passagemath-singular 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-musl.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +493 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-67059f19.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-30166d29.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-9d37bcf4.4.1.so +0 -0
- passagemath_singular.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_singular.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_singular.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_singular.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_singular.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-e9ff96db.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-8bcf8e7d.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-73bf7623.4.1.so +0 -0
- passagemath_singular.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-musl.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,774 @@
|
|
|
1
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version bimodules.lib 4.1.2.0 Feb_2019 "; // $Id: 61770e8a17c5f94839a43ba1cbb9b031c2400a59 $
|
|
3
|
+
category="Noncommutative";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: bimodules.lib Tools for handling bimodules
|
|
6
|
+
AUTHORS: Ann Christina Foldenauer, Christina.Foldenauer@rwth-aachen.de
|
|
7
|
+
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
|
|
8
|
+
|
|
9
|
+
OVERVIEW:
|
|
10
|
+
@* The main purpose of this library is the handling of bimodules
|
|
11
|
+
@* which will help e.g. to determine weak normal forms of representation matrices
|
|
12
|
+
@* and total divisors within non-commutative, non-simple G-algebras.
|
|
13
|
+
@* We will use modules homomorphisms between a G-algebra and its enveloping algebra
|
|
14
|
+
@* in order to work left Groebner basis theory on bimodules.
|
|
15
|
+
@* Assume we have defined a (non-commutative) G-algebra A over the field K, and an (A,A)-bimodule M.
|
|
16
|
+
@* Instead of working with M over A, we define the enveloping algebra A^{env} = A otimes_K A^{opp}
|
|
17
|
+
@* (this can be done with command envelope(A)) and embed M into A^{env} via imap().
|
|
18
|
+
@* Thus we obtain the left A^{env}-module M otimes 1 in A^{env}.
|
|
19
|
+
@* This has a lot of advantages, because left module theory has much more commands
|
|
20
|
+
@* that are already implemented in SINGULAR:PLURAL. Two important procedures that we can use are std()
|
|
21
|
+
@* which computes the left Groebner basis, and NF() which computes the left normal form.
|
|
22
|
+
@* With the help of this method we are also able to determine the set of bisyzygies of a bimodule.
|
|
23
|
+
@*
|
|
24
|
+
@* A built-in command @code{twostd} in PLURAL computes the two-sided Groebner basis of an ideal
|
|
25
|
+
@* by using the right completion algorithm of [2]. @code{bistd} from this library uses very different
|
|
26
|
+
@* approach, which is often superior to the right completion.
|
|
27
|
+
|
|
28
|
+
REFERENCES:
|
|
29
|
+
@* The procedure bistd() is the implementation of an algorithm M. del Socorro Garcia Roman presented in [1](page 66-78).
|
|
30
|
+
@* [1] Maria del Socorro Garcia Roman, Effective methods in Algebras with PBW bases:
|
|
31
|
+
@* G-algebras and Yang-Baxter Algebras, Ph.D. thesis, Universidad de La Laguna, 2005.
|
|
32
|
+
@* [2] Viktor Levandovskyy, Non-commutative Computer Algebra for polynomial Algebras:
|
|
33
|
+
@* Groebner Bases, Applications and Implementations, Ph.D. thesis, Kaiserlautern, 2005.
|
|
34
|
+
@* [3] N. Jacobson, The theory of rings, AMS, 1943.
|
|
35
|
+
@* [4] P. M. Cohn, Free Rings and their Relations, Academic Press Inc. (London) Ltd., 1971.
|
|
36
|
+
|
|
37
|
+
PROCEDURES:
|
|
38
|
+
bistd(M); computes the two-sided Groebner bases of an ideal or module
|
|
39
|
+
bitrinity(M); computes the trinity of M: Groebner basis, lift matrix and bisyzygies
|
|
40
|
+
liftenvelope(M,g); computes the coefficients of an element g concerning the generators of a bimodule M in the enveloping algebra
|
|
41
|
+
CompDecomp(p); returns an ideal which contains the component decomposition of a polynomial p in the enveloping algebra regarding the right side of the tensors
|
|
42
|
+
isPureTensor(p); checks whether an element p in A^{env} is a pure tensor
|
|
43
|
+
isTwoSidedGB(I); checks whether an ideal I is two-sided Groebner basis
|
|
44
|
+
|
|
45
|
+
SEE ALSO: ncalg_lib; nctools_lib
|
|
46
|
+
|
|
47
|
+
KEYWORDS: bimodules; bisyzygies; lift; enveloping algebra; pure tensor; total divisors; two-sided; two-sided Groebner basis; tensor
|
|
48
|
+
|
|
49
|
+
";
|
|
50
|
+
|
|
51
|
+
LIB "ncalg.lib";
|
|
52
|
+
LIB "nctools.lib";
|
|
53
|
+
|
|
54
|
+
proc testbimoduleslib()
|
|
55
|
+
{
|
|
56
|
+
/* tests all procs for consistency */
|
|
57
|
+
"MAIN PROCEDURES:";
|
|
58
|
+
example bistd;
|
|
59
|
+
example bitrinity;
|
|
60
|
+
example liftenvelope;
|
|
61
|
+
example isPureTensor;
|
|
62
|
+
example isTwoSidedGB;
|
|
63
|
+
"SECONDARY BIMODULES PROCEDURES:";
|
|
64
|
+
example enveltrinity;
|
|
65
|
+
example CompDecomp;
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
proc bistdIdeal (ideal M)
|
|
69
|
+
"does bistd directly for ideals
|
|
70
|
+
"
|
|
71
|
+
{
|
|
72
|
+
intvec optionsave = option(get);
|
|
73
|
+
option(redSB);
|
|
74
|
+
option(redTail);
|
|
75
|
+
def save = basering ;
|
|
76
|
+
def saveenv = envelope(save);
|
|
77
|
+
setring saveenv;
|
|
78
|
+
ideal M = imap(save, M);
|
|
79
|
+
int i; int n = nvars(save);
|
|
80
|
+
ideal K;
|
|
81
|
+
for (i=1; i <= n; i++)
|
|
82
|
+
{
|
|
83
|
+
K[i] = var(i)-var(2*n-i+1);
|
|
84
|
+
}
|
|
85
|
+
M = M+K;
|
|
86
|
+
M = std(M);
|
|
87
|
+
option(set,optionsave);
|
|
88
|
+
setring save;
|
|
89
|
+
list L = ringlist(save);
|
|
90
|
+
if (size(ring_list(save)) > 4)
|
|
91
|
+
{
|
|
92
|
+
L = delete(L,6);
|
|
93
|
+
L = delete(L,5);}
|
|
94
|
+
def Scom = ring(L);
|
|
95
|
+
setring Scom;
|
|
96
|
+
ideal P;
|
|
97
|
+
for (i= 1; i <= n; i++)
|
|
98
|
+
{
|
|
99
|
+
P[i] = var(i);
|
|
100
|
+
P[2*n-i+1] = var(i);
|
|
101
|
+
}
|
|
102
|
+
map Pi = saveenv, P;
|
|
103
|
+
ideal N = Pi(M) ;
|
|
104
|
+
setring save;
|
|
105
|
+
ideal MM = fetch(Scom,N);
|
|
106
|
+
return(MM);
|
|
107
|
+
}
|
|
108
|
+
example
|
|
109
|
+
{ "EXAMPLE:"; echo = 2;
|
|
110
|
+
ring w = 0,(x,s),Dp;
|
|
111
|
+
def W=nc_algebra(1,s); // 1st shift algebra
|
|
112
|
+
setring W;
|
|
113
|
+
ideal I1 = s^3-x^2*s;
|
|
114
|
+
print(matrix(bistd(I1))); // compare with twostd:
|
|
115
|
+
print(matrix(twostd(I1)));
|
|
116
|
+
ideal I2 = I1, x*s;
|
|
117
|
+
print(matrix(bistd(I2))); // compare with twostd:
|
|
118
|
+
print(matrix(twostd(I2)));
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
proc bistd (module M)
|
|
122
|
+
"USAGE: bistd(M); M is (two-sided) ideal/module
|
|
123
|
+
RETURN: ideal or module (same type as the argument)
|
|
124
|
+
PURPOSE: Computes the two-sided Groebner basis of an ideal/module with the help the enveloping algebra of the basering, alternative to twostd() for ideals.
|
|
125
|
+
EXAMPLE: example bistd; shows examples
|
|
126
|
+
"
|
|
127
|
+
{
|
|
128
|
+
// VL: added simplify
|
|
129
|
+
// commented out: Additionally you should use simplify(N,2+4+8) on the output N = bistd(M), where M denotes to the ideal/module in the argument.
|
|
130
|
+
// NOTE: option(redSB), option(redTail) are used by the procedure.
|
|
131
|
+
// intvec optionsave = option(get);
|
|
132
|
+
// option(redSB);
|
|
133
|
+
// option(redTail);
|
|
134
|
+
int ROW = nrows(M);
|
|
135
|
+
def save = basering ;
|
|
136
|
+
def saveenv = envelope(save);
|
|
137
|
+
setring saveenv;
|
|
138
|
+
module M = imap(save, M);
|
|
139
|
+
int i; int n = nvars(save);
|
|
140
|
+
module B;
|
|
141
|
+
for (i=1; i <= n; i++)
|
|
142
|
+
{
|
|
143
|
+
B[i] = var(i) - var(2*n-i+1);
|
|
144
|
+
}
|
|
145
|
+
module K ; int j;int m = 1;
|
|
146
|
+
for (i=1; i <= n; i++)
|
|
147
|
+
{
|
|
148
|
+
for(j=1;j<=ROW;j++)
|
|
149
|
+
{
|
|
150
|
+
K[m]= B[i][1,1]*gen(j);m++;
|
|
151
|
+
}
|
|
152
|
+
}
|
|
153
|
+
M = M+K;
|
|
154
|
+
M = std(M);
|
|
155
|
+
// option(set,optionsave);
|
|
156
|
+
setring save;
|
|
157
|
+
list L = ringlist(save);
|
|
158
|
+
if (size(ring_list(save)) > 4)
|
|
159
|
+
{L = delete(L,6);L = delete(L,5);}
|
|
160
|
+
def Scom = ring(L);
|
|
161
|
+
setring Scom;
|
|
162
|
+
ideal P;
|
|
163
|
+
for (i= 1; i <= n; i++)
|
|
164
|
+
{
|
|
165
|
+
P[i] = var(i) ;
|
|
166
|
+
P[2*n-i+1] = var(i);
|
|
167
|
+
}
|
|
168
|
+
map Pi = saveenv, P;
|
|
169
|
+
module N = Pi(M) ;
|
|
170
|
+
setring save;
|
|
171
|
+
module MM = fetch(Scom,N);
|
|
172
|
+
if (nrows(MM)==1)
|
|
173
|
+
{
|
|
174
|
+
//i.e. MM is an ideal indeed
|
|
175
|
+
ideal @M = ideal(MM);
|
|
176
|
+
kill MM;
|
|
177
|
+
ideal MM = @M;
|
|
178
|
+
}
|
|
179
|
+
MM = simplify(MM,2+4+8);
|
|
180
|
+
return(MM);
|
|
181
|
+
}
|
|
182
|
+
example
|
|
183
|
+
{ "EXAMPLE:"; echo = 2;
|
|
184
|
+
ring w = 0,(x,s),Dp;
|
|
185
|
+
def W=nc_algebra(1,s); // 1st shift algebra
|
|
186
|
+
setring W;
|
|
187
|
+
matrix m[3][3]=[s^2,s+1,0],[s+1,0,s^3-x^2*s],[2*s+1, s^3+s^2, s^2];
|
|
188
|
+
print(m);
|
|
189
|
+
module L = m; module M2 = bistd(L);
|
|
190
|
+
print(M2);
|
|
191
|
+
}
|
|
192
|
+
|
|
193
|
+
proc enveltrinityIdeal(ideal f)
|
|
194
|
+
" enveltrinity for an ideal directly"
|
|
195
|
+
{
|
|
196
|
+
// AUXILIARY PROCEDURES: Uses Zersubcols(matrix N, int l).
|
|
197
|
+
intvec optionsave = option(get);
|
|
198
|
+
def save = basering ;
|
|
199
|
+
option(redSB);
|
|
200
|
+
int i; int n = nvars(save);
|
|
201
|
+
def saveenv = envelope(save);
|
|
202
|
+
setring saveenv;
|
|
203
|
+
def R = makeModElimRing(saveenv); setring R;
|
|
204
|
+
ideal K;
|
|
205
|
+
for (i=1; i <= n; i++)
|
|
206
|
+
{ K[i] = var(i)-var(2*n-i+1);}
|
|
207
|
+
K = std(K);
|
|
208
|
+
ideal f = imap(save, f);
|
|
209
|
+
// now we compute the trinity (GB,Liftmatrix,Syzygy)
|
|
210
|
+
// can do it with f but F=NF(f,kr), so the ideals are the same in R env
|
|
211
|
+
ideal I = f, K; // ideal I = F, K;
|
|
212
|
+
int l = ncols(I);
|
|
213
|
+
int j = ncols(f);
|
|
214
|
+
matrix M[j+1][l];
|
|
215
|
+
for (i = 1; i<= l;i++)
|
|
216
|
+
{
|
|
217
|
+
M[1,i] = I[i];
|
|
218
|
+
}
|
|
219
|
+
for (i=1; i <= j;i++)
|
|
220
|
+
{
|
|
221
|
+
M[i+1,i] = 1;
|
|
222
|
+
}
|
|
223
|
+
matrix N = std(M);
|
|
224
|
+
option(set,optionsave);
|
|
225
|
+
int m = ncols(N);
|
|
226
|
+
intvec sypos;
|
|
227
|
+
for (i=1; i <= m; i++)
|
|
228
|
+
{
|
|
229
|
+
if (N[1,i] == 0)
|
|
230
|
+
{
|
|
231
|
+
sypos = sypos,i;
|
|
232
|
+
}
|
|
233
|
+
}
|
|
234
|
+
intvec Nrows = 2..(j+1);
|
|
235
|
+
matrix BS = submat(N,Nrows,sypos); // e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
|
|
236
|
+
module BSy = BS;
|
|
237
|
+
setring saveenv;
|
|
238
|
+
ideal K = imap(R,K);
|
|
239
|
+
module BS = imap(R,BSy);
|
|
240
|
+
matrix N = imap(R,N);
|
|
241
|
+
kill R;
|
|
242
|
+
export K; export BS; export N;
|
|
243
|
+
return(saveenv);
|
|
244
|
+
}
|
|
245
|
+
|
|
246
|
+
static proc Zersubcols(matrix N, int l)
|
|
247
|
+
{
|
|
248
|
+
if (nrows(N) <= l)
|
|
249
|
+
{
|
|
250
|
+
string f = "Inputinteger ist zu gross. Muss kleiner sein als die Anzahl der Zeilen von der Inputmatrix."; return(f);
|
|
251
|
+
}
|
|
252
|
+
else
|
|
253
|
+
{
|
|
254
|
+
matrix O[l][1]; int m = ncols(N);
|
|
255
|
+
matrix H = submat(N,1..l,1..m);
|
|
256
|
+
int i;
|
|
257
|
+
intvec s;
|
|
258
|
+
intvec c;
|
|
259
|
+
for(i=1; i<= m;i++)
|
|
260
|
+
{
|
|
261
|
+
if(H[i] != O[1]) {c = c,i;}
|
|
262
|
+
else {s = s,i;}
|
|
263
|
+
}
|
|
264
|
+
list L = s,c;
|
|
265
|
+
return(L);
|
|
266
|
+
}
|
|
267
|
+
}
|
|
268
|
+
|
|
269
|
+
proc enveltrinity(module M)
|
|
270
|
+
"USAGE: enveltrinity(M); M is (two-sided) ideal/module
|
|
271
|
+
RETURN: ring, the enveloping algebra of the basering with objects K, N, BS in it.
|
|
272
|
+
PURPOSE: compute two-sided Groebner basis, module of bisyzygies and the bitransformation matrix of M.
|
|
273
|
+
THEORY: Assume R is a G-algebra generated by x_1, \dots x_k. Let psi_s be the epimorphism of left R (X) R^{opp} modules:
|
|
274
|
+
@* psi_s (s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , ... , psi(s_s (X) t_s)) in R^s
|
|
275
|
+
@* additionally we define for a given bimodule M = < f_1, ... , f_r > the matrix M' := [F, I_r], [K, 0]
|
|
276
|
+
@* where I_r refers to the identity matrix in Mat(r,R), K is a matrix which columns are the generators of the kernel of psi_s.
|
|
277
|
+
@* These have the form (x_i-X_i)e_j for j in {1,...,s}, i in {1,...,k}.
|
|
278
|
+
@* The matrix F = (f_1 ... f_r), where the f_i's are the generators of M and 0 is the matrix with only entries that are zero.
|
|
279
|
+
@* Enveltrinity() calculates the kernel K of psi_s and left normal form N of the matrix M' which also yields the bisyzygies of M
|
|
280
|
+
@* and a coefficient matrix as submatrix of N which we need in the procedures bitrinity() and liftenevelope().
|
|
281
|
+
|
|
282
|
+
NOTE: In the output,
|
|
283
|
+
@* ideal/module K is the kernel of psi_s above
|
|
284
|
+
@* matrix N is the left Groebner basis of the matrix M'
|
|
285
|
+
@* module BS corresponds to the set of bisyzygies of M.
|
|
286
|
+
@* To get K,N or BS, use @code{def G = enveltrinity(M); setring G; K; N; BS;}.
|
|
287
|
+
EXAMPLE: example enveltrinity; shows examples
|
|
288
|
+
"
|
|
289
|
+
{
|
|
290
|
+
def save = basering ;
|
|
291
|
+
intvec optionsave = option(get);
|
|
292
|
+
option(redSB);
|
|
293
|
+
int ROW = nrows(M);
|
|
294
|
+
int i; int n = nvars(save);
|
|
295
|
+
def saveenv = envelope(save);
|
|
296
|
+
setring saveenv;
|
|
297
|
+
def R = makeModElimRing(saveenv); setring R;
|
|
298
|
+
module B;
|
|
299
|
+
for (i=1; i <= n; i++)
|
|
300
|
+
{ B[i] = var(i) - var(2*n-i+1);}
|
|
301
|
+
module K ; int t;int g = 1;
|
|
302
|
+
for (i=1; i <= n; i++)
|
|
303
|
+
{
|
|
304
|
+
for(t=1;t<=ROW;t++)
|
|
305
|
+
{
|
|
306
|
+
K[g]= B[i][1,1]*gen(t);g++;
|
|
307
|
+
}
|
|
308
|
+
}
|
|
309
|
+
K = std(K);
|
|
310
|
+
module M = imap(save,M);
|
|
311
|
+
module I = M,K;
|
|
312
|
+
int l = ncols(I);
|
|
313
|
+
int j = ncols(M);
|
|
314
|
+
|
|
315
|
+
matrix NN[j+ROW][l];
|
|
316
|
+
for (t=1; t <= ROW; t++)
|
|
317
|
+
{
|
|
318
|
+
for (i = 1; i<= l;i++)
|
|
319
|
+
{ NN[t,i] = I[t,i];}
|
|
320
|
+
}
|
|
321
|
+
for (i=ROW+1; i <= j+ROW;i++)
|
|
322
|
+
{ NN[i,i-ROW] = 1;}
|
|
323
|
+
// now we compute the trinity (GB,Liftmatrix,Syzygy)
|
|
324
|
+
// can do it with f but F=NF(f,kr), so the ideals are the same in R env
|
|
325
|
+
matrix N = std(NN);
|
|
326
|
+
option(set,optionsave);
|
|
327
|
+
intvec sypos = Zersubcols(N,ROW)[1];
|
|
328
|
+
sypos = sypos[2..nrows(sypos)];
|
|
329
|
+
intvec Nrows = (ROW+1)..(j+ROW);
|
|
330
|
+
matrix BS = submat(N,Nrows,sypos); // e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
|
|
331
|
+
module BSy = BS;
|
|
332
|
+
setring saveenv;
|
|
333
|
+
matrix N = imap(R,N); module BS = imap(R,BSy);
|
|
334
|
+
module K = imap(R,K);
|
|
335
|
+
if (nrows(K)==1)
|
|
336
|
+
{
|
|
337
|
+
// i.e. K is an ideal
|
|
338
|
+
ideal @K = ideal(K);
|
|
339
|
+
kill K;
|
|
340
|
+
ideal K = @K;
|
|
341
|
+
}
|
|
342
|
+
kill R;
|
|
343
|
+
export K;
|
|
344
|
+
export BS;
|
|
345
|
+
export N;
|
|
346
|
+
return(saveenv);
|
|
347
|
+
}
|
|
348
|
+
example
|
|
349
|
+
{"EXAMPLE"; echo = 2;
|
|
350
|
+
ring r = 0,(x,s),dp;
|
|
351
|
+
def R = nc_algebra(1,s); setring R;
|
|
352
|
+
poly f = x*s + s^2;
|
|
353
|
+
ideal I = f;
|
|
354
|
+
def G = enveltrinity(I);
|
|
355
|
+
setring G;
|
|
356
|
+
print(matrix(K)); // kernel of psi_s
|
|
357
|
+
print(BS); // module of bisyzygies
|
|
358
|
+
print(N); // bitransformation matrix
|
|
359
|
+
}
|
|
360
|
+
|
|
361
|
+
proc bitrinityIdeal(ideal f)
|
|
362
|
+
"direct appl of bitrinity to ideal"
|
|
363
|
+
{
|
|
364
|
+
intvec optionsave = option(get);
|
|
365
|
+
option(redSB);
|
|
366
|
+
option(redTail);
|
|
367
|
+
int j = ncols(f);
|
|
368
|
+
def A = enveltrinity(f);
|
|
369
|
+
setring A; // A = envelope(basering)
|
|
370
|
+
int i;
|
|
371
|
+
def R = makeModElimRing(A); setring R;
|
|
372
|
+
ideal K = imap(A,K); K = std(K);
|
|
373
|
+
option(set,optionsave);
|
|
374
|
+
matrix N = imap(A,N);
|
|
375
|
+
int m = ncols(N);
|
|
376
|
+
//decomposition of N: Liftmatrix, Bisyzygymatrix:
|
|
377
|
+
intvec cfpos;
|
|
378
|
+
for (i=1; i <= m; i++)
|
|
379
|
+
{ if (N[1,i] != 0)
|
|
380
|
+
{cfpos = cfpos,i;}
|
|
381
|
+
}
|
|
382
|
+
cfpos = cfpos[2..nrows(cfpos)];
|
|
383
|
+
matrix C = submat(N,1..(j+1),cfpos);
|
|
384
|
+
module Coef;
|
|
385
|
+
for(i=1;i<=ncols(C);i++)
|
|
386
|
+
{
|
|
387
|
+
poly p = NF(C[1,i],K);
|
|
388
|
+
if( (p != 0) && (p == C[1,i]))
|
|
389
|
+
{ Coef = Coef,C[i];}
|
|
390
|
+
}
|
|
391
|
+
matrix Co = Coef;
|
|
392
|
+
matrix Coe = submat(Co,1..nrows(Co),2..ncols(Co));
|
|
393
|
+
module CC = Coe; //e.g. i-th column is (a_i1,...,a_ij) (see top)
|
|
394
|
+
setring A;
|
|
395
|
+
matrix Coeff = imap(R,CC); matrix Bisyz = BS;// e.g. for each column (b_1,...,b_j) you get 0 = sum_i (b_i*f_i)
|
|
396
|
+
kill R;
|
|
397
|
+
list L = Coeff,Bisyz;
|
|
398
|
+
// output is a Coefficient-Matrix Co and a Bisyzygy-Matriy BS such that (g1,...,gk) = (f1,...,fj)*Submat(Coeff,2..nrows(Coeff),1..ncols(Coeff)) and (0,...,0) = (f1,...,fj)*BiSyz
|
|
399
|
+
export L;
|
|
400
|
+
return(A);
|
|
401
|
+
}
|
|
402
|
+
|
|
403
|
+
proc bitrinity(module M)
|
|
404
|
+
"USAGE: bitrinity(M); M is (two-sided) ideal/module
|
|
405
|
+
RETURN: ring, the enveloping algebra of the basering, with objects in it.
|
|
406
|
+
additionally it exports a list L = Coeff, Bisyz.
|
|
407
|
+
THEORY:
|
|
408
|
+
Let psi_s be the epimorphism of left R (X) R^{opp} modules:
|
|
409
|
+
@* psi_s(s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , \dots , psi(s_s (X) t_s)) in R^s.
|
|
410
|
+
@* Then psi_s(A) := (psi_s(a_{ij})) for every matrix A in Mat(n x m, R)$.
|
|
411
|
+
@* For a two-sided ideal I = < f_1, ... , f_j> with Groebner basis G = {g_1, ... , g_k} in R, Coeff is the Coefficient-Matrix and
|
|
412
|
+
BiSyz a bisyzygy matrix.
|
|
413
|
+
@* Let C be the submatrix of Coeff, where C is Coeff without the first row. Then
|
|
414
|
+
(g_1,...,g_k) = psi_s(C^T * (f_1 ... f_j)^T) and (0,...,0) = psi_s(BiSyz^T * (f_1 ... f_j)^T).
|
|
415
|
+
@* The first row of Coeff (G_1 ... G_n)$ corresponds to the image of the Groebner basis of I:
|
|
416
|
+
psi_s((G_1 ... G_n)) = G = {g_1 ... g_k }.
|
|
417
|
+
@* For a (R,R)-bimodule M with Groebner basis G = {g_1, ... , g_k} in R^r, Coeff is the coefficient matrix and
|
|
418
|
+
BiSyz a bisyzygy matrix.
|
|
419
|
+
@* Let C be the submatrix of Coeff, where C is Coeff without the first r rows. Then
|
|
420
|
+
(g_1 ... g_k) = psi_s(C^T * (f_1 ... f_j)^T) and (0 ... 0) = psi_s(BiSyz^T * (f_1 ... f_j)^T).
|
|
421
|
+
@* The first r rows of Coeff = (G_1 ... G_n) (Here G_i denotes to the i-th column of the first r rows) corresponds to the image of the
|
|
422
|
+
Groebner basis of M: psi_s((G_1 ... G_n)) = G = {g_1 ... g_k}.
|
|
423
|
+
PURPOSE: This procedure returns a coefficient matrix in the enveloping algebra of the basering R, that gives implicitly the two-sided Groebner basis of a (R,R)-bimodule M
|
|
424
|
+
and the coefficients that produce the Groebner basis with the help of the originally used generators of M. Additionally it calculates the bisyzygies of M as left-module of the enveloping algebra of R.
|
|
425
|
+
AUXILIARY PROCEDURES: Uses the procedure enveltrinity().
|
|
426
|
+
NOTE: To get list L = Coeff, BiSyz, we set: def G = bitrinity(); setring G; L; or $L[1]; L[2];.
|
|
427
|
+
EXAMPLE: example bitrinity; shows examples
|
|
428
|
+
"
|
|
429
|
+
{
|
|
430
|
+
intvec optionsave = option(get);
|
|
431
|
+
option(redSB);
|
|
432
|
+
option(redTail);
|
|
433
|
+
int ROW = nrows(M); int j = ncols(M);
|
|
434
|
+
def A = enveltrinity(M);
|
|
435
|
+
setring A; // A = envelope(basering)
|
|
436
|
+
int i;
|
|
437
|
+
def R = makeModElimRing(A); setring R;
|
|
438
|
+
module K = imap(A,K); K = std(K);
|
|
439
|
+
option(set,optionsave);
|
|
440
|
+
matrix N = imap(A,N);
|
|
441
|
+
int m = ncols(N);
|
|
442
|
+
//decomposition of N: Liftmatrix, Bisyzygymatrix:
|
|
443
|
+
intvec cfpos = Zersubcols(N,ROW)[2];
|
|
444
|
+
cfpos = cfpos[2..nrows(cfpos)];
|
|
445
|
+
matrix C1 = submat(N,1..nrows(N),cfpos);
|
|
446
|
+
matrix C2 = submat(N,1..ROW,cfpos);
|
|
447
|
+
module Coef; matrix O[ROW][1];
|
|
448
|
+
module p;
|
|
449
|
+
for(i=1;i<=ncols(C2);i++)
|
|
450
|
+
{
|
|
451
|
+
p = NF(C2[i],K);
|
|
452
|
+
if( (p[1] != O[1]) && (p[1] == C2[i]))
|
|
453
|
+
{ Coef = Coef,C1[i];}
|
|
454
|
+
}
|
|
455
|
+
matrix Co = Coef;
|
|
456
|
+
matrix Coe = submat(Co,1..nrows(Co),2..ncols(Co));
|
|
457
|
+
module CC = Coe;
|
|
458
|
+
setring A;
|
|
459
|
+
matrix Coeff = imap(R,CC); matrix Bisyz = BS;
|
|
460
|
+
kill R;
|
|
461
|
+
list L = Coeff,Bisyz;
|
|
462
|
+
export L;
|
|
463
|
+
return(A);
|
|
464
|
+
}
|
|
465
|
+
example
|
|
466
|
+
{
|
|
467
|
+
"EXAMPLE:"; echo = 2;
|
|
468
|
+
ring r = 0,(x,s),dp;
|
|
469
|
+
def R = nc_algebra(1,s); setring R; // 1st shift algebra
|
|
470
|
+
poly f = x*s + s^2; // only one generator
|
|
471
|
+
ideal I = f; // note, two sided Groebner basis of I is xs, s^2
|
|
472
|
+
def G = bitrinity(I);
|
|
473
|
+
setring G;
|
|
474
|
+
print(L[1]); // Coeff
|
|
475
|
+
//the first row shows the Groebnerbasis of I consists of
|
|
476
|
+
// psi_s(SX) = xs , phi(S^2) = s^2:
|
|
477
|
+
// remember phi(a (X) b - c (X) d) = psi_s(a (X) b) - phi(c (X) d) := ab - cd in R.
|
|
478
|
+
// psi_s((-s+S+1)*(x*s + s^2)) = psi_s(-xs2-s3+xsS+xs+s2S)
|
|
479
|
+
// = -xs^2-s^3+xs^2+xs+s^3 = xs
|
|
480
|
+
// psi_s((s-S)*(x*s + s^2)) = psi_s(xs2+s3-xsS-s2S+s2) = s^2
|
|
481
|
+
print(L[2]); //Bisyzygies
|
|
482
|
+
// e.g. psi_s((x2-2sS+s-X2+2S2+2X+S-1)(x*s + s^2))
|
|
483
|
+
// = psi_s(x3s+x2s2-2xs2S+xs2-2s3S+s3-xsX2+2xsS2+2xsX+xsS-xs-s2X2+2s2S2+2s2X-s2S)
|
|
484
|
+
// = x^3s+x^2s^2-2xs^3+xs^2-2s^4+s^3-xsx^2+2xs^3+2xsx+xs^2-xs-s^2x^2+2s^4+2s^2x-s^3
|
|
485
|
+
// = 0 in R
|
|
486
|
+
}
|
|
487
|
+
|
|
488
|
+
proc liftenvelope(module I,poly g)
|
|
489
|
+
"USAGE: liftenvelope(M,g); M ideal/module, g poly
|
|
490
|
+
RETURN: ring, the enveloping algebra of the basering R.
|
|
491
|
+
Given a two-sided ideal M in R and a polynomial g in R this procedure returns the enveloping algebra of R.
|
|
492
|
+
Additionally it exports a list l = C, B; where B is the left Groebner basis of the left-syzygies of M \otimes 1 and C is a vector of coefficients in the enveloping algebra
|
|
493
|
+
of R such that psi_s(C^T *(f_1 \dots f_n)) = g.
|
|
494
|
+
@* psi_s is an epimorphism of left R (X) R^{opp} modules:
|
|
495
|
+
@* psi_s (s (X)_K t) = smt := (s_1 m t_1, ... , s_s m t_s) = (\psi(s_1 (X) t_1) , \dots , psi(s_s (X) t_s)) in R^s.
|
|
496
|
+
@* Then psi_s(A) := (psi_s(a_{ij})) for every matrix A in Mat(n x m, R)$.
|
|
497
|
+
ASSUME: The second component has to be an element of the first component.
|
|
498
|
+
PURPOSE: This procedure is used for computing total divisors. Let {f_1, ..., f_n} be the generators of the first component and let the second component be called g. Then
|
|
499
|
+
the returned list l = C, B = (b_1, ..., b_n); defines an affine set A = C + sum_i a_i b_i with (a_1,..,a_n) in the enveloping algebra of the basering R such that
|
|
500
|
+
psi_s(a^T * (f_1 ... f_n)) = g for all a in A. For certain rings R, we csn find pure tensors within this set A,
|
|
501
|
+
and if we do, liftenvelope() helps us to decide whether f is a total divisor of g.
|
|
502
|
+
NOTE: To get list l = C, B. we set: def G = liftenvelope(); setring G; l; or l[1]; l[2];.
|
|
503
|
+
EXAMPLE: example liftenvelope; shows examples
|
|
504
|
+
"
|
|
505
|
+
{
|
|
506
|
+
def save = basering;
|
|
507
|
+
int m = ncols(I);
|
|
508
|
+
intvec optionsave = option(get);
|
|
509
|
+
option(redSB);
|
|
510
|
+
option(redTail);
|
|
511
|
+
def A = enveltrinity(I);
|
|
512
|
+
setring A; // A = envelope(basering)
|
|
513
|
+
int i;
|
|
514
|
+
def R = makeModElimRing(A); setring R;
|
|
515
|
+
module N = imap(A,N); N = std(N);
|
|
516
|
+
//intvec Nrows = 2..(j+1);
|
|
517
|
+
module g = imap(save,g);
|
|
518
|
+
matrix G[nrows(N)][1];
|
|
519
|
+
for (i=2;i<=m;i++)
|
|
520
|
+
{
|
|
521
|
+
G[1,1] = g;
|
|
522
|
+
G[i,1]=0;
|
|
523
|
+
}
|
|
524
|
+
module NFG = (-1)*NF(G,N);
|
|
525
|
+
module C = submat(NFG,2..nrows(N),1);
|
|
526
|
+
|
|
527
|
+
setring A;
|
|
528
|
+
module C = imap(R,C);
|
|
529
|
+
kill R;
|
|
530
|
+
module B = std(BS);
|
|
531
|
+
option(set,optionsave);
|
|
532
|
+
list l = C,B; // transpose(C)*(f1,...,fn) = g
|
|
533
|
+
export l;
|
|
534
|
+
return(A);
|
|
535
|
+
}
|
|
536
|
+
example
|
|
537
|
+
{ "EXAMPLE:"; echo = 2;
|
|
538
|
+
ring r = 0,(x,s),dp;
|
|
539
|
+
def R = nc_algebra(1,s); setring R;
|
|
540
|
+
ideal I = x*s;
|
|
541
|
+
poly p = s*x*s*x; // = (s (x) x) * x*s = (sX) * x*s
|
|
542
|
+
p;
|
|
543
|
+
def J = liftenvelope(I,p);
|
|
544
|
+
setring J;
|
|
545
|
+
print(l[1]);
|
|
546
|
+
//2s+SX = (2s (x) 1) + (1 (x) sx)
|
|
547
|
+
print(l[2]);
|
|
548
|
+
// Groebnerbasis of BiSyz(I) as LeftSyz in R^{env}
|
|
549
|
+
// We get : 2s+SX + ( sX - 2s -SX) = sX - a pure tensor!!!!
|
|
550
|
+
}
|
|
551
|
+
|
|
552
|
+
static proc twoComp(poly q)
|
|
553
|
+
"USAGE: twoComp(g); g poly
|
|
554
|
+
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
|
|
555
|
+
RETURN: Returns the second half of the leading exponent of a polynomial p in A^{env}:
|
|
556
|
+
@* lm(p) = c x1^a1 x2^a2 ... xn^an (X) xn^bn * x(n-1)^b(n-1) * ... * x1^b1
|
|
557
|
+
such that lex(p) = [a1,..,an,bn,...,b1]. Then the procedure returns [bn,...,b1] (of lex(p)!).
|
|
558
|
+
"
|
|
559
|
+
{
|
|
560
|
+
if (q == 0) {return(q);}
|
|
561
|
+
def saveenv = basering;
|
|
562
|
+
int n = nvars(saveenv); int k = n div 2;
|
|
563
|
+
intvec v = leadexp(q);
|
|
564
|
+
intvec w = v[k+1..2*k];
|
|
565
|
+
return(w);
|
|
566
|
+
}
|
|
567
|
+
|
|
568
|
+
static proc firstComp(poly q)
|
|
569
|
+
"USAGE: firstComp(g); g poly
|
|
570
|
+
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
|
|
571
|
+
RETURN: Returns the first half of the leading exponent of a polynomial p in A^{env}:
|
|
572
|
+
@* lm(p) = c x1^a1 x2^a2 ... xn^an (X) xn^bn * x(n-1)^b(n-1) * ... * x1^b1
|
|
573
|
+
such that lex(p) = [a1,..,an,bn,...,b1]. Then the procedure returns [a1,...,an] (of lex(p)!).
|
|
574
|
+
"
|
|
575
|
+
{
|
|
576
|
+
if (q == 0) {return(q);}
|
|
577
|
+
def saveenv = basering;
|
|
578
|
+
int n = nvars(saveenv); int k = n div 2;
|
|
579
|
+
intvec v = leadexp(q);
|
|
580
|
+
intvec w = v[1..k];
|
|
581
|
+
return(w);
|
|
582
|
+
}
|
|
583
|
+
|
|
584
|
+
|
|
585
|
+
proc CompDecomp(poly p)
|
|
586
|
+
"USAGE: CompDecomp(p); p poly
|
|
587
|
+
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
|
|
588
|
+
RETURN: Returns an ideal I in A^{env}, where the sum of all terms of the argument with the same right side (of the tensor summands) are stored as a generator of I.
|
|
589
|
+
@* Let b != c, then for p = (a (X) b) + (c (X) b) + (a (X) c) the ideal I := CompDecomp(p) is given by: I[1] = (a (X) b) + (c (X) b); I[2] = a (X) c.
|
|
590
|
+
PURPOSE: By decomposing the polynomial we can easily check whether the given polynomial is a pure tensor.
|
|
591
|
+
EXAMPLE: example CompDecomp; shows examples
|
|
592
|
+
"
|
|
593
|
+
{
|
|
594
|
+
poly s = p;
|
|
595
|
+
ideal Q;
|
|
596
|
+
int j = 0; poly t; poly w;
|
|
597
|
+
while (s!= 0)
|
|
598
|
+
{
|
|
599
|
+
t = lead(s);
|
|
600
|
+
w = s-t;
|
|
601
|
+
s = s-t;
|
|
602
|
+
j++;
|
|
603
|
+
Q[j] = t;
|
|
604
|
+
while(w !=0)
|
|
605
|
+
{
|
|
606
|
+
if (twoComp(w) == twoComp(t))
|
|
607
|
+
{
|
|
608
|
+
Q[j] = Q[j]+lead(w);
|
|
609
|
+
s = s-lead(w);
|
|
610
|
+
}
|
|
611
|
+
w = w-lead(w);
|
|
612
|
+
}
|
|
613
|
+
}
|
|
614
|
+
return(Q);
|
|
615
|
+
}
|
|
616
|
+
example
|
|
617
|
+
{
|
|
618
|
+
"EXAMPLE:"; echo = 2;
|
|
619
|
+
ring r = 0,(x,s),dp;
|
|
620
|
+
def R = nc_algebra(1,s); setring R; //1st shift algebra
|
|
621
|
+
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
|
|
622
|
+
poly f = X*S*x^2+5*x*S*X+S*X; f;
|
|
623
|
+
ideal I = CompDecomp(f);
|
|
624
|
+
print(matrix(I)); // what means that f = (x2+5x+1)*SX + x2*S
|
|
625
|
+
poly p = x*S+X^2*S+2*s+x*X^2*s+5*x*s; p;
|
|
626
|
+
ideal Q = CompDecomp(p);
|
|
627
|
+
print(matrix(Q));
|
|
628
|
+
}
|
|
629
|
+
|
|
630
|
+
proc getOneComp(poly p)
|
|
631
|
+
"USAGE: getOneComp(p); p poly
|
|
632
|
+
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
|
|
633
|
+
ASSUME: The given polynomial has to be of the form sum_i a_i \otimes b = (sum_i a_i) (X) b.
|
|
634
|
+
RETURN: Returns a polynomial in A^{env}, which is the sum of the left-side (of the tensor summands) of all terms of the argument.
|
|
635
|
+
@* Let A be a G-algebra. For a given polynomial p in A^{env} of the form p = sum_i a_i (X) b = (sum_i a_i) (X) b this procedure returns
|
|
636
|
+
g = (\sum_i a_i) (X) 1 written sum_i a_i in A^{env}.
|
|
637
|
+
PURPOSE: This is an auxiliary procedure for isPureTensor().
|
|
638
|
+
EXAMPLE: example getOneComp; shows examples
|
|
639
|
+
"
|
|
640
|
+
{
|
|
641
|
+
ideal I;
|
|
642
|
+
int i; int m = size(p);poly f;
|
|
643
|
+
if (size(p) == 0) {f = 1; return(f);}
|
|
644
|
+
for(i=1;i<=m;i++)
|
|
645
|
+
{ I[i] = leadcoef(p[i])*monomial(firstComp(p[i]));}
|
|
646
|
+
f = sum(I);
|
|
647
|
+
return(f);
|
|
648
|
+
}
|
|
649
|
+
example
|
|
650
|
+
{
|
|
651
|
+
"EXAMPLE:"; echo = 2;
|
|
652
|
+
ring r = 0,(x,s),dp;
|
|
653
|
+
def R = nc_algebra(1,s); setring R; //1st shift algebra
|
|
654
|
+
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
|
|
655
|
+
poly f = 5*x*s*S+x^2*S+s*S+3*x*S; // f = (x2+5xs+3x+s)*S
|
|
656
|
+
getOneComp(f);
|
|
657
|
+
}
|
|
658
|
+
|
|
659
|
+
proc isPureTensor(poly g)
|
|
660
|
+
"USAGE: isPureTensor(g); g poly
|
|
661
|
+
NOTE: This procedure only works if the basering is an enveloping algebra A^{env} of a (non-commutative) ring A. Thus also the polynomial in the argument has to be in A^{env}.
|
|
662
|
+
RETURN: Returns 0 if g is not a pure tensor and if g is a pure tensor then isPureTensor() returns a vector v with v = a*gen(1)+b*gen(2) = (a,b)^T with a (X) b = g.
|
|
663
|
+
PURPOSE: Checks whether a given polynomial in $\A^{env}$ is a pure tensor. This is also an auxiliary procedure for checking total divisibility.
|
|
664
|
+
EXAMPLE: example isPureTensor; shows examples
|
|
665
|
+
"
|
|
666
|
+
{
|
|
667
|
+
ideal I = CompDecomp(g);
|
|
668
|
+
ideal U;int i; int k = ncols(I);
|
|
669
|
+
for (i = 1 ; i <= k; i++)
|
|
670
|
+
{
|
|
671
|
+
U[i] = getOneComp(I[i]);
|
|
672
|
+
}
|
|
673
|
+
poly q = normalize(U[1]);
|
|
674
|
+
for (i=2; i<= k;i++)
|
|
675
|
+
{
|
|
676
|
+
if ( U[i] != leadcoef(U[i])*q)
|
|
677
|
+
{
|
|
678
|
+
return(0);
|
|
679
|
+
}
|
|
680
|
+
}
|
|
681
|
+
def saveenv = basering;
|
|
682
|
+
int n = nvars(saveenv); int l = n div 2;
|
|
683
|
+
ideal P; intvec d = 0:l;
|
|
684
|
+
intvec vv;
|
|
685
|
+
for (i=1;i<=k;i++)
|
|
686
|
+
{
|
|
687
|
+
vv= d,twoComp(I[i]);
|
|
688
|
+
P[i] = leadcoef(U[i])*monomial(vv);
|
|
689
|
+
}
|
|
690
|
+
poly w = sum(P);
|
|
691
|
+
vector v = [q, w];
|
|
692
|
+
return(v);
|
|
693
|
+
}
|
|
694
|
+
example
|
|
695
|
+
{
|
|
696
|
+
"EXAMPLE:"; echo = 2;
|
|
697
|
+
ring r = 0,(x,s),dp;
|
|
698
|
+
def R = nc_algebra(1,s); setring R; //1st shift algebra
|
|
699
|
+
def Re = envelope(R); setring Re; //basering is now R^{env} = R (X) R^{opp}
|
|
700
|
+
poly p = x*(x*s)*x + s^2*x; p;
|
|
701
|
+
// p is of the form q(X)1, a pure tensor indeed:
|
|
702
|
+
isPureTensor(p);
|
|
703
|
+
// v = transpose( x3s+x2s+xs2+2s2 1 ) i.e. p = x3s+x2s+xs2+2s2 (X) 1
|
|
704
|
+
poly g = S*X+ x*s*X+ S^2*x;
|
|
705
|
+
g;
|
|
706
|
+
isPureTensor(g); // indeed g is not a pure tensor
|
|
707
|
+
poly d = x*X+s*X+x*S*X+s*S*X;d;
|
|
708
|
+
isPureTensor(d); // d is a pure tensor indeed
|
|
709
|
+
// v = transpose( x+s S*X+X ) i.e. d = x+s (X) s*x+x
|
|
710
|
+
// remember that * denotes to the opposite mulitiplication s*x = xs in R.
|
|
711
|
+
}
|
|
712
|
+
|
|
713
|
+
proc isTwoSidedGB(ideal I)
|
|
714
|
+
"USAGE: isTwoSidedGB(I); I ideal
|
|
715
|
+
RETURN: Returns 0 if the generators of a given ideal are not two-sided, 1 if they are.\\
|
|
716
|
+
NOTE: This procedure should only be used for non-commutative rings, as every element is two-sided in a commutative ring.
|
|
717
|
+
PURPOSE: Auxiliary procedure for diagonal forms. Let R be a non-commutative ring (e.g. G-algebra), and p in R, this program checks whether p is two-sided i.e. Rp = pR.
|
|
718
|
+
EXAMPLE: example isTwoSidedGB; shows examples
|
|
719
|
+
"
|
|
720
|
+
{
|
|
721
|
+
int i; int n = nvars(basering);
|
|
722
|
+
ideal J;
|
|
723
|
+
// determine whether I is a left Groebner basis
|
|
724
|
+
if (attrib(I,"isSB"))
|
|
725
|
+
{
|
|
726
|
+
J = I;
|
|
727
|
+
J = simplify(J,1+2+4+8);
|
|
728
|
+
attrib(J,"isSB",1);
|
|
729
|
+
}
|
|
730
|
+
else
|
|
731
|
+
{
|
|
732
|
+
intvec optionsave = option(get);
|
|
733
|
+
option(redSB);
|
|
734
|
+
option(redTail);
|
|
735
|
+
J = std(I);
|
|
736
|
+
J = simplify(J,1+2+4+8);
|
|
737
|
+
attrib(J,"isSB",1);
|
|
738
|
+
I = interred(I);
|
|
739
|
+
I = simplify(I,1+2+4+8);
|
|
740
|
+
if ( size(J) != size(I))
|
|
741
|
+
{
|
|
742
|
+
option(set,optionsave);
|
|
743
|
+
return(int(0));
|
|
744
|
+
}
|
|
745
|
+
for(i = 1; i <= size(I); i++)
|
|
746
|
+
{
|
|
747
|
+
if (I[i] != J[i])
|
|
748
|
+
{
|
|
749
|
+
option(set,optionsave);
|
|
750
|
+
return(int(0));
|
|
751
|
+
}
|
|
752
|
+
}
|
|
753
|
+
}
|
|
754
|
+
// I = simplify(I,1+2+4+8);
|
|
755
|
+
// now, we check whether J is right complete
|
|
756
|
+
for(i = 1; i <= n; i++)
|
|
757
|
+
{
|
|
758
|
+
if ( simplify( NF(J*var(i),J), 2) != 0 )
|
|
759
|
+
{
|
|
760
|
+
return(int(0));
|
|
761
|
+
}
|
|
762
|
+
}
|
|
763
|
+
return(int(1));
|
|
764
|
+
}
|
|
765
|
+
example
|
|
766
|
+
{
|
|
767
|
+
"EXAMPLE:"; echo = 2;
|
|
768
|
+
ring r = 0,(x,s),dp;
|
|
769
|
+
def R = nc_algebra(1,s); setring R; //1st shift algebra
|
|
770
|
+
ideal I = s^2, x*s, s^2 + 3*x*s;
|
|
771
|
+
isTwoSidedGB(I); // I is two-sided
|
|
772
|
+
ideal J = s^2+x;
|
|
773
|
+
isTwoSidedGB(J); // J is not two-sided; twostd(J) = s,x;
|
|
774
|
+
}
|