passagemath-singular 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-musl.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +493 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-67059f19.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-30166d29.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-9d37bcf4.4.1.so +0 -0
- passagemath_singular.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_singular.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_singular.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_singular.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_singular.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-e9ff96db.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-8bcf8e7d.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-73bf7623.4.1.so +0 -0
- passagemath_singular.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-musl.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,1739 @@
|
|
|
1
|
+
//////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version gmssing.lib 4.4.0.6 Oct_2024 "; // $Id: 2d9b016b71a2ea1e767406d2c6a0b4cd92baa1da $
|
|
3
|
+
category="Singularities";
|
|
4
|
+
|
|
5
|
+
info="
|
|
6
|
+
LIBRARY: gmssing.lib Gauss-Manin System of Isolated Singularities
|
|
7
|
+
|
|
8
|
+
AUTHOR: Mathias Schulze, mschulze at mathematik.uni-kl.de
|
|
9
|
+
|
|
10
|
+
OVERVIEW:
|
|
11
|
+
A library for computing invariants related to the Gauss-Manin system of an
|
|
12
|
+
isolated hypersurface singularity.
|
|
13
|
+
|
|
14
|
+
REFERENCES:
|
|
15
|
+
[Sch01] M. Schulze: Algorithms for the Gauss-Manin connection. J. Symb. Comp.
|
|
16
|
+
32,5 (2001), 549-564.
|
|
17
|
+
[Sch02] M. Schulze: The differential structure of the Brieskorn lattice.
|
|
18
|
+
In: A.M. Cohen et al.: Mathematical Software - ICMS 2002.
|
|
19
|
+
World Scientific (2002).
|
|
20
|
+
[Sch03] M. Schulze: Monodromy of Hypersurface Singularities.
|
|
21
|
+
Acta Appl. Math. 75 (2003), 3-13.
|
|
22
|
+
[Sch04] M. Schulze: A normal form algorithm for the Brieskorn lattice.
|
|
23
|
+
J. Symb. Comp. 38,4 (2004), 1207-1225.
|
|
24
|
+
|
|
25
|
+
PROCEDURES:
|
|
26
|
+
gmsring(t,s); Gauss-Manin system of t with variable s
|
|
27
|
+
gmsnf(p,K); Gauss-Manin normal form of p
|
|
28
|
+
gmscoeffs(p,K); Gauss-Manin basis representation of p
|
|
29
|
+
bernstein(t); Bernstein-Sato polynomial of t
|
|
30
|
+
monodromy(t); Jordan data of complex monodromy of t
|
|
31
|
+
spectrum(t); singularity spectrum of t
|
|
32
|
+
sppairs(t); spectral pairs of t
|
|
33
|
+
vfilt(t); V-filtration of t on Brieskorn lattice
|
|
34
|
+
vwfilt(t); weighted V-filtration of t on Brieskorn lattice
|
|
35
|
+
tmatrix(t); matrix of t w.r.t. good basis of Brieskorn lattice
|
|
36
|
+
endvfilt(V); endomorphism V-filtration on Jacobian algebra
|
|
37
|
+
sppnf(a,w[,m]); spectral pairs normal form of (a,w[,m])
|
|
38
|
+
sppprint(spp); print spectral pairs spp
|
|
39
|
+
spadd(sp1,sp2); sum of spectra sp1 and sp2
|
|
40
|
+
spsub(sp1,sp2); difference of spectra sp1 and sp2
|
|
41
|
+
spmul(sp0,k); linear combination of spectra sp
|
|
42
|
+
spissemicont(sp[,opt]); semicontinuity test of spectrum sp
|
|
43
|
+
spsemicont(sp0,sp[,opt]); semicontinuous combinations of spectra sp0 in sp
|
|
44
|
+
spmilnor(sp); Milnor number of spectrum sp
|
|
45
|
+
spgeomgenus(sp); geometrical genus of spectrum sp
|
|
46
|
+
spgamma(sp); gamma invariant of spectrum sp
|
|
47
|
+
|
|
48
|
+
SEE ALSO: mondromy_lib, spectrum_lib, gmspoly_lib, dmod_lib
|
|
49
|
+
|
|
50
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
51
|
+
mixed Hodge structure; V-filtration; weight filtration;
|
|
52
|
+
Bernstein-Sato polynomial; monodromy; spectrum; spectral pairs;
|
|
53
|
+
good basis
|
|
54
|
+
";
|
|
55
|
+
|
|
56
|
+
LIB "linalg.lib";
|
|
57
|
+
|
|
58
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
59
|
+
|
|
60
|
+
static proc stdtrans(ideal I)
|
|
61
|
+
{
|
|
62
|
+
def @R=basering;
|
|
63
|
+
|
|
64
|
+
string os=ordstr(@R);
|
|
65
|
+
int j=find(os,",C");
|
|
66
|
+
if(j==0)
|
|
67
|
+
{
|
|
68
|
+
j=find(os,"C,");
|
|
69
|
+
}
|
|
70
|
+
if(j==0)
|
|
71
|
+
{
|
|
72
|
+
j=find(os,",c");
|
|
73
|
+
}
|
|
74
|
+
if(j==0)
|
|
75
|
+
{
|
|
76
|
+
j=find(os,"c,");
|
|
77
|
+
}
|
|
78
|
+
if(j>0)
|
|
79
|
+
{
|
|
80
|
+
os[j..j+1]=" ";
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
ring @S = create_ring(ring_list(@R)[1], "(gmspoly,"+varstr(@R)+")", "(c,dp(1),"+os+")", "no_minpoly");
|
|
84
|
+
|
|
85
|
+
ideal I=homog(imap(@R,I),gmspoly);
|
|
86
|
+
module M=transpose(transpose(I)+freemodule(ncols(I)));
|
|
87
|
+
M=std(M);
|
|
88
|
+
|
|
89
|
+
setring(@R);
|
|
90
|
+
execute("map h=@S,1,"+varstr(@R)+";");
|
|
91
|
+
module M=h(M);
|
|
92
|
+
|
|
93
|
+
for(int i=ncols(M);i>=1;i--)
|
|
94
|
+
{
|
|
95
|
+
for(j=ncols(M);j>=1;j--)
|
|
96
|
+
{
|
|
97
|
+
if(M[i][1]==0)
|
|
98
|
+
{
|
|
99
|
+
M[i]=0;
|
|
100
|
+
}
|
|
101
|
+
if(i!=j&&M[j][1]!=0)
|
|
102
|
+
{
|
|
103
|
+
if(lead(M[i][1])/lead(M[j][1])!=0)
|
|
104
|
+
{
|
|
105
|
+
M[i]=0;
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
M=transpose(simplify(M,2));
|
|
112
|
+
I=ideal(M[1]);
|
|
113
|
+
attrib(I,"isSB",1);
|
|
114
|
+
M=M[2..ncols(M)];
|
|
115
|
+
module U=transpose(M);
|
|
116
|
+
|
|
117
|
+
return(list(I,U));
|
|
118
|
+
}
|
|
119
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
120
|
+
|
|
121
|
+
proc gmsring(poly t,string s)
|
|
122
|
+
"USAGE: gmsring(t,s); poly t, string s
|
|
123
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
124
|
+
isolated critical point 0 of t
|
|
125
|
+
RETURN:
|
|
126
|
+
@format
|
|
127
|
+
ring G; Gauss-Manin system of t with variable s
|
|
128
|
+
poly gmspoly=t;
|
|
129
|
+
ideal gmsjacob; Jacobian ideal of t
|
|
130
|
+
ideal gmsstd; standard basis of Jacobian ideal
|
|
131
|
+
matrix gmsmatrix; matrix(gmsjacob)*gmsmatrix==matrix(gmsstd)
|
|
132
|
+
ideal gmsbasis; monomial vector space basis of Jacobian algebra
|
|
133
|
+
int Gmssing::gmsmaxdeg; maximal weight of variables
|
|
134
|
+
@end format
|
|
135
|
+
NOTE: gmsbasis is a C[[s]]-basis of H'' and [t,s]=s^2
|
|
136
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice
|
|
137
|
+
EXAMPLE: example gmsring; shows examples
|
|
138
|
+
"
|
|
139
|
+
{
|
|
140
|
+
def @R=basering;
|
|
141
|
+
if((charstr(@R)!="0")&&(charstr(@R)!="QQ"))
|
|
142
|
+
{
|
|
143
|
+
ERROR("characteristic 0 expected");
|
|
144
|
+
}
|
|
145
|
+
for(int i=nvars(@R);i>=1;i--)
|
|
146
|
+
{
|
|
147
|
+
if(var(i)>1)
|
|
148
|
+
{
|
|
149
|
+
ERROR("local ordering expected");
|
|
150
|
+
}
|
|
151
|
+
}
|
|
152
|
+
|
|
153
|
+
ideal dt=jacob(t);
|
|
154
|
+
list l=stdtrans(dt);
|
|
155
|
+
ideal g=l[1];
|
|
156
|
+
if(vdim(g)<=0)
|
|
157
|
+
{
|
|
158
|
+
if(vdim(g)==0)
|
|
159
|
+
{
|
|
160
|
+
ERROR("singularity at 0 expected");
|
|
161
|
+
}
|
|
162
|
+
else
|
|
163
|
+
{
|
|
164
|
+
ERROR("isolated critical point 0 expected");
|
|
165
|
+
}
|
|
166
|
+
}
|
|
167
|
+
matrix B=l[2];
|
|
168
|
+
ideal m=kbase(g);
|
|
169
|
+
|
|
170
|
+
int gmsmaxdeg;
|
|
171
|
+
for(i=nvars(@R);i>=1;i--)
|
|
172
|
+
{
|
|
173
|
+
if(deg(var(i))>gmsmaxdeg)
|
|
174
|
+
{
|
|
175
|
+
gmsmaxdeg=deg(var(i));
|
|
176
|
+
}
|
|
177
|
+
}
|
|
178
|
+
|
|
179
|
+
string os=ordstr(@R);
|
|
180
|
+
int j=find(os,",C");
|
|
181
|
+
if(j==0)
|
|
182
|
+
{
|
|
183
|
+
j=find(os,"C,");
|
|
184
|
+
}
|
|
185
|
+
if(j==0)
|
|
186
|
+
{
|
|
187
|
+
j=find(os,",c");
|
|
188
|
+
}
|
|
189
|
+
if(j==0)
|
|
190
|
+
{
|
|
191
|
+
j=find(os,"c,");
|
|
192
|
+
}
|
|
193
|
+
if(j>0)
|
|
194
|
+
{
|
|
195
|
+
os[j..j+1]=" ";
|
|
196
|
+
}
|
|
197
|
+
|
|
198
|
+
ring G = create_ring(string(charstr(@R)), "("+s+","+varstr(@R)+")", "(ws("+string(deg(highcorner(g))+2*gmsmaxdeg)+"),"+os+",c)");
|
|
199
|
+
|
|
200
|
+
poly gmspoly=imap(@R,t);
|
|
201
|
+
ideal gmsjacob=imap(@R,dt);
|
|
202
|
+
ideal gmsstd=imap(@R,g);
|
|
203
|
+
matrix gmsmatrix=imap(@R,B);
|
|
204
|
+
ideal gmsbasis=imap(@R,m);
|
|
205
|
+
|
|
206
|
+
attrib(gmsstd,"isSB",1);
|
|
207
|
+
export gmspoly,gmsjacob,gmsstd,gmsmatrix,gmsbasis,gmsmaxdeg;
|
|
208
|
+
|
|
209
|
+
return(G);
|
|
210
|
+
}
|
|
211
|
+
example
|
|
212
|
+
{ "EXAMPLE:"; echo=2;
|
|
213
|
+
ring @R=0,(x,y),ds;
|
|
214
|
+
poly t=x5+x2y2+y5;
|
|
215
|
+
def G=gmsring(t,"s");
|
|
216
|
+
setring(G);
|
|
217
|
+
gmspoly;
|
|
218
|
+
print(gmsjacob);
|
|
219
|
+
print(gmsstd);
|
|
220
|
+
print(gmsmatrix);
|
|
221
|
+
print(gmsbasis);
|
|
222
|
+
Gmssing::gmsmaxdeg;
|
|
223
|
+
}
|
|
224
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
225
|
+
|
|
226
|
+
proc gmsnf(ideal p,int K)
|
|
227
|
+
"USAGE: gmsnf(p,K); poly p, int K
|
|
228
|
+
ASSUME: basering returned by gmsring
|
|
229
|
+
RETURN:
|
|
230
|
+
list nf;
|
|
231
|
+
ideal nf[1]; projection of p to <gmsbasis>C[[s]] mod s^(K+1)
|
|
232
|
+
ideal nf[2]; p==nf[1]+nf[2]
|
|
233
|
+
NOTE: computation can be continued by setting p=nf[2]
|
|
234
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice
|
|
235
|
+
EXAMPLE: example gmsnf; shows examples
|
|
236
|
+
"
|
|
237
|
+
{
|
|
238
|
+
if(system("with","gms"))
|
|
239
|
+
{
|
|
240
|
+
return(system("gmsnf",p,gmsstd,gmsmatrix,(K+1)*deg(var(1))-2*gmsmaxdeg,K));
|
|
241
|
+
}
|
|
242
|
+
|
|
243
|
+
intvec v=1;
|
|
244
|
+
v[nvars(basering)]=0;
|
|
245
|
+
|
|
246
|
+
int k;
|
|
247
|
+
ideal r,q;
|
|
248
|
+
r[ncols(p)]=0;
|
|
249
|
+
q[ncols(p)]=0;
|
|
250
|
+
|
|
251
|
+
poly s;
|
|
252
|
+
int i,j;
|
|
253
|
+
for(k=ncols(p);k>=1;k--)
|
|
254
|
+
{
|
|
255
|
+
while(p[k]!=0&°(lead(p[k]),v)<=K)
|
|
256
|
+
{
|
|
257
|
+
i=1;
|
|
258
|
+
s=lead(p[k])/lead(gmsstd[i]);
|
|
259
|
+
while(i<ncols(gmsstd)&&s==0)
|
|
260
|
+
{
|
|
261
|
+
i++;
|
|
262
|
+
s=lead(p[k])/lead(gmsstd[i]);
|
|
263
|
+
}
|
|
264
|
+
if(s!=0)
|
|
265
|
+
{
|
|
266
|
+
p[k]=p[k]-s*gmsstd[i];
|
|
267
|
+
for(j=1;j<=nrows(gmsmatrix);j++)
|
|
268
|
+
{
|
|
269
|
+
p[k]=p[k]+diff(s*gmsmatrix[j,i],var(j+1))*var(1);
|
|
270
|
+
}
|
|
271
|
+
}
|
|
272
|
+
else
|
|
273
|
+
{
|
|
274
|
+
r[k]=r[k]+lead(p[k]);
|
|
275
|
+
p[k]=p[k]-lead(p[k]);
|
|
276
|
+
}
|
|
277
|
+
while(deg(lead(p[k]))>(K+1)*deg(var(1))-2*gmsmaxdeg&&
|
|
278
|
+
deg(lead(p[k]),v)<=K)
|
|
279
|
+
{
|
|
280
|
+
q[k]=q[k]+lead(p[k]);
|
|
281
|
+
p[k]=p[k]-lead(p[k]);
|
|
282
|
+
}
|
|
283
|
+
}
|
|
284
|
+
q[k]=q[k]+p[k];
|
|
285
|
+
}
|
|
286
|
+
|
|
287
|
+
return(list(r,q));
|
|
288
|
+
}
|
|
289
|
+
example
|
|
290
|
+
{ "EXAMPLE:"; echo=2;
|
|
291
|
+
ring R=0,(x,y),ds;
|
|
292
|
+
poly t=x5+x2y2+y5;
|
|
293
|
+
def G=gmsring(t,"s");
|
|
294
|
+
setring(G);
|
|
295
|
+
list l0=gmsnf(gmspoly,0);
|
|
296
|
+
print(l0[1]);
|
|
297
|
+
list l1=gmsnf(gmspoly,1);
|
|
298
|
+
print(l1[1]);
|
|
299
|
+
list l=gmsnf(l0[2],1);
|
|
300
|
+
print(l[1]);
|
|
301
|
+
}
|
|
302
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
303
|
+
|
|
304
|
+
proc gmscoeffs(ideal p,int K)
|
|
305
|
+
"USAGE: gmscoeffs(p,K); poly p, int K
|
|
306
|
+
ASSUME: basering constructed by gmsring
|
|
307
|
+
RETURN:
|
|
308
|
+
@format
|
|
309
|
+
list l;
|
|
310
|
+
matrix l[1]; C[[s]]-basis representation of p mod s^(K+1)
|
|
311
|
+
ideal l[2]; p==matrix(gmsbasis)*l[1]+l[2]
|
|
312
|
+
@end format
|
|
313
|
+
NOTE: computation can be continued by setting p=l[2]
|
|
314
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice
|
|
315
|
+
EXAMPLE: example gmscoeffs; shows examples
|
|
316
|
+
"
|
|
317
|
+
{
|
|
318
|
+
list l=gmsnf(p,K);
|
|
319
|
+
ideal r,q=l[1..2];
|
|
320
|
+
poly v=1;
|
|
321
|
+
for(int i=2;i<=nvars(basering);i++)
|
|
322
|
+
{
|
|
323
|
+
v=v*var(i);
|
|
324
|
+
}
|
|
325
|
+
matrix C=coeffs(r,gmsbasis,v);
|
|
326
|
+
return(list(C,q));
|
|
327
|
+
}
|
|
328
|
+
example
|
|
329
|
+
{ "EXAMPLE:"; echo=2;
|
|
330
|
+
ring R=0,(x,y),ds;
|
|
331
|
+
poly t=x5+x2y2+y5;
|
|
332
|
+
def G=gmsring(t,"s");
|
|
333
|
+
setring(G);
|
|
334
|
+
list l0=gmscoeffs(gmspoly,0);
|
|
335
|
+
print(l0[1]);
|
|
336
|
+
list l1=gmscoeffs(gmspoly,1);
|
|
337
|
+
print(l1[1]);
|
|
338
|
+
list l=gmscoeffs(l0[2],1);
|
|
339
|
+
print(l[1]);
|
|
340
|
+
}
|
|
341
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
342
|
+
|
|
343
|
+
static proc mindegree(matrix A)
|
|
344
|
+
{
|
|
345
|
+
int d=-1;
|
|
346
|
+
|
|
347
|
+
int i,j;
|
|
348
|
+
for(i=nrows(A);i>=1;i--)
|
|
349
|
+
{
|
|
350
|
+
for(j=ncols(A);j>=1;j--)
|
|
351
|
+
{
|
|
352
|
+
if(d==-1||(ord(A[i,j])<d&&ord(A[i,j])>-1))
|
|
353
|
+
{
|
|
354
|
+
d=ord(A[i,j]);
|
|
355
|
+
}
|
|
356
|
+
}
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
return(d);
|
|
360
|
+
}
|
|
361
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
362
|
+
|
|
363
|
+
static proc maxdegree(matrix A)
|
|
364
|
+
{
|
|
365
|
+
int d=-1;
|
|
366
|
+
|
|
367
|
+
int i,j;
|
|
368
|
+
for(i=nrows(A);i>=1;i--)
|
|
369
|
+
{
|
|
370
|
+
for(j=ncols(A);j>=1;j--)
|
|
371
|
+
{
|
|
372
|
+
if(deg(A[i,j])>d)
|
|
373
|
+
{
|
|
374
|
+
d=deg(A[i,j]);
|
|
375
|
+
}
|
|
376
|
+
}
|
|
377
|
+
}
|
|
378
|
+
|
|
379
|
+
return(d);
|
|
380
|
+
}
|
|
381
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
382
|
+
|
|
383
|
+
static proc saturate()
|
|
384
|
+
{
|
|
385
|
+
int mu=ncols(gmsbasis);
|
|
386
|
+
ideal r=gmspoly*gmsbasis;
|
|
387
|
+
matrix A0[mu][mu],C;
|
|
388
|
+
module H0;
|
|
389
|
+
module H,H1=freemodule(mu),freemodule(mu);
|
|
390
|
+
int k=-1;
|
|
391
|
+
list l;
|
|
392
|
+
|
|
393
|
+
dbprint(printlevel-voice+2,"// compute saturation of H''");
|
|
394
|
+
while(size(reduce(H,std(H0*var(1)),5))>0)
|
|
395
|
+
{
|
|
396
|
+
dbprint(printlevel-voice+2,"// compute matrix A of t");
|
|
397
|
+
k++;
|
|
398
|
+
dbprint(printlevel-voice+2,"// k="+string(k));
|
|
399
|
+
l=gmscoeffs(r,k);
|
|
400
|
+
C,r=l[1..2];
|
|
401
|
+
A0=A0+C;
|
|
402
|
+
|
|
403
|
+
dbprint(printlevel-voice+2,"// compute saturation step");
|
|
404
|
+
H0=H;
|
|
405
|
+
H1=jet(module(A0*H1+var(1)^2*diff(matrix(H1),var(1))),k);
|
|
406
|
+
H=H*var(1)+H1;
|
|
407
|
+
}
|
|
408
|
+
|
|
409
|
+
A0=A0-k*var(1);
|
|
410
|
+
dbprint(printlevel-voice+2,"// compute basis of saturation of H''");
|
|
411
|
+
H=std(H0);
|
|
412
|
+
|
|
413
|
+
dbprint(printlevel-voice+2,"// transform H'' to saturation of H''");
|
|
414
|
+
H0=division(freemodule(mu)*var(1)^k,H,k*deg(var(1)))[1];
|
|
415
|
+
|
|
416
|
+
return(A0,r,H,H0,k);
|
|
417
|
+
}
|
|
418
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
419
|
+
|
|
420
|
+
static proc tjet(matrix A0,ideal r,module H,int K0,int K)
|
|
421
|
+
{
|
|
422
|
+
dbprint(printlevel-voice+2,"// compute matrix A of t");
|
|
423
|
+
dbprint(printlevel-voice+2,"// k="+string(K0+K+1));
|
|
424
|
+
list l=gmscoeffs(r,K0+K+1);
|
|
425
|
+
matrix C;
|
|
426
|
+
C,r=l[1..2];
|
|
427
|
+
A0=A0+C;
|
|
428
|
+
dbprint(printlevel-voice+2,"// transform A to saturation of H''");
|
|
429
|
+
matrix A=division(A0*H+var(1)^2*diff(matrix(H),var(1)),H,
|
|
430
|
+
(K+1)*deg(var(1)))[1]/var(1);
|
|
431
|
+
return(A,A0,r);
|
|
432
|
+
}
|
|
433
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
434
|
+
|
|
435
|
+
static proc eigenval(matrix A0,ideal r,module H,int K0)
|
|
436
|
+
{
|
|
437
|
+
dbprint(printlevel-voice+2,
|
|
438
|
+
"// compute eigenvalues e with multiplicities m of A1");
|
|
439
|
+
matrix A;
|
|
440
|
+
A,A0,r=tjet(A0,r,H,K0,0);
|
|
441
|
+
list l=eigenvals(A);
|
|
442
|
+
def e,m=l[1..2];
|
|
443
|
+
dbprint(printlevel-voice+2,"// e="+string(e));
|
|
444
|
+
dbprint(printlevel-voice+2,"// m="+string(m));
|
|
445
|
+
return(e,m,A0,r);
|
|
446
|
+
}
|
|
447
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
448
|
+
|
|
449
|
+
static proc transform(matrix A,matrix A0,ideal r,module H,module H0,ideal e,
|
|
450
|
+
intvec m,int K0,int K,int opt)
|
|
451
|
+
{
|
|
452
|
+
int mu=ncols(gmsbasis);
|
|
453
|
+
|
|
454
|
+
int i,j,k;
|
|
455
|
+
intvec d;
|
|
456
|
+
d[ncols(e)]=0;
|
|
457
|
+
if(opt)
|
|
458
|
+
{
|
|
459
|
+
dbprint(printlevel-voice+2,
|
|
460
|
+
"// compute rounded maximal differences d of e");
|
|
461
|
+
for(i=1;i<=ncols(e);i++)
|
|
462
|
+
{
|
|
463
|
+
d[i]=int(e[ncols(e)]-e[i]);
|
|
464
|
+
}
|
|
465
|
+
}
|
|
466
|
+
else
|
|
467
|
+
{
|
|
468
|
+
dbprint(printlevel-voice+2,
|
|
469
|
+
"// compute maximal integer differences d of e");
|
|
470
|
+
for(i=1;i<ncols(e);i++)
|
|
471
|
+
{
|
|
472
|
+
for(j=i+1;j<=ncols(e);j++)
|
|
473
|
+
{
|
|
474
|
+
k=int(e[j]-e[i]);
|
|
475
|
+
if(number(e[j]-e[i])==k)
|
|
476
|
+
{
|
|
477
|
+
if(k>d[i])
|
|
478
|
+
{
|
|
479
|
+
d[i]=k;
|
|
480
|
+
}
|
|
481
|
+
if(-k>d[j])
|
|
482
|
+
{
|
|
483
|
+
d[j]=-k;
|
|
484
|
+
}
|
|
485
|
+
}
|
|
486
|
+
}
|
|
487
|
+
}
|
|
488
|
+
}
|
|
489
|
+
dbprint(printlevel-voice+2,"// d="+string(d));
|
|
490
|
+
|
|
491
|
+
for(i,k=1,0;i<=size(d);i++)
|
|
492
|
+
{
|
|
493
|
+
if(k<d[i])
|
|
494
|
+
{
|
|
495
|
+
k=d[i];
|
|
496
|
+
}
|
|
497
|
+
}
|
|
498
|
+
A,A0,r=tjet(A0,r,H,K0,K+k);
|
|
499
|
+
|
|
500
|
+
module U,V;
|
|
501
|
+
if(k>0)
|
|
502
|
+
{
|
|
503
|
+
int i0,j0,i1,j1;
|
|
504
|
+
list l;
|
|
505
|
+
|
|
506
|
+
while(k>0)
|
|
507
|
+
{
|
|
508
|
+
dbprint(printlevel-voice+2,"// transform to separate eigenvalues");
|
|
509
|
+
U=0;
|
|
510
|
+
for(i=1;i<=ncols(e);i++)
|
|
511
|
+
{
|
|
512
|
+
U=U+syz(power(jet(A,0)-e[i],m[i]));
|
|
513
|
+
}
|
|
514
|
+
V=inverse(U);
|
|
515
|
+
A=V*A*U;
|
|
516
|
+
H=matrix(H)*matrix(U);
|
|
517
|
+
H0=matrix(V)*matrix(H0);
|
|
518
|
+
|
|
519
|
+
dbprint(printlevel-voice+2,"// transform to reduce maximum of d by 1");
|
|
520
|
+
for(i0,i=1,1;i0<=ncols(e);i0++)
|
|
521
|
+
{
|
|
522
|
+
for(i1=1;i1<=m[i0];i1,i=i1+1,i+1)
|
|
523
|
+
{
|
|
524
|
+
for(j0,j=1,1;j0<=ncols(e);j0++)
|
|
525
|
+
{
|
|
526
|
+
for(j1=1;j1<=m[j0];j1,j=j1+1,j+1)
|
|
527
|
+
{
|
|
528
|
+
if(d[i0]==0&&d[j0]>=1)
|
|
529
|
+
{
|
|
530
|
+
A[i,j]=A[i,j]*var(1);
|
|
531
|
+
}
|
|
532
|
+
if(d[i0]>=1&&d[j0]==0)
|
|
533
|
+
{
|
|
534
|
+
A[i,j]=A[i,j]/var(1);
|
|
535
|
+
}
|
|
536
|
+
}
|
|
537
|
+
}
|
|
538
|
+
}
|
|
539
|
+
}
|
|
540
|
+
|
|
541
|
+
H0=transpose(H0);
|
|
542
|
+
for(i0,i=1,1;i0<=ncols(e);i0++)
|
|
543
|
+
{
|
|
544
|
+
if(d[i0]>=1)
|
|
545
|
+
{
|
|
546
|
+
for(i1=1;i1<=m[i0];i1,i=i1+1,i+1)
|
|
547
|
+
{
|
|
548
|
+
H[i]=H[i]*var(1);
|
|
549
|
+
}
|
|
550
|
+
d[i0]=d[i0]-1;
|
|
551
|
+
}
|
|
552
|
+
else
|
|
553
|
+
{
|
|
554
|
+
for(i1=1;i1<=m[i0];i1,i=i1+1,i+1)
|
|
555
|
+
{
|
|
556
|
+
A[i,i]=A[i,i]-1;
|
|
557
|
+
H0[i]=H0[i]*var(1);
|
|
558
|
+
}
|
|
559
|
+
e[i0]=e[i0]-1;
|
|
560
|
+
}
|
|
561
|
+
}
|
|
562
|
+
H0=transpose(H0);
|
|
563
|
+
|
|
564
|
+
l=sppnf(list(e,d,m));
|
|
565
|
+
e,d,m=l[1..3];
|
|
566
|
+
|
|
567
|
+
k--;
|
|
568
|
+
K0++;
|
|
569
|
+
}
|
|
570
|
+
|
|
571
|
+
A=jet(A,K);
|
|
572
|
+
}
|
|
573
|
+
|
|
574
|
+
dbprint(printlevel-voice+2,"// transform to separate eigenvalues");
|
|
575
|
+
U=0;
|
|
576
|
+
for(i=1;i<=ncols(e);i++)
|
|
577
|
+
{
|
|
578
|
+
U=U+syz(power(jet(A,0)-e[i],m[i]));
|
|
579
|
+
}
|
|
580
|
+
V=inverse(U);
|
|
581
|
+
A=V*A*U;
|
|
582
|
+
H=matrix(H)*matrix(U);
|
|
583
|
+
H0=matrix(V)*matrix(H0);
|
|
584
|
+
|
|
585
|
+
return(A,A0,r,H,H0,e,m,K0);
|
|
586
|
+
}
|
|
587
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
588
|
+
|
|
589
|
+
proc bernstein(poly t)
|
|
590
|
+
"USAGE: bernstein(t); poly t
|
|
591
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
592
|
+
isolated critical point 0 of t
|
|
593
|
+
RETURN:
|
|
594
|
+
@format
|
|
595
|
+
list bs; Bernstein-Sato polynomial b(s) of t
|
|
596
|
+
ideal bs[1];
|
|
597
|
+
number bs[1][i]; i-th root of b(s)
|
|
598
|
+
intvec bs[2];
|
|
599
|
+
int bs[2][i]; multiplicity of i-th root of b(s)
|
|
600
|
+
@end format
|
|
601
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
602
|
+
Bernstein-Sato polynomial
|
|
603
|
+
EXAMPLE: example bernstein; shows examples
|
|
604
|
+
"
|
|
605
|
+
{
|
|
606
|
+
def @R=basering;
|
|
607
|
+
int n=nvars(@R)-1;
|
|
608
|
+
def @G=gmsring(t,"s");
|
|
609
|
+
setring(@G);
|
|
610
|
+
|
|
611
|
+
matrix A;
|
|
612
|
+
module U0;
|
|
613
|
+
ideal e;
|
|
614
|
+
intvec m;
|
|
615
|
+
|
|
616
|
+
def A0,r,H,H0,K0=saturate();
|
|
617
|
+
A,A0,r=tjet(A0,r,H,K0,0);
|
|
618
|
+
list l=minipoly(A);
|
|
619
|
+
e,m=l[1..2];
|
|
620
|
+
e=-e;
|
|
621
|
+
l=spnf(spadd(list(e,m),list(ideal(-1),intvec(1))));
|
|
622
|
+
|
|
623
|
+
setring(@R);
|
|
624
|
+
list l=imap(@G,l);
|
|
625
|
+
kill @G,gmsmaxdeg;
|
|
626
|
+
|
|
627
|
+
return(l);
|
|
628
|
+
}
|
|
629
|
+
example
|
|
630
|
+
{ "EXAMPLE:"; echo=2;
|
|
631
|
+
ring R=0,(x,y),ds;
|
|
632
|
+
poly t=x5+x2y2+y5;
|
|
633
|
+
bernstein(t);
|
|
634
|
+
}
|
|
635
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
636
|
+
|
|
637
|
+
proc monodromy(poly t)
|
|
638
|
+
"USAGE: monodromy(t); poly t
|
|
639
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
640
|
+
isolated critical point 0 of t
|
|
641
|
+
RETURN:
|
|
642
|
+
@format
|
|
643
|
+
list l; Jordan data jordan(M) of monodromy matrix exp(-2*pi*i*M)
|
|
644
|
+
ideal l[1];
|
|
645
|
+
number l[1][i]; eigenvalue of i-th Jordan block of M
|
|
646
|
+
intvec l[2];
|
|
647
|
+
int l[2][i]; size of i-th Jordan block of M
|
|
648
|
+
intvec l[3];
|
|
649
|
+
int l[3][i]; multiplicity of i-th Jordan block of M
|
|
650
|
+
@end format
|
|
651
|
+
SEE ALSO: mondromy_lib, linalg_lib
|
|
652
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice; monodromy
|
|
653
|
+
EXAMPLE: example monodromy; shows examples
|
|
654
|
+
"
|
|
655
|
+
{
|
|
656
|
+
def @R=basering;
|
|
657
|
+
int n=nvars(@R)-1;
|
|
658
|
+
def @G=gmsring(t,"s");
|
|
659
|
+
setring(@G);
|
|
660
|
+
|
|
661
|
+
matrix A;
|
|
662
|
+
module U0;
|
|
663
|
+
ideal e;
|
|
664
|
+
intvec m;
|
|
665
|
+
|
|
666
|
+
def A0,r,H,H0,K0=saturate();
|
|
667
|
+
e,m,A0,r=eigenval(A0,r,H,K0);
|
|
668
|
+
A,A0,r,H,H0,e,m,K0=transform(A,A0,r,H,H0,e,m,K0,0,0);
|
|
669
|
+
|
|
670
|
+
list l=jordan(A,e,m);
|
|
671
|
+
setring(@R);
|
|
672
|
+
list l=imap(@G,l);
|
|
673
|
+
kill @G,gmsmaxdeg;
|
|
674
|
+
|
|
675
|
+
return(l);
|
|
676
|
+
}
|
|
677
|
+
example
|
|
678
|
+
{ "EXAMPLE:"; echo=2;
|
|
679
|
+
ring R=0,(x,y),ds;
|
|
680
|
+
poly t=x5+x2y2+y5;
|
|
681
|
+
monodromy(t);
|
|
682
|
+
}
|
|
683
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
684
|
+
|
|
685
|
+
proc spectrum(poly t)
|
|
686
|
+
"USAGE: spectrum(t); poly t
|
|
687
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
688
|
+
isolated critical point 0 of t
|
|
689
|
+
RETURN:
|
|
690
|
+
@format
|
|
691
|
+
list sp; singularity spectrum of t
|
|
692
|
+
ideal sp[1];
|
|
693
|
+
number sp[1][i]; i-th spectral number
|
|
694
|
+
intvec sp[2];
|
|
695
|
+
int sp[2][i]; multiplicity of i-th spectral number
|
|
696
|
+
@end format
|
|
697
|
+
SEE ALSO: spectrum_lib
|
|
698
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
699
|
+
mixed Hodge structure; V-filtration; spectrum
|
|
700
|
+
EXAMPLE: example spectrum; shows examples
|
|
701
|
+
"
|
|
702
|
+
{
|
|
703
|
+
list l=vwfilt(t);
|
|
704
|
+
return(spnf(list(l[1],l[3])));
|
|
705
|
+
}
|
|
706
|
+
example
|
|
707
|
+
{ "EXAMPLE:"; echo=2;
|
|
708
|
+
ring R=0,(x,y),ds;
|
|
709
|
+
poly t=x5+x2y2+y5;
|
|
710
|
+
spprint(spectrum(t));
|
|
711
|
+
}
|
|
712
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
713
|
+
|
|
714
|
+
proc sppairs(poly t)
|
|
715
|
+
"USAGE: sppairs(t); poly t
|
|
716
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
717
|
+
isolated critical point 0 of t
|
|
718
|
+
RETURN:
|
|
719
|
+
@format
|
|
720
|
+
list spp; spectral pairs of t
|
|
721
|
+
ideal spp[1];
|
|
722
|
+
number spp[1][i]; V-filtration index of i-th spectral pair
|
|
723
|
+
intvec spp[2];
|
|
724
|
+
int spp[2][i]; weight filtration index of i-th spectral pair
|
|
725
|
+
intvec spp[3];
|
|
726
|
+
int spp[3][i]; multiplicity of i-th spectral pair
|
|
727
|
+
@end format
|
|
728
|
+
SEE ALSO: spectrum_lib
|
|
729
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
730
|
+
mixed Hodge structure; V-filtration; weight filtration;
|
|
731
|
+
spectrum; spectral pairs
|
|
732
|
+
EXAMPLE: example sppairs; shows examples
|
|
733
|
+
"
|
|
734
|
+
{
|
|
735
|
+
list l=vwfilt(t);
|
|
736
|
+
return(list(l[1],l[2],l[3]));
|
|
737
|
+
}
|
|
738
|
+
example
|
|
739
|
+
{ "EXAMPLE:"; echo=2;
|
|
740
|
+
ring R=0,(x,y),ds;
|
|
741
|
+
poly t=x5+x2y2+y5;
|
|
742
|
+
sppprint(sppairs(t));
|
|
743
|
+
}
|
|
744
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
745
|
+
|
|
746
|
+
proc vfilt(poly t)
|
|
747
|
+
"USAGE: vfilt(t); poly t
|
|
748
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
749
|
+
isolated critical point 0 of t
|
|
750
|
+
RETURN:
|
|
751
|
+
@format
|
|
752
|
+
list v; V-filtration on H''/s*H''
|
|
753
|
+
ideal v[1];
|
|
754
|
+
number v[1][i]; V-filtration index of i-th spectral number
|
|
755
|
+
intvec v[2];
|
|
756
|
+
int v[2][i]; multiplicity of i-th spectral number
|
|
757
|
+
list v[3];
|
|
758
|
+
module v[3][i]; vector space of i-th graded part in terms of v[4]
|
|
759
|
+
ideal v[4]; monomial vector space basis of H''/s*H''
|
|
760
|
+
ideal v[5]; standard basis of Jacobian ideal
|
|
761
|
+
@end format
|
|
762
|
+
SEE ALSO: spectrum_lib
|
|
763
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
764
|
+
mixed Hodge structure; V-filtration; spectrum
|
|
765
|
+
EXAMPLE: example vfilt; shows examples
|
|
766
|
+
"
|
|
767
|
+
{
|
|
768
|
+
list l=vwfilt(t);
|
|
769
|
+
return(spnf(list(l[1],l[3],l[4]))+list(l[5],l[6]));
|
|
770
|
+
}
|
|
771
|
+
example
|
|
772
|
+
{ "EXAMPLE:"; echo=2;
|
|
773
|
+
ring R=0,(x,y),ds;
|
|
774
|
+
poly t=x5+x2y2+y5;
|
|
775
|
+
vfilt(t);
|
|
776
|
+
}
|
|
777
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
778
|
+
|
|
779
|
+
proc vwfilt(poly t)
|
|
780
|
+
"USAGE: vwfilt(t); poly t
|
|
781
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
782
|
+
isolated critical point 0 of t
|
|
783
|
+
RETURN:
|
|
784
|
+
@format
|
|
785
|
+
list vw; weighted V-filtration on H''/s*H''
|
|
786
|
+
ideal vw[1];
|
|
787
|
+
number vw[1][i]; V-filtration index of i-th spectral pair
|
|
788
|
+
intvec vw[2];
|
|
789
|
+
int vw[2][i]; weight filtration index of i-th spectral pair
|
|
790
|
+
intvec vw[3];
|
|
791
|
+
int vw[3][i]; multiplicity of i-th spectral pair
|
|
792
|
+
list vw[4];
|
|
793
|
+
module vw[4][i]; vector space of i-th graded part in terms of vw[5]
|
|
794
|
+
ideal vw[5]; monomial vector space basis of H''/s*H''
|
|
795
|
+
ideal vw[6]; standard basis of Jacobian ideal
|
|
796
|
+
@end format
|
|
797
|
+
SEE ALSO: spectrum_lib
|
|
798
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
799
|
+
mixed Hodge structure; V-filtration; weight filtration;
|
|
800
|
+
spectrum; spectral pairs
|
|
801
|
+
EXAMPLE: example vwfilt; shows examples
|
|
802
|
+
"
|
|
803
|
+
{
|
|
804
|
+
def @R=basering;
|
|
805
|
+
int n=nvars(@R)-1;
|
|
806
|
+
def @G=gmsring(t,"s");
|
|
807
|
+
setring(@G);
|
|
808
|
+
|
|
809
|
+
int mu=ncols(gmsbasis);
|
|
810
|
+
matrix A;
|
|
811
|
+
ideal e;
|
|
812
|
+
intvec m;
|
|
813
|
+
|
|
814
|
+
def A0,r,H,H0,K0=saturate();
|
|
815
|
+
e,m,A0,r=eigenval(A0,r,H,K0);
|
|
816
|
+
A,A0,r,H,H0,e,m,K0=transform(A,A0,r,H,H0,e,m,K0,0,1);
|
|
817
|
+
|
|
818
|
+
dbprint(printlevel-voice+2,"// compute weight filtration basis");
|
|
819
|
+
list l=jordanbasis(A,e,m);
|
|
820
|
+
def U,v=l[1..2];
|
|
821
|
+
kill l;
|
|
822
|
+
vector u0;
|
|
823
|
+
int v0;
|
|
824
|
+
int i,j,k,l;
|
|
825
|
+
for(k,l=1,1;l<=ncols(e);k,l=k+m[l],l+1)
|
|
826
|
+
{
|
|
827
|
+
for(i=k+m[l]-1;i>=k+1;i--)
|
|
828
|
+
{
|
|
829
|
+
for(j=i-1;j>=k;j--)
|
|
830
|
+
{
|
|
831
|
+
if(v[i]>v[j])
|
|
832
|
+
{
|
|
833
|
+
v0=v[i];v[i]=v[j];v[j]=v0;
|
|
834
|
+
u0=U[i];U[i]=U[j];U[j]=u0;
|
|
835
|
+
}
|
|
836
|
+
}
|
|
837
|
+
}
|
|
838
|
+
}
|
|
839
|
+
|
|
840
|
+
dbprint(printlevel-voice+2,"// transform to weight filtration basis");
|
|
841
|
+
matrix V=inverse(U);
|
|
842
|
+
A=V*A*U;
|
|
843
|
+
dbprint(printlevel-voice+2,"// compute standard basis of H''");
|
|
844
|
+
H=matrix(H)*matrix(U);
|
|
845
|
+
H0=std(V*H0);
|
|
846
|
+
|
|
847
|
+
dbprint(printlevel-voice+2,"// compute spectral pairs");
|
|
848
|
+
ideal a;
|
|
849
|
+
intvec w;
|
|
850
|
+
for(i=1;i<=mu;i++)
|
|
851
|
+
{
|
|
852
|
+
j=leadexp(H0[i])[nvars(basering)+1];
|
|
853
|
+
a[i]=A[j,j]+ord(H0[i]) div deg(var(1))-1;
|
|
854
|
+
w[i]=v[j]+n;
|
|
855
|
+
}
|
|
856
|
+
H=matrix(H)*matrix(H0);
|
|
857
|
+
H=simplify(jet(H/var(1)^(mindegree(H) div deg(var(1))),0),1);
|
|
858
|
+
|
|
859
|
+
kill l;
|
|
860
|
+
list l=sppnf(list(a,w,H))+list(gmsbasis,gmsstd);
|
|
861
|
+
setring(@R);
|
|
862
|
+
list l=imap(@G,l);
|
|
863
|
+
kill @G,gmsmaxdeg;
|
|
864
|
+
attrib(l[5],"isSB",1);
|
|
865
|
+
|
|
866
|
+
return(l);
|
|
867
|
+
}
|
|
868
|
+
example
|
|
869
|
+
{ "EXAMPLE:"; echo=2;
|
|
870
|
+
ring R=0,(x,y),ds;
|
|
871
|
+
poly t=x5+x2y2+y5;
|
|
872
|
+
vwfilt(t);
|
|
873
|
+
}
|
|
874
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
875
|
+
|
|
876
|
+
static proc fsplit(ideal e0,intvec m0,matrix A,module H,module H0)
|
|
877
|
+
{
|
|
878
|
+
int mu=ncols(gmsbasis);
|
|
879
|
+
|
|
880
|
+
dbprint(printlevel-voice+2,"// compute standard basis of H''");
|
|
881
|
+
H0=std(H0);
|
|
882
|
+
H0=simplify(H0,1);
|
|
883
|
+
|
|
884
|
+
dbprint(printlevel-voice+2,"// compute Hodge filtration");
|
|
885
|
+
int i,j,k;
|
|
886
|
+
ideal e;
|
|
887
|
+
intvec m;
|
|
888
|
+
e[mu]=0;
|
|
889
|
+
for(i=1;i<=ncols(e0);i++)
|
|
890
|
+
{
|
|
891
|
+
for(j=m0[i];j>=1;j--)
|
|
892
|
+
{
|
|
893
|
+
k++;
|
|
894
|
+
e[k]=e0[i];
|
|
895
|
+
m[k]=i;
|
|
896
|
+
}
|
|
897
|
+
}
|
|
898
|
+
|
|
899
|
+
number n,n0;
|
|
900
|
+
vector v,v0;
|
|
901
|
+
list F;
|
|
902
|
+
for(i=ncols(e0);i>=1;i--)
|
|
903
|
+
{
|
|
904
|
+
F[i]=module(matrix(0,mu,1));
|
|
905
|
+
}
|
|
906
|
+
for(i=mu;i>=1;i--)
|
|
907
|
+
{
|
|
908
|
+
v=H0[i];
|
|
909
|
+
v0=lead(v);
|
|
910
|
+
n0=leadcoef(e[leadexp(v0)[nvars(basering)+1]])+leadexp(v0)[1];
|
|
911
|
+
v=v-lead(v);
|
|
912
|
+
while(v!=0)
|
|
913
|
+
{
|
|
914
|
+
n=leadcoef(e[leadexp(v)[nvars(basering)+1]])+leadexp(v)[1];
|
|
915
|
+
if(n==n0)
|
|
916
|
+
{
|
|
917
|
+
v0=v0+lead(v);
|
|
918
|
+
v=v-lead(v);
|
|
919
|
+
}
|
|
920
|
+
else
|
|
921
|
+
{
|
|
922
|
+
v=0;
|
|
923
|
+
}
|
|
924
|
+
}
|
|
925
|
+
j=m[leadexp(v0)[nvars(basering)+1]];
|
|
926
|
+
F[j]=F[j]+v0;
|
|
927
|
+
}
|
|
928
|
+
|
|
929
|
+
dbprint(printlevel-voice+2,"// compute splitting of Hodge filtration");
|
|
930
|
+
matrix A0=jet(A,0);
|
|
931
|
+
module U,U0,U1,U2;
|
|
932
|
+
matrix N;
|
|
933
|
+
for(i=size(F);i>=1;i--)
|
|
934
|
+
{
|
|
935
|
+
N=A0-e0[i];
|
|
936
|
+
U0=0;
|
|
937
|
+
while(size(F[i])>0)
|
|
938
|
+
{
|
|
939
|
+
U1=jet(F[i],0);
|
|
940
|
+
k=0;
|
|
941
|
+
while(size(U1)>0)
|
|
942
|
+
{
|
|
943
|
+
for(j=ncols(U1);j>=1;j--)
|
|
944
|
+
{
|
|
945
|
+
if(size(reduce(U1[j],std(U0),5))>0)
|
|
946
|
+
{
|
|
947
|
+
U0=U0+U1[j];
|
|
948
|
+
}
|
|
949
|
+
}
|
|
950
|
+
U1=N*U1;
|
|
951
|
+
k++;
|
|
952
|
+
}
|
|
953
|
+
F[i]=module(F[i]/var(1));
|
|
954
|
+
}
|
|
955
|
+
U=U0+U;
|
|
956
|
+
}
|
|
957
|
+
|
|
958
|
+
dbprint(printlevel-voice+2,"// transform to Hodge splitting basis");
|
|
959
|
+
H=matrix(H)*matrix(U);
|
|
960
|
+
H0=lift(U,H0);
|
|
961
|
+
A=lift(U,A*U);
|
|
962
|
+
|
|
963
|
+
return(e,A,H,H0);
|
|
964
|
+
}
|
|
965
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
966
|
+
|
|
967
|
+
static proc glift(ideal e,matrix A,module H,module H0,int K)
|
|
968
|
+
{
|
|
969
|
+
poly s=var(1);
|
|
970
|
+
int mu=ncols(gmsbasis);
|
|
971
|
+
|
|
972
|
+
dbprint(printlevel-voice+2,"// compute standard basis of H''");
|
|
973
|
+
H0=std(H0);
|
|
974
|
+
H0=simplify(H0,1);
|
|
975
|
+
|
|
976
|
+
int i,j,k;
|
|
977
|
+
ideal v;
|
|
978
|
+
for(i=mu;i>=1;i--)
|
|
979
|
+
{
|
|
980
|
+
v[i]=e[leadexp(H0[i])[nvars(basering)+1]]+leadexp(H0[i])[1];
|
|
981
|
+
}
|
|
982
|
+
|
|
983
|
+
dbprint(printlevel-voice+2,
|
|
984
|
+
"// compute matrix A0 of t w.r.t. good basis H0 of H''");
|
|
985
|
+
number c;
|
|
986
|
+
matrix h0[mu][1];
|
|
987
|
+
matrix m[mu][1];
|
|
988
|
+
matrix a0[mu][1];
|
|
989
|
+
matrix A0[mu][mu];
|
|
990
|
+
module M=H0;
|
|
991
|
+
module N=jet(s*A*matrix(H0)+s^2*diff(matrix(H0),s),K+1);
|
|
992
|
+
while(size(N)>0)
|
|
993
|
+
{
|
|
994
|
+
j=mu;
|
|
995
|
+
for(k=mu-1;k>=1;k--)
|
|
996
|
+
{
|
|
997
|
+
if(N[k]>N[j])
|
|
998
|
+
{
|
|
999
|
+
j=k;
|
|
1000
|
+
}
|
|
1001
|
+
}
|
|
1002
|
+
i=mu;
|
|
1003
|
+
while(leadexp(M[i])[nvars(basering)+1]!=leadexp(N[j])[nvars(basering)+1])
|
|
1004
|
+
{
|
|
1005
|
+
i--;
|
|
1006
|
+
}
|
|
1007
|
+
k=leadexp(N[j])[1]-leadexp(M[i])[1];
|
|
1008
|
+
if(k==0||i==j)
|
|
1009
|
+
{
|
|
1010
|
+
dbprint(printlevel-voice+3,"// compute A0["+string(i)+","+string(j)+"]");
|
|
1011
|
+
c=leadcoef(N[j])/leadcoef(M[i]);
|
|
1012
|
+
A0[i,j]=A0[i,j]+c*s^k;
|
|
1013
|
+
N[j]=jet(N[j]-c*s^k*M[i],K+1);
|
|
1014
|
+
}
|
|
1015
|
+
else
|
|
1016
|
+
{
|
|
1017
|
+
dbprint(printlevel-voice+3,
|
|
1018
|
+
"// reduce H0["+string(j)+"] with H0["+string(i)+"]");
|
|
1019
|
+
c=leadcoef(N[j])/leadcoef(M[i])/(1-k-leadcoef(v[i])+leadcoef(v[j]));
|
|
1020
|
+
H0[j]=H0[j]+c*s^(k-1)*H0[i];
|
|
1021
|
+
M[j]=M[j]+c*s^(k-1)*M[i];
|
|
1022
|
+
h0=c*s^(k-1)*H0[i];
|
|
1023
|
+
N[j]=N[j]+jet(s*A*h0+s^2*diff(h0,s),K+1)[1];
|
|
1024
|
+
m=M[i];
|
|
1025
|
+
a0=transpose(A0)[j];
|
|
1026
|
+
N=N-jet(c*s^(k-1)*m*transpose(a0),K+1);
|
|
1027
|
+
}
|
|
1028
|
+
}
|
|
1029
|
+
|
|
1030
|
+
H0=matrix(H)*matrix(H0);
|
|
1031
|
+
H0=H0/var(1)^(mindegree(H0) div deg(var(1)));
|
|
1032
|
+
|
|
1033
|
+
return(A0,H0);
|
|
1034
|
+
}
|
|
1035
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1036
|
+
|
|
1037
|
+
proc tmatrix(poly t)
|
|
1038
|
+
"USAGE: tmatrix(t); poly t
|
|
1039
|
+
ASSUME: characteristic 0; local degree ordering;
|
|
1040
|
+
isolated critical point 0 of t
|
|
1041
|
+
RETURN:
|
|
1042
|
+
@format
|
|
1043
|
+
list l=A0,A1,T,M;
|
|
1044
|
+
matrix A0,A1; t=A0+s*A1+s^2*(d/ds) on H'' w.r.t. C[[s]]-basis M*T
|
|
1045
|
+
module T; C-basis of C^mu
|
|
1046
|
+
ideal M; monomial C-basis of H''/sH''
|
|
1047
|
+
@end format
|
|
1048
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
1049
|
+
mixed Hodge structure; V-filtration; weight filtration;
|
|
1050
|
+
monodromy; spectrum; spectral pairs; good basis
|
|
1051
|
+
EXAMPLE: example tmatrix; shows examples
|
|
1052
|
+
"
|
|
1053
|
+
{
|
|
1054
|
+
def @R=basering;
|
|
1055
|
+
int n=nvars(@R)-1;
|
|
1056
|
+
def @G=gmsring(t,"s");
|
|
1057
|
+
setring(@G);
|
|
1058
|
+
|
|
1059
|
+
int mu=ncols(gmsbasis);
|
|
1060
|
+
matrix A;
|
|
1061
|
+
module U0;
|
|
1062
|
+
ideal e;
|
|
1063
|
+
intvec m;
|
|
1064
|
+
|
|
1065
|
+
def A0,r,H,H0,K0=saturate();
|
|
1066
|
+
e,m,A0,r=eigenval(A0,r,H,K0);
|
|
1067
|
+
A,A0,r,H,H0,e,m,K0=transform(A,A0,r,H,H0,e,m,K0,K0+int(e[ncols(e)]-e[1]),1);
|
|
1068
|
+
A,H0=glift(fsplit(e,m,A,H,H0),K0);
|
|
1069
|
+
|
|
1070
|
+
A0=jet(A,0);
|
|
1071
|
+
A=jet(A/var(1),0);
|
|
1072
|
+
|
|
1073
|
+
list l=A0,A,H0,gmsbasis;
|
|
1074
|
+
setring(@R);
|
|
1075
|
+
list l=imap(@G,l);
|
|
1076
|
+
kill @G,gmsmaxdeg;
|
|
1077
|
+
|
|
1078
|
+
return(l);
|
|
1079
|
+
}
|
|
1080
|
+
example
|
|
1081
|
+
{ "EXAMPLE:"; echo=2;
|
|
1082
|
+
ring R=0,(x,y),ds;
|
|
1083
|
+
poly t=x5+x2y2+y5;
|
|
1084
|
+
list l=tmatrix(t);
|
|
1085
|
+
print(l[1]);
|
|
1086
|
+
print(l[2]);
|
|
1087
|
+
print(l[3]);
|
|
1088
|
+
print(l[4]);
|
|
1089
|
+
}
|
|
1090
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1091
|
+
|
|
1092
|
+
proc endvfilt(list v)
|
|
1093
|
+
"USAGE: endvfilt(v); list v
|
|
1094
|
+
ASSUME: v returned by vfilt
|
|
1095
|
+
RETURN:
|
|
1096
|
+
@format
|
|
1097
|
+
list ev; V-filtration on Jacobian algebra
|
|
1098
|
+
ideal ev[1];
|
|
1099
|
+
number ev[1][i]; i-th V-filtration index
|
|
1100
|
+
intvec ev[2];
|
|
1101
|
+
int ev[2][i]; i-th multiplicity
|
|
1102
|
+
list ev[3];
|
|
1103
|
+
module ev[3][i]; vector space of i-th graded part in terms of ev[4]
|
|
1104
|
+
ideal ev[4]; monomial vector space basis of Jacobian algebra
|
|
1105
|
+
ideal ev[5]; standard basis of Jacobian ideal
|
|
1106
|
+
@end format
|
|
1107
|
+
KEYWORDS: singularities; Gauss-Manin system; Brieskorn lattice;
|
|
1108
|
+
mixed Hodge structure; V-filtration; endomorphism filtration
|
|
1109
|
+
EXAMPLE: example endvfilt; shows examples
|
|
1110
|
+
"
|
|
1111
|
+
{
|
|
1112
|
+
def a,d,V,m,g=v[1..5];
|
|
1113
|
+
attrib(g,"isSB",1);
|
|
1114
|
+
int mu=ncols(m);
|
|
1115
|
+
|
|
1116
|
+
module V0=V[1];
|
|
1117
|
+
for(int i=2;i<=size(V);i++)
|
|
1118
|
+
{
|
|
1119
|
+
V0=V0,V[i];
|
|
1120
|
+
}
|
|
1121
|
+
|
|
1122
|
+
dbprint(printlevel-voice+2,"// compute multiplication in Jacobian algebra");
|
|
1123
|
+
list M;
|
|
1124
|
+
module U=freemodule(ncols(m));
|
|
1125
|
+
for(i=ncols(m);i>=1;i--)
|
|
1126
|
+
{
|
|
1127
|
+
M[i]=division(coeffs(reduce(m[i]*m,g,U),m)*V0,V0)[1];
|
|
1128
|
+
}
|
|
1129
|
+
|
|
1130
|
+
int j,k,i0,j0,i1,j1;
|
|
1131
|
+
number b0=number(a[1]-a[ncols(a)]);
|
|
1132
|
+
number b1,b2;
|
|
1133
|
+
matrix M0;
|
|
1134
|
+
module L;
|
|
1135
|
+
list v0=freemodule(ncols(m));
|
|
1136
|
+
ideal a0=b0;
|
|
1137
|
+
list l;
|
|
1138
|
+
|
|
1139
|
+
while(b0<number(a[ncols(a)]-a[1]))
|
|
1140
|
+
{
|
|
1141
|
+
dbprint(printlevel-voice+2,"// find next possible index");
|
|
1142
|
+
b1=number(a[ncols(a)]-a[1]);
|
|
1143
|
+
for(j=ncols(a);j>=1;j--)
|
|
1144
|
+
{
|
|
1145
|
+
for(i=ncols(a);i>=1;i--)
|
|
1146
|
+
{
|
|
1147
|
+
b2=number(a[i]-a[j]);
|
|
1148
|
+
if(b2>b0&&b2<b1)
|
|
1149
|
+
{
|
|
1150
|
+
b1=b2;
|
|
1151
|
+
}
|
|
1152
|
+
else
|
|
1153
|
+
{
|
|
1154
|
+
if(b2<=b0)
|
|
1155
|
+
{
|
|
1156
|
+
i=0;
|
|
1157
|
+
}
|
|
1158
|
+
}
|
|
1159
|
+
}
|
|
1160
|
+
}
|
|
1161
|
+
b0=b1;
|
|
1162
|
+
|
|
1163
|
+
l=ideal();
|
|
1164
|
+
for(k=ncols(m);k>=2;k--)
|
|
1165
|
+
{
|
|
1166
|
+
l=l+list(ideal());
|
|
1167
|
+
}
|
|
1168
|
+
|
|
1169
|
+
dbprint(printlevel-voice+2,"// collect conditions for EV["+string(b0)+"]");
|
|
1170
|
+
j=ncols(a);
|
|
1171
|
+
j0=mu;
|
|
1172
|
+
while(j>=1)
|
|
1173
|
+
{
|
|
1174
|
+
i0=1;
|
|
1175
|
+
i=1;
|
|
1176
|
+
while(i<ncols(a)&&a[i]<a[j]+b0)
|
|
1177
|
+
{
|
|
1178
|
+
i0=i0+d[i];
|
|
1179
|
+
i++;
|
|
1180
|
+
}
|
|
1181
|
+
if(a[i]<a[j]+b0)
|
|
1182
|
+
{
|
|
1183
|
+
i0=i0+d[i];
|
|
1184
|
+
i++;
|
|
1185
|
+
}
|
|
1186
|
+
for(k=1;k<=ncols(m);k++)
|
|
1187
|
+
{
|
|
1188
|
+
M0=M[k];
|
|
1189
|
+
if(i0>1)
|
|
1190
|
+
{
|
|
1191
|
+
l[k]=l[k],M0[1..i0-1,j0-d[j]+1..j0];
|
|
1192
|
+
}
|
|
1193
|
+
}
|
|
1194
|
+
j0=j0-d[j];
|
|
1195
|
+
j--;
|
|
1196
|
+
}
|
|
1197
|
+
|
|
1198
|
+
dbprint(printlevel-voice+2,"// compose condition matrix");
|
|
1199
|
+
L=transpose(module(l[1]));
|
|
1200
|
+
for(k=2;k<=ncols(m);k++)
|
|
1201
|
+
{
|
|
1202
|
+
L=L,transpose(module(l[k]));
|
|
1203
|
+
}
|
|
1204
|
+
|
|
1205
|
+
dbprint(printlevel-voice+2,"// compute kernel of condition matrix");
|
|
1206
|
+
v0=v0+list(syz(L));
|
|
1207
|
+
a0=a0,b0;
|
|
1208
|
+
}
|
|
1209
|
+
|
|
1210
|
+
dbprint(printlevel-voice+2,"// compute graded parts");
|
|
1211
|
+
option(redSB);
|
|
1212
|
+
for(i=1;i<size(v0);i++)
|
|
1213
|
+
{
|
|
1214
|
+
v0[i+1]=std(v0[i+1]);
|
|
1215
|
+
v0[i]=std(reduce(v0[i],v0[i+1]));
|
|
1216
|
+
}
|
|
1217
|
+
option(noredSB);
|
|
1218
|
+
|
|
1219
|
+
dbprint(printlevel-voice+2,"// remove trivial graded parts");
|
|
1220
|
+
i=1;
|
|
1221
|
+
while(size(v0[i])==0)
|
|
1222
|
+
{
|
|
1223
|
+
i++;
|
|
1224
|
+
}
|
|
1225
|
+
list v1=v0[i];
|
|
1226
|
+
intvec d1=size(v0[i]);
|
|
1227
|
+
ideal a1=a0[i];
|
|
1228
|
+
i++;
|
|
1229
|
+
while(i<=size(v0))
|
|
1230
|
+
{
|
|
1231
|
+
if(size(v0[i])>0)
|
|
1232
|
+
{
|
|
1233
|
+
v1=v1+list(v0[i]);
|
|
1234
|
+
d1=d1,size(v0[i]);
|
|
1235
|
+
a1=a1,a0[i];
|
|
1236
|
+
}
|
|
1237
|
+
i++;
|
|
1238
|
+
}
|
|
1239
|
+
return(list(a1,d1,v1,m,g));
|
|
1240
|
+
}
|
|
1241
|
+
example
|
|
1242
|
+
{ "EXAMPLE:"; echo=2;
|
|
1243
|
+
ring R=0,(x,y),ds;
|
|
1244
|
+
poly t=x5+x2y2+y5;
|
|
1245
|
+
endvfilt(vfilt(t));
|
|
1246
|
+
}
|
|
1247
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1248
|
+
|
|
1249
|
+
proc sppnf(list sp)
|
|
1250
|
+
"USAGE: sppnf(list(a,w[,m])); ideal a, intvec w, intvec m
|
|
1251
|
+
ASSUME: ncols(a)==size(w)==size(m)
|
|
1252
|
+
RETURN: order (a[i][,w[i]]) with multiplicity m[i] lexicographically
|
|
1253
|
+
EXAMPLE: example sppnf; shows examples
|
|
1254
|
+
"
|
|
1255
|
+
{
|
|
1256
|
+
ideal a=sp[1];
|
|
1257
|
+
intvec w=sp[2];
|
|
1258
|
+
int n=ncols(a);
|
|
1259
|
+
intvec m;
|
|
1260
|
+
list V;
|
|
1261
|
+
module v;
|
|
1262
|
+
int i,j;
|
|
1263
|
+
for(i=3;i<=size(sp);i++)
|
|
1264
|
+
{
|
|
1265
|
+
if(typeof(sp[i])=="intvec")
|
|
1266
|
+
{
|
|
1267
|
+
m=sp[i];
|
|
1268
|
+
}
|
|
1269
|
+
if(typeof(sp[i])=="module")
|
|
1270
|
+
{
|
|
1271
|
+
v=sp[i];
|
|
1272
|
+
for(j=n;j>=1;j--)
|
|
1273
|
+
{
|
|
1274
|
+
V[j]=module(v[j]);
|
|
1275
|
+
}
|
|
1276
|
+
}
|
|
1277
|
+
if(typeof(sp[i])=="list")
|
|
1278
|
+
{
|
|
1279
|
+
V=sp[i];
|
|
1280
|
+
}
|
|
1281
|
+
}
|
|
1282
|
+
if(m==0)
|
|
1283
|
+
{
|
|
1284
|
+
for(i=n;i>=1;i--)
|
|
1285
|
+
{
|
|
1286
|
+
m[i]=1;
|
|
1287
|
+
}
|
|
1288
|
+
}
|
|
1289
|
+
|
|
1290
|
+
int k;
|
|
1291
|
+
ideal a0;
|
|
1292
|
+
intvec w0,m0;
|
|
1293
|
+
list V0;
|
|
1294
|
+
number a1;
|
|
1295
|
+
int w1,m1;
|
|
1296
|
+
for(i=n;i>=1;i--)
|
|
1297
|
+
{
|
|
1298
|
+
if(m[i]!=0)
|
|
1299
|
+
{
|
|
1300
|
+
for(j=i-1;j>=1;j--)
|
|
1301
|
+
{
|
|
1302
|
+
if(m[j]!=0)
|
|
1303
|
+
{
|
|
1304
|
+
if(number(a[i])>number(a[j])||
|
|
1305
|
+
(number(a[i])==number(a[j])&&w[i]<w[j]))
|
|
1306
|
+
{
|
|
1307
|
+
a1=number(a[i]);
|
|
1308
|
+
a[i]=a[j];
|
|
1309
|
+
a[j]=a1;
|
|
1310
|
+
w1=w[i];
|
|
1311
|
+
w[i]=w[j];
|
|
1312
|
+
w[j]=w1;
|
|
1313
|
+
m1=m[i];
|
|
1314
|
+
m[i]=m[j];
|
|
1315
|
+
m[j]=m1;
|
|
1316
|
+
if(size(V)>0)
|
|
1317
|
+
{
|
|
1318
|
+
v=V[i];
|
|
1319
|
+
V[i]=V[j];
|
|
1320
|
+
V[j]=v;
|
|
1321
|
+
}
|
|
1322
|
+
}
|
|
1323
|
+
if(number(a[i])==number(a[j])&&w[i]==w[j])
|
|
1324
|
+
{
|
|
1325
|
+
m[i]=m[i]+m[j];
|
|
1326
|
+
m[j]=0;
|
|
1327
|
+
if(size(V)>0)
|
|
1328
|
+
{
|
|
1329
|
+
V[i]=V[i]+V[j];
|
|
1330
|
+
}
|
|
1331
|
+
}
|
|
1332
|
+
}
|
|
1333
|
+
}
|
|
1334
|
+
k++;
|
|
1335
|
+
a0[k]=a[i];
|
|
1336
|
+
w0[k]=w[i];
|
|
1337
|
+
m0[k]=m[i];
|
|
1338
|
+
if(size(V)>0)
|
|
1339
|
+
{
|
|
1340
|
+
V0[k]=V[i];
|
|
1341
|
+
}
|
|
1342
|
+
}
|
|
1343
|
+
}
|
|
1344
|
+
|
|
1345
|
+
if(size(V0)>0)
|
|
1346
|
+
{
|
|
1347
|
+
n=size(V0);
|
|
1348
|
+
module U=std(V0[n]);
|
|
1349
|
+
for(i=n-1;i>=1;i--)
|
|
1350
|
+
{
|
|
1351
|
+
V0[i]=simplify(reduce(V0[i],U),1);
|
|
1352
|
+
if(i>=2)
|
|
1353
|
+
{
|
|
1354
|
+
U=std(U+V0[i]);
|
|
1355
|
+
}
|
|
1356
|
+
}
|
|
1357
|
+
}
|
|
1358
|
+
|
|
1359
|
+
if(k>0)
|
|
1360
|
+
{
|
|
1361
|
+
sp=a0,w0,m0;
|
|
1362
|
+
if(size(V0)>0)
|
|
1363
|
+
{
|
|
1364
|
+
sp[4]=V0;
|
|
1365
|
+
}
|
|
1366
|
+
}
|
|
1367
|
+
return(sp);
|
|
1368
|
+
}
|
|
1369
|
+
example
|
|
1370
|
+
{ "EXAMPLE:"; echo=2;
|
|
1371
|
+
ring R=0,(x,y),ds;
|
|
1372
|
+
list sp=list(ideal(-1/2,-3/10,-3/10,-1/10,-1/10,0,1/10,1/10,3/10,3/10,1/2),
|
|
1373
|
+
intvec(2,1,1,1,1,1,1,1,1,1,0));
|
|
1374
|
+
sppprint(sppnf(sp));
|
|
1375
|
+
}
|
|
1376
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1377
|
+
|
|
1378
|
+
proc sppprint(list spp)
|
|
1379
|
+
"USAGE: sppprint(spp); list spp
|
|
1380
|
+
RETURN: string s; spectral pairs spp
|
|
1381
|
+
EXAMPLE: example sppprint; shows examples
|
|
1382
|
+
"
|
|
1383
|
+
{
|
|
1384
|
+
string s;
|
|
1385
|
+
for(int i=1;i<size(spp[3]);i++)
|
|
1386
|
+
{
|
|
1387
|
+
s=s+"(("+string(spp[1][i])+","+string(spp[2][i])+"),"
|
|
1388
|
+
+string(spp[3][i])+"),";
|
|
1389
|
+
}
|
|
1390
|
+
s=s+"(("+string(spp[1][i])+","+string(spp[2][i])+"),"+string(spp[3][i])+")";
|
|
1391
|
+
return(s);
|
|
1392
|
+
}
|
|
1393
|
+
example
|
|
1394
|
+
{ "EXAMPLE:"; echo=2;
|
|
1395
|
+
ring R=0,(x,y),ds;
|
|
1396
|
+
list spp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(2,1,1,1,1,1,0),
|
|
1397
|
+
intvec(1,2,2,1,2,2,1));
|
|
1398
|
+
sppprint(spp);
|
|
1399
|
+
}
|
|
1400
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1401
|
+
|
|
1402
|
+
proc spadd(list sp1,list sp2)
|
|
1403
|
+
"USAGE: spadd(sp1,sp2); list sp1, list sp2
|
|
1404
|
+
RETURN: list sp; sum of spectra sp1 and sp2
|
|
1405
|
+
EXAMPLE: example spadd; shows examples
|
|
1406
|
+
"
|
|
1407
|
+
{
|
|
1408
|
+
ideal s;
|
|
1409
|
+
intvec m;
|
|
1410
|
+
int i,i1,i2=1,1,1;
|
|
1411
|
+
while(i1<=size(sp1[2])||i2<=size(sp2[2]))
|
|
1412
|
+
{
|
|
1413
|
+
if(i1<=size(sp1[2]))
|
|
1414
|
+
{
|
|
1415
|
+
if(i2<=size(sp2[2]))
|
|
1416
|
+
{
|
|
1417
|
+
if(number(sp1[1][i1])<number(sp2[1][i2]))
|
|
1418
|
+
{
|
|
1419
|
+
s[i]=sp1[1][i1];
|
|
1420
|
+
m[i]=sp1[2][i1];
|
|
1421
|
+
i++;
|
|
1422
|
+
i1++;
|
|
1423
|
+
}
|
|
1424
|
+
else
|
|
1425
|
+
{
|
|
1426
|
+
if(number(sp1[1][i1])>number(sp2[1][i2]))
|
|
1427
|
+
{
|
|
1428
|
+
s[i]=sp2[1][i2];
|
|
1429
|
+
m[i]=sp2[2][i2];
|
|
1430
|
+
i++;
|
|
1431
|
+
i2++;
|
|
1432
|
+
}
|
|
1433
|
+
else
|
|
1434
|
+
{
|
|
1435
|
+
if(sp1[2][i1]+sp2[2][i2]!=0)
|
|
1436
|
+
{
|
|
1437
|
+
s[i]=sp1[1][i1];
|
|
1438
|
+
m[i]=sp1[2][i1]+sp2[2][i2];
|
|
1439
|
+
i++;
|
|
1440
|
+
}
|
|
1441
|
+
i1++;
|
|
1442
|
+
i2++;
|
|
1443
|
+
}
|
|
1444
|
+
}
|
|
1445
|
+
}
|
|
1446
|
+
else
|
|
1447
|
+
{
|
|
1448
|
+
s[i]=sp1[1][i1];
|
|
1449
|
+
m[i]=sp1[2][i1];
|
|
1450
|
+
i++;
|
|
1451
|
+
i1++;
|
|
1452
|
+
}
|
|
1453
|
+
}
|
|
1454
|
+
else
|
|
1455
|
+
{
|
|
1456
|
+
s[i]=sp2[1][i2];
|
|
1457
|
+
m[i]=sp2[2][i2];
|
|
1458
|
+
i++;
|
|
1459
|
+
i2++;
|
|
1460
|
+
}
|
|
1461
|
+
}
|
|
1462
|
+
return(list(s,m));
|
|
1463
|
+
}
|
|
1464
|
+
example
|
|
1465
|
+
{ "EXAMPLE:"; echo=2;
|
|
1466
|
+
ring R=0,(x,y),ds;
|
|
1467
|
+
list sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1468
|
+
spprint(sp1);
|
|
1469
|
+
list sp2=list(ideal(-1/6,1/6),intvec(1,1));
|
|
1470
|
+
spprint(sp2);
|
|
1471
|
+
spprint(spadd(sp1,sp2));
|
|
1472
|
+
}
|
|
1473
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1474
|
+
|
|
1475
|
+
proc spsub(list sp1,list sp2)
|
|
1476
|
+
"USAGE: spsub(sp1,sp2); list sp1, list sp2
|
|
1477
|
+
RETURN: list sp; difference of spectra sp1 and sp2
|
|
1478
|
+
EXAMPLE: example spsub; shows examples
|
|
1479
|
+
"
|
|
1480
|
+
{
|
|
1481
|
+
return(spadd(sp1,spmul(sp2,-1)));
|
|
1482
|
+
}
|
|
1483
|
+
example
|
|
1484
|
+
{ "EXAMPLE:"; echo=2;
|
|
1485
|
+
ring R=0,(x,y),ds;
|
|
1486
|
+
list sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1487
|
+
spprint(sp1);
|
|
1488
|
+
list sp2=list(ideal(-1/6,1/6),intvec(1,1));
|
|
1489
|
+
spprint(sp2);
|
|
1490
|
+
spprint(spsub(sp1,sp2));
|
|
1491
|
+
}
|
|
1492
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1493
|
+
|
|
1494
|
+
proc spmul(list #)
|
|
1495
|
+
"USAGE: spmul(sp0,k); list sp0, int[vec] k
|
|
1496
|
+
RETURN: list sp; linear combination of spectra sp0 with coefficients k
|
|
1497
|
+
EXAMPLE: example spmul; shows examples
|
|
1498
|
+
"
|
|
1499
|
+
{
|
|
1500
|
+
if(size(#)==2)
|
|
1501
|
+
{
|
|
1502
|
+
if(typeof(#[1])=="list")
|
|
1503
|
+
{
|
|
1504
|
+
if(typeof(#[2])=="int")
|
|
1505
|
+
{
|
|
1506
|
+
return(list(#[1][1],#[1][2]*#[2]));
|
|
1507
|
+
}
|
|
1508
|
+
if(typeof(#[2])=="intvec")
|
|
1509
|
+
{
|
|
1510
|
+
list sp0=list(ideal(0),intvec(0));
|
|
1511
|
+
for(int i=size(#[2]);i>=1;i--)
|
|
1512
|
+
{
|
|
1513
|
+
sp0=spadd(sp0,spmul(#[1][i],#[2][i]));
|
|
1514
|
+
}
|
|
1515
|
+
return(sp0);
|
|
1516
|
+
}
|
|
1517
|
+
}
|
|
1518
|
+
}
|
|
1519
|
+
return(list(ideal(),intvec(0)));
|
|
1520
|
+
}
|
|
1521
|
+
example
|
|
1522
|
+
{ "EXAMPLE:"; echo=2;
|
|
1523
|
+
ring R=0,(x,y),ds;
|
|
1524
|
+
list sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1525
|
+
spprint(sp);
|
|
1526
|
+
spprint(spmul(sp,2));
|
|
1527
|
+
list sp1=list(ideal(-1/6,1/6),intvec(1,1));
|
|
1528
|
+
spprint(sp1);
|
|
1529
|
+
list sp2=list(ideal(-1/3,0,1/3),intvec(1,2,1));
|
|
1530
|
+
spprint(sp2);
|
|
1531
|
+
spprint(spmul(list(sp1,sp2),intvec(1,2)));
|
|
1532
|
+
}
|
|
1533
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1534
|
+
|
|
1535
|
+
proc spissemicont(list sp,list #)
|
|
1536
|
+
"USAGE: spissemicont(sp[,1]); list sp, int opt
|
|
1537
|
+
RETURN:
|
|
1538
|
+
@format
|
|
1539
|
+
int k=
|
|
1540
|
+
1; if sum of sp is positive on all intervals [a,a+1) [and (a,a+1)]
|
|
1541
|
+
0; if sum of sp is negative on some interval [a,a+1) [or (a,a+1)]
|
|
1542
|
+
@end format
|
|
1543
|
+
EXAMPLE: example spissemicont; shows examples
|
|
1544
|
+
"
|
|
1545
|
+
{
|
|
1546
|
+
int opt=0;
|
|
1547
|
+
if(size(#)>0)
|
|
1548
|
+
{
|
|
1549
|
+
if(typeof(#[1])=="int")
|
|
1550
|
+
{
|
|
1551
|
+
opt=1;
|
|
1552
|
+
}
|
|
1553
|
+
}
|
|
1554
|
+
int i,j,k;
|
|
1555
|
+
i=1;
|
|
1556
|
+
while(i<=size(sp[2])-1)
|
|
1557
|
+
{
|
|
1558
|
+
j=i+1;
|
|
1559
|
+
k=0;
|
|
1560
|
+
while(j+1<=size(sp[2])&&number(sp[1][j])<=number(sp[1][i])+1)
|
|
1561
|
+
{
|
|
1562
|
+
if(opt==0||number(sp[1][j])<number(sp[1][i])+1)
|
|
1563
|
+
{
|
|
1564
|
+
k=k+sp[2][j];
|
|
1565
|
+
}
|
|
1566
|
+
j++;
|
|
1567
|
+
}
|
|
1568
|
+
if(j==size(sp[2])&&number(sp[1][j])<=number(sp[1][i])+1)
|
|
1569
|
+
{
|
|
1570
|
+
if(opt==0||number(sp[1][j])<number(sp[1][i])+1)
|
|
1571
|
+
{
|
|
1572
|
+
k=k+sp[2][j];
|
|
1573
|
+
}
|
|
1574
|
+
}
|
|
1575
|
+
if(k<0)
|
|
1576
|
+
{
|
|
1577
|
+
return(0);
|
|
1578
|
+
}
|
|
1579
|
+
i++;
|
|
1580
|
+
}
|
|
1581
|
+
return(1);
|
|
1582
|
+
}
|
|
1583
|
+
example
|
|
1584
|
+
{ "EXAMPLE:"; echo=2;
|
|
1585
|
+
ring R=0,(x,y),ds;
|
|
1586
|
+
list sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1587
|
+
spprint(sp1);
|
|
1588
|
+
list sp2=list(ideal(-1/6,1/6),intvec(1,1));
|
|
1589
|
+
spprint(sp2);
|
|
1590
|
+
spissemicont(spsub(sp1,spmul(sp2,3)));
|
|
1591
|
+
spissemicont(spsub(sp1,spmul(sp2,4)));
|
|
1592
|
+
}
|
|
1593
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1594
|
+
|
|
1595
|
+
proc spsemicont(list sp0,list sp,list #)
|
|
1596
|
+
"USAGE: spsemicont(sp0,sp,k[,1]); list sp0, list sp
|
|
1597
|
+
RETURN:
|
|
1598
|
+
@format
|
|
1599
|
+
list l;
|
|
1600
|
+
intvec l[i]; if the spectra sp0 occur with multiplicities k
|
|
1601
|
+
in a deformation of a [quasihomogeneous] singularity
|
|
1602
|
+
with spectrum sp then k<=l[i]
|
|
1603
|
+
@end format
|
|
1604
|
+
EXAMPLE: example spsemicont; shows examples
|
|
1605
|
+
"
|
|
1606
|
+
{
|
|
1607
|
+
list l,l0;
|
|
1608
|
+
int i,j,k;
|
|
1609
|
+
while(spissemicont(sp0,#))
|
|
1610
|
+
{
|
|
1611
|
+
if(size(sp)>1)
|
|
1612
|
+
{
|
|
1613
|
+
l0=spsemicont(sp0,list(sp[1..size(sp)-1]));
|
|
1614
|
+
for(i=1;i<=size(l0);i++)
|
|
1615
|
+
{
|
|
1616
|
+
if(size(l)>0)
|
|
1617
|
+
{
|
|
1618
|
+
j=1;
|
|
1619
|
+
while(j<size(l)&&l[j]!=l0[i])
|
|
1620
|
+
{
|
|
1621
|
+
j++;
|
|
1622
|
+
}
|
|
1623
|
+
if(l[j]==l0[i])
|
|
1624
|
+
{
|
|
1625
|
+
l[j][size(sp)]=k;
|
|
1626
|
+
}
|
|
1627
|
+
else
|
|
1628
|
+
{
|
|
1629
|
+
l0[i][size(sp)]=k;
|
|
1630
|
+
l=l+list(l0[i]);
|
|
1631
|
+
}
|
|
1632
|
+
}
|
|
1633
|
+
else
|
|
1634
|
+
{
|
|
1635
|
+
l=l0;
|
|
1636
|
+
}
|
|
1637
|
+
}
|
|
1638
|
+
}
|
|
1639
|
+
sp0=spsub(sp0,sp[size(sp)]);
|
|
1640
|
+
k++;
|
|
1641
|
+
}
|
|
1642
|
+
if(size(sp)>1)
|
|
1643
|
+
{
|
|
1644
|
+
return(l);
|
|
1645
|
+
}
|
|
1646
|
+
else
|
|
1647
|
+
{
|
|
1648
|
+
return(list(intvec(k-1)));
|
|
1649
|
+
}
|
|
1650
|
+
}
|
|
1651
|
+
example
|
|
1652
|
+
{ "EXAMPLE:"; echo=2;
|
|
1653
|
+
ring R=0,(x,y),ds;
|
|
1654
|
+
list sp0=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1655
|
+
spprint(sp0);
|
|
1656
|
+
list sp1=list(ideal(-1/6,1/6),intvec(1,1));
|
|
1657
|
+
spprint(sp1);
|
|
1658
|
+
list sp2=list(ideal(-1/3,0,1/3),intvec(1,2,1));
|
|
1659
|
+
spprint(sp2);
|
|
1660
|
+
list sp=sp1,sp2;
|
|
1661
|
+
list l=spsemicont(sp0,sp);
|
|
1662
|
+
l;
|
|
1663
|
+
spissemicont(spsub(sp0,spmul(sp,l[1])));
|
|
1664
|
+
spissemicont(spsub(sp0,spmul(sp,l[1]-1)));
|
|
1665
|
+
spissemicont(spsub(sp0,spmul(sp,l[1]+1)));
|
|
1666
|
+
}
|
|
1667
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1668
|
+
|
|
1669
|
+
proc spmilnor(list sp)
|
|
1670
|
+
"USAGE: spmilnor(sp); list sp
|
|
1671
|
+
RETURN: int mu; Milnor number of spectrum sp
|
|
1672
|
+
EXAMPLE: example spmilnor; shows examples
|
|
1673
|
+
"
|
|
1674
|
+
{
|
|
1675
|
+
return(sum(sp[2]));
|
|
1676
|
+
}
|
|
1677
|
+
example
|
|
1678
|
+
{ "EXAMPLE:"; echo=2;
|
|
1679
|
+
ring R=0,(x,y),ds;
|
|
1680
|
+
list sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1681
|
+
spprint(sp);
|
|
1682
|
+
spmilnor(sp);
|
|
1683
|
+
}
|
|
1684
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1685
|
+
|
|
1686
|
+
proc spgeomgenus(list sp)
|
|
1687
|
+
"USAGE: spgeomgenus(sp); list sp
|
|
1688
|
+
RETURN: int g; geometrical genus of spectrum sp
|
|
1689
|
+
EXAMPLE: example spgeomgenus; shows examples
|
|
1690
|
+
"
|
|
1691
|
+
{
|
|
1692
|
+
int g=0;
|
|
1693
|
+
int i=1;
|
|
1694
|
+
while(i+1<=size(sp[2])&&number(sp[1][i])<=number(0))
|
|
1695
|
+
{
|
|
1696
|
+
g=g+sp[2][i];
|
|
1697
|
+
i++;
|
|
1698
|
+
}
|
|
1699
|
+
if(i==size(sp[2])&&number(sp[1][i])<=number(0))
|
|
1700
|
+
{
|
|
1701
|
+
g=g+sp[2][i];
|
|
1702
|
+
}
|
|
1703
|
+
return(g);
|
|
1704
|
+
}
|
|
1705
|
+
example
|
|
1706
|
+
{ "EXAMPLE:"; echo=2;
|
|
1707
|
+
ring R=0,(x,y),ds;
|
|
1708
|
+
list sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1709
|
+
spprint(sp);
|
|
1710
|
+
spgeomgenus(sp);
|
|
1711
|
+
}
|
|
1712
|
+
///////////////////////////////////////////////////////////////////////////////
|
|
1713
|
+
|
|
1714
|
+
proc spgamma(list sp)
|
|
1715
|
+
"USAGE: spgamma(sp); list sp
|
|
1716
|
+
RETURN: number gamma; gamma invariant of spectrum sp
|
|
1717
|
+
EXAMPLE: example spgamma; shows examples
|
|
1718
|
+
"
|
|
1719
|
+
{
|
|
1720
|
+
int i,j;
|
|
1721
|
+
number g=0;
|
|
1722
|
+
for(i=1;i<=ncols(sp[1]);i++)
|
|
1723
|
+
{
|
|
1724
|
+
for(j=1;j<=sp[2][i];j++)
|
|
1725
|
+
{
|
|
1726
|
+
g=g+(number(sp[1][i])-number(nvars(basering)-2)/2)^2;
|
|
1727
|
+
}
|
|
1728
|
+
}
|
|
1729
|
+
g=-g/4+sum(sp[2])*number(sp[1][ncols(sp[1])]-sp[1][1])/48;
|
|
1730
|
+
return(g);
|
|
1731
|
+
}
|
|
1732
|
+
example
|
|
1733
|
+
{ "EXAMPLE:"; echo=2;
|
|
1734
|
+
ring R=0,(x,y),ds;
|
|
1735
|
+
list sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1));
|
|
1736
|
+
spprint(sp);
|
|
1737
|
+
spgamma(sp);
|
|
1738
|
+
}
|
|
1739
|
+
///////////////////////////////////////////////////////////////////////////////
|