passagemath-singular 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-musl.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +493 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-67059f19.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-30166d29.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-9d37bcf4.4.1.so +0 -0
- passagemath_singular.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_singular.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_singular.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_singular.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_singular.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-e9ff96db.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-8bcf8e7d.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-73bf7623.4.1.so +0 -0
- passagemath_singular.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-musl.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,709 @@
|
|
|
1
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version rootsmr.lib 4.1.2.0 Feb_2019 "; // $Id: 61f6221ba96ea5ce685101bb5c8ba12b0ec08a57 $
|
|
3
|
+
category="Teaching";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: rootsmr.lib Counting the number of real roots of polynomial systems
|
|
6
|
+
AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar
|
|
7
|
+
|
|
8
|
+
OVERVIEW: Routines for counting the number of real roots of a multivariate
|
|
9
|
+
polynomial system. Two methods are implemented: deterministic
|
|
10
|
+
computation of the number of roots, via the signature of a certain
|
|
11
|
+
bilinear form (nrRootsDeterm); and a rational univariate projection,
|
|
12
|
+
using a pseudorandom polynomial (nrRootsProbab). It also includes a
|
|
13
|
+
command to verify the correctness of the pseudorandom answer.
|
|
14
|
+
REFERENCES: Basu, Pollack, Roy, \"Algorithms in Real Algebraic
|
|
15
|
+
Geometry\", Springer, 2003.
|
|
16
|
+
|
|
17
|
+
PROCEDURES:
|
|
18
|
+
nrRootsProbab(I) Number of real roots of 0-dim ideal (probabilistic)
|
|
19
|
+
nrRootsDeterm(I) Number of real roots of 0-dim ideal (deterministic)
|
|
20
|
+
symsignature(m) Signature of the symmetric matrix m
|
|
21
|
+
sturmquery(h,B,I) Sturm query of h on V(I)
|
|
22
|
+
matbil(h,B,I) Matrix of the bilinear form on R/I associated to h
|
|
23
|
+
matmult(f,B,I) Matrix of multiplication by f (m_f) on R/I in the basis B
|
|
24
|
+
tracemult(f,B,I) Trace of m_f (B is an ordered basis of R/I)
|
|
25
|
+
coords(f,B,I) Coordinates of f in the ordered basis B
|
|
26
|
+
randcharpoly(B,I,n) Pseudorandom charpoly of univ. projection, n optional
|
|
27
|
+
verify(p,B,i) Verifies the result of randcharpoly
|
|
28
|
+
randlinpoly(n) Pseudorandom linear polynomial, n optional
|
|
29
|
+
powersums(f,B,I) Powersums of the roots of a char polynomial
|
|
30
|
+
symmfunc(S) Symmetric functions from the powersums S
|
|
31
|
+
univarpoly(l) Polynomial with coefficients from l
|
|
32
|
+
qbase(i) Like kbase, but the monomials are ordered
|
|
33
|
+
|
|
34
|
+
KEYWORDS: real roots, univariate projection
|
|
35
|
+
";
|
|
36
|
+
///////////////////////////////////////////////////////////////////
|
|
37
|
+
LIB "linalg.lib"; // We use charpoly
|
|
38
|
+
LIB "rootsur.lib"; // We use varsigns
|
|
39
|
+
|
|
40
|
+
proc nrRootsProbab(ideal I, list #)
|
|
41
|
+
"USAGE: nrRootsProbab(I,[n]); ideal I, int n
|
|
42
|
+
RETURN: int: the number of real roots of the ideal I by a probabilistic
|
|
43
|
+
algorithm
|
|
44
|
+
ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
|
|
45
|
+
by using std. If I is already a Groebner basis (i.e. if
|
|
46
|
+
attrib(I,"isSB"); returns 1) then this Groebner basis will be
|
|
47
|
+
used, hence it must be one w.r.t. (any) global ordering. This may
|
|
48
|
+
be useful if the ideal is known to be a Groebner basis or if it
|
|
49
|
+
can be computed faster by a different method.
|
|
50
|
+
NOTE: If n<10 is given, n is the number of digits being used for
|
|
51
|
+
constructing a random characteristic polynomial, a bigger n is
|
|
52
|
+
more safe but slower (default: n=5).
|
|
53
|
+
If printlevel>0 the number of complex solutions is displayed
|
|
54
|
+
(default: printlevel=0).
|
|
55
|
+
SEE ALSO: nrroots, nrRootsDeterm, randcharpoly, solve
|
|
56
|
+
EXAMPLE: example nrRootsProbab; shows an example"
|
|
57
|
+
{
|
|
58
|
+
//Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
|
|
59
|
+
//Then the algorithm needs:
|
|
60
|
+
//1 std(I) and ~n NF computations (of randcharpoly w.r.t. I)
|
|
61
|
+
|
|
62
|
+
if (isparam(I)) {
|
|
63
|
+
ERROR("This procedure cannot operate with parametric arguments");
|
|
64
|
+
}
|
|
65
|
+
int pr = printlevel-voice+2;
|
|
66
|
+
int v;
|
|
67
|
+
int n=5;
|
|
68
|
+
if (size(#) == 1) {
|
|
69
|
+
n=#[1];
|
|
70
|
+
}
|
|
71
|
+
if (attrib(I,"isSB")!=1) {
|
|
72
|
+
I = std(I);
|
|
73
|
+
}
|
|
74
|
+
|
|
75
|
+
ideal b = qbase(I);
|
|
76
|
+
v = size(b);
|
|
77
|
+
if (v == 0) {
|
|
78
|
+
ERROR("ideal is not 0-dimensional");
|
|
79
|
+
}
|
|
80
|
+
dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
|
|
81
|
+
|
|
82
|
+
poly p = randcharpoly(b,I,n);
|
|
83
|
+
|
|
84
|
+
return (nrroots(p));
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
example
|
|
88
|
+
{
|
|
89
|
+
echo = 2;
|
|
90
|
+
ring r = 0,(x,y,z),lp;
|
|
91
|
+
ideal i = (x-1)*(x-2),(y-1)^3*(x-y),(z-1)*(z-2)*(z-3)^2;
|
|
92
|
+
nrRootsProbab(i); //no of real roots (using internally std)
|
|
93
|
+
|
|
94
|
+
i = groebner(i); //using the hilbert driven GB computation
|
|
95
|
+
int pr = printlevel;
|
|
96
|
+
printlevel = 2;
|
|
97
|
+
nrRootsProbab(i);
|
|
98
|
+
printlevel = pr;
|
|
99
|
+
}
|
|
100
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
101
|
+
|
|
102
|
+
proc nrRootsDeterm(ideal I)
|
|
103
|
+
"USAGE: nrRootsDeterm(I); ideal I
|
|
104
|
+
RETURN: int: the number of real roots of the ideal I by a deterministic
|
|
105
|
+
algorithm
|
|
106
|
+
ASSUME: If I is not a Groebner basis, then a Groebner basis will be computed
|
|
107
|
+
by using std. If I is already a Groebner basis (i.e. if
|
|
108
|
+
attrib(I,"isSB"); returns 1) then this Groebner basis will be
|
|
109
|
+
used, hence it must be one w.r.t. (any) global ordering. This may
|
|
110
|
+
be useful if the ideal is known to be a Groebner basis or if it
|
|
111
|
+
can be computed faster by a different method.
|
|
112
|
+
NOTE: If printlevel>0 the number of complex solutions is displayed
|
|
113
|
+
(default: printlevel=0). The procedure nrRootsProbab is usually faster.
|
|
114
|
+
SEE ALSO: nrroots, nrRootsProbab, sturmquery, solve
|
|
115
|
+
EXAMPLE: example nrRootsDeterm; shows an example"
|
|
116
|
+
{
|
|
117
|
+
//Note on complexity: Let n = no of complex roots of I (= vdim(std(I)).
|
|
118
|
+
//Then the algorithm needs:
|
|
119
|
+
//1 std(I) and (1/2)n*(n+1)^2 ~ 1/2n^3 NF computations (of monomials w.r.t. I)
|
|
120
|
+
|
|
121
|
+
if (isparam(I)) {
|
|
122
|
+
ERROR("This procedure cannot operate with parametric arguments");
|
|
123
|
+
}
|
|
124
|
+
int pr = printlevel-voice+2;
|
|
125
|
+
int v;
|
|
126
|
+
|
|
127
|
+
if (attrib(I,"isSB")!=1) {
|
|
128
|
+
I = std(I);
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
ideal b = qbase(I);
|
|
132
|
+
v = size(b);
|
|
133
|
+
if (v == 0) {
|
|
134
|
+
ERROR("ideal is not 0-dimensional");
|
|
135
|
+
}
|
|
136
|
+
dbprint(pr,"//ideal has " +string(v)+ " complex solutions, counted with multiplicity");
|
|
137
|
+
|
|
138
|
+
return (sturmquery(1,b,I));
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
example
|
|
142
|
+
{
|
|
143
|
+
echo = 2;
|
|
144
|
+
ring r = 0,(x,y,z),lp;
|
|
145
|
+
ideal I = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
|
|
146
|
+
nrRootsDeterm(I); //no of real roots (using internally std)
|
|
147
|
+
|
|
148
|
+
I = groebner(I); //using the hilbert driven GB computation
|
|
149
|
+
int pr = printlevel;
|
|
150
|
+
printlevel = 2;
|
|
151
|
+
nrRootsDeterm(I);
|
|
152
|
+
printlevel = pr;
|
|
153
|
+
}
|
|
154
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
155
|
+
|
|
156
|
+
proc symsignature(matrix m)
|
|
157
|
+
"USAGE: symsignature(m); m matrix. m must be symmetric.
|
|
158
|
+
RETURN: int: the signature of m
|
|
159
|
+
SEE ALSO: matbil,sturmquery
|
|
160
|
+
EXAMPLE: example symsignature; shows an example"
|
|
161
|
+
{
|
|
162
|
+
int positive, negative, i, j;
|
|
163
|
+
list l;
|
|
164
|
+
poly variable;
|
|
165
|
+
|
|
166
|
+
if (isparam(m)) {
|
|
167
|
+
ERROR("This procedure cannot operate with parametric arguments");
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
if (!isSquare(m)) {
|
|
171
|
+
ERROR ("m must be a square matrix");
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
// We check whether m is symmetric
|
|
175
|
+
for (i = 1;i <= nrows(m);i++) {
|
|
176
|
+
for (j = i;j <= nrows(m);j++) {
|
|
177
|
+
if (m[i,j] != m[j,i]) {
|
|
178
|
+
ERROR ("m must be a symmetric matrix");
|
|
179
|
+
}
|
|
180
|
+
}
|
|
181
|
+
}
|
|
182
|
+
|
|
183
|
+
poly f = charpoly(m); // Uses the last variable of the ring
|
|
184
|
+
|
|
185
|
+
for (i = size(f);i >= 1;i--) {
|
|
186
|
+
l[i] = leadcoef(f[i]);
|
|
187
|
+
}
|
|
188
|
+
positive = varsigns(l);
|
|
189
|
+
|
|
190
|
+
variable = var(nvars(basering)); // charpoly uses the last variable
|
|
191
|
+
f = subst(f,variable,-variable);
|
|
192
|
+
|
|
193
|
+
for (i = size(f);i >= 1;i--) {
|
|
194
|
+
l[i] = leadcoef(f[i]);
|
|
195
|
+
}
|
|
196
|
+
|
|
197
|
+
negative = varsigns(l);
|
|
198
|
+
return (positive - negative);
|
|
199
|
+
}
|
|
200
|
+
example
|
|
201
|
+
{
|
|
202
|
+
echo = 2;
|
|
203
|
+
ring r = 0,(x,y),dp;
|
|
204
|
+
ideal i = x4-y2x,y2-13;
|
|
205
|
+
i = std(i);
|
|
206
|
+
ideal b = qbase(i);
|
|
207
|
+
|
|
208
|
+
matrix m = matbil(1,b,i);
|
|
209
|
+
symsignature(m);
|
|
210
|
+
}
|
|
211
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
212
|
+
|
|
213
|
+
proc sturmquery(poly h,ideal B,ideal I)
|
|
214
|
+
"USAGE: sturmquery(h,b,i); h poly, b,i ideal
|
|
215
|
+
RETURN: int: the Sturm query of h in V(i)
|
|
216
|
+
ASSUME: i is a Groebner basis, b is an ordered monomial basis
|
|
217
|
+
of r/i, r = basering.
|
|
218
|
+
SEE ALSO: symsignature,matbil
|
|
219
|
+
EXAMPLE: example sturmquery; shows an example"
|
|
220
|
+
{
|
|
221
|
+
if (isparam(h) || isparam(B) || isparam(I)) {
|
|
222
|
+
ERROR("This procedure cannot operate with parametric arguments");
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
return (mysymmsig(matbil(h,B,I)));
|
|
226
|
+
}
|
|
227
|
+
example
|
|
228
|
+
{
|
|
229
|
+
echo = 2;
|
|
230
|
+
ring r = 0,(x,y),dp;
|
|
231
|
+
ideal i = x4-y2x,y2-13;
|
|
232
|
+
i = std(i);
|
|
233
|
+
ideal b = qbase(i);
|
|
234
|
+
|
|
235
|
+
sturmquery(1,b,i);
|
|
236
|
+
}
|
|
237
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
238
|
+
|
|
239
|
+
static proc mysymmsig(matrix m)
|
|
240
|
+
// returns the signature of a square symmetric matrix m
|
|
241
|
+
{
|
|
242
|
+
int positive, negative, i;
|
|
243
|
+
list l;
|
|
244
|
+
poly variable;
|
|
245
|
+
|
|
246
|
+
poly f = charpoly(m); // Uses the last variable of the ring
|
|
247
|
+
|
|
248
|
+
for (i = size(f);i >= 1;i--) {
|
|
249
|
+
l[i] = leadcoef(f[i]);
|
|
250
|
+
}
|
|
251
|
+
positive = varsigns(l);
|
|
252
|
+
|
|
253
|
+
variable = var(nvars(basering)); // charpoly uses the last variable
|
|
254
|
+
f = subst(f,variable,-variable);
|
|
255
|
+
|
|
256
|
+
for (i = size(f);i >= 1;i--) {
|
|
257
|
+
l[i] = leadcoef(f[i]);
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
negative = varsigns(l);
|
|
261
|
+
return (positive - negative);
|
|
262
|
+
}
|
|
263
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
264
|
+
|
|
265
|
+
proc matbil(poly h,ideal B,ideal I)
|
|
266
|
+
"USAGE: matbil(h,b,i); h poly, b,i ideal
|
|
267
|
+
RETURN: matrix: the matrix of the bilinear form (f,g) |-> trace(m_fhg),
|
|
268
|
+
m_fhg = multiplication with fhg on r/i
|
|
269
|
+
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
|
|
270
|
+
r = basering
|
|
271
|
+
SEE ALSO: matmult,tracemult
|
|
272
|
+
EXAMPLE: example matbil; shows an example"
|
|
273
|
+
{
|
|
274
|
+
matrix m[size(B)][size(B)];
|
|
275
|
+
poly f;
|
|
276
|
+
int k,l;
|
|
277
|
+
//h = reduce(h,I);
|
|
278
|
+
|
|
279
|
+
for (k = 1; k <= size(B); k++) {
|
|
280
|
+
for (l = 1; l <= k; l++) {
|
|
281
|
+
m[k,l] = tracemult(h*B[k]*B[l],B,I)[1];
|
|
282
|
+
m[l,k] = m[k,l]; // The matrix we are trying to compute is symmetric
|
|
283
|
+
}
|
|
284
|
+
}
|
|
285
|
+
return(m);
|
|
286
|
+
}
|
|
287
|
+
example
|
|
288
|
+
{
|
|
289
|
+
echo = 2;
|
|
290
|
+
ring r = 0,(x,y),dp;
|
|
291
|
+
ideal i = x4-y2x,y2-13;
|
|
292
|
+
i = std(i);
|
|
293
|
+
ideal b = qbase(i);
|
|
294
|
+
poly f = x3-xy+y-13+x4-y2x;
|
|
295
|
+
|
|
296
|
+
matrix m = matbil(f,b,i);
|
|
297
|
+
print(m);
|
|
298
|
+
|
|
299
|
+
}
|
|
300
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
301
|
+
|
|
302
|
+
proc tracemult(poly f,ideal B,ideal I)
|
|
303
|
+
"USAGE: tracemult(f,B,I);f poly, B,I ideal
|
|
304
|
+
RETURN: number: the trace of the multiplication by f (m_f) on r/I, written in
|
|
305
|
+
the monomial basis B of r/I, r = basering (faster than matmult + trace)
|
|
306
|
+
ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I
|
|
307
|
+
SEE ALSO: matmult,trace
|
|
308
|
+
EXAMPLE: example tracemult; shows an example"
|
|
309
|
+
{
|
|
310
|
+
int k; // Iterates over the basis monomials
|
|
311
|
+
int l; // Iterates over the rows of the matrix
|
|
312
|
+
list coordinates;
|
|
313
|
+
number m;
|
|
314
|
+
poly g;
|
|
315
|
+
|
|
316
|
+
//f = reduce(f,I);
|
|
317
|
+
for (k = 1; k <= size(B); k++) {
|
|
318
|
+
l=1;
|
|
319
|
+
g = reduce(f*B[k],I);
|
|
320
|
+
while (l <= k) {
|
|
321
|
+
if (leadmonom(g[l]) == B[k]) {
|
|
322
|
+
m = m + leadcoef(g[l]);
|
|
323
|
+
break;
|
|
324
|
+
}
|
|
325
|
+
l++;
|
|
326
|
+
}
|
|
327
|
+
}
|
|
328
|
+
return (m);
|
|
329
|
+
}
|
|
330
|
+
example
|
|
331
|
+
{
|
|
332
|
+
echo = 2;
|
|
333
|
+
ring r = 0,(x,y),dp;
|
|
334
|
+
ideal i = x4-y2x,y2-13;
|
|
335
|
+
i = std(i);
|
|
336
|
+
ideal b = qbase(i);
|
|
337
|
+
|
|
338
|
+
poly f = x3-xy+y-13+x4-y2x;
|
|
339
|
+
matrix m = matmult(f,b,i);
|
|
340
|
+
print(m);
|
|
341
|
+
|
|
342
|
+
tracemult(f,b,i); //the trace of m
|
|
343
|
+
}
|
|
344
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
345
|
+
|
|
346
|
+
proc matmult(poly f, ideal B, ideal I)
|
|
347
|
+
"USAGE: matmult(f,b,i); f poly, b,i ideal
|
|
348
|
+
RETURN: matrix: the matrix of the multiplication map by f (m_f) on r/i
|
|
349
|
+
w.r.t. to the monomial basis b of r/i (r = basering)
|
|
350
|
+
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
|
|
351
|
+
as given by qbase(i)
|
|
352
|
+
SEE ALSO: coords,matbil
|
|
353
|
+
EXAMPLE: example matmult; shows an example"
|
|
354
|
+
{
|
|
355
|
+
int k; // Iterates over the basis monomials
|
|
356
|
+
int l; // Iterates over the rows of the matrix
|
|
357
|
+
list coordinates;
|
|
358
|
+
matrix m[size(B)][size(B)];
|
|
359
|
+
|
|
360
|
+
//f = reduce(f,I);
|
|
361
|
+
for (k = 1;k <= size(B);k++) {
|
|
362
|
+
coordinates = coords(f*(B[k]),B,I); // f*x_k written on the basis B
|
|
363
|
+
for (l = 1;l <= size(B);l++) {
|
|
364
|
+
m[l,k] = coordinates[l];
|
|
365
|
+
}
|
|
366
|
+
}
|
|
367
|
+
return (m);
|
|
368
|
+
}
|
|
369
|
+
example
|
|
370
|
+
{
|
|
371
|
+
echo = 2;
|
|
372
|
+
ring r = 0,(x,y),dp;
|
|
373
|
+
ideal i = x4-y2x,y2-13;
|
|
374
|
+
i = std(i);
|
|
375
|
+
ideal b = qbase(i);
|
|
376
|
+
|
|
377
|
+
poly f = x3-xy+y-13+x4-y2x;
|
|
378
|
+
matrix m = matmult(f,b,i);
|
|
379
|
+
print(m);
|
|
380
|
+
}
|
|
381
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
382
|
+
|
|
383
|
+
proc coords(poly f,ideal B,ideal I)
|
|
384
|
+
"USAGE: coords(f,b,i), f poly, b,i ideal
|
|
385
|
+
RETURN: list of numbers: the coordinates of the class of f (mod i)
|
|
386
|
+
in the monomial basis b
|
|
387
|
+
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
|
|
388
|
+
r = basering
|
|
389
|
+
SEE ALSO: matmult,matbil
|
|
390
|
+
KEYWORDS: coordinates
|
|
391
|
+
EXAMPLE: example coords; shows an example"
|
|
392
|
+
{
|
|
393
|
+
// We assume the basis is sorted according to the ring order
|
|
394
|
+
poly g;
|
|
395
|
+
int k,l=1,1;
|
|
396
|
+
list coordinates;
|
|
397
|
+
int N = size(B);
|
|
398
|
+
|
|
399
|
+
// We first compute the normal form of f w.r.t. I
|
|
400
|
+
g = reduce(f,I);
|
|
401
|
+
int n = size(g); //always n <= N
|
|
402
|
+
|
|
403
|
+
while (k <= N) {
|
|
404
|
+
if (leadmonom(g[l]) == B[k]) {
|
|
405
|
+
coordinates[k] = leadcoef(g[l]);
|
|
406
|
+
l++;
|
|
407
|
+
} else {
|
|
408
|
+
coordinates[k] = number(0);
|
|
409
|
+
}
|
|
410
|
+
k++;
|
|
411
|
+
}
|
|
412
|
+
return (coordinates);
|
|
413
|
+
}
|
|
414
|
+
example
|
|
415
|
+
{
|
|
416
|
+
echo = 2;
|
|
417
|
+
ring r = 0,(x,y),dp;
|
|
418
|
+
ideal i = x4-y2x,y2-13;
|
|
419
|
+
poly f = x3-xy+y-13+x4-y2x;
|
|
420
|
+
i = std(i);
|
|
421
|
+
ideal b = qbase(i);
|
|
422
|
+
b;
|
|
423
|
+
coords(f,b,i);
|
|
424
|
+
}
|
|
425
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
426
|
+
|
|
427
|
+
static proc isSquare(matrix m)
|
|
428
|
+
// returns 1 if and only if m is a square matrix
|
|
429
|
+
{
|
|
430
|
+
return (nrows(m)==ncols(m));
|
|
431
|
+
}
|
|
432
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
433
|
+
|
|
434
|
+
proc randcharpoly(ideal B,ideal I,list #)
|
|
435
|
+
"USAGE: randcharpoly(b,i); randcharpoly(b,i,n); b,i ideal; n int
|
|
436
|
+
RETURN: poly: the characteristic polynomial of a pseudorandom
|
|
437
|
+
rational univariate projection having one zero per zero of i.
|
|
438
|
+
If n<10 is given, it is the number of digits being used for the
|
|
439
|
+
pseudorandom coefficients (default: n=5)
|
|
440
|
+
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
|
|
441
|
+
r = basering
|
|
442
|
+
NOTE: shows a warning if printlevel>0 (default: printlevel=0)
|
|
443
|
+
KEYWORDS: rational univariate projection
|
|
444
|
+
EXAMPLE: example randcharpoly; shows an example"
|
|
445
|
+
{
|
|
446
|
+
int pr = printlevel - voice + 2;
|
|
447
|
+
poly p;
|
|
448
|
+
poly generic;
|
|
449
|
+
list l;
|
|
450
|
+
matrix m;
|
|
451
|
+
poly q;
|
|
452
|
+
|
|
453
|
+
if (size(#) == 1) {
|
|
454
|
+
generic = randlinpoly(#[1]);
|
|
455
|
+
} else {
|
|
456
|
+
generic = randlinpoly();
|
|
457
|
+
}
|
|
458
|
+
|
|
459
|
+
p = reduce(generic,I);
|
|
460
|
+
m = matmult(p,B,I);
|
|
461
|
+
q = charpoly(m);
|
|
462
|
+
|
|
463
|
+
dbprint(pr,"*********************************************************************");
|
|
464
|
+
dbprint(pr,"* WARNING: This polynomial was obtained using pseudorandom numbers.*");
|
|
465
|
+
dbprint(pr,"* If you want to verify the result, please use the command *");
|
|
466
|
+
dbprint(pr,"* *");
|
|
467
|
+
dbprint(pr,"* verify(p,b,i) *");
|
|
468
|
+
dbprint(pr,"* *");
|
|
469
|
+
dbprint(pr,"* where p is the polynomial I returned, b is the monomial basis *");
|
|
470
|
+
dbprint(pr,"* used, and i the Groebner basis of the ideal *");
|
|
471
|
+
dbprint(pr,"*********************************************************************");
|
|
472
|
+
|
|
473
|
+
return(q);
|
|
474
|
+
}
|
|
475
|
+
example
|
|
476
|
+
{
|
|
477
|
+
echo = 2;
|
|
478
|
+
ring r = 0,(x,y,z),dp;
|
|
479
|
+
ideal i = (x-1)*(x-2),(y-1),(z-1)*(z-2)*(z-3)^2;
|
|
480
|
+
i = std(i);
|
|
481
|
+
ideal b = qbase(i);
|
|
482
|
+
poly p = randcharpoly(b,i);
|
|
483
|
+
p;
|
|
484
|
+
nrroots(p); // See nrroots in urrcount.lib
|
|
485
|
+
|
|
486
|
+
int pr = printlevel;
|
|
487
|
+
printlevel = pr+2;
|
|
488
|
+
p = randcharpoly(b,i,5);
|
|
489
|
+
nrroots(p);
|
|
490
|
+
printlevel = pr;
|
|
491
|
+
}
|
|
492
|
+
|
|
493
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
494
|
+
|
|
495
|
+
proc verify(poly p,ideal B,ideal I)
|
|
496
|
+
"USAGE: verify(p,B,I); p poly, B,I,ideal
|
|
497
|
+
RETURN: integer: 1 if and only if the polynomial p splits the points of V(I).
|
|
498
|
+
It's used to check the result of randcharpoly
|
|
499
|
+
ASSUME: I is given by a Groebner basis and B is an ordered monomial basis of r/I,
|
|
500
|
+
r = basering
|
|
501
|
+
NOTE: comments the result if printlevel>0 (default: printlevel=0)
|
|
502
|
+
SEE ALSO: randcharpoly
|
|
503
|
+
EXAMPLE: example verify; shows an example"
|
|
504
|
+
{
|
|
505
|
+
int pr = printlevel - voice + 2;
|
|
506
|
+
poly sqr_free;
|
|
507
|
+
int correct;
|
|
508
|
+
poly variable;
|
|
509
|
+
|
|
510
|
+
if (isparam(p) || isparam(B) || isparam(I)) {
|
|
511
|
+
ERROR("This procedure cannot operate with parametric arguments");
|
|
512
|
+
}
|
|
513
|
+
|
|
514
|
+
variable = isuni(p);
|
|
515
|
+
sqr_free = p/gcd(p,diff(p,variable));
|
|
516
|
+
correct = (mat_rk(matbil(1,B,I)) == deg(sqr_free));
|
|
517
|
+
|
|
518
|
+
if (correct) {
|
|
519
|
+
dbprint(pr,"//Verification successful");
|
|
520
|
+
} else {
|
|
521
|
+
dbprint(pr,"//The choice of random numbers was not useful");
|
|
522
|
+
dbprint(pr,"//You might want to try randcharpoly with a larger number of digits");
|
|
523
|
+
}
|
|
524
|
+
return (correct);
|
|
525
|
+
}
|
|
526
|
+
example
|
|
527
|
+
{
|
|
528
|
+
echo = 2;
|
|
529
|
+
ring r = 0,(x,y),dp;
|
|
530
|
+
poly f = x3-xy+y-13+x4-y2x;
|
|
531
|
+
ideal i = x4-y2x,y2-13;
|
|
532
|
+
i = std(i);
|
|
533
|
+
ideal b = qbase(i);
|
|
534
|
+
poly p = randcharpoly(b,i);
|
|
535
|
+
verify(p,b,i);
|
|
536
|
+
}
|
|
537
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
538
|
+
|
|
539
|
+
proc randlinpoly(list #)
|
|
540
|
+
"USAGE: randlinpoly(); randlinpoly(n); n int
|
|
541
|
+
RETURN: poly: linear combination of the variables of the ring, with
|
|
542
|
+
pseudorandom coefficients. If n<10 is given, it is the number of
|
|
543
|
+
digits being used for the range of the coefficients (default: n=5)
|
|
544
|
+
SEE ALSO: randcharpoly;
|
|
545
|
+
EXAMPLE: example randlinpoly; shows an example"
|
|
546
|
+
{
|
|
547
|
+
int n,i;
|
|
548
|
+
poly p = 0;
|
|
549
|
+
int ndigits = 5;
|
|
550
|
+
|
|
551
|
+
if (size(#) == 1) {
|
|
552
|
+
ndigits = #[1];
|
|
553
|
+
}
|
|
554
|
+
|
|
555
|
+
n = nvars(basering);
|
|
556
|
+
for (i = 1;i <= n;i++) {
|
|
557
|
+
p = p + var(i)*random(1,10^ndigits);
|
|
558
|
+
}
|
|
559
|
+
return (p);
|
|
560
|
+
}
|
|
561
|
+
example
|
|
562
|
+
{
|
|
563
|
+
echo = 2;
|
|
564
|
+
ring r = 0,(x,y,z,w),dp;
|
|
565
|
+
poly p = randlinpoly();
|
|
566
|
+
p;
|
|
567
|
+
randlinpoly(5);
|
|
568
|
+
}
|
|
569
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
570
|
+
|
|
571
|
+
proc powersums(poly f,ideal B,ideal I)
|
|
572
|
+
"USAGE: powersums(f,b,i); f poly; b,i ideal
|
|
573
|
+
RETURN: list: the powersums of the results of evaluating f at the zeros of I
|
|
574
|
+
ASSUME: i is a Groebner basis and b is an ordered monomial basis of r/i,
|
|
575
|
+
r = basering
|
|
576
|
+
SEE ALSO: symmfunc
|
|
577
|
+
EXAMPLE: example symmfunc; shows an example"
|
|
578
|
+
{
|
|
579
|
+
int N,k;
|
|
580
|
+
list sums;
|
|
581
|
+
|
|
582
|
+
N = size(B);
|
|
583
|
+
for (k = 1;k <= N;k++) {
|
|
584
|
+
sums = sums + list(leadcoef(trace(matmult(f^k,B,I))));
|
|
585
|
+
}
|
|
586
|
+
return (sums);
|
|
587
|
+
}
|
|
588
|
+
example
|
|
589
|
+
{
|
|
590
|
+
echo = 2;
|
|
591
|
+
ring r = 0,(x,y,z),dp;
|
|
592
|
+
|
|
593
|
+
ideal i = (x-1)*(x-2),(y-1),(z+5); // V(I) = {(1,1,-5),(2,1,-5)}
|
|
594
|
+
i = std(i);
|
|
595
|
+
|
|
596
|
+
ideal b = qbase(i);
|
|
597
|
+
poly f = x+y+z;
|
|
598
|
+
list psums = list(-2-3,4+9); // f evaluated at V(I) gives {-3,-2}
|
|
599
|
+
list l = powersums(f,b,i);
|
|
600
|
+
psums;
|
|
601
|
+
l;
|
|
602
|
+
}
|
|
603
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
604
|
+
|
|
605
|
+
proc symmfunc(list S)
|
|
606
|
+
"USAGE: symmfunc(s); s list
|
|
607
|
+
RETURN: list: the symmetric functions of the roots of a polynomial, given
|
|
608
|
+
the power sums of those roots.
|
|
609
|
+
SEE ALSO: powersums
|
|
610
|
+
EXAMPLE: example symmfunc; shows an example"
|
|
611
|
+
{
|
|
612
|
+
// Takes the list of power sums and returns the symmetric functions
|
|
613
|
+
list a;
|
|
614
|
+
int j,l,N;
|
|
615
|
+
number sum;
|
|
616
|
+
|
|
617
|
+
N = size(S);
|
|
618
|
+
a[N+1] = 1; // We set the length of the list and initialize its last element.
|
|
619
|
+
|
|
620
|
+
for (l = N - 1;l >= 0;l--) {
|
|
621
|
+
sum = 0;
|
|
622
|
+
for (j = l + 1;j <= N;j++) {
|
|
623
|
+
sum = sum + ((a[j+1])*(S[j-l]));
|
|
624
|
+
}
|
|
625
|
+
sum = -sum;
|
|
626
|
+
a[l+1] = sum/(N-l);
|
|
627
|
+
}
|
|
628
|
+
|
|
629
|
+
a = reverse(a);
|
|
630
|
+
return (a);
|
|
631
|
+
}
|
|
632
|
+
example
|
|
633
|
+
{
|
|
634
|
+
echo = 2;
|
|
635
|
+
ring r = 0,x,dp;
|
|
636
|
+
poly p = (x-1)*(x-2)*(x-3);
|
|
637
|
+
list psums = list(1+2+3,1+4+9,1+8+27);
|
|
638
|
+
list l = symmfunc(psums);
|
|
639
|
+
l;
|
|
640
|
+
p; // Compare p with the elements of l
|
|
641
|
+
}
|
|
642
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
643
|
+
|
|
644
|
+
proc univarpoly(list l)
|
|
645
|
+
"USAGE: univarpoly(l); l list
|
|
646
|
+
RETURN: poly: a polynomial p on the first variable of basering, say x,
|
|
647
|
+
with p = l[1] + l[2]*x + l[3]*x^2 + ...
|
|
648
|
+
EXAMPLE: example univarpoly; shows an example"
|
|
649
|
+
{
|
|
650
|
+
poly p;
|
|
651
|
+
int i,n;
|
|
652
|
+
|
|
653
|
+
n = size(l);
|
|
654
|
+
for (i = 1;i <= n;i++) {
|
|
655
|
+
p = p + l[i]*var(1)^(n-i);
|
|
656
|
+
}
|
|
657
|
+
return (p);
|
|
658
|
+
}
|
|
659
|
+
example
|
|
660
|
+
{
|
|
661
|
+
echo = 2;
|
|
662
|
+
ring r = 0,x,dp;
|
|
663
|
+
list l = list(1,2,3,4,5);
|
|
664
|
+
poly p = univarpoly(l);
|
|
665
|
+
p;
|
|
666
|
+
}
|
|
667
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
668
|
+
|
|
669
|
+
proc qbase(ideal i)
|
|
670
|
+
"USAGE: qbase(I); I zero-dimensional ideal
|
|
671
|
+
RETURN: ideal: A monomial basis of the quotient between the basering and the
|
|
672
|
+
ideal I, sorted according to the basering order.
|
|
673
|
+
SEE ALSO: kbase
|
|
674
|
+
KEYWORDS: zero-dimensional
|
|
675
|
+
EXAMPLE: example qbase; shows an example"
|
|
676
|
+
{
|
|
677
|
+
ideal b;
|
|
678
|
+
|
|
679
|
+
b = kbase(i);
|
|
680
|
+
b = reverseideal(sort(b)[1]); // sort sorts in ascending order
|
|
681
|
+
return (b);
|
|
682
|
+
}
|
|
683
|
+
example
|
|
684
|
+
{
|
|
685
|
+
echo = 2;
|
|
686
|
+
ring r = 0,(x,y,z),dp;
|
|
687
|
+
|
|
688
|
+
ideal i = 2x2,-y2,z3;
|
|
689
|
+
i = std(i);
|
|
690
|
+
ideal b = qbase(i);
|
|
691
|
+
b;
|
|
692
|
+
b = kbase(i);
|
|
693
|
+
b; // Compare this with the result of qbase
|
|
694
|
+
}
|
|
695
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
696
|
+
|
|
697
|
+
static proc reverseideal(ideal b) // Returns b reversed
|
|
698
|
+
{
|
|
699
|
+
int i;
|
|
700
|
+
ideal result;
|
|
701
|
+
|
|
702
|
+
result = b[1];
|
|
703
|
+
for (i = 2;i <= size(b);i++) {
|
|
704
|
+
result = b[i], result;
|
|
705
|
+
}
|
|
706
|
+
return (result);
|
|
707
|
+
}
|
|
708
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
709
|
+
|