passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +808 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_modules.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-d8ebe4b5.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,673 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: optional - sage.rings.finite_rings
|
|
3
|
+
r"""
|
|
4
|
+
Drinfeld modules over rings of characteristic zero
|
|
5
|
+
|
|
6
|
+
This module provides the classes
|
|
7
|
+
:class:`sage.rings.function_fields.drinfeld_module.charzero_drinfeld_module.DrinfeldModule_charzero` and
|
|
8
|
+
:class:`sage.rings.function_fields.drinfeld_module.charzero_drinfeld_module.DrinfeldModule_rational`,
|
|
9
|
+
which both inherit
|
|
10
|
+
:class:`sage.rings.function_fields.drinfeld_module.drinfeld_module.DrinfeldModule`.
|
|
11
|
+
|
|
12
|
+
AUTHORS:
|
|
13
|
+
|
|
14
|
+
- David Ayotte (2023-09)
|
|
15
|
+
- Xavier Caruso (2024-12) - computation of class polynomials
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
# *****************************************************************************
|
|
19
|
+
# Copyright (C) 2022 David Ayotte <david.ayotte@mail.concordia.ca>
|
|
20
|
+
#
|
|
21
|
+
# This program is free software: you can redistribute it and/or modify
|
|
22
|
+
# it under the terms of the GNU General Public License as published by
|
|
23
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
24
|
+
# (at your option) any later version.
|
|
25
|
+
# http://www.gnu.org/licenses/
|
|
26
|
+
# *****************************************************************************
|
|
27
|
+
|
|
28
|
+
from .drinfeld_module import DrinfeldModule
|
|
29
|
+
|
|
30
|
+
from sage.rings.integer_ring import ZZ
|
|
31
|
+
from sage.rings.infinity import Infinity
|
|
32
|
+
|
|
33
|
+
from sage.matrix.constructor import matrix
|
|
34
|
+
from sage.modules.free_module_element import vector
|
|
35
|
+
|
|
36
|
+
from sage.misc.cachefunc import cached_method
|
|
37
|
+
from sage.misc.lazy_import import lazy_import
|
|
38
|
+
|
|
39
|
+
lazy_import('sage.rings.lazy_series_ring', 'LazyPowerSeriesRing')
|
|
40
|
+
lazy_import('sage.rings.power_series_ring', 'PowerSeriesRing')
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class DrinfeldModule_charzero(DrinfeldModule):
|
|
44
|
+
r"""
|
|
45
|
+
This class implements Drinfeld `\mathbb{F}_q[T]`-modules defined
|
|
46
|
+
over fields of `\mathbb{F}_q[T]`-characteristic zero.
|
|
47
|
+
|
|
48
|
+
Recall that the `\mathbb{F}_q[T]`-*characteristic* is defined as the
|
|
49
|
+
kernel of the underlying structure morphism. For general definitions
|
|
50
|
+
and help on Drinfeld modules, see class
|
|
51
|
+
:class:`sage.rings.function_fields.drinfeld_module.drinfeld_module.DrinfeldModule`.
|
|
52
|
+
|
|
53
|
+
.. RUBRIC:: Construction:
|
|
54
|
+
|
|
55
|
+
The user does not ever need to directly call
|
|
56
|
+
``DrinfeldModule_charzero`` --- the metaclass ``DrinfeldModule`` is
|
|
57
|
+
responsible for instantiating the right class depending on the
|
|
58
|
+
input::
|
|
59
|
+
|
|
60
|
+
sage: A = GF(3)['T']
|
|
61
|
+
sage: K.<T> = Frac(A)
|
|
62
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
63
|
+
sage: phi
|
|
64
|
+
Drinfeld module defined by T |--> t + T
|
|
65
|
+
|
|
66
|
+
::
|
|
67
|
+
|
|
68
|
+
sage: isinstance(phi, DrinfeldModule)
|
|
69
|
+
True
|
|
70
|
+
sage: from sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module import DrinfeldModule_charzero
|
|
71
|
+
sage: isinstance(phi, DrinfeldModule_charzero)
|
|
72
|
+
True
|
|
73
|
+
|
|
74
|
+
.. RUBRIC:: Logarithm and exponential
|
|
75
|
+
|
|
76
|
+
It is possible to calculate the logarithm and the exponential of
|
|
77
|
+
any Drinfeld modules of characteristic zero::
|
|
78
|
+
|
|
79
|
+
sage: A = GF(2)['T']
|
|
80
|
+
sage: K.<T> = Frac(A)
|
|
81
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
82
|
+
sage: phi.exponential()
|
|
83
|
+
z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8)
|
|
84
|
+
sage: phi.logarithm()
|
|
85
|
+
z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8)
|
|
86
|
+
|
|
87
|
+
.. RUBRIC:: Goss polynomials
|
|
88
|
+
|
|
89
|
+
Goss polynomials are a sequence of polynomials related with the
|
|
90
|
+
analytic theory of Drinfeld module. They provide a function field
|
|
91
|
+
analogue of certain classical trigonometric functions::
|
|
92
|
+
|
|
93
|
+
sage: A = GF(2)['T']
|
|
94
|
+
sage: K.<T> = Frac(A)
|
|
95
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
96
|
+
sage: phi.goss_polynomial(1)
|
|
97
|
+
X
|
|
98
|
+
sage: phi.goss_polynomial(2)
|
|
99
|
+
X^2
|
|
100
|
+
sage: phi.goss_polynomial(3)
|
|
101
|
+
X^3 + (1/(T^2 + T))*X^2
|
|
102
|
+
|
|
103
|
+
.. RUBRIC:: Base fields of `\mathbb{F}_q[T]`-characteristic zero
|
|
104
|
+
|
|
105
|
+
The base fields need not only be fraction fields of polynomials
|
|
106
|
+
ring. In the following example, we construct a Drinfeld module over
|
|
107
|
+
`\mathbb{F}_q((1/T))`, the completion of the rational function field
|
|
108
|
+
at the place `1/T`::
|
|
109
|
+
|
|
110
|
+
sage: A.<T> = GF(2)[]
|
|
111
|
+
sage: L.<s> = LaurentSeriesRing(GF(2)) # s = 1/T
|
|
112
|
+
sage: phi = DrinfeldModule(A, [1/s, s + s^2 + s^5 + O(s^6), 1+1/s])
|
|
113
|
+
sage: phi(T)
|
|
114
|
+
(s^-1 + 1)*t^2 + (s + s^2 + s^5 + O(s^6))*t + s^-1
|
|
115
|
+
|
|
116
|
+
One can also construct Drinfeld modules over SageMath's global
|
|
117
|
+
function fields::
|
|
118
|
+
|
|
119
|
+
sage: A.<T> = GF(5)[]
|
|
120
|
+
sage: K.<z> = FunctionField(GF(5)) # z = T
|
|
121
|
+
sage: phi = DrinfeldModule(A, [z, 1, z^2])
|
|
122
|
+
sage: phi(T)
|
|
123
|
+
z^2*t^2 + t + z
|
|
124
|
+
"""
|
|
125
|
+
@cached_method
|
|
126
|
+
def _compute_coefficient_exp(self, k):
|
|
127
|
+
r"""
|
|
128
|
+
Return the `q^k`-th coefficient of the exponential of this
|
|
129
|
+
Drinfeld module.
|
|
130
|
+
|
|
131
|
+
INPUT:
|
|
132
|
+
|
|
133
|
+
- ``k`` -- integer; the index of the coefficient
|
|
134
|
+
|
|
135
|
+
TESTS::
|
|
136
|
+
|
|
137
|
+
sage: A = GF(2)['T']
|
|
138
|
+
sage: K.<T> = Frac(A)
|
|
139
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
140
|
+
sage: q = A.base_ring().cardinality()
|
|
141
|
+
sage: phi._compute_coefficient_exp(0)
|
|
142
|
+
1
|
|
143
|
+
sage: phi._compute_coefficient_exp(1)
|
|
144
|
+
1/(T^2 + T)
|
|
145
|
+
sage: phi._compute_coefficient_exp(2)
|
|
146
|
+
1/(T^8 + T^6 + T^5 + T^3)
|
|
147
|
+
sage: phi._compute_coefficient_exp(3)
|
|
148
|
+
1/(T^24 + T^20 + T^18 + T^17 + T^14 + T^13 + T^11 + T^7)
|
|
149
|
+
"""
|
|
150
|
+
k = ZZ(k)
|
|
151
|
+
if k.is_zero():
|
|
152
|
+
return self._base.one()
|
|
153
|
+
q = self._Fq.cardinality()
|
|
154
|
+
c = self._base.zero()
|
|
155
|
+
for i in range(k):
|
|
156
|
+
j = k - i
|
|
157
|
+
c += self._compute_coefficient_exp(i)*self._compute_coefficient_log(j)**(q**i)
|
|
158
|
+
return -c
|
|
159
|
+
|
|
160
|
+
def exponential(self, prec=Infinity, name='z'):
|
|
161
|
+
r"""
|
|
162
|
+
Return the exponential of this Drinfeld module.
|
|
163
|
+
|
|
164
|
+
Note that the exponential is only defined when the
|
|
165
|
+
`\mathbb{F}_q[T]`-characteristic is zero.
|
|
166
|
+
|
|
167
|
+
INPUT:
|
|
168
|
+
|
|
169
|
+
- ``prec`` -- an integer or ``Infinity`` (default: ``Infinity``);
|
|
170
|
+
the precision at which the series is returned; if ``Infinity``,
|
|
171
|
+
a lazy power series in returned, else, a classical power series
|
|
172
|
+
is returned.
|
|
173
|
+
|
|
174
|
+
- ``name`` -- string (default: ``'z'``); the name of the
|
|
175
|
+
generator of the lazy power series ring
|
|
176
|
+
|
|
177
|
+
EXAMPLES::
|
|
178
|
+
|
|
179
|
+
sage: A = GF(2)['T']
|
|
180
|
+
sage: K.<T> = Frac(A)
|
|
181
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
182
|
+
sage: q = A.base_ring().cardinality()
|
|
183
|
+
|
|
184
|
+
When ``prec`` is ``Infinity`` (which is the default),
|
|
185
|
+
the exponential is returned as a lazy power series, meaning
|
|
186
|
+
that any of its coefficients can be computed on demands::
|
|
187
|
+
|
|
188
|
+
sage: exp = phi.exponential(); exp
|
|
189
|
+
z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8)
|
|
190
|
+
sage: exp[2^4]
|
|
191
|
+
1/(T^64 + T^56 + T^52 + ... + T^27 + T^23 + T^15)
|
|
192
|
+
sage: exp[2^5]
|
|
193
|
+
1/(T^160 + T^144 + T^136 + ... + T^55 + T^47 + T^31)
|
|
194
|
+
|
|
195
|
+
On the contrary, when ``prec`` is a finite number, all the
|
|
196
|
+
required coefficients are computed at once::
|
|
197
|
+
|
|
198
|
+
sage: phi.exponential(prec=10)
|
|
199
|
+
z + (1/(T^2 + T))*z^2 + (1/(T^8 + T^6 + T^5 + T^3))*z^4 + (1/(T^24 + T^20 + T^18 + T^17 + T^14 + T^13 + T^11 + T^7))*z^8 + O(z^10)
|
|
200
|
+
|
|
201
|
+
Example in higher rank::
|
|
202
|
+
|
|
203
|
+
sage: A = GF(5)['T']
|
|
204
|
+
sage: K.<T> = Frac(A)
|
|
205
|
+
sage: phi = DrinfeldModule(A, [T, T^2, T + T^2 + T^4, 1])
|
|
206
|
+
sage: exp = phi.exponential(); exp
|
|
207
|
+
z + ((T/(T^4+4))*z^5) + O(z^8)
|
|
208
|
+
|
|
209
|
+
The exponential is the compositional inverse of the logarithm
|
|
210
|
+
(see :meth:`logarithm`)::
|
|
211
|
+
|
|
212
|
+
sage: log = phi.logarithm(); log
|
|
213
|
+
z + ((4*T/(T^4+4))*z^5) + O(z^8)
|
|
214
|
+
sage: exp.compose(log)
|
|
215
|
+
z + O(z^8)
|
|
216
|
+
sage: log.compose(exp)
|
|
217
|
+
z + O(z^8)
|
|
218
|
+
|
|
219
|
+
TESTS::
|
|
220
|
+
|
|
221
|
+
sage: A = GF(2)['T']
|
|
222
|
+
sage: K.<T> = Frac(A)
|
|
223
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
224
|
+
sage: exp = phi.exponential()
|
|
225
|
+
sage: exp[2] == 1/(T**q - T) # expected value
|
|
226
|
+
True
|
|
227
|
+
sage: exp[2^2] == 1/((T**(q**2) - T)*(T**q - T)**q) # expected value
|
|
228
|
+
True
|
|
229
|
+
sage: exp[2^3] == 1/((T**(q**3) - T)*(T**(q**2) - T)**q*(T**q - T)**(q**2)) # expected value
|
|
230
|
+
True
|
|
231
|
+
|
|
232
|
+
REFERENCE:
|
|
233
|
+
|
|
234
|
+
See section 4.6 of [Gos1998]_ for the definition of the
|
|
235
|
+
exponential.
|
|
236
|
+
"""
|
|
237
|
+
zero = self._base.zero()
|
|
238
|
+
q = self._Fq.cardinality()
|
|
239
|
+
|
|
240
|
+
def coeff_exp(k):
|
|
241
|
+
# Return the k-th coefficient of the exponential.
|
|
242
|
+
k = ZZ(k)
|
|
243
|
+
v, u = k.val_unit(q)
|
|
244
|
+
if u == 1:
|
|
245
|
+
return self._compute_coefficient_exp(v)
|
|
246
|
+
else:
|
|
247
|
+
return zero
|
|
248
|
+
|
|
249
|
+
if prec is Infinity:
|
|
250
|
+
L = LazyPowerSeriesRing(self._base, name)
|
|
251
|
+
return L(coeff_exp, valuation=1)
|
|
252
|
+
L = PowerSeriesRing(self._base, name, default_prec=prec)
|
|
253
|
+
return L([0] + [coeff_exp(i) for i in range(1,prec)], prec=prec)
|
|
254
|
+
|
|
255
|
+
@cached_method
|
|
256
|
+
def _compute_coefficient_log(self, k):
|
|
257
|
+
r"""
|
|
258
|
+
Return the `q^k`-th coefficient of the logarithm of this
|
|
259
|
+
Drinfeld module.
|
|
260
|
+
|
|
261
|
+
TESTS::
|
|
262
|
+
|
|
263
|
+
sage: A = GF(2)['T']
|
|
264
|
+
sage: K.<T> = Frac(A)
|
|
265
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
266
|
+
sage: q = A.base_ring().cardinality()
|
|
267
|
+
sage: phi._compute_coefficient_log(0)
|
|
268
|
+
1
|
|
269
|
+
sage: phi._compute_coefficient_log(1)
|
|
270
|
+
1/(T^2 + T)
|
|
271
|
+
sage: phi._compute_coefficient_log(2)
|
|
272
|
+
1/(T^6 + T^5 + T^3 + T^2)
|
|
273
|
+
sage: phi._compute_coefficient_log(3)
|
|
274
|
+
1/(T^14 + T^13 + T^11 + T^10 + T^7 + T^6 + T^4 + T^3)
|
|
275
|
+
"""
|
|
276
|
+
k = ZZ(k)
|
|
277
|
+
if k.is_zero():
|
|
278
|
+
return self._base.one()
|
|
279
|
+
r = self._gen.degree()
|
|
280
|
+
T = self._gen[0]
|
|
281
|
+
q = self._Fq.cardinality()
|
|
282
|
+
c = self._base.zero()
|
|
283
|
+
for i in range(k):
|
|
284
|
+
j = k - i
|
|
285
|
+
if j < r + 1:
|
|
286
|
+
c += self._compute_coefficient_log(i)*self._gen[j]**(q**i)
|
|
287
|
+
return c/(T - T**(q**k))
|
|
288
|
+
|
|
289
|
+
def logarithm(self, prec=Infinity, name='z'):
|
|
290
|
+
r"""
|
|
291
|
+
Return the logarithm of the given Drinfeld module.
|
|
292
|
+
|
|
293
|
+
By definition, the logarithm is the compositional inverse of the
|
|
294
|
+
exponential (see :meth:`exponential`). Note that the logarithm
|
|
295
|
+
is only defined when the `\mathbb{F}_q[T]`-characteristic is
|
|
296
|
+
zero.
|
|
297
|
+
|
|
298
|
+
INPUT:
|
|
299
|
+
|
|
300
|
+
- ``prec`` -- an integer or ``Infinity`` (default: ``Infinity``);
|
|
301
|
+
the precision at which the series is returned; if ``Infinity``,
|
|
302
|
+
a lazy power series in returned
|
|
303
|
+
|
|
304
|
+
- ``name`` -- string (default: ``'z'``); the name of the
|
|
305
|
+
generator of the lazy power series ring
|
|
306
|
+
|
|
307
|
+
EXAMPLES::
|
|
308
|
+
|
|
309
|
+
sage: A = GF(2)['T']
|
|
310
|
+
sage: K.<T> = Frac(A)
|
|
311
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
312
|
+
|
|
313
|
+
When ``prec`` is ``Infinity`` (which is the default),
|
|
314
|
+
the logarithm is returned as a lazy power series, meaning
|
|
315
|
+
that any of its coefficients can be computed on demands::
|
|
316
|
+
|
|
317
|
+
sage: log = phi.logarithm(); log
|
|
318
|
+
z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8)
|
|
319
|
+
sage: log[2^4]
|
|
320
|
+
1/(T^30 + T^29 + T^27 + ... + T^7 + T^5 + T^4)
|
|
321
|
+
sage: log[2^5]
|
|
322
|
+
1/(T^62 + T^61 + T^59 + ... + T^8 + T^6 + T^5)
|
|
323
|
+
|
|
324
|
+
If ``prec`` is a finite number, all the
|
|
325
|
+
required coefficients are computed at once::
|
|
326
|
+
|
|
327
|
+
sage: phi.logarithm(prec=10)
|
|
328
|
+
z + (1/(T^2 + T))*z^2 + (1/(T^6 + T^5 + T^3 + T^2))*z^4 + (1/(T^14 + T^13 + T^11 + T^10 + T^7 + T^6 + T^4 + T^3))*z^8 + O(z^10)
|
|
329
|
+
|
|
330
|
+
Example in higher rank::
|
|
331
|
+
|
|
332
|
+
sage: A = GF(5)['T']
|
|
333
|
+
sage: K.<T> = Frac(A)
|
|
334
|
+
sage: phi = DrinfeldModule(A, [T, T^2, T + T^2 + T^4, 1])
|
|
335
|
+
sage: phi.logarithm()
|
|
336
|
+
z + ((4*T/(T^4+4))*z^5) + O(z^8)
|
|
337
|
+
|
|
338
|
+
TESTS::
|
|
339
|
+
|
|
340
|
+
sage: A = GF(2)['T']
|
|
341
|
+
sage: K.<T> = Frac(A)
|
|
342
|
+
sage: phi = DrinfeldModule(A, [T, 1])
|
|
343
|
+
sage: q = 2
|
|
344
|
+
sage: log[2] == -1/((T**q - T)) # expected value
|
|
345
|
+
True
|
|
346
|
+
sage: log[2**2] == 1/((T**q - T)*(T**(q**2) - T)) # expected value
|
|
347
|
+
True
|
|
348
|
+
sage: log[2**3] == -1/((T**q - T)*(T**(q**2) - T)*(T**(q**3) - T)) # expected value
|
|
349
|
+
True
|
|
350
|
+
"""
|
|
351
|
+
q = self._Fq.cardinality()
|
|
352
|
+
|
|
353
|
+
def coeff_log(k):
|
|
354
|
+
# Return the k-th coefficient of the logarithm
|
|
355
|
+
k = ZZ(k)
|
|
356
|
+
v, u = k.val_unit(q)
|
|
357
|
+
if u == 1:
|
|
358
|
+
return self._compute_coefficient_log(v)
|
|
359
|
+
else:
|
|
360
|
+
return self._base.zero()
|
|
361
|
+
|
|
362
|
+
if prec is Infinity:
|
|
363
|
+
L = LazyPowerSeriesRing(self._base, name)
|
|
364
|
+
return L(coeff_log, valuation=1)
|
|
365
|
+
L = PowerSeriesRing(self._base, name, default_prec=prec)
|
|
366
|
+
return L([0] + [coeff_log(i) for i in range(1, prec)], prec=prec)
|
|
367
|
+
|
|
368
|
+
@cached_method
|
|
369
|
+
def _compute_goss_polynomial(self, n, q, poly_ring, X):
|
|
370
|
+
r"""
|
|
371
|
+
Utility function for computing the n-th Goss polynomial.
|
|
372
|
+
|
|
373
|
+
The user should not call this method directly, but
|
|
374
|
+
:meth:`goss_polynomial` instead.
|
|
375
|
+
|
|
376
|
+
TESTS::
|
|
377
|
+
|
|
378
|
+
sage: A = GF(2^2)['T']
|
|
379
|
+
sage: K.<T> = Frac(A)
|
|
380
|
+
sage: phi = DrinfeldModule(A, [T, T+1, T^2, 1])
|
|
381
|
+
sage: poly_ring = phi.base()['X']
|
|
382
|
+
sage: X = poly_ring.gen()
|
|
383
|
+
sage: phi._compute_goss_polynomial(0, 2^2, poly_ring, X)
|
|
384
|
+
0
|
|
385
|
+
sage: phi._compute_goss_polynomial(3, 2^2, poly_ring, X)
|
|
386
|
+
X^3
|
|
387
|
+
sage: phi._compute_goss_polynomial(4*3, 2^2, poly_ring, X)
|
|
388
|
+
X^12
|
|
389
|
+
sage: phi._compute_goss_polynomial(9, 2^2, poly_ring, X)
|
|
390
|
+
X^9 + (1/(T^3 + T^2 + T))*X^6 + (1/(T^6 + T^4 + T^2))*X^3
|
|
391
|
+
"""
|
|
392
|
+
# Trivial cases
|
|
393
|
+
if n.is_zero():
|
|
394
|
+
return poly_ring.zero()
|
|
395
|
+
if n <= q - 1:
|
|
396
|
+
return X**n
|
|
397
|
+
if n % q == 0:
|
|
398
|
+
return self.goss_polynomial(n // q)**q
|
|
399
|
+
# General case
|
|
400
|
+
pol = poly_ring.zero()
|
|
401
|
+
m = q
|
|
402
|
+
i = 1
|
|
403
|
+
while m < n:
|
|
404
|
+
pol += self._compute_coefficient_exp(i) * self._compute_goss_polynomial(n - m, q, poly_ring, X)
|
|
405
|
+
m *= q
|
|
406
|
+
i += 1
|
|
407
|
+
return X*(self._compute_goss_polynomial(n - 1, q, poly_ring, X) + pol)
|
|
408
|
+
|
|
409
|
+
def goss_polynomial(self, n, var='X'):
|
|
410
|
+
r"""
|
|
411
|
+
Return the `n`-th Goss polynomial of the Drinfeld module.
|
|
412
|
+
|
|
413
|
+
Note that Goss polynomials are only defined for Drinfeld modules
|
|
414
|
+
of characteristic zero.
|
|
415
|
+
|
|
416
|
+
INPUT:
|
|
417
|
+
|
|
418
|
+
- ``n`` -- integer; the index of the Goss polynomial
|
|
419
|
+
|
|
420
|
+
- ``var``-- string (default: ``'X'``); the name of polynomial
|
|
421
|
+
variable
|
|
422
|
+
|
|
423
|
+
OUTPUT: a univariate polynomial in ``var`` over the base `A`-field
|
|
424
|
+
|
|
425
|
+
EXAMPLES::
|
|
426
|
+
|
|
427
|
+
sage: A = GF(3)['T']
|
|
428
|
+
sage: K.<T> = Frac(A)
|
|
429
|
+
sage: phi = DrinfeldModule(A, [T, 1]) # Carlitz module
|
|
430
|
+
sage: phi.goss_polynomial(1)
|
|
431
|
+
X
|
|
432
|
+
sage: phi.goss_polynomial(2)
|
|
433
|
+
X^2
|
|
434
|
+
sage: phi.goss_polynomial(4)
|
|
435
|
+
X^4 + (1/(T^3 + 2*T))*X^2
|
|
436
|
+
sage: phi.goss_polynomial(5)
|
|
437
|
+
X^5 + (2/(T^3 + 2*T))*X^3
|
|
438
|
+
sage: phi.goss_polynomial(10)
|
|
439
|
+
X^10 + (1/(T^3 + 2*T))*X^8 + (1/(T^6 + T^4 + T^2))*X^6 + (1/(T^9 + 2*T^3))*X^4 + (1/(T^18 + 2*T^12 + 2*T^10 + T^4))*X^2
|
|
440
|
+
|
|
441
|
+
REFERENCE:
|
|
442
|
+
|
|
443
|
+
Section 3 of [Gek1988]_ provides an exposition of Goss
|
|
444
|
+
polynomials.
|
|
445
|
+
"""
|
|
446
|
+
n = ZZ(n)
|
|
447
|
+
K = self.base()
|
|
448
|
+
poly_ring = K[var]
|
|
449
|
+
X = poly_ring.gen()
|
|
450
|
+
q = self._Fq.cardinality()
|
|
451
|
+
return self._compute_goss_polynomial(n, q, poly_ring, X)
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
class DrinfeldModule_rational(DrinfeldModule_charzero):
|
|
455
|
+
"""
|
|
456
|
+
A class for Drinfeld modules defined over the fraction
|
|
457
|
+
field of the underlying function field.
|
|
458
|
+
|
|
459
|
+
TESTS::
|
|
460
|
+
|
|
461
|
+
sage: q = 9
|
|
462
|
+
sage: Fq = GF(q)
|
|
463
|
+
sage: A = Fq['T']
|
|
464
|
+
sage: K.<T> = Frac(A)
|
|
465
|
+
sage: C = DrinfeldModule(A, [T, 1]); C
|
|
466
|
+
Drinfeld module defined by T |--> t + T
|
|
467
|
+
sage: type(C)
|
|
468
|
+
<class 'sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_rational_with_category'>
|
|
469
|
+
"""
|
|
470
|
+
def coefficient_in_function_ring(self, n):
|
|
471
|
+
r"""
|
|
472
|
+
Return the `n`-th coefficient of this Drinfeld module as
|
|
473
|
+
an element of the underlying function ring.
|
|
474
|
+
|
|
475
|
+
INPUT:
|
|
476
|
+
|
|
477
|
+
- ``n`` -- an integer
|
|
478
|
+
|
|
479
|
+
EXAMPLES::
|
|
480
|
+
|
|
481
|
+
sage: q = 5
|
|
482
|
+
sage: Fq = GF(q)
|
|
483
|
+
sage: A = Fq['T']
|
|
484
|
+
sage: R = Fq['U']
|
|
485
|
+
sage: K.<U> = Frac(R)
|
|
486
|
+
sage: phi = DrinfeldModule(A, [U, 0, U^2, U^3])
|
|
487
|
+
sage: phi.coefficient_in_function_ring(2)
|
|
488
|
+
T^2
|
|
489
|
+
|
|
490
|
+
Compare with the method meth:`coefficient`::
|
|
491
|
+
|
|
492
|
+
sage: phi.coefficient(2)
|
|
493
|
+
U^2
|
|
494
|
+
|
|
495
|
+
If the required coefficient is not a polynomials,
|
|
496
|
+
an error is raised::
|
|
497
|
+
|
|
498
|
+
sage: psi = DrinfeldModule(A, [U, 1/U])
|
|
499
|
+
sage: psi.coefficient_in_function_ring(0)
|
|
500
|
+
T
|
|
501
|
+
sage: psi.coefficient_in_function_ring(1)
|
|
502
|
+
Traceback (most recent call last):
|
|
503
|
+
...
|
|
504
|
+
ValueError: coefficient is not polynomial
|
|
505
|
+
"""
|
|
506
|
+
A = self.function_ring()
|
|
507
|
+
g = self.coefficient(n)
|
|
508
|
+
g = g.backend(force=True)
|
|
509
|
+
if g.denominator().is_one():
|
|
510
|
+
return A(g.numerator().list())
|
|
511
|
+
else:
|
|
512
|
+
raise ValueError("coefficient is not polynomial")
|
|
513
|
+
|
|
514
|
+
def coefficients_in_function_ring(self, sparse=True):
|
|
515
|
+
r"""
|
|
516
|
+
Return the coefficients of this Drinfeld module as elements
|
|
517
|
+
of the underlying function ring.
|
|
518
|
+
|
|
519
|
+
INPUT:
|
|
520
|
+
|
|
521
|
+
- ``sparse`` -- a boolean (default: ``True``); if ``True``,
|
|
522
|
+
only return the nonzero coefficients; otherwise, return
|
|
523
|
+
all of them.
|
|
524
|
+
|
|
525
|
+
EXAMPLES::
|
|
526
|
+
|
|
527
|
+
sage: q = 5
|
|
528
|
+
sage: Fq = GF(q)
|
|
529
|
+
sage: A = Fq['T']
|
|
530
|
+
sage: R = Fq['U']
|
|
531
|
+
sage: K.<U> = Frac(R)
|
|
532
|
+
sage: phi = DrinfeldModule(A, [U, 0, U^2, U^3])
|
|
533
|
+
sage: phi.coefficients_in_function_ring()
|
|
534
|
+
[T, T^2, T^3]
|
|
535
|
+
sage: phi.coefficients_in_function_ring(sparse=False)
|
|
536
|
+
[T, 0, T^2, T^3]
|
|
537
|
+
|
|
538
|
+
Compare with the method meth:`coefficients`::
|
|
539
|
+
|
|
540
|
+
sage: phi.coefficients()
|
|
541
|
+
[U, U^2, U^3]
|
|
542
|
+
|
|
543
|
+
If the coefficients are not polynomials, an error is raised::
|
|
544
|
+
|
|
545
|
+
sage: psi = DrinfeldModule(A, [U, 1/U])
|
|
546
|
+
sage: psi.coefficients_in_function_ring()
|
|
547
|
+
Traceback (most recent call last):
|
|
548
|
+
...
|
|
549
|
+
ValueError: coefficients are not polynomials
|
|
550
|
+
"""
|
|
551
|
+
A = self.function_ring()
|
|
552
|
+
gs = []
|
|
553
|
+
for g in self.coefficients(sparse):
|
|
554
|
+
g = g.backend(force=True)
|
|
555
|
+
if g.denominator().is_one():
|
|
556
|
+
gs.append(A(g.numerator().list()))
|
|
557
|
+
else:
|
|
558
|
+
raise ValueError("coefficients are not polynomials")
|
|
559
|
+
return gs
|
|
560
|
+
|
|
561
|
+
def class_polynomial(self):
|
|
562
|
+
r"""
|
|
563
|
+
Return the class polynomial, that is the Fitting ideal
|
|
564
|
+
of the class module, of this Drinfeld module.
|
|
565
|
+
|
|
566
|
+
We refer to [Tae2012]_ for the definition and basic
|
|
567
|
+
properties of the class module.
|
|
568
|
+
|
|
569
|
+
EXAMPLES:
|
|
570
|
+
|
|
571
|
+
We check that the class module of the Carlitz module
|
|
572
|
+
is trivial::
|
|
573
|
+
|
|
574
|
+
sage: q = 5
|
|
575
|
+
sage: Fq = GF(q)
|
|
576
|
+
sage: A = Fq['T']
|
|
577
|
+
sage: K.<T> = Frac(A)
|
|
578
|
+
sage: C = DrinfeldModule(A, [T, 1]); C
|
|
579
|
+
Drinfeld module defined by T |--> t + T
|
|
580
|
+
sage: C.class_polynomial()
|
|
581
|
+
1
|
|
582
|
+
|
|
583
|
+
When the coefficients of the Drinfeld module have small
|
|
584
|
+
enough degrees, the class module is always trivial::
|
|
585
|
+
|
|
586
|
+
sage: gs = [T] + [A.random_element(degree = q^i)
|
|
587
|
+
....: for i in range(1, 5)]
|
|
588
|
+
sage: phi = DrinfeldModule(A, gs)
|
|
589
|
+
sage: phi.class_polynomial()
|
|
590
|
+
1
|
|
591
|
+
|
|
592
|
+
Here is an example with a nontrivial class module::
|
|
593
|
+
|
|
594
|
+
sage: phi = DrinfeldModule(A, [T, 2*T^14 + 2*T^4])
|
|
595
|
+
sage: phi.class_polynomial()
|
|
596
|
+
T + 3
|
|
597
|
+
|
|
598
|
+
TESTS:
|
|
599
|
+
|
|
600
|
+
The Drinfeld module must have polynomial coefficients::
|
|
601
|
+
|
|
602
|
+
sage: phi = DrinfeldModule(A, [T, 1/T])
|
|
603
|
+
sage: phi.class_polynomial()
|
|
604
|
+
Traceback (most recent call last):
|
|
605
|
+
...
|
|
606
|
+
ValueError: coefficients are not polynomials
|
|
607
|
+
"""
|
|
608
|
+
# The algorithm is based on the following remark:
|
|
609
|
+
# writing phi_T = g_0 + g_1*tau + ... + g_r*tau^r,
|
|
610
|
+
# if s > deg(g_i/(q^i - 1)) - 1 for all i, then the
|
|
611
|
+
# class module is equal to
|
|
612
|
+
# H := E(Kinfty/A) / < T^(-s), T^(-s-1), ... >
|
|
613
|
+
# where E(Kinfty/A) is Kinfty/A equipped with the
|
|
614
|
+
# A-module structure coming from phi.
|
|
615
|
+
|
|
616
|
+
A = self.function_ring()
|
|
617
|
+
Fq = A.base_ring()
|
|
618
|
+
q = Fq.cardinality()
|
|
619
|
+
r = self.rank()
|
|
620
|
+
|
|
621
|
+
# We compute the bound s
|
|
622
|
+
gs = self.coefficients_in_function_ring(sparse=False)
|
|
623
|
+
s = max(gs[i].degree() // (q**i - 1) for i in range(1, r+1))
|
|
624
|
+
if s == 0:
|
|
625
|
+
return A.one()
|
|
626
|
+
|
|
627
|
+
# We compute the matrix of phi_T acting on the quotient
|
|
628
|
+
# M := (Kinfty/A) / < T^(-s), T^(-s-1), ... >
|
|
629
|
+
# (for the standard structure of A-module!)
|
|
630
|
+
M = matrix(Fq, s)
|
|
631
|
+
qk = 1
|
|
632
|
+
for k in range(r+1):
|
|
633
|
+
for i in range(s):
|
|
634
|
+
e = (i+1)*qk
|
|
635
|
+
for j in range(s):
|
|
636
|
+
e -= 1
|
|
637
|
+
if e < 0:
|
|
638
|
+
break
|
|
639
|
+
M[i, j] += gs[k][e]
|
|
640
|
+
qk *= q
|
|
641
|
+
|
|
642
|
+
# We compute the subspace of E(Kinfty/A) (for the twisted
|
|
643
|
+
# structure of A-module!)
|
|
644
|
+
# V = < T^(-s), T^(-s+1), ... >
|
|
645
|
+
# It is also the phi_T-saturation of T^(-s+1) in M, i.e.
|
|
646
|
+
# the Fq-vector space generated by the phi_T^i(T^(-s+1))
|
|
647
|
+
# for i varying in NN.
|
|
648
|
+
v = vector(Fq, s)
|
|
649
|
+
v[s-1] = 1
|
|
650
|
+
vs = [v]
|
|
651
|
+
for i in range(s-1):
|
|
652
|
+
v = v*M
|
|
653
|
+
vs.append(v)
|
|
654
|
+
V = matrix(vs)
|
|
655
|
+
V.echelonize()
|
|
656
|
+
|
|
657
|
+
# We compute the action of phi_T on H = M/V
|
|
658
|
+
# as an Fq-linear map (encoded in the matrix N)
|
|
659
|
+
dim = V.rank()
|
|
660
|
+
pivots = V.pivots()
|
|
661
|
+
j = ip = 0
|
|
662
|
+
for i in range(dim, s):
|
|
663
|
+
while ip < dim and j == pivots[ip]:
|
|
664
|
+
j += 1
|
|
665
|
+
ip += 1
|
|
666
|
+
V[i,j] = 1
|
|
667
|
+
N = (V * M * ~V).submatrix(dim, dim)
|
|
668
|
+
|
|
669
|
+
# The class module is now H where the action of T
|
|
670
|
+
# is given by the matrix N
|
|
671
|
+
# The class polynomial is then the characteristic
|
|
672
|
+
# polynomial of N
|
|
673
|
+
return A(N.charpoly())
|