609
|
+
if (defined(jj))
|
|
610
|
+
{
|
|
611
|
+
if (jj==-1)
|
|
612
|
+
{
|
|
613
|
+
ERROR("Your ring contains a variable T(i)!");
|
|
614
|
+
}
|
|
615
|
+
}
|
|
616
|
+
int pw=0;
|
|
617
|
+
int i;
|
|
618
|
+
def r=basering;
|
|
619
|
+
list l=qhmatrix(M);
|
|
620
|
+
int gt=ncols(M);
|
|
621
|
+
if(size(M)!=gt*(gt+1))
|
|
622
|
+
{
|
|
623
|
+
gt=gt-1;
|
|
624
|
+
}
|
|
625
|
+
matrix erzmat[gt+1][gt];
|
|
626
|
+
list erz;
|
|
627
|
+
if ((size(l[1])==1) && (l[1][1]==0) && (size(l[2])==1) && (l[2][1,1]==0))
|
|
628
|
+
{
|
|
629
|
+
ERROR("Internal Error: Problem determining the weights.");
|
|
630
|
+
}
|
|
631
|
+
//---------------------------------------------------------------------------
|
|
632
|
+
// Find the generators of T1 of non-negative weight
|
|
633
|
+
//---------------------------------------------------------------------------
|
|
634
|
+
int relw;
|
|
635
|
+
list rlw;
|
|
636
|
+
for(i=1; i<=tau; i++)
|
|
637
|
+
{
|
|
638
|
+
erzmat=t1erz[i];
|
|
639
|
+
kill relw;
|
|
640
|
+
def relw=relweight(erzmat,l[2],l[1]);
|
|
641
|
+
if(typeof(relw)=="int")
|
|
642
|
+
{
|
|
643
|
+
if (((choose==0) && (relw>=0))
|
|
644
|
+
|| ((choose==1) && (relw>=0) && (CMtype(minor(M+erzmat,gt))==gt))
|
|
645
|
+
|| ((choose==2) && (relw > 0)))
|
|
646
|
+
{
|
|
647
|
+
pw++;
|
|
648
|
+
rlw[pw]=relw;
|
|
649
|
+
erz[pw]=erzmat;
|
|
650
|
+
}
|
|
651
|
+
}
|
|
652
|
+
else
|
|
653
|
+
{
|
|
654
|
+
ERROR("Internal Error: Problem determining relative weight.");
|
|
655
|
+
}
|
|
656
|
+
}
|
|
657
|
+
//---------------------------------------------------------------------------
|
|
658
|
+
// Definition of the new ring and the image of M and erz in the new ring
|
|
659
|
+
//---------------------------------------------------------------------------
|
|
660
|
+
if(size(rlw)==0)
|
|
661
|
+
{
|
|
662
|
+
ERROR("Internal Error: Problem determining relative weight.");
|
|
663
|
+
}
|
|
664
|
+
intvec iv=rlw[1..size(rlw)];
|
|
665
|
+
ring rtemp=0,(T(1..pw)),dp;
|
|
666
|
+
def rneu=r+rtemp;
|
|
667
|
+
setring rneu;
|
|
668
|
+
matrix M=imap(r,M);
|
|
669
|
+
ideal m=M;
|
|
670
|
+
// we cannot imap erz, if its size=0
|
|
671
|
+
if(pw==0)
|
|
672
|
+
{
|
|
673
|
+
list erz1;
|
|
674
|
+
}
|
|
675
|
+
else
|
|
676
|
+
{
|
|
677
|
+
list erz1=imap(r,erz);
|
|
678
|
+
}
|
|
679
|
+
//---------------------------------------------------------------------------
|
|
680
|
+
// Construction of the presentation matrix of the deformation
|
|
681
|
+
//---------------------------------------------------------------------------
|
|
682
|
+
matrix N=matrix(m);
|
|
683
|
+
ideal mtemp;
|
|
684
|
+
matrix Mtemp[gt*(gt+1)][1];
|
|
685
|
+
for( i=1; i<=pw; i++)
|
|
686
|
+
{
|
|
687
|
+
mtemp=erz1[i];
|
|
688
|
+
Mtemp=mtemp;
|
|
689
|
+
N=N+T(i)*transpose(Mtemp);
|
|
690
|
+
}
|
|
691
|
+
ideal n=N;
|
|
692
|
+
matrix O[gt+1][gt]=n;
|
|
693
|
+
//---------------------------------------------------------------------------
|
|
694
|
+
// Keep the matrix and return the ring in which it lives
|
|
695
|
+
//---------------------------------------------------------------------------
|
|
696
|
+
list posw=O,iv;
|
|
697
|
+
export posw;
|
|
698
|
+
return(rneu);
|
|
699
|
+
}
|
|
700
|
+
example
|
|
701
|
+
{ "EXAMPLE:"; echo=2;
|
|
702
|
+
ring r=32003,(x(1),x(2),x(3)),ds;
|
|
703
|
+
ideal curve=(x(3)-x(1)^2)*x(3),(x(3)-x(1)^2)*x(2),x(2)^2-x(1)^7*x(3);
|
|
704
|
+
matrix M=isCMcod2(curve);
|
|
705
|
+
list l=matrixT1(M,3);
|
|
706
|
+
def rneu=posweight(l[1],std(l[2]),0);
|
|
707
|
+
setring rneu;
|
|
708
|
+
pmat(posw[1]);
|
|
709
|
+
posw[2];
|
|
710
|
+
}
|
|
711
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
712
|
+
|
|
713
|
+
proc KSpencerKernel(matrix M,list #)
|
|
714
|
+
"USAGE: KSpencerKernel(M[,s][,v]); M matrix, s string, v intvec @*
|
|
715
|
+
optional parameters (please specify in this order, if both are
|
|
716
|
+
present):
|
|
717
|
+
* s = first of the names of the new rings
|
|
718
|
+
e.g. \"R\" leads to ring names R and R1
|
|
719
|
+
* v of size n(n+1) leads to the following module ordering @*
|
|
720
|
+
gen(v[1]) > gen(v[2]) > ... > gen(v[n(n+1)]) where the matrix
|
|
721
|
+
entry ij corresponds to gen((i-1)*n+j)
|
|
722
|
+
ASSUME: M is a quasihomogeneous n x (n+1) matrix where the n minors define
|
|
723
|
+
an isolated space curve singularity
|
|
724
|
+
RETURN: new ring containing the coefficient matrix KS representing
|
|
725
|
+
the kernel of the Kodaira-Spencer map of the family of
|
|
726
|
+
non-negative deformations having the given singularity as
|
|
727
|
+
special fibre
|
|
728
|
+
NOTE: * the initial basering should not contain variables with name
|
|
729
|
+
e(i) or T(i), since those variable names will internally be
|
|
730
|
+
used by the script
|
|
731
|
+
* setting an intvec with 5 entries and name watchProgress
|
|
732
|
+
shows the progress of the computations: @*
|
|
733
|
+
watchProgress[1]>0 => option(prot) in groebner commands @*
|
|
734
|
+
watchProgress[2]>0 => trace output for highcorner @*
|
|
735
|
+
watchProgress[3]>0 => output of deformed matrix @*
|
|
736
|
+
watchProgress[4]>0 => result of elimination step @*
|
|
737
|
+
watchProgress[4]>1 => trace output of multiplications with xyz
|
|
738
|
+
and subsequent reductions @*
|
|
739
|
+
watchProgress[5]>0 => matrix representing the kernel using print
|
|
740
|
+
EXAMPLE: example KSpencerKernel; shows an example"
|
|
741
|
+
{
|
|
742
|
+
int p = printlevel-voice+3; // p=printlevel+1 (default: p=1)
|
|
743
|
+
//---------------------------------------------------------------------------
|
|
744
|
+
// Initialization and sanity checks
|
|
745
|
+
//---------------------------------------------------------------------------
|
|
746
|
+
intvec optvec=option(get);
|
|
747
|
+
if (size(#)>0)
|
|
748
|
+
{
|
|
749
|
+
if (typeof(#[1])=="string")
|
|
750
|
+
{
|
|
751
|
+
string newname=#[1];
|
|
752
|
+
}
|
|
753
|
+
if (typeof(#[1])=="intvec")
|
|
754
|
+
{
|
|
755
|
+
intvec desiredorder=#[1];
|
|
756
|
+
}
|
|
757
|
+
if (size(#)>1)
|
|
758
|
+
{
|
|
759
|
+
if (typeof(#[2])=="intvec")
|
|
760
|
+
{
|
|
761
|
+
intvec desiredorder=#[2];
|
|
762
|
+
}
|
|
763
|
+
}
|
|
764
|
+
}
|
|
765
|
+
if (defined(watchProgress))
|
|
766
|
+
{
|
|
767
|
+
if ((typeof(watchProgress)!="intvec") || (size(watchProgress)<5))
|
|
768
|
+
{
|
|
769
|
+
"watchProgress should be an intvec with at least 5 entries";
|
|
770
|
+
"ignoring watchProgress";
|
|
771
|
+
def kksave=watchProgress;
|
|
772
|
+
kill watchProgress;
|
|
773
|
+
}
|
|
774
|
+
}
|
|
775
|
+
option(redTail);
|
|
776
|
+
if (nvars(basering) != 3 )
|
|
777
|
+
{
|
|
778
|
+
ERROR("It should be a curve in 3 space");
|
|
779
|
+
}
|
|
780
|
+
//---------------------------------------------------------------------------
|
|
781
|
+
// change to a basering with the correct weihted order
|
|
782
|
+
//---------------------------------------------------------------------------
|
|
783
|
+
def rt=basering;
|
|
784
|
+
list wl=qhmatrix(M);
|
|
785
|
+
if ((size(wl)!=2) || ((wl[1]==0) && (wl[2]==0)))
|
|
786
|
+
{
|
|
787
|
+
ERROR("The matrix was not n x (n+1) or not quasihomogenous");
|
|
788
|
+
}
|
|
789
|
+
string orderKSK;
|
|
790
|
+
ring r = create_ring(ring_list(rt)[1], "(x,y,z)", "Ws(" + string(wl[1]) + ")", "no_minpoly");
|
|
791
|
+
matrix M=imap(rt,M);
|
|
792
|
+
int ne=size(M);
|
|
793
|
+
if (defined(desiredorder)>1)
|
|
794
|
+
{
|
|
795
|
+
intvec iv;
|
|
796
|
+
for(int i=1;i<=size(desiredorder);i++)
|
|
797
|
+
{
|
|
798
|
+
iv[desiredorder[i]]=i;
|
|
799
|
+
}
|
|
800
|
+
}
|
|
801
|
+
else
|
|
802
|
+
{
|
|
803
|
+
intvec iv=1..ne;
|
|
804
|
+
}
|
|
805
|
+
list l=matrixT1(M,3);
|
|
806
|
+
if (dim(std(l[2])) != 0)
|
|
807
|
+
{
|
|
808
|
+
ERROR("The matrix does not define an isolated space curve singularity");
|
|
809
|
+
}
|
|
810
|
+
module t1qh=l[2];
|
|
811
|
+
//--------------------------------------------------------------------------
|
|
812
|
+
// Passing to a new ring with extra variables e(i) corresponding to
|
|
813
|
+
// the module generators gen(i) for weighted standard basis computation
|
|
814
|
+
// accepting weights for the gen(i)
|
|
815
|
+
//--------------------------------------------------------------------------
|
|
816
|
+
int jj=0;
|
|
817
|
+
for(int i=1; i<=ne; i++)
|
|
818
|
+
{
|
|
819
|
+
if(rvar(e(i)))
|
|
820
|
+
{
|
|
821
|
+
jj=-1;
|
|
822
|
+
}
|
|
823
|
+
}
|
|
824
|
+
if (jj==-1)
|
|
825
|
+
{
|
|
826
|
+
ERROR("Your ring contains a variable e(i)!");
|
|
827
|
+
}
|
|
828
|
+
if(defined(desiredorder)>1)
|
|
829
|
+
{
|
|
830
|
+
orderKSK ="Ws(";
|
|
831
|
+
intvec tempiv=intvec(wl[2]);
|
|
832
|
+
for(i=1;i<=ne;i++)
|
|
833
|
+
{
|
|
834
|
+
orderKSK = orderKSK + string((-1)*tempiv[desiredorder[i]]) + ",";
|
|
835
|
+
}
|
|
836
|
+
orderKSK = orderKSK + string(wl[1]) + ");";
|
|
837
|
+
list l2;
|
|
838
|
+
for (int zz = 1; zz <= ne; zz++)
|
|
839
|
+
{
|
|
840
|
+
l2[zz] = "e("+string(zz)+")";
|
|
841
|
+
}
|
|
842
|
+
list l3 = ring_list(basering)[2];
|
|
843
|
+
l2 = l2+l3;
|
|
844
|
+
ring re = create_ring(ring_list(r)[1], l2, orderKSK, "no_minpoly");
|
|
845
|
+
}
|
|
846
|
+
else
|
|
847
|
+
{
|
|
848
|
+
list l4;
|
|
849
|
+
for (int zz = 1; zz <= ne; zz++)
|
|
850
|
+
{
|
|
851
|
+
l4[zz] = "e("+string(zz)+")";
|
|
852
|
+
}
|
|
853
|
+
list l5 = ring_list(basering)[2];
|
|
854
|
+
l4 = l4+l5;
|
|
855
|
+
ring re = create_ring(ring_list(r)[1], l4, "Ws(" + string((-1)*intvec(wl[2])) + ","+ string(wl[1]) + ")", "no_minpoly");
|
|
856
|
+
}
|
|
857
|
+
module temp=imap(r,t1qh);
|
|
858
|
+
ideal t1qh=mod2id(temp,iv);
|
|
859
|
+
if (defined(watchProgress))
|
|
860
|
+
{
|
|
861
|
+
if (watchProgress[1]!=0)
|
|
862
|
+
{
|
|
863
|
+
option(prot);
|
|
864
|
+
"Protocol output of the groebner computation (quasihomogenous case)";
|
|
865
|
+
}
|
|
866
|
+
}
|
|
867
|
+
ideal t1qhs=std(t1qh);
|
|
868
|
+
if (defined(watchProgress))
|
|
869
|
+
{
|
|
870
|
+
if (watchProgress[1]!=0)
|
|
871
|
+
{
|
|
872
|
+
"groebner computation finished";
|
|
873
|
+
option(noprot);
|
|
874
|
+
}
|
|
875
|
+
}
|
|
876
|
+
ideal t1qhsl=lead(t1qhs);
|
|
877
|
+
module mo=id2mod(t1qhsl,iv);
|
|
878
|
+
//--------------------------------------------------------------------------
|
|
879
|
+
// Return to the initial ring to compute the kbase and noether there
|
|
880
|
+
// (in the new ring t1qh is of course not of dimension 0 but of dimension 3
|
|
881
|
+
// so we have to go back)
|
|
882
|
+
//--------------------------------------------------------------------------
|
|
883
|
+
setring r;
|
|
884
|
+
module mo=imap(re,mo);
|
|
885
|
+
attrib(mo,"isSB",1); // mo is monomial ==> SB
|
|
886
|
+
attrib(mo,"isHomog",intvec(wl[2])); // highcorner has to respect the weights
|
|
887
|
+
vector noe=highcorner(mo);
|
|
888
|
+
if (defined(watchProgress))
|
|
889
|
+
{
|
|
890
|
+
if (watchProgress[2]!=0)
|
|
891
|
+
{
|
|
892
|
+
"weights corresponding to the entries of the matrix:";
|
|
893
|
+
wl;
|
|
894
|
+
"leading term of the groebner basis (quasihomogeneous case)";
|
|
895
|
+
mo;
|
|
896
|
+
"noether";
|
|
897
|
+
noe;
|
|
898
|
+
}
|
|
899
|
+
}
|
|
900
|
+
//--------------------------------------------------------------------------
|
|
901
|
+
// Define the family of curves with the same quasihomogeneous initial
|
|
902
|
+
// matrix M, compute T1 and pass again to the ring with the variables e(i)
|
|
903
|
+
//--------------------------------------------------------------------------
|
|
904
|
+
def rneu=posweight(M,mo,2);
|
|
905
|
+
setring rneu;
|
|
906
|
+
list li=posw;
|
|
907
|
+
if (size(li)<=1)
|
|
908
|
+
{
|
|
909
|
+
ERROR("Internal Error: Problem determining perturbations of weight > 0.")
|
|
910
|
+
}
|
|
911
|
+
if (defined(watchProgress))
|
|
912
|
+
{
|
|
913
|
+
if(watchProgress[3]!=0)
|
|
914
|
+
{
|
|
915
|
+
"perturbed matrix and weights of the perturbations:";
|
|
916
|
+
li;
|
|
917
|
+
}
|
|
918
|
+
}
|
|
919
|
+
list li2=matrixT1(li[1],3);
|
|
920
|
+
module Mpert=transpose(matrix(ideal(li2[1])));
|
|
921
|
+
module t1pert=li2[2];
|
|
922
|
+
int nv=nvars(rneu)-nvars(r);
|
|
923
|
+
ring rtemp=0,(T(1..nv)),wp(li[2]);
|
|
924
|
+
def reneu=re+rtemp;
|
|
925
|
+
setring reneu;
|
|
926
|
+
module noe=matrix(imap(r,noe));
|
|
927
|
+
ideal noet=mod2id(noe,iv);
|
|
928
|
+
module temp=imap(rneu,t1pert);
|
|
929
|
+
ideal t1pert=mod2id(temp,iv);
|
|
930
|
+
//--------------------------------------------------------------------------
|
|
931
|
+
// Compute the standard basis and select those generators with leading term
|
|
932
|
+
// divisible by some T(i)
|
|
933
|
+
//--------------------------------------------------------------------------
|
|
934
|
+
noether=noet[size(noet)];
|
|
935
|
+
if (defined(watchProgress))
|
|
936
|
+
{
|
|
937
|
+
if (watchProgress[1]!=0)
|
|
938
|
+
{
|
|
939
|
+
"protocol output of the groebner command (perturbed case)";
|
|
940
|
+
option(prot);
|
|
941
|
+
}
|
|
942
|
+
}
|
|
943
|
+
ideal t1perts=std(t1pert);
|
|
944
|
+
noether=noet[size(noet)];
|
|
945
|
+
t1perts=interred(t1perts);
|
|
946
|
+
if (defined(Debug))
|
|
947
|
+
{
|
|
948
|
+
if (watchProgress[1]!=0)
|
|
949
|
+
{
|
|
950
|
+
"groebner computation finished (perturbed case)";
|
|
951
|
+
option(noprot);
|
|
952
|
+
}
|
|
953
|
+
}
|
|
954
|
+
ideal templ=lead(t1perts);
|
|
955
|
+
for(int j=1;j<=nv;j++)
|
|
956
|
+
{
|
|
957
|
+
templ=subst(templ,T(j),0);
|
|
958
|
+
}
|
|
959
|
+
ideal mx;
|
|
960
|
+
ideal mt;
|
|
961
|
+
for(j=1;j<=size(t1perts);j++)
|
|
962
|
+
{
|
|
963
|
+
if(templ[j]!=0)
|
|
964
|
+
{
|
|
965
|
+
mx=mx,t1perts[j];
|
|
966
|
+
}
|
|
967
|
+
else
|
|
968
|
+
{
|
|
969
|
+
mt=mt,t1perts[j];
|
|
970
|
+
}
|
|
971
|
+
}
|
|
972
|
+
//--------------------------------------------------------------------------
|
|
973
|
+
// multiply by the initial ring variables to shift the generators with
|
|
974
|
+
// leading term divisible by some T(i) and reduce afterwards
|
|
975
|
+
//--------------------------------------------------------------------------
|
|
976
|
+
// This is obviously no SB, but we have to reduce by
|
|
977
|
+
attrib(mx,"isSB",1); // it and setting isSB suppresses error messages
|
|
978
|
+
noether=noet[size(noet)];
|
|
979
|
+
ideal ker_gen=reduce(mt,mx);
|
|
980
|
+
ideal ovar=var(ne+1),var(ne+2),var(ne+3);
|
|
981
|
+
j=1;
|
|
982
|
+
noether=noet[size(noet)];
|
|
983
|
+
if (defined(watchProgress))
|
|
984
|
+
{
|
|
985
|
+
if (watchProgress[4]!=0)
|
|
986
|
+
{
|
|
987
|
+
"generators of the kernel as a C[T]{x} module:";
|
|
988
|
+
mt;
|
|
989
|
+
"noether:";
|
|
990
|
+
noether;
|
|
991
|
+
}
|
|
992
|
+
}
|
|
993
|
+
int zeros;
|
|
994
|
+
templ=ker_gen;
|
|
995
|
+
while(zeros==0)
|
|
996
|
+
{
|
|
997
|
+
zeros=1;
|
|
998
|
+
templ=templ*ovar;
|
|
999
|
+
templ=reduce(templ,mx);
|
|
1000
|
+
if(defined(watchProgress))
|
|
1001
|
+
{
|
|
1002
|
+
if(watchProgress[4]>1)
|
|
1003
|
+
{
|
|
1004
|
+
templ;
|
|
1005
|
+
}
|
|
1006
|
+
}
|
|
1007
|
+
if (size(templ)!= 0)
|
|
1008
|
+
{
|
|
1009
|
+
zeros=0;
|
|
1010
|
+
ker_gen=ker_gen,templ;
|
|
1011
|
+
}
|
|
1012
|
+
}
|
|
1013
|
+
//-------------------------------------------------------------------------
|
|
1014
|
+
// kill zero entries, keep only one of identical entries
|
|
1015
|
+
//-------------------------------------------------------------------------
|
|
1016
|
+
ovar=var(1);
|
|
1017
|
+
for(i=2;i<=ne;i++)
|
|
1018
|
+
{
|
|
1019
|
+
ovar=ovar,var(i);
|
|
1020
|
+
}
|
|
1021
|
+
ker_gen=ker_gen,ovar^2;
|
|
1022
|
+
noether=noet[size(noet)];
|
|
1023
|
+
ker_gen=simplify(ker_gen,10);
|
|
1024
|
+
//-------------------------------------------------------------------------
|
|
1025
|
+
// interreduce ker_gen as a k[T]-module
|
|
1026
|
+
//-------------------------------------------------------------------------
|
|
1027
|
+
intvec mgen=1..(ne+3);
|
|
1028
|
+
ideal Mpert=mod2id(imap(rneu,Mpert),iv);
|
|
1029
|
+
templ=0;
|
|
1030
|
+
for(i=1;i<=nv;i++)
|
|
1031
|
+
{
|
|
1032
|
+
templ[i]=diff(Mpert[size(Mpert)],T(i));
|
|
1033
|
+
}
|
|
1034
|
+
templ=templ,ovar^2;
|
|
1035
|
+
list retl=subrInterred(templ,ker_gen,mgen);
|
|
1036
|
+
// Build up the matrix representing L
|
|
1037
|
+
module retlm=transpose(retl[2]);
|
|
1038
|
+
for(i=1;i<=size(retl[1]);i++)
|
|
1039
|
+
{
|
|
1040
|
+
if(reduce(retl[1][1,i],std(ovar^2))==0)
|
|
1041
|
+
{
|
|
1042
|
+
retlm[i]=0;
|
|
1043
|
+
}
|
|
1044
|
+
}
|
|
1045
|
+
retlm=simplify(transpose(simplify(transpose(retlm),10)),10);
|
|
1046
|
+
if(defined(watchProgress))
|
|
1047
|
+
{
|
|
1048
|
+
if(watchProgress[5]>0)
|
|
1049
|
+
{
|
|
1050
|
+
print(retlm);
|
|
1051
|
+
}
|
|
1052
|
+
}
|
|
1053
|
+
ker_gen=retl[3];
|
|
1054
|
+
// we define ret=i(L),(delta_j(t_k))_jk
|
|
1055
|
+
list ret=id2mod(ker_gen,iv),matrix(retlm);
|
|
1056
|
+
// cleanups - define what we previously killed
|
|
1057
|
+
if(defined(kksave)>1)
|
|
1058
|
+
{
|
|
1059
|
+
def watchProgress=kksave;
|
|
1060
|
+
export watch Progress;
|
|
1061
|
+
}
|
|
1062
|
+
option(set,optvec);
|
|
1063
|
+
def KS=ret[2];
|
|
1064
|
+
export KS;
|
|
1065
|
+
return(reneu);
|
|
1066
|
+
}
|
|
1067
|
+
example
|
|
1068
|
+
{ "EXAMPLE:"; echo=2;
|
|
1069
|
+
ring r=0,(x,y,z),ds;
|
|
1070
|
+
matrix M[3][2]=z-x^7,0,y^2,z,x^9,y;
|
|
1071
|
+
def rneu=KSpencerKernel(M,"ar");
|
|
1072
|
+
setring rneu;
|
|
1073
|
+
basering;
|
|
1074
|
+
print(KS);
|
|
1075
|
+
}
|
|
1076
|
+
///////////////////////////////////////////////////////////////////////////
|
|
1077
|
+
|