passagemath-singular 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-singular might be problematic. Click here for more details.
- PySingular.cpython-314-x86_64-linux-musl.so +0 -0
- passagemath_singular-10.6.31rc3.dist-info/METADATA +183 -0
- passagemath_singular-10.6.31rc3.dist-info/RECORD +493 -0
- passagemath_singular-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_singular-10.6.31rc3.dist-info/top_level.txt +3 -0
- passagemath_singular.libs/libSingular-4-67059f19.4.1.so +0 -0
- passagemath_singular.libs/libcddgmp-30166d29.so.0.1.3 +0 -0
- passagemath_singular.libs/libfactory-4-9d37bcf4.4.1.so +0 -0
- passagemath_singular.libs/libflint-fd6f12fc.so.21.0.0 +0 -0
- passagemath_singular.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_singular.libs/libgf2x-9e30c3e3.so.3.0.0 +0 -0
- passagemath_singular.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_singular.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_singular.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_singular.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_singular.libs/libncursesw-9c9e32c3.so.6.5 +0 -0
- passagemath_singular.libs/libntl-26885ca2.so.44.0.1 +0 -0
- passagemath_singular.libs/libomalloc-0-e9ff96db.9.6.so +0 -0
- passagemath_singular.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_singular.libs/libpolys-4-8bcf8e7d.4.1.so +0 -0
- passagemath_singular.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- passagemath_singular.libs/libreadline-06542304.so.8.2 +0 -0
- passagemath_singular.libs/libsingular_resources-4-73bf7623.4.1.so +0 -0
- passagemath_singular.libs/libstdc++-5d72f927.so.6.0.33 +0 -0
- sage/algebras/all__sagemath_singular.py +3 -0
- sage/algebras/fusion_rings/all.py +19 -0
- sage/algebras/fusion_rings/f_matrix.py +2448 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pxd +5 -0
- sage/algebras/fusion_rings/fast_parallel_fmats_methods.pyx +538 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pxd +3 -0
- sage/algebras/fusion_rings/fast_parallel_fusion_ring_braid_repn.pyx +331 -0
- sage/algebras/fusion_rings/fusion_double.py +899 -0
- sage/algebras/fusion_rings/fusion_ring.py +1580 -0
- sage/algebras/fusion_rings/poly_tup_engine.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/poly_tup_engine.pxd +24 -0
- sage/algebras/fusion_rings/poly_tup_engine.pyx +579 -0
- sage/algebras/fusion_rings/shm_managers.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/fusion_rings/shm_managers.pxd +24 -0
- sage/algebras/fusion_rings/shm_managers.pyx +780 -0
- sage/algebras/letterplace/all.py +1 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pxd +18 -0
- sage/algebras/letterplace/free_algebra_element_letterplace.pyx +755 -0
- sage/algebras/letterplace/free_algebra_letterplace.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/free_algebra_letterplace.pxd +35 -0
- sage/algebras/letterplace/free_algebra_letterplace.pyx +914 -0
- sage/algebras/letterplace/letterplace_ideal.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/letterplace/letterplace_ideal.pyx +408 -0
- sage/algebras/quatalg/all.py +2 -0
- sage/algebras/quatalg/quaternion_algebra.py +4778 -0
- sage/algebras/quatalg/quaternion_algebra_cython.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_cython.pyx +261 -0
- sage/algebras/quatalg/quaternion_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/quatalg/quaternion_algebra_element.pxd +29 -0
- sage/algebras/quatalg/quaternion_algebra_element.pyx +2176 -0
- sage/all__sagemath_singular.py +11 -0
- sage/ext_data/all__sagemath_singular.py +1 -0
- sage/ext_data/singular/function_field/core.lib +98 -0
- sage/interfaces/all__sagemath_singular.py +1 -0
- sage/interfaces/singular.py +2835 -0
- sage/libs/all__sagemath_singular.py +1 -0
- sage/libs/singular/__init__.py +1 -0
- sage/libs/singular/decl.pxd +1168 -0
- sage/libs/singular/function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/function.pxd +87 -0
- sage/libs/singular/function.pyx +1901 -0
- sage/libs/singular/function_factory.py +61 -0
- sage/libs/singular/groebner_strategy.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/groebner_strategy.pxd +22 -0
- sage/libs/singular/groebner_strategy.pyx +582 -0
- sage/libs/singular/option.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/option.pyx +671 -0
- sage/libs/singular/polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/polynomial.pxd +39 -0
- sage/libs/singular/polynomial.pyx +661 -0
- sage/libs/singular/ring.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/ring.pxd +58 -0
- sage/libs/singular/ring.pyx +893 -0
- sage/libs/singular/singular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/singular/singular.pxd +72 -0
- sage/libs/singular/singular.pyx +1944 -0
- sage/libs/singular/standard_options.py +145 -0
- sage/matrix/all__sagemath_singular.py +1 -0
- sage/matrix/matrix_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_mpolynomial_dense.pxd +7 -0
- sage/matrix/matrix_mpolynomial_dense.pyx +615 -0
- sage/rings/all__sagemath_singular.py +1 -0
- sage/rings/function_field/all__sagemath_singular.py +1 -0
- sage/rings/function_field/derivations_polymod.py +911 -0
- sage/rings/function_field/element_polymod.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/element_polymod.pyx +406 -0
- sage/rings/function_field/function_field_polymod.py +2611 -0
- sage/rings/function_field/ideal_polymod.py +1775 -0
- sage/rings/function_field/order_polymod.py +1475 -0
- sage/rings/function_field/place_polymod.py +681 -0
- sage/rings/polynomial/all__sagemath_singular.py +1 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pxd +5 -0
- sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx +339 -0
- sage/rings/polynomial/multi_polynomial_libsingular.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pxd +30 -0
- sage/rings/polynomial/multi_polynomial_libsingular.pyx +6277 -0
- sage/rings/polynomial/plural.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/plural.pxd +48 -0
- sage/rings/polynomial/plural.pyx +3171 -0
- sage/symbolic/all__sagemath_singular.py +1 -0
- sage/symbolic/comparison_impl.pxi +428 -0
- sage/symbolic/constants_c_impl.pxi +178 -0
- sage/symbolic/expression.cpython-314-x86_64-linux-musl.so +0 -0
- sage/symbolic/expression.pxd +7 -0
- sage/symbolic/expression.pyx +14200 -0
- sage/symbolic/getitem_impl.pxi +202 -0
- sage/symbolic/pynac.pxi +572 -0
- sage/symbolic/pynac_constant_impl.pxi +133 -0
- sage/symbolic/pynac_function_impl.pxi +206 -0
- sage/symbolic/pynac_impl.pxi +2576 -0
- sage/symbolic/pynac_wrap.h +124 -0
- sage/symbolic/series_impl.pxi +272 -0
- sage/symbolic/substitution_map_impl.pxi +94 -0
- sage_wheels/bin/ESingular +0 -0
- sage_wheels/bin/Singular +0 -0
- sage_wheels/bin/TSingular +0 -0
- sage_wheels/lib/singular/MOD/cohomo.la +41 -0
- sage_wheels/lib/singular/MOD/cohomo.so +0 -0
- sage_wheels/lib/singular/MOD/customstd.la +41 -0
- sage_wheels/lib/singular/MOD/customstd.so +0 -0
- sage_wheels/lib/singular/MOD/freealgebra.la +41 -0
- sage_wheels/lib/singular/MOD/freealgebra.so +0 -0
- sage_wheels/lib/singular/MOD/gfanlib.la +41 -0
- sage_wheels/lib/singular/MOD/gfanlib.so +0 -0
- sage_wheels/lib/singular/MOD/gitfan.la +41 -0
- sage_wheels/lib/singular/MOD/gitfan.so +0 -0
- sage_wheels/lib/singular/MOD/interval.la +41 -0
- sage_wheels/lib/singular/MOD/interval.so +0 -0
- sage_wheels/lib/singular/MOD/loctriv.la +41 -0
- sage_wheels/lib/singular/MOD/loctriv.so +0 -0
- sage_wheels/lib/singular/MOD/machinelearning.la +41 -0
- sage_wheels/lib/singular/MOD/machinelearning.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldGeneral.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldIndep.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldQ.so +0 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.la +41 -0
- sage_wheels/lib/singular/MOD/p_Procs_FieldZp.so +0 -0
- sage_wheels/lib/singular/MOD/partialgb.la +41 -0
- sage_wheels/lib/singular/MOD/partialgb.so +0 -0
- sage_wheels/lib/singular/MOD/pyobject.la +41 -0
- sage_wheels/lib/singular/MOD/pyobject.so +0 -0
- sage_wheels/lib/singular/MOD/singmathic.la +41 -0
- sage_wheels/lib/singular/MOD/singmathic.so +0 -0
- sage_wheels/lib/singular/MOD/sispasm.la +41 -0
- sage_wheels/lib/singular/MOD/sispasm.so +0 -0
- sage_wheels/lib/singular/MOD/subsets.la +41 -0
- sage_wheels/lib/singular/MOD/subsets.so +0 -0
- sage_wheels/lib/singular/MOD/systhreads.la +41 -0
- sage_wheels/lib/singular/MOD/systhreads.so +0 -0
- sage_wheels/lib/singular/MOD/syzextra.la +41 -0
- sage_wheels/lib/singular/MOD/syzextra.so +0 -0
- sage_wheels/libexec/singular/MOD/change_cost +0 -0
- sage_wheels/libexec/singular/MOD/singularsurf +11 -0
- sage_wheels/libexec/singular/MOD/singularsurf_jupyter +9 -0
- sage_wheels/libexec/singular/MOD/singularsurf_win +10 -0
- sage_wheels/libexec/singular/MOD/solve_IP +0 -0
- sage_wheels/libexec/singular/MOD/surfex +16 -0
- sage_wheels/libexec/singular/MOD/toric_ideal +0 -0
- sage_wheels/share/factory/gftables/10201 +342 -0
- sage_wheels/share/factory/gftables/1024 +37 -0
- sage_wheels/share/factory/gftables/10609 +356 -0
- sage_wheels/share/factory/gftables/11449 +384 -0
- sage_wheels/share/factory/gftables/11881 +398 -0
- sage_wheels/share/factory/gftables/121 +6 -0
- sage_wheels/share/factory/gftables/12167 +408 -0
- sage_wheels/share/factory/gftables/125 +7 -0
- sage_wheels/share/factory/gftables/12769 +428 -0
- sage_wheels/share/factory/gftables/128 +7 -0
- sage_wheels/share/factory/gftables/1331 +47 -0
- sage_wheels/share/factory/gftables/1369 +48 -0
- sage_wheels/share/factory/gftables/14641 +490 -0
- sage_wheels/share/factory/gftables/15625 +523 -0
- sage_wheels/share/factory/gftables/16 +3 -0
- sage_wheels/share/factory/gftables/16129 +540 -0
- sage_wheels/share/factory/gftables/16384 +549 -0
- sage_wheels/share/factory/gftables/16807 +563 -0
- sage_wheels/share/factory/gftables/1681 +58 -0
- sage_wheels/share/factory/gftables/169 +8 -0
- sage_wheels/share/factory/gftables/17161 +574 -0
- sage_wheels/share/factory/gftables/1849 +64 -0
- sage_wheels/share/factory/gftables/18769 +628 -0
- sage_wheels/share/factory/gftables/19321 +646 -0
- sage_wheels/share/factory/gftables/19683 +659 -0
- sage_wheels/share/factory/gftables/2048 +71 -0
- sage_wheels/share/factory/gftables/2187 +75 -0
- sage_wheels/share/factory/gftables/2197 +76 -0
- sage_wheels/share/factory/gftables/2209 +76 -0
- sage_wheels/share/factory/gftables/22201 +742 -0
- sage_wheels/share/factory/gftables/22801 +762 -0
- sage_wheels/share/factory/gftables/2401 +82 -0
- sage_wheels/share/factory/gftables/243 +11 -0
- sage_wheels/share/factory/gftables/24389 +815 -0
- sage_wheels/share/factory/gftables/24649 +824 -0
- sage_wheels/share/factory/gftables/25 +3 -0
- sage_wheels/share/factory/gftables/256 +11 -0
- sage_wheels/share/factory/gftables/26569 +888 -0
- sage_wheels/share/factory/gftables/27 +3 -0
- sage_wheels/share/factory/gftables/27889 +932 -0
- sage_wheels/share/factory/gftables/2809 +96 -0
- sage_wheels/share/factory/gftables/28561 +954 -0
- sage_wheels/share/factory/gftables/289 +12 -0
- sage_wheels/share/factory/gftables/29791 +995 -0
- sage_wheels/share/factory/gftables/29929 +1000 -0
- sage_wheels/share/factory/gftables/3125 +107 -0
- sage_wheels/share/factory/gftables/32 +4 -0
- sage_wheels/share/factory/gftables/32041 +1070 -0
- sage_wheels/share/factory/gftables/32761 +1094 -0
- sage_wheels/share/factory/gftables/32768 +1095 -0
- sage_wheels/share/factory/gftables/343 +14 -0
- sage_wheels/share/factory/gftables/3481 +118 -0
- sage_wheels/share/factory/gftables/361 +14 -0
- sage_wheels/share/factory/gftables/36481 +1218 -0
- sage_wheels/share/factory/gftables/3721 +126 -0
- sage_wheels/share/factory/gftables/37249 +1244 -0
- sage_wheels/share/factory/gftables/38809 +1296 -0
- sage_wheels/share/factory/gftables/39601 +1322 -0
- sage_wheels/share/factory/gftables/4 +3 -0
- sage_wheels/share/factory/gftables/4096 +139 -0
- sage_wheels/share/factory/gftables/44521 +1486 -0
- sage_wheels/share/factory/gftables/4489 +152 -0
- sage_wheels/share/factory/gftables/49 +4 -0
- sage_wheels/share/factory/gftables/4913 +166 -0
- sage_wheels/share/factory/gftables/49729 +1660 -0
- sage_wheels/share/factory/gftables/5041 +170 -0
- sage_wheels/share/factory/gftables/50653 +1691 -0
- sage_wheels/share/factory/gftables/512 +20 -0
- sage_wheels/share/factory/gftables/51529 +1720 -0
- sage_wheels/share/factory/gftables/52441 +1750 -0
- sage_wheels/share/factory/gftables/529 +20 -0
- sage_wheels/share/factory/gftables/5329 +180 -0
- sage_wheels/share/factory/gftables/54289 +1812 -0
- sage_wheels/share/factory/gftables/57121 +1906 -0
- sage_wheels/share/factory/gftables/58081 +1938 -0
- sage_wheels/share/factory/gftables/59049 +1971 -0
- sage_wheels/share/factory/gftables/6241 +210 -0
- sage_wheels/share/factory/gftables/625 +23 -0
- sage_wheels/share/factory/gftables/63001 +2102 -0
- sage_wheels/share/factory/gftables/64 +5 -0
- sage_wheels/share/factory/gftables/6561 +221 -0
- sage_wheels/share/factory/gftables/6859 +231 -0
- sage_wheels/share/factory/gftables/6889 +232 -0
- sage_wheels/share/factory/gftables/729 +27 -0
- sage_wheels/share/factory/gftables/7921 +266 -0
- sage_wheels/share/factory/gftables/8 +3 -0
- sage_wheels/share/factory/gftables/81 +5 -0
- sage_wheels/share/factory/gftables/8192 +276 -0
- sage_wheels/share/factory/gftables/841 +30 -0
- sage_wheels/share/factory/gftables/9 +3 -0
- sage_wheels/share/factory/gftables/9409 +316 -0
- sage_wheels/share/factory/gftables/961 +34 -0
- sage_wheels/share/info/singular.info +191898 -0
- sage_wheels/share/singular/LIB/GND.lib +1359 -0
- sage_wheels/share/singular/LIB/JMBTest.lib +976 -0
- sage_wheels/share/singular/LIB/JMSConst.lib +1363 -0
- sage_wheels/share/singular/LIB/KVequiv.lib +699 -0
- sage_wheels/share/singular/LIB/SingularityDBM.lib +491 -0
- sage_wheels/share/singular/LIB/VecField.lib +1542 -0
- sage_wheels/share/singular/LIB/absfact.lib +959 -0
- sage_wheels/share/singular/LIB/ainvar.lib +730 -0
- sage_wheels/share/singular/LIB/aksaka.lib +419 -0
- sage_wheels/share/singular/LIB/alexpoly.lib +2542 -0
- sage_wheels/share/singular/LIB/algebra.lib +1193 -0
- sage_wheels/share/singular/LIB/all.lib +136 -0
- sage_wheels/share/singular/LIB/arcpoint.lib +514 -0
- sage_wheels/share/singular/LIB/arnold.lib +4553 -0
- sage_wheels/share/singular/LIB/arnoldclassify.lib +2058 -0
- sage_wheels/share/singular/LIB/arr.lib +3486 -0
- sage_wheels/share/singular/LIB/assprimeszerodim.lib +755 -0
- sage_wheels/share/singular/LIB/autgradalg.lib +3361 -0
- sage_wheels/share/singular/LIB/bfun.lib +1964 -0
- sage_wheels/share/singular/LIB/bimodules.lib +774 -0
- sage_wheels/share/singular/LIB/brillnoether.lib +226 -0
- sage_wheels/share/singular/LIB/brnoeth.lib +5017 -0
- sage_wheels/share/singular/LIB/central.lib +2169 -0
- sage_wheels/share/singular/LIB/chern.lib +4162 -0
- sage_wheels/share/singular/LIB/cimonom.lib +571 -0
- sage_wheels/share/singular/LIB/cisimplicial.lib +1835 -0
- sage_wheels/share/singular/LIB/classify.lib +3239 -0
- sage_wheels/share/singular/LIB/classify2.lib +1462 -0
- sage_wheels/share/singular/LIB/classifyMapGerms.lib +1515 -0
- sage_wheels/share/singular/LIB/classify_aeq.lib +3253 -0
- sage_wheels/share/singular/LIB/classifyceq.lib +2092 -0
- sage_wheels/share/singular/LIB/classifyci.lib +1133 -0
- sage_wheels/share/singular/LIB/combinat.lib +91 -0
- sage_wheels/share/singular/LIB/compregb.lib +276 -0
- sage_wheels/share/singular/LIB/control.lib +1636 -0
- sage_wheels/share/singular/LIB/crypto.lib +3795 -0
- sage_wheels/share/singular/LIB/curveInv.lib +667 -0
- sage_wheels/share/singular/LIB/curvepar.lib +1817 -0
- sage_wheels/share/singular/LIB/customstd.lib +100 -0
- sage_wheels/share/singular/LIB/deRham.lib +5979 -0
- sage_wheels/share/singular/LIB/decodegb.lib +2134 -0
- sage_wheels/share/singular/LIB/decomp.lib +1655 -0
- sage_wheels/share/singular/LIB/deflation.lib +872 -0
- sage_wheels/share/singular/LIB/deform.lib +925 -0
- sage_wheels/share/singular/LIB/difform.lib +3055 -0
- sage_wheels/share/singular/LIB/divisors.lib +750 -0
- sage_wheels/share/singular/LIB/dmod.lib +5817 -0
- sage_wheels/share/singular/LIB/dmodapp.lib +3269 -0
- sage_wheels/share/singular/LIB/dmodideal.lib +1211 -0
- sage_wheels/share/singular/LIB/dmodloc.lib +2645 -0
- sage_wheels/share/singular/LIB/dmodvar.lib +818 -0
- sage_wheels/share/singular/LIB/dummy.lib +17 -0
- sage_wheels/share/singular/LIB/elim.lib +1009 -0
- sage_wheels/share/singular/LIB/ellipticcovers.lib +548 -0
- sage_wheels/share/singular/LIB/enumpoints.lib +146 -0
- sage_wheels/share/singular/LIB/equising.lib +2127 -0
- sage_wheels/share/singular/LIB/ffmodstd.lib +2384 -0
- sage_wheels/share/singular/LIB/ffsolve.lib +1289 -0
- sage_wheels/share/singular/LIB/findifs.lib +778 -0
- sage_wheels/share/singular/LIB/finitediff.lib +1768 -0
- sage_wheels/share/singular/LIB/finvar.lib +7989 -0
- sage_wheels/share/singular/LIB/fpadim.lib +2429 -0
- sage_wheels/share/singular/LIB/fpalgebras.lib +1666 -0
- sage_wheels/share/singular/LIB/fpaprops.lib +1462 -0
- sage_wheels/share/singular/LIB/freegb.lib +3853 -0
- sage_wheels/share/singular/LIB/general.lib +1350 -0
- sage_wheels/share/singular/LIB/gfan.lib +1768 -0
- sage_wheels/share/singular/LIB/gitfan.lib +3130 -0
- sage_wheels/share/singular/LIB/gkdim.lib +99 -0
- sage_wheels/share/singular/LIB/gmspoly.lib +589 -0
- sage_wheels/share/singular/LIB/gmssing.lib +1739 -0
- sage_wheels/share/singular/LIB/goettsche.lib +909 -0
- sage_wheels/share/singular/LIB/graal.lib +1366 -0
- sage_wheels/share/singular/LIB/gradedModules.lib +2541 -0
- sage_wheels/share/singular/LIB/graphics.lib +360 -0
- sage_wheels/share/singular/LIB/grobcov.lib +7706 -0
- sage_wheels/share/singular/LIB/groups.lib +1123 -0
- sage_wheels/share/singular/LIB/grwalk.lib +507 -0
- sage_wheels/share/singular/LIB/hdepth.lib +194 -0
- sage_wheels/share/singular/LIB/help.cnf +57 -0
- sage_wheels/share/singular/LIB/hess.lib +1946 -0
- sage_wheels/share/singular/LIB/hnoether.lib +4292 -0
- sage_wheels/share/singular/LIB/hodge.lib +400 -0
- sage_wheels/share/singular/LIB/homolog.lib +1965 -0
- sage_wheels/share/singular/LIB/hyperel.lib +975 -0
- sage_wheels/share/singular/LIB/inout.lib +679 -0
- sage_wheels/share/singular/LIB/integralbasis.lib +6224 -0
- sage_wheels/share/singular/LIB/interval.lib +1418 -0
- sage_wheels/share/singular/LIB/intprog.lib +778 -0
- sage_wheels/share/singular/LIB/invar.lib +443 -0
- sage_wheels/share/singular/LIB/involut.lib +980 -0
- sage_wheels/share/singular/LIB/jacobson.lib +1215 -0
- sage_wheels/share/singular/LIB/kskernel.lib +534 -0
- sage_wheels/share/singular/LIB/latex.lib +3146 -0
- sage_wheels/share/singular/LIB/lejeune.lib +651 -0
- sage_wheels/share/singular/LIB/linalg.lib +2040 -0
- sage_wheels/share/singular/LIB/locnormal.lib +212 -0
- sage_wheels/share/singular/LIB/lrcalc.lib +526 -0
- sage_wheels/share/singular/LIB/makedbm.lib +294 -0
- sage_wheels/share/singular/LIB/mathml.lib +813 -0
- sage_wheels/share/singular/LIB/matrix.lib +1372 -0
- sage_wheels/share/singular/LIB/maxlike.lib +1132 -0
- sage_wheels/share/singular/LIB/methods.lib +212 -0
- sage_wheels/share/singular/LIB/moddiq.lib +322 -0
- sage_wheels/share/singular/LIB/modfinduni.lib +181 -0
- sage_wheels/share/singular/LIB/modnormal.lib +218 -0
- sage_wheels/share/singular/LIB/modprimdec.lib +1278 -0
- sage_wheels/share/singular/LIB/modquotient.lib +269 -0
- sage_wheels/share/singular/LIB/modstd.lib +1024 -0
- sage_wheels/share/singular/LIB/modular.lib +545 -0
- sage_wheels/share/singular/LIB/modules.lib +2561 -0
- sage_wheels/share/singular/LIB/modwalk.lib +609 -0
- sage_wheels/share/singular/LIB/mondromy.lib +1016 -0
- sage_wheels/share/singular/LIB/monomialideal.lib +3851 -0
- sage_wheels/share/singular/LIB/mprimdec.lib +2353 -0
- sage_wheels/share/singular/LIB/mregular.lib +1863 -0
- sage_wheels/share/singular/LIB/multigrading.lib +5629 -0
- sage_wheels/share/singular/LIB/ncHilb.lib +777 -0
- sage_wheels/share/singular/LIB/ncModslimgb.lib +791 -0
- sage_wheels/share/singular/LIB/ncalg.lib +16311 -0
- sage_wheels/share/singular/LIB/ncall.lib +31 -0
- sage_wheels/share/singular/LIB/ncdecomp.lib +468 -0
- sage_wheels/share/singular/LIB/ncfactor.lib +13371 -0
- sage_wheels/share/singular/LIB/ncfrac.lib +1023 -0
- sage_wheels/share/singular/LIB/nchilbert.lib +448 -0
- sage_wheels/share/singular/LIB/nchomolog.lib +759 -0
- sage_wheels/share/singular/LIB/ncloc.lib +361 -0
- sage_wheels/share/singular/LIB/ncpreim.lib +795 -0
- sage_wheels/share/singular/LIB/ncrat.lib +2849 -0
- sage_wheels/share/singular/LIB/nctools.lib +1887 -0
- sage_wheels/share/singular/LIB/nets.lib +1456 -0
- sage_wheels/share/singular/LIB/nfmodstd.lib +1000 -0
- sage_wheels/share/singular/LIB/nfmodsyz.lib +732 -0
- sage_wheels/share/singular/LIB/noether.lib +1106 -0
- sage_wheels/share/singular/LIB/normal.lib +8700 -0
- sage_wheels/share/singular/LIB/normaliz.lib +2226 -0
- sage_wheels/share/singular/LIB/ntsolve.lib +362 -0
- sage_wheels/share/singular/LIB/numerAlg.lib +560 -0
- sage_wheels/share/singular/LIB/numerDecom.lib +2261 -0
- sage_wheels/share/singular/LIB/olga.lib +1933 -0
- sage_wheels/share/singular/LIB/orbitparam.lib +351 -0
- sage_wheels/share/singular/LIB/parallel.lib +319 -0
- sage_wheels/share/singular/LIB/paraplanecurves.lib +3110 -0
- sage_wheels/share/singular/LIB/perron.lib +202 -0
- sage_wheels/share/singular/LIB/pfd.lib +2223 -0
- sage_wheels/share/singular/LIB/phindex.lib +642 -0
- sage_wheels/share/singular/LIB/pointid.lib +673 -0
- sage_wheels/share/singular/LIB/polybori.lib +1430 -0
- sage_wheels/share/singular/LIB/polyclass.lib +525 -0
- sage_wheels/share/singular/LIB/polylib.lib +1174 -0
- sage_wheels/share/singular/LIB/polymake.lib +1902 -0
- sage_wheels/share/singular/LIB/presolve.lib +1533 -0
- sage_wheels/share/singular/LIB/primdec.lib +9576 -0
- sage_wheels/share/singular/LIB/primdecint.lib +1782 -0
- sage_wheels/share/singular/LIB/primitiv.lib +401 -0
- sage_wheels/share/singular/LIB/puiseuxexpansions.lib +1631 -0
- sage_wheels/share/singular/LIB/purityfiltration.lib +960 -0
- sage_wheels/share/singular/LIB/qhmoduli.lib +1561 -0
- sage_wheels/share/singular/LIB/qmatrix.lib +293 -0
- sage_wheels/share/singular/LIB/random.lib +455 -0
- sage_wheels/share/singular/LIB/ratgb.lib +489 -0
- sage_wheels/share/singular/LIB/realclassify.lib +5759 -0
- sage_wheels/share/singular/LIB/realizationMatroids.lib +772 -0
- sage_wheels/share/singular/LIB/realrad.lib +1197 -0
- sage_wheels/share/singular/LIB/recover.lib +2628 -0
- sage_wheels/share/singular/LIB/redcgs.lib +3984 -0
- sage_wheels/share/singular/LIB/reesclos.lib +465 -0
- sage_wheels/share/singular/LIB/resbinomial.lib +2802 -0
- sage_wheels/share/singular/LIB/resgraph.lib +789 -0
- sage_wheels/share/singular/LIB/resjung.lib +820 -0
- sage_wheels/share/singular/LIB/resolve.lib +5110 -0
- sage_wheels/share/singular/LIB/resources.lib +170 -0
- sage_wheels/share/singular/LIB/reszeta.lib +5473 -0
- sage_wheels/share/singular/LIB/ring.lib +1328 -0
- sage_wheels/share/singular/LIB/ringgb.lib +343 -0
- sage_wheels/share/singular/LIB/rinvar.lib +1153 -0
- sage_wheels/share/singular/LIB/rootisolation.lib +1481 -0
- sage_wheels/share/singular/LIB/rootsmr.lib +709 -0
- sage_wheels/share/singular/LIB/rootsur.lib +886 -0
- sage_wheels/share/singular/LIB/rstandard.lib +607 -0
- sage_wheels/share/singular/LIB/rwalk.lib +336 -0
- sage_wheels/share/singular/LIB/sagbi.lib +1353 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz.lib +1622 -0
- sage_wheels/share/singular/LIB/sagbiNormaliz0.lib +1498 -0
- sage_wheels/share/singular/LIB/sagbigrob.lib +449 -0
- sage_wheels/share/singular/LIB/schreyer.lib +321 -0
- sage_wheels/share/singular/LIB/schubert.lib +2551 -0
- sage_wheels/share/singular/LIB/sets.lib +524 -0
- sage_wheels/share/singular/LIB/sheafcoh.lib +1663 -0
- sage_wheels/share/singular/LIB/signcond.lib +437 -0
- sage_wheels/share/singular/LIB/sing.lib +1094 -0
- sage_wheels/share/singular/LIB/sing4ti2.lib +419 -0
- sage_wheels/share/singular/LIB/solve.lib +2243 -0
- sage_wheels/share/singular/LIB/spcurve.lib +1077 -0
- sage_wheels/share/singular/LIB/spectrum.lib +62 -0
- sage_wheels/share/singular/LIB/sresext.lib +757 -0
- sage_wheels/share/singular/LIB/ssi.lib +143 -0
- sage_wheels/share/singular/LIB/standard.lib +2769 -0
- sage_wheels/share/singular/LIB/stanleyreisner.lib +473 -0
- sage_wheels/share/singular/LIB/stdmodule.lib +547 -0
- sage_wheels/share/singular/LIB/stratify.lib +1070 -0
- sage_wheels/share/singular/LIB/surf.lib +506 -0
- sage_wheels/share/singular/LIB/surf_jupyter.lib +223 -0
- sage_wheels/share/singular/LIB/surfacesignature.lib +522 -0
- sage_wheels/share/singular/LIB/surfex.lib +1462 -0
- sage_wheels/share/singular/LIB/swalk.lib +877 -0
- sage_wheels/share/singular/LIB/symodstd.lib +1570 -0
- sage_wheels/share/singular/LIB/systhreads.lib +74 -0
- sage_wheels/share/singular/LIB/tasks.lib +1324 -0
- sage_wheels/share/singular/LIB/tateProdCplxNegGrad.lib +2412 -0
- sage_wheels/share/singular/LIB/teachstd.lib +858 -0
- sage_wheels/share/singular/LIB/template.lib +116 -0
- sage_wheels/share/singular/LIB/toric.lib +1119 -0
- sage_wheels/share/singular/LIB/transformation.lib +116 -0
- sage_wheels/share/singular/LIB/triang.lib +1197 -0
- sage_wheels/share/singular/LIB/tropical.lib +8741 -0
- sage_wheels/share/singular/LIB/tropicalEllipticCovers.lib +2922 -0
- sage_wheels/share/singular/LIB/tropicalNewton.lib +1128 -0
- sage_wheels/share/singular/LIB/tst.lib +1108 -0
- sage_wheels/share/singular/LIB/weierstr.lib +241 -0
- sage_wheels/share/singular/LIB/zeroset.lib +1478 -0
- sage_wheels/share/singular/emacs/.emacs-general +184 -0
- sage_wheels/share/singular/emacs/.emacs-singular +234 -0
- sage_wheels/share/singular/emacs/COPYING +44 -0
- sage_wheels/share/singular/emacs/cmd-cmpl.el +241 -0
- sage_wheels/share/singular/emacs/ex-cmpl.el +1681 -0
- sage_wheels/share/singular/emacs/hlp-cmpl.el +4318 -0
- sage_wheels/share/singular/emacs/lib-cmpl.el +179 -0
- sage_wheels/share/singular/emacs/singular.el +4273 -0
- sage_wheels/share/singular/emacs/singular.xpm +39 -0
- sage_wheels/share/singular/singular.idx +5002 -0
|
@@ -0,0 +1,673 @@
|
|
|
1
|
+
/////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
version="version pointid.lib 4.4.0.0 Nov_2023 "; // $Id: d17191607296ad59ae043cbf184b129098f2e3ce $
|
|
3
|
+
category="Commutative Algebra";
|
|
4
|
+
info="
|
|
5
|
+
LIBRARY: pointid.lib Procedures for computing a factorized lex GB of
|
|
6
|
+
the vanishing ideal of a set of points via the
|
|
7
|
+
Axis-of-Evil Theorem (M.G. Marinari, T. Mora)
|
|
8
|
+
|
|
9
|
+
AUTHOR: Stefan Steidel, steidel@mathematik.uni-kl.de
|
|
10
|
+
|
|
11
|
+
OVERVIEW:
|
|
12
|
+
The algorithm of Cerlienco-Mureddu [Marinari M.G., Mora T., A remark on a
|
|
13
|
+
remark by Macaulay or Enhancing Lazard Structural Theorem. Bull. of the
|
|
14
|
+
Iranian Math. Soc., 29 (2003), 103-145] associates to each ordered set of
|
|
15
|
+
points A:={a1,...,as} in K^n, ai:=(ai1,...,ain)@*
|
|
16
|
+
- a set of monomials N and@*
|
|
17
|
+
- a bijection phi: A --> N.
|
|
18
|
+
Here I(A):={f in K[x(1),...,x(n)] | f(ai)=0, for all 1<=i<=s} denotes the
|
|
19
|
+
vanishing ideal of A and N = Mon(x(1),...,x(n)) \ {LM(f)|f in I(A)} is the
|
|
20
|
+
set of monomials which do not lie in the leading ideal of I(A) (w.r.t. the
|
|
21
|
+
lexicographical ordering with x(n)>...>x(1)). N is also called the set of
|
|
22
|
+
non-monomials of I(A). NOTE: #A = #N and N is a monomial basis of
|
|
23
|
+
K[x(1..n)]/I(A). In particular, this allows to deduce the set of
|
|
24
|
+
corner-monomials, i.e. the minimal basis M:={m1,...,mr}, m1<...<mr, of its
|
|
25
|
+
associated monomial ideal M(I(A)), such that@*
|
|
26
|
+
M(I(A))= {k*mi | k in Mon(x(1),...,x(n)), mi in M},@*
|
|
27
|
+
and (by interpolation) the unique reduced lexicographical Groebner basis
|
|
28
|
+
G := {f1,...,fr} such that LM(fi)=mi for each i, that is, I(A)=<G>.
|
|
29
|
+
Moreover, a variation of this algorithm allows to deduce a canonical linear
|
|
30
|
+
factorization of each element of such a Groebner basis in the sense ot the
|
|
31
|
+
Axis-of-Evil Theorem by M.G. Marinari and T. Mora. More precisely, a
|
|
32
|
+
combinatorial algorithm and interpolation allow to deduce polynomials
|
|
33
|
+
@*
|
|
34
|
+
@* y_mdi = x(m) - g_mdi(x(1),...,x(m-1)),
|
|
35
|
+
@*
|
|
36
|
+
i=1,...,r; m=1,...,n; d in a finite index-set F, satisfying
|
|
37
|
+
@*
|
|
38
|
+
@* fi = (product of y_mdi) modulo (f1,...,f(i-1))
|
|
39
|
+
@*
|
|
40
|
+
where the product runs over all m=1,...,n; and all d in F.
|
|
41
|
+
|
|
42
|
+
PROCEDURES:
|
|
43
|
+
nonMonomials(id); non-monomials of the vanishing ideal id of a set of points
|
|
44
|
+
cornerMonomials(N); corner-monomials of the set of non-monomials N
|
|
45
|
+
facGBIdeal(id); GB G of id and linear factors of each element of G
|
|
46
|
+
";
|
|
47
|
+
|
|
48
|
+
LIB "polylib.lib";
|
|
49
|
+
|
|
50
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
51
|
+
|
|
52
|
+
static proc subst1(def id, int m)
|
|
53
|
+
{
|
|
54
|
+
//id = poly/ideal/list, substitute the first m variables occurring in id by 1
|
|
55
|
+
|
|
56
|
+
int i,j;
|
|
57
|
+
def I = id;
|
|
58
|
+
if(typeof(I) == "list")
|
|
59
|
+
{
|
|
60
|
+
for(j = 1; j <= size(I); j++)
|
|
61
|
+
{
|
|
62
|
+
for(i = 1; i <= m; i++)
|
|
63
|
+
{
|
|
64
|
+
I[j] = subst(I[j],var(i),1);
|
|
65
|
+
}
|
|
66
|
+
}
|
|
67
|
+
return(I);
|
|
68
|
+
}
|
|
69
|
+
else
|
|
70
|
+
{
|
|
71
|
+
for(i = 1; i <= m; i++)
|
|
72
|
+
{
|
|
73
|
+
I = subst(I,var(i),1);
|
|
74
|
+
}
|
|
75
|
+
return(I);
|
|
76
|
+
}
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
80
|
+
|
|
81
|
+
proc nonMonomials(def id)
|
|
82
|
+
"USAGE: nonMonomials(id); id = <list of vectors> or <list of lists> or <module>
|
|
83
|
+
or <matrix>.@*
|
|
84
|
+
Let A= {a1,...,as} be a set of points in K^n, ai:=(ai1,...,ain), then
|
|
85
|
+
A can be given as@*
|
|
86
|
+
- a list of vectors (the ai are vectors) or@*
|
|
87
|
+
- a list of lists (the ai are lists of numbers) or@*
|
|
88
|
+
- a module s.t. the ai are generators or@*
|
|
89
|
+
- a matrix s.t. the ai are columns
|
|
90
|
+
ASSUME: basering must have ordering ip, i.e., be of the form 0,x(1..n),ip;
|
|
91
|
+
(the first entry of a point belongs to the lex-smallest variable, etc.)
|
|
92
|
+
RETURN: ideal, the non-monomials of the vanishing ideal I(A) of A
|
|
93
|
+
PURPOSE: compute the set of non-monomials Mon(x(1),...,x(n)) \ {LM(f)|f in I(A)}
|
|
94
|
+
of the vanishing ideal I(A) of the given set of points A in K^n, where
|
|
95
|
+
K[x(1),...,x(n)] is equipped with the lexicographical ordering induced
|
|
96
|
+
by x(1)<...<x(n) by using the algorithm of Cerlienco-Mureddu
|
|
97
|
+
EXAMPLE: example nonMonomials; shows an example
|
|
98
|
+
"
|
|
99
|
+
{
|
|
100
|
+
list A;
|
|
101
|
+
int i,j;
|
|
102
|
+
if(typeof(id) == "list")
|
|
103
|
+
{
|
|
104
|
+
for(i = 1; i <= size(id); i++)
|
|
105
|
+
{
|
|
106
|
+
if(typeof(id[i]) == "list")
|
|
107
|
+
{
|
|
108
|
+
vector a;
|
|
109
|
+
for(j = 1; j <= size(id[i]); j++)
|
|
110
|
+
{
|
|
111
|
+
a = a+id[i][j]*gen(j);
|
|
112
|
+
}
|
|
113
|
+
A[size(A)+1] = a;
|
|
114
|
+
kill a;
|
|
115
|
+
}
|
|
116
|
+
if(typeof(id[i]) == "vector")
|
|
117
|
+
{
|
|
118
|
+
A[size(A)+1] = id[i];
|
|
119
|
+
}
|
|
120
|
+
}
|
|
121
|
+
}
|
|
122
|
+
else
|
|
123
|
+
{
|
|
124
|
+
if(typeof(id) == "module")
|
|
125
|
+
{
|
|
126
|
+
for(i = 1; i <= size(id); i++)
|
|
127
|
+
{
|
|
128
|
+
A[size(A)+1] = id[i];
|
|
129
|
+
}
|
|
130
|
+
}
|
|
131
|
+
else
|
|
132
|
+
{
|
|
133
|
+
if(typeof(id) == "matrix")
|
|
134
|
+
{
|
|
135
|
+
for(i = 1; i <= ncols(id); i++)
|
|
136
|
+
{
|
|
137
|
+
A[size(A)+1] = id[i];
|
|
138
|
+
}
|
|
139
|
+
}
|
|
140
|
+
else
|
|
141
|
+
{
|
|
142
|
+
ERROR("Wrong type of input!!");
|
|
143
|
+
}
|
|
144
|
+
}
|
|
145
|
+
}
|
|
146
|
+
|
|
147
|
+
int n = nvars(basering);
|
|
148
|
+
int s;
|
|
149
|
+
int m,d;
|
|
150
|
+
ideal N = 1;
|
|
151
|
+
ideal N1,N2;
|
|
152
|
+
list Y,D,W,Z;
|
|
153
|
+
poly my,t;
|
|
154
|
+
for(s = 2; s <= size(A); s++)
|
|
155
|
+
{
|
|
156
|
+
|
|
157
|
+
//-- compute m = max{ j | ex. i<s: pr_j(a_i) = pr_j(a_s)} ---------------------
|
|
158
|
+
//-- compute d = |{ a_i | i<s: pr_m(a_i) = pr_m(a_s), phi(a_i) in T[1,m+1]}| --
|
|
159
|
+
m = 0;
|
|
160
|
+
Y = A[1..s-1];
|
|
161
|
+
N2 = N[1..s-1];
|
|
162
|
+
while(size(Y) > 0) //assume all points different (m <= size(basering))
|
|
163
|
+
{
|
|
164
|
+
D = Y;
|
|
165
|
+
N1 = N2;
|
|
166
|
+
Y = list();
|
|
167
|
+
N2 = ideal();
|
|
168
|
+
m++;
|
|
169
|
+
for(i = 1; i <= size(D); i++)
|
|
170
|
+
{
|
|
171
|
+
if(A[s][m] == D[i][m])
|
|
172
|
+
{
|
|
173
|
+
Y[size(Y)+1] = D[i];
|
|
174
|
+
N2[size(N2)+1] = N1[i];
|
|
175
|
+
}
|
|
176
|
+
}
|
|
177
|
+
}
|
|
178
|
+
m = m - 1;
|
|
179
|
+
d = size(D);
|
|
180
|
+
if(m < n-1)
|
|
181
|
+
{
|
|
182
|
+
for(i = 1; i <= size(N1); i++)
|
|
183
|
+
{
|
|
184
|
+
if(N1[i] >= var(m+2))
|
|
185
|
+
{
|
|
186
|
+
d = d - 1;
|
|
187
|
+
}
|
|
188
|
+
}
|
|
189
|
+
}
|
|
190
|
+
|
|
191
|
+
//------- compute t = my * x(m+1)^d where my is obtained recursively --------
|
|
192
|
+
if(m == 0)
|
|
193
|
+
{
|
|
194
|
+
my = 1;
|
|
195
|
+
}
|
|
196
|
+
else
|
|
197
|
+
{
|
|
198
|
+
Z = list();
|
|
199
|
+
for(i = 2; i <= s-1; i++)
|
|
200
|
+
{
|
|
201
|
+
if((leadexp(N[i])[m+1] == d) && (coeffs(N[i],var(m+1))[nrows(coeffs(N[i],var(m+1))),1] < var(m+1)))
|
|
202
|
+
{
|
|
203
|
+
Z[size(Z)+1] = A[i][1..m];
|
|
204
|
+
}
|
|
205
|
+
}
|
|
206
|
+
Z[size(Z)+1] = A[s][1..m];
|
|
207
|
+
|
|
208
|
+
my = nonMonomials(Z)[size(Z)];
|
|
209
|
+
}
|
|
210
|
+
|
|
211
|
+
t = my * var(m+1)^d;
|
|
212
|
+
|
|
213
|
+
//---------------------------- t is added to N --------------------------------
|
|
214
|
+
N[size(N)+1] = t;
|
|
215
|
+
}
|
|
216
|
+
return(N);
|
|
217
|
+
}
|
|
218
|
+
example
|
|
219
|
+
{ "EXAMPLE:"; echo = 2;
|
|
220
|
+
ring R1 = 0,x(1..3),ip;
|
|
221
|
+
vector a1 = [4,0,0];
|
|
222
|
+
vector a2 = [2,1,4];
|
|
223
|
+
vector a3 = [2,4,0];
|
|
224
|
+
vector a4 = [3,0,1];
|
|
225
|
+
vector a5 = [2,1,3];
|
|
226
|
+
vector a6 = [1,3,4];
|
|
227
|
+
vector a7 = [2,4,3];
|
|
228
|
+
vector a8 = [2,4,2];
|
|
229
|
+
vector a9 = [1,0,2];
|
|
230
|
+
list A = a1,a2,a3,a4,a5,a6,a7,a8,a9;
|
|
231
|
+
nonMonomials(A);
|
|
232
|
+
|
|
233
|
+
matrix MAT[9][3] = 4,0,0,2,1,4,2,4,0,3,0,1,2,1,3,1,3,4,2,4,3,2,4,2,1,0,2;
|
|
234
|
+
MAT = transpose(MAT);
|
|
235
|
+
print(MAT);
|
|
236
|
+
nonMonomials(MAT);
|
|
237
|
+
|
|
238
|
+
module MOD = gen(3),gen(2)-2*gen(3),2*gen(1)+2*gen(3),2*gen(2)-2*gen(3),gen(1)+3*gen(3),gen(1)+gen(2)+3*gen(3),gen(1)+gen(2)+gen(3);
|
|
239
|
+
print(MOD);
|
|
240
|
+
nonMonomials(MOD);
|
|
241
|
+
|
|
242
|
+
ring R2 = 0,x(1..2),ip;
|
|
243
|
+
list l1 = 0,0;
|
|
244
|
+
list l2 = 0,1;
|
|
245
|
+
list l3 = 2,0;
|
|
246
|
+
list l4 = 0,2;
|
|
247
|
+
list l5 = 1,0;
|
|
248
|
+
list l6 = 1,1;
|
|
249
|
+
list L = l1,l2,l3,l4,l5,l6;
|
|
250
|
+
nonMonomials(L);
|
|
251
|
+
}
|
|
252
|
+
|
|
253
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
254
|
+
|
|
255
|
+
proc cornerMonomials(ideal N)
|
|
256
|
+
"USAGE: cornerMonomials(N); N ideal
|
|
257
|
+
ASSUME: N is given by monomials satisfying the condition that if a monomial is
|
|
258
|
+
in N then any of its factors is in N (N is then called an order ideal)
|
|
259
|
+
RETURN: ideal, the corner-monomials of the order ideal N @*
|
|
260
|
+
The corner-monomials are the leading monomials of an ideal I s.t. N is
|
|
261
|
+
a basis of basering/I.
|
|
262
|
+
NOTE: In our applications, I is the vanishing ideal of a finte set of points.
|
|
263
|
+
EXAMPLE: example cornerMonomials; shows an example
|
|
264
|
+
"
|
|
265
|
+
{
|
|
266
|
+
int n = nvars(basering);
|
|
267
|
+
int i,j,h;
|
|
268
|
+
list C;
|
|
269
|
+
poly m,p;
|
|
270
|
+
int Z;
|
|
271
|
+
int vars;
|
|
272
|
+
intvec v;
|
|
273
|
+
ideal M;
|
|
274
|
+
|
|
275
|
+
//-------------------- Test: Is 1 in N ?, if no, return <1> ----------------------
|
|
276
|
+
for(i = 1; i <= size(N); i++)
|
|
277
|
+
{
|
|
278
|
+
if(1 == N[i])
|
|
279
|
+
{
|
|
280
|
+
h = 1;
|
|
281
|
+
break;
|
|
282
|
+
}
|
|
283
|
+
}
|
|
284
|
+
if(h == 0)
|
|
285
|
+
{
|
|
286
|
+
return(ideal(1));
|
|
287
|
+
}
|
|
288
|
+
|
|
289
|
+
//----------------------------- compute the set M -----------------------------
|
|
290
|
+
for(i = 1; i <= n; i++)
|
|
291
|
+
{
|
|
292
|
+
C[size(C)+1] = list(var(i),1);
|
|
293
|
+
}
|
|
294
|
+
while(size(C) > 0)
|
|
295
|
+
{
|
|
296
|
+
m = C[1][1];
|
|
297
|
+
Z = C[1][2];
|
|
298
|
+
C = delete(C,1);
|
|
299
|
+
vars = 0;
|
|
300
|
+
v = leadexp(m);
|
|
301
|
+
for(i = 1; i <= n; i++)
|
|
302
|
+
{
|
|
303
|
+
vars = vars + (v[i] != 0);
|
|
304
|
+
}
|
|
305
|
+
|
|
306
|
+
if(vars == Z)
|
|
307
|
+
{
|
|
308
|
+
h = 0;
|
|
309
|
+
for(i = 1; i <= size(N); i++)
|
|
310
|
+
{
|
|
311
|
+
if(m == N[i])
|
|
312
|
+
{
|
|
313
|
+
h = 1;
|
|
314
|
+
break;
|
|
315
|
+
}
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
if(h == 0)
|
|
319
|
+
{
|
|
320
|
+
M[size(M)+1] = m;
|
|
321
|
+
}
|
|
322
|
+
else
|
|
323
|
+
{
|
|
324
|
+
for(i = 1; i <= n; i++)
|
|
325
|
+
{
|
|
326
|
+
p = m * var(i);
|
|
327
|
+
if(size(C) == 0)
|
|
328
|
+
{
|
|
329
|
+
C[1] = list(p,1);
|
|
330
|
+
}
|
|
331
|
+
else
|
|
332
|
+
{
|
|
333
|
+
for(j = 1; j <= size(C); j++)
|
|
334
|
+
{
|
|
335
|
+
if(p <= C[j][1] || j == size(C))
|
|
336
|
+
{
|
|
337
|
+
if(p == C[j][1])
|
|
338
|
+
{
|
|
339
|
+
C[j][2] = C[j][2] + 1;
|
|
340
|
+
}
|
|
341
|
+
else
|
|
342
|
+
{
|
|
343
|
+
if(p < C[j][1])
|
|
344
|
+
{
|
|
345
|
+
C = insert(C,list(p,1),j-1);
|
|
346
|
+
}
|
|
347
|
+
else
|
|
348
|
+
{
|
|
349
|
+
C[size(C)+1] = list(p,1);
|
|
350
|
+
}
|
|
351
|
+
}
|
|
352
|
+
break;
|
|
353
|
+
}
|
|
354
|
+
}
|
|
355
|
+
}
|
|
356
|
+
}
|
|
357
|
+
}
|
|
358
|
+
}
|
|
359
|
+
}
|
|
360
|
+
return(M);
|
|
361
|
+
}
|
|
362
|
+
example
|
|
363
|
+
{ "EXAMPLE:"; echo = 2;
|
|
364
|
+
ring R = 0,x(1..3),ip;
|
|
365
|
+
poly n1 = 1;
|
|
366
|
+
poly n2 = x(1);
|
|
367
|
+
poly n3 = x(2);
|
|
368
|
+
poly n4 = x(1)^2;
|
|
369
|
+
poly n5 = x(3);
|
|
370
|
+
poly n6 = x(1)^3;
|
|
371
|
+
poly n7 = x(2)*x(3);
|
|
372
|
+
poly n8 = x(3)^2;
|
|
373
|
+
poly n9 = x(1)*x(2);
|
|
374
|
+
ideal N = n1,n2,n3,n4,n5,n6,n7,n8,n9;
|
|
375
|
+
cornerMonomials(N);
|
|
376
|
+
}
|
|
377
|
+
|
|
378
|
+
////////////////////////////////////////////////////////////////////////////////
|
|
379
|
+
|
|
380
|
+
proc facGBIdeal(def id)
|
|
381
|
+
"USAGE: facGBIdeal(id); id = <list of vectors> or <list of lists> or <module>
|
|
382
|
+
or <matrix>.@*
|
|
383
|
+
Let A= {a1,...,as} be a set of points in K^n, ai:=(ai1,...,ain), then
|
|
384
|
+
A can be given as@*
|
|
385
|
+
- a list of vectors (the ai are vectors) or@*
|
|
386
|
+
- a list of lists (the ai are lists of numbers) or@*
|
|
387
|
+
- a module s.t. the ai are generators or@*
|
|
388
|
+
- a matrix s.t. the ai are columns
|
|
389
|
+
ASSUME: basering must have ordering ip, i.e., be of the form 0,x(1..n),ip;
|
|
390
|
+
(the first entry of a point belongs to the lex-smallest variable, etc.)
|
|
391
|
+
RETURN: a list where the first entry contains the Groebner basis G of I(A)
|
|
392
|
+
and the second entry contains the linear factors of each element of G
|
|
393
|
+
NOTE: combinatorial algorithm due to the Axis-of-Evil Theorem of M.G.
|
|
394
|
+
Marinari, T. Mora
|
|
395
|
+
EXAMPLE: example facGBIdeal; shows an example
|
|
396
|
+
"
|
|
397
|
+
{
|
|
398
|
+
list A;
|
|
399
|
+
int i,j;
|
|
400
|
+
if(typeof(id) == "list")
|
|
401
|
+
{
|
|
402
|
+
for(i = 1; i <= size(id); i++)
|
|
403
|
+
{
|
|
404
|
+
if(typeof(id[i]) == "list")
|
|
405
|
+
{
|
|
406
|
+
vector a;
|
|
407
|
+
for(j = 1; j <= size(id[i]); j++)
|
|
408
|
+
{
|
|
409
|
+
a = a+id[i][j]*gen(j);
|
|
410
|
+
}
|
|
411
|
+
A[size(A)+1] = a;
|
|
412
|
+
kill a;
|
|
413
|
+
}
|
|
414
|
+
if(typeof(id[i]) == "vector")
|
|
415
|
+
{
|
|
416
|
+
A[size(A)+1] = id[i];
|
|
417
|
+
}
|
|
418
|
+
}
|
|
419
|
+
}
|
|
420
|
+
else
|
|
421
|
+
{
|
|
422
|
+
if(typeof(id) == "module")
|
|
423
|
+
{
|
|
424
|
+
for(i = 1; i <= size(id); i++)
|
|
425
|
+
{
|
|
426
|
+
A[size(A)+1] = id[i];
|
|
427
|
+
}
|
|
428
|
+
}
|
|
429
|
+
else
|
|
430
|
+
{
|
|
431
|
+
if(typeof(id) == "matrix")
|
|
432
|
+
{
|
|
433
|
+
for(i = 1; i <= ncols(id); i++)
|
|
434
|
+
{
|
|
435
|
+
A[size(A)+1] = id[i];
|
|
436
|
+
}
|
|
437
|
+
}
|
|
438
|
+
else
|
|
439
|
+
{
|
|
440
|
+
ERROR("Wrong type of input!!");
|
|
441
|
+
}
|
|
442
|
+
}
|
|
443
|
+
}
|
|
444
|
+
|
|
445
|
+
int n = nvars(basering);
|
|
446
|
+
def S = basering;
|
|
447
|
+
def R;
|
|
448
|
+
|
|
449
|
+
ideal N = nonMonomials(A);
|
|
450
|
+
ideal eN;
|
|
451
|
+
ideal M = cornerMonomials(N);
|
|
452
|
+
poly my, emy;
|
|
453
|
+
|
|
454
|
+
int d,k,l,m;
|
|
455
|
+
|
|
456
|
+
int d1;
|
|
457
|
+
poly y(1);
|
|
458
|
+
|
|
459
|
+
list N2,D,H;
|
|
460
|
+
poly z,h;
|
|
461
|
+
|
|
462
|
+
int dm;
|
|
463
|
+
list Am,Z;
|
|
464
|
+
ideal E;
|
|
465
|
+
list V,eV;
|
|
466
|
+
poly p;
|
|
467
|
+
poly y(2..n),y;
|
|
468
|
+
poly xi;
|
|
469
|
+
|
|
470
|
+
poly f;
|
|
471
|
+
ideal G1; // stores the elements of G, i.e. G1 = G the GB of I(A)
|
|
472
|
+
ideal Y; // stores the linear factors of GB-elements in each loop
|
|
473
|
+
list G2; // contains the linear factors of each element of G
|
|
474
|
+
|
|
475
|
+
for(j = 1; j <= size(M); j++)
|
|
476
|
+
{
|
|
477
|
+
my = M[j];
|
|
478
|
+
emy = subst(my,var(1),1); // auxiliary polynomial
|
|
479
|
+
eN = subst(N,var(1),1); // auxiliary monomial ideal
|
|
480
|
+
Y = ideal();
|
|
481
|
+
|
|
482
|
+
d1 = leadexp(my)[1];
|
|
483
|
+
y(1) = 1;
|
|
484
|
+
i = 0;
|
|
485
|
+
k = 1;
|
|
486
|
+
while(i < d1)
|
|
487
|
+
{
|
|
488
|
+
//---------- searching for phi^{-1}(x_1^i*x_2^d_2*...*x_n^d_n) ----------------
|
|
489
|
+
while(my*var(1)^i/var(1)^d1 != N[k])
|
|
490
|
+
{
|
|
491
|
+
k++;
|
|
492
|
+
}
|
|
493
|
+
y(1) = y(1)*(var(1)-A[k][1]);
|
|
494
|
+
Y[size(Y)+1] = cleardenom(var(1)-A[k][1]);
|
|
495
|
+
i++;
|
|
496
|
+
}
|
|
497
|
+
f = y(1); // gamma_1my
|
|
498
|
+
|
|
499
|
+
//--------------- Recursion over number of variables --------------------------
|
|
500
|
+
z = 1; // zeta_mmy
|
|
501
|
+
for(m = 2; m <= n; m++)
|
|
502
|
+
{
|
|
503
|
+
z = z * y(m-1);
|
|
504
|
+
|
|
505
|
+
D = list();
|
|
506
|
+
H = list();
|
|
507
|
+
for(i = 1; i <= size(A); i++)
|
|
508
|
+
{
|
|
509
|
+
h = z;
|
|
510
|
+
for(k = 1; k <= n; k++)
|
|
511
|
+
{
|
|
512
|
+
h = subst(h,var(k),A[i][k]);
|
|
513
|
+
}
|
|
514
|
+
if(h != 0)
|
|
515
|
+
{
|
|
516
|
+
D[size(D)+1] = A[i];
|
|
517
|
+
H[size(H)+1] = i;
|
|
518
|
+
}
|
|
519
|
+
}
|
|
520
|
+
|
|
521
|
+
if(size(D) == 0)
|
|
522
|
+
{
|
|
523
|
+
break;
|
|
524
|
+
}
|
|
525
|
+
|
|
526
|
+
dm = leadexp(my)[m];
|
|
527
|
+
while(dm == 0)
|
|
528
|
+
{
|
|
529
|
+
m = m + 1;
|
|
530
|
+
dm = leadexp(my)[m];
|
|
531
|
+
}
|
|
532
|
+
|
|
533
|
+
N2 = list(); // N2 = N_m
|
|
534
|
+
emy = subst(emy,var(m),1);
|
|
535
|
+
eN = subst(eN,var(m),1);
|
|
536
|
+
for(i = 1; i <= size(N); i++)
|
|
537
|
+
{
|
|
538
|
+
if((emy == eN[i]) && (my > N[i]))
|
|
539
|
+
{
|
|
540
|
+
N2[size(N2)+1] = N[i];
|
|
541
|
+
}
|
|
542
|
+
}
|
|
543
|
+
|
|
544
|
+
y(m) = 1;
|
|
545
|
+
xi = z;
|
|
546
|
+
for(d = 1; d <= dm; d++)
|
|
547
|
+
{
|
|
548
|
+
Am = list();
|
|
549
|
+
Z = list(); // Z = pr_m(Am)
|
|
550
|
+
|
|
551
|
+
//------- V contains all ny*x_m^{d_m-d}*x_m+1^d_m+1*...+x_n^d_n in N_m --------
|
|
552
|
+
eV = subst1(N2,m-1);
|
|
553
|
+
V = list();
|
|
554
|
+
for(i = 1; i <= size(eV); i++)
|
|
555
|
+
{
|
|
556
|
+
if(eV[i] == subst1(my,m-1)/var(m)^d)
|
|
557
|
+
{
|
|
558
|
+
V[size(V)+1] = eV[i];
|
|
559
|
+
}
|
|
560
|
+
}
|
|
561
|
+
|
|
562
|
+
//------- A_m = phi^{-1}(V) intersect D_md-1 ----------------------------------
|
|
563
|
+
for(i = 1; i <= size(D); i++)
|
|
564
|
+
{
|
|
565
|
+
p = N[H[i]];
|
|
566
|
+
p = subst1(p,m-1);
|
|
567
|
+
for(l = 1; l <= size(V); l++)
|
|
568
|
+
{
|
|
569
|
+
if(p == V[l])
|
|
570
|
+
{
|
|
571
|
+
Am[size(Am)+1] = D[i];
|
|
572
|
+
Z[size(Z)+1] = D[i][1..m];
|
|
573
|
+
break;
|
|
574
|
+
}
|
|
575
|
+
}
|
|
576
|
+
}
|
|
577
|
+
|
|
578
|
+
E = nonMonomials(Z);
|
|
579
|
+
|
|
580
|
+
R = extendring(size(E), "c(", "lp");
|
|
581
|
+
setring R;
|
|
582
|
+
ideal E = imap(S,E);
|
|
583
|
+
list Am = imap(S,Am);
|
|
584
|
+
poly g = var(size(E)+m);
|
|
585
|
+
for(i = 1; i <= size(E); i++)
|
|
586
|
+
{
|
|
587
|
+
g = g + c(i)*E[i];
|
|
588
|
+
}
|
|
589
|
+
|
|
590
|
+
ideal I = ideal();
|
|
591
|
+
poly h;
|
|
592
|
+
for (i = 1; i <= size(Am); i++)
|
|
593
|
+
{
|
|
594
|
+
h = g;
|
|
595
|
+
for(k = 1; k <= n; k++)
|
|
596
|
+
{
|
|
597
|
+
h = subst(h,var(size(E)+k),Am[i][k]);
|
|
598
|
+
}
|
|
599
|
+
I[size(I)+1] = h;
|
|
600
|
+
}
|
|
601
|
+
|
|
602
|
+
ideal sI = std(I);
|
|
603
|
+
g = reduce(g,sI);
|
|
604
|
+
|
|
605
|
+
setring S;
|
|
606
|
+
y = imap(R,g);
|
|
607
|
+
Y[size(Y)+1] = cleardenom(y);
|
|
608
|
+
xi = xi * y;
|
|
609
|
+
|
|
610
|
+
D = list();
|
|
611
|
+
H = list();
|
|
612
|
+
for(i = 1; i <= size(A); i++)
|
|
613
|
+
{
|
|
614
|
+
h = xi;
|
|
615
|
+
for(k = 1; k <= n; k++)
|
|
616
|
+
{
|
|
617
|
+
h = subst(h,var(k),A[i][k]);
|
|
618
|
+
}
|
|
619
|
+
if(h != 0)
|
|
620
|
+
{
|
|
621
|
+
D[size(D)+1] = A[i];
|
|
622
|
+
H[size(H)+1] = i;
|
|
623
|
+
}
|
|
624
|
+
}
|
|
625
|
+
|
|
626
|
+
y(m) = y(m) * y;
|
|
627
|
+
|
|
628
|
+
if(size(D) == 0)
|
|
629
|
+
{
|
|
630
|
+
break;
|
|
631
|
+
}
|
|
632
|
+
}
|
|
633
|
+
|
|
634
|
+
f = f * y(m);
|
|
635
|
+
}
|
|
636
|
+
G1[size(G1)+1] = f;
|
|
637
|
+
G2[size(G2)+1] = Y;
|
|
638
|
+
}
|
|
639
|
+
return(list(G1,G2));
|
|
640
|
+
}
|
|
641
|
+
example
|
|
642
|
+
{ "EXAMPLE:"; echo = 2;
|
|
643
|
+
ring R = 0,x(1..3),ip;
|
|
644
|
+
vector a1 = [4,0,0];
|
|
645
|
+
vector a2 = [2,1,4];
|
|
646
|
+
vector a3 = [2,4,0];
|
|
647
|
+
vector a4 = [3,0,1];
|
|
648
|
+
vector a5 = [2,1,3];
|
|
649
|
+
vector a6 = [1,3,4];
|
|
650
|
+
vector a7 = [2,4,3];
|
|
651
|
+
vector a8 = [2,4,2];
|
|
652
|
+
vector a9 = [1,0,2];
|
|
653
|
+
list A = a1,a2,a3,a4,a5,a6,a7,a8,a9;
|
|
654
|
+
facGBIdeal(A);
|
|
655
|
+
|
|
656
|
+
matrix MAT[9][3] = 4,0,0,2,1,4,2,4,0,3,0,1,2,1,3,1,3,4,2,4,3,2,4,2,1,0,2;
|
|
657
|
+
MAT = transpose(MAT);
|
|
658
|
+
print(MAT);
|
|
659
|
+
facGBIdeal(MAT);
|
|
660
|
+
|
|
661
|
+
module MOD = gen(3),gen(2)-2*gen(3),2*gen(1)+2*gen(3),2*gen(2)-2*gen(3),gen(1)+3*gen(3),gen(1)+gen(2)+3*gen(3),gen(1)+gen(2)+gen(3);
|
|
662
|
+
print(MOD);
|
|
663
|
+
facGBIdeal(MOD);
|
|
664
|
+
|
|
665
|
+
list l1 = 0,0,1;
|
|
666
|
+
list l2 = 0,1,-2;
|
|
667
|
+
list l3 = 2,0,2;
|
|
668
|
+
list l4 = 0,2,-2;
|
|
669
|
+
list l5 = 1,0,3;
|
|
670
|
+
list l6 = 1,1,3;
|
|
671
|
+
list L = l1,l2,l3,l4,l5,l6;
|
|
672
|
+
facGBIdeal(L);
|
|
673
|
+
}
|