passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +808 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_modules.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-d8ebe4b5.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,816 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.graphs
|
|
3
|
+
"""
|
|
4
|
+
The Poincare-Birkhoff-Witt Basis For A Universal Enveloping Algebra
|
|
5
|
+
|
|
6
|
+
AUTHORS:
|
|
7
|
+
|
|
8
|
+
- Travis Scrimshaw (2013-11-03): Initial version
|
|
9
|
+
- Travis Scrimshaw (2024-01-02): Adding the center
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
#*****************************************************************************
|
|
13
|
+
# Copyright (C) 2013-2024 Travis Scrimshaw <tcscrims at gmail.com>
|
|
14
|
+
#
|
|
15
|
+
# This program is free software: you can redistribute it and/or modify
|
|
16
|
+
# it under the terms of the GNU General Public License as published by
|
|
17
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
18
|
+
# (at your option) any later version.
|
|
19
|
+
# http://www.gnu.org/licenses/
|
|
20
|
+
#*****************************************************************************
|
|
21
|
+
|
|
22
|
+
from sage.misc.cachefunc import cached_method
|
|
23
|
+
from sage.misc.lazy_attribute import lazy_attribute
|
|
24
|
+
from sage.structure.element import get_coercion_model
|
|
25
|
+
from operator import mul
|
|
26
|
+
from sage.categories.algebras import Algebras
|
|
27
|
+
from sage.categories.triangular_kac_moody_algebras import TriangularKacMoodyAlgebras
|
|
28
|
+
from sage.monoids.indexed_free_monoid import IndexedFreeAbelianMonoid
|
|
29
|
+
from sage.combinat.free_module import CombinatorialFreeModule
|
|
30
|
+
from sage.sets.family import Family
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class PoincareBirkhoffWittBasis(CombinatorialFreeModule):
|
|
34
|
+
r"""
|
|
35
|
+
The Poincare-Birkhoff-Witt (PBW) basis of the universal enveloping
|
|
36
|
+
algebra of a Lie algebra.
|
|
37
|
+
|
|
38
|
+
Consider a Lie algebra `\mathfrak{g}` with ordered basis
|
|
39
|
+
`(b_1,\dots,b_n)`. Then the universal enveloping algebra `U(\mathfrak{g})`
|
|
40
|
+
is generated by `b_1,\dots,b_n` and subject to the relations
|
|
41
|
+
|
|
42
|
+
.. MATH::
|
|
43
|
+
|
|
44
|
+
[b_i, b_j] = \sum_{k = 1}^n c_{ij}^k b_k
|
|
45
|
+
|
|
46
|
+
where `c_{ij}^k` are the structure coefficients of `\mathfrak{g}`. The
|
|
47
|
+
Poincare-Birkhoff-Witt (PBW) basis is given by the monomials
|
|
48
|
+
`b_1^{e_1} b_2^{e_2} \cdots b_n^{e_n}`. Specifically, we can rewrite
|
|
49
|
+
`b_j b_i = b_i b_j + [b_j, b_i]` where `j > i`, and we can repeat
|
|
50
|
+
this to sort any monomial into
|
|
51
|
+
|
|
52
|
+
.. MATH::
|
|
53
|
+
|
|
54
|
+
b_{i_1} \cdots b_{i_k} = b_1^{e_1} \cdots b_n^{e_n} + LOT
|
|
55
|
+
|
|
56
|
+
where `LOT` are lower order terms. Thus the PBW basis is a filtered basis
|
|
57
|
+
for `U(\mathfrak{g})`.
|
|
58
|
+
|
|
59
|
+
EXAMPLES:
|
|
60
|
+
|
|
61
|
+
We construct the PBW basis of `\mathfrak{sl}_2`::
|
|
62
|
+
|
|
63
|
+
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H'])
|
|
64
|
+
sage: PBW = L.pbw_basis()
|
|
65
|
+
|
|
66
|
+
We then do some computations; in particular, we check that `[E, F] = H`::
|
|
67
|
+
|
|
68
|
+
sage: E, F, H = PBW.algebra_generators()
|
|
69
|
+
sage: E * F
|
|
70
|
+
PBW['E']*PBW['F']
|
|
71
|
+
sage: F * E
|
|
72
|
+
PBW['E']*PBW['F'] - PBW['H']
|
|
73
|
+
sage: E * F - F * E
|
|
74
|
+
PBW['H']
|
|
75
|
+
|
|
76
|
+
Next we construct another instance of the PBW basis, but sorted in the
|
|
77
|
+
reverse order::
|
|
78
|
+
|
|
79
|
+
sage: def neg_key(x):
|
|
80
|
+
....: return -L.basis().keys().index(x)
|
|
81
|
+
sage: PBW2 = L.pbw_basis(prefix='PBW2', basis_key=neg_key)
|
|
82
|
+
|
|
83
|
+
We then check the multiplication is preserved::
|
|
84
|
+
|
|
85
|
+
sage: PBW2(E) * PBW2(F)
|
|
86
|
+
PBW2['F']*PBW2['E'] + PBW2['H']
|
|
87
|
+
sage: PBW2(E*F)
|
|
88
|
+
PBW2['F']*PBW2['E'] + PBW2['H']
|
|
89
|
+
sage: F * E + H
|
|
90
|
+
PBW['E']*PBW['F']
|
|
91
|
+
|
|
92
|
+
We now construct the PBW basis for Lie algebra of regular
|
|
93
|
+
vector fields on `\CC^{\times}`::
|
|
94
|
+
|
|
95
|
+
sage: L = lie_algebras.regular_vector_fields(QQ)
|
|
96
|
+
sage: PBW = L.pbw_basis()
|
|
97
|
+
sage: G = PBW.algebra_generators()
|
|
98
|
+
sage: G[2] * G[3]
|
|
99
|
+
PBW[2]*PBW[3]
|
|
100
|
+
sage: G[3] * G[2]
|
|
101
|
+
PBW[2]*PBW[3] + PBW[5]
|
|
102
|
+
sage: G[-2] * G[3] * G[2]
|
|
103
|
+
PBW[-2]*PBW[2]*PBW[3] + PBW[-2]*PBW[5]
|
|
104
|
+
|
|
105
|
+
.. TODO::
|
|
106
|
+
|
|
107
|
+
When the Lie algebra is finite dimensional, set the ordering of the
|
|
108
|
+
basis elements, translate the structure coefficients, and work with
|
|
109
|
+
fixed-length lists as the exponent vectors. This way we only will
|
|
110
|
+
run any nontrivial sorting only once and avoid other potentially
|
|
111
|
+
expensive comparisons between keys.
|
|
112
|
+
"""
|
|
113
|
+
@staticmethod
|
|
114
|
+
def __classcall_private__(cls, g, basis_key=None, prefix='PBW', **kwds):
|
|
115
|
+
r"""
|
|
116
|
+
Normalize input to ensure a unique representation.
|
|
117
|
+
|
|
118
|
+
TESTS::
|
|
119
|
+
|
|
120
|
+
sage: from sage.algebras.lie_algebras.poincare_birkhoff_witt import PoincareBirkhoffWittBasis
|
|
121
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
122
|
+
sage: P1 = PoincareBirkhoffWittBasis(L)
|
|
123
|
+
sage: P2 = PoincareBirkhoffWittBasis(L, prefix='PBW')
|
|
124
|
+
sage: P1 is P2
|
|
125
|
+
True
|
|
126
|
+
"""
|
|
127
|
+
if g in TriangularKacMoodyAlgebras.FiniteDimensional:
|
|
128
|
+
return PoincareBirkhoffWittBasisSemisimpleLieAlgebra(g, basis_key, prefix, **kwds)
|
|
129
|
+
return super().__classcall__(cls, g, basis_key, prefix, **kwds)
|
|
130
|
+
|
|
131
|
+
def __init__(self, g, basis_key, prefix, **kwds):
|
|
132
|
+
r"""
|
|
133
|
+
Initialize ``self``.
|
|
134
|
+
|
|
135
|
+
TESTS::
|
|
136
|
+
|
|
137
|
+
sage: L = lie_algebras.VirasoroAlgebra(QQ)
|
|
138
|
+
sage: U = L.pbw_basis()
|
|
139
|
+
sage: d = U.algebra_generators()
|
|
140
|
+
sage: TestSuite(U).run()
|
|
141
|
+
sage: elts = [d[1], d[-1], d[2], d[-2]*d[1], d[-1]*d[1], d[3]^3*d[5], d['c']]
|
|
142
|
+
sage: TestSuite(U).run(elements=elts) # long time
|
|
143
|
+
"""
|
|
144
|
+
if basis_key is not None:
|
|
145
|
+
self._basis_key = basis_key
|
|
146
|
+
else:
|
|
147
|
+
try:
|
|
148
|
+
self._basis_key = g._basis_key
|
|
149
|
+
except AttributeError:
|
|
150
|
+
self._basis_key_inverse = None
|
|
151
|
+
|
|
152
|
+
R = g.base_ring()
|
|
153
|
+
self._g = g
|
|
154
|
+
monomials = IndexedFreeAbelianMonoid(g.basis().keys(), prefix,
|
|
155
|
+
sorting_key=self._monoid_key, **kwds)
|
|
156
|
+
CombinatorialFreeModule.__init__(self, R, monomials,
|
|
157
|
+
prefix='', bracket=False, latex_bracket=False,
|
|
158
|
+
sorting_key=self._monomial_key,
|
|
159
|
+
category=Algebras(R).WithBasis().Filtered())
|
|
160
|
+
|
|
161
|
+
def _basis_key(self, x):
|
|
162
|
+
"""
|
|
163
|
+
Return a key for sorting for the index ``x``.
|
|
164
|
+
|
|
165
|
+
TESTS::
|
|
166
|
+
|
|
167
|
+
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H'])
|
|
168
|
+
sage: PBW = L.pbw_basis()
|
|
169
|
+
sage: PBW._basis_key('E') < PBW._basis_key('H')
|
|
170
|
+
True
|
|
171
|
+
|
|
172
|
+
::
|
|
173
|
+
|
|
174
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
175
|
+
sage: def neg_key(x):
|
|
176
|
+
....: return -L.basis().keys().index(x)
|
|
177
|
+
sage: PBW = L.pbw_basis(basis_key=neg_key)
|
|
178
|
+
sage: prod(PBW.gens()) # indirect doctest
|
|
179
|
+
PBW[-alpha[1]]*PBW[alphacheck[1]]*PBW[alpha[1]]
|
|
180
|
+
- 4*PBW[-alpha[1]]*PBW[alpha[1]]
|
|
181
|
+
+ PBW[alphacheck[1]]^2
|
|
182
|
+
- 2*PBW[alphacheck[1]]
|
|
183
|
+
|
|
184
|
+
Check that :issue:`23266` is fixed::
|
|
185
|
+
|
|
186
|
+
sage: sl2 = lie_algebras.sl(QQ, 2, 'matrix')
|
|
187
|
+
sage: sl2.indices()
|
|
188
|
+
{'e1', 'f1', 'h1'}
|
|
189
|
+
sage: type(sl2.basis().keys())
|
|
190
|
+
<... 'list'>
|
|
191
|
+
sage: Usl2 = sl2.pbw_basis()
|
|
192
|
+
sage: Usl2._basis_key(2)
|
|
193
|
+
2
|
|
194
|
+
sage: Usl2._basis_key(3)
|
|
195
|
+
Traceback (most recent call last):
|
|
196
|
+
...
|
|
197
|
+
KeyError: 3
|
|
198
|
+
"""
|
|
199
|
+
if self._basis_key_inverse is None:
|
|
200
|
+
K = self._g.basis().keys()
|
|
201
|
+
if isinstance(K, (list, tuple)) or K.cardinality() < float('inf'):
|
|
202
|
+
self._basis_key_inverse = {k: i for i,k in enumerate(K)}
|
|
203
|
+
else:
|
|
204
|
+
self._basis_key_inverse = False
|
|
205
|
+
if self._basis_key_inverse is False:
|
|
206
|
+
return x
|
|
207
|
+
else:
|
|
208
|
+
return self._basis_key_inverse[x]
|
|
209
|
+
|
|
210
|
+
def _monoid_key(self, x):
|
|
211
|
+
"""
|
|
212
|
+
Comparison key for the underlying monoid.
|
|
213
|
+
|
|
214
|
+
EXAMPLES::
|
|
215
|
+
|
|
216
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
217
|
+
sage: def neg_key(x):
|
|
218
|
+
....: return -L.basis().keys().index(x)
|
|
219
|
+
sage: PBW = L.pbw_basis(basis_key=neg_key)
|
|
220
|
+
sage: M = PBW.basis().keys()
|
|
221
|
+
sage: prod(M.gens()) # indirect doctest
|
|
222
|
+
PBW[-alpha[1]]*PBW[alphacheck[1]]*PBW[alpha[1]]
|
|
223
|
+
"""
|
|
224
|
+
return self._basis_key(x[0])
|
|
225
|
+
|
|
226
|
+
def _monomial_key(self, x):
|
|
227
|
+
"""
|
|
228
|
+
Compute the key for ``x`` so that the comparison is done by
|
|
229
|
+
reverse degree lexicographic order.
|
|
230
|
+
|
|
231
|
+
EXAMPLES::
|
|
232
|
+
|
|
233
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
234
|
+
sage: PBW = L.pbw_basis()
|
|
235
|
+
sage: E,H,F = PBW.algebra_generators()
|
|
236
|
+
sage: F*H*H*E # indirect doctest
|
|
237
|
+
PBW[alpha[1]]*PBW[alphacheck[1]]^2*PBW[-alpha[1]]
|
|
238
|
+
+ 8*PBW[alpha[1]]*PBW[alphacheck[1]]*PBW[-alpha[1]]
|
|
239
|
+
- PBW[alphacheck[1]]^3 + 16*PBW[alpha[1]]*PBW[-alpha[1]]
|
|
240
|
+
- 4*PBW[alphacheck[1]]^2 - 4*PBW[alphacheck[1]]
|
|
241
|
+
|
|
242
|
+
sage: def neg_key(x):
|
|
243
|
+
....: return -L.basis().keys().index(x)
|
|
244
|
+
sage: PBW = L.pbw_basis(basis_key=neg_key)
|
|
245
|
+
sage: E,H,F = PBW.algebra_generators()
|
|
246
|
+
sage: E*H*H*F # indirect doctest
|
|
247
|
+
PBW[-alpha[1]]*PBW[alphacheck[1]]^2*PBW[alpha[1]]
|
|
248
|
+
- 8*PBW[-alpha[1]]*PBW[alphacheck[1]]*PBW[alpha[1]]
|
|
249
|
+
+ PBW[alphacheck[1]]^3 + 16*PBW[-alpha[1]]*PBW[alpha[1]]
|
|
250
|
+
- 4*PBW[alphacheck[1]]^2 + 4*PBW[alphacheck[1]]
|
|
251
|
+
"""
|
|
252
|
+
return (-len(x), [self._basis_key(l) for l in x.to_word_list()])
|
|
253
|
+
|
|
254
|
+
def _repr_(self):
|
|
255
|
+
"""
|
|
256
|
+
Return a string representation of ``self``.
|
|
257
|
+
|
|
258
|
+
EXAMPLES::
|
|
259
|
+
|
|
260
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
261
|
+
sage: L.pbw_basis()
|
|
262
|
+
Universal enveloping algebra of
|
|
263
|
+
Lie algebra of ['A', 1] in the Chevalley basis
|
|
264
|
+
in the Poincare-Birkhoff-Witt basis
|
|
265
|
+
"""
|
|
266
|
+
return "Universal enveloping algebra of {} in the Poincare-Birkhoff-Witt basis".format(self._g)
|
|
267
|
+
|
|
268
|
+
def _latex_(self):
|
|
269
|
+
r"""
|
|
270
|
+
Return a latex representation of ``self``.
|
|
271
|
+
|
|
272
|
+
EXAMPLES::
|
|
273
|
+
|
|
274
|
+
sage: g = lie_algebras.pwitt(GF(3), 6)
|
|
275
|
+
sage: U = g.pbw_basis()
|
|
276
|
+
sage: latex(U)
|
|
277
|
+
PBW\left( \mathcal{W}(6)_{\Bold{F}_{3}} \right)
|
|
278
|
+
"""
|
|
279
|
+
from sage.misc.latex import latex
|
|
280
|
+
return r"PBW\left( {} \right)".format(latex(self._g))
|
|
281
|
+
|
|
282
|
+
def _coerce_map_from_(self, R):
|
|
283
|
+
"""
|
|
284
|
+
Return ``True`` if there is a coercion map from ``R`` to ``self``.
|
|
285
|
+
|
|
286
|
+
EXAMPLES:
|
|
287
|
+
|
|
288
|
+
We lift from the Lie algebra::
|
|
289
|
+
|
|
290
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
291
|
+
sage: PBW = L.pbw_basis()
|
|
292
|
+
sage: PBW.has_coerce_map_from(L)
|
|
293
|
+
True
|
|
294
|
+
sage: [PBW(g) for g in L.basis()]
|
|
295
|
+
[PBW[alpha[1]], PBW[alphacheck[1]], PBW[-alpha[1]]]
|
|
296
|
+
|
|
297
|
+
We can go between PBW bases under different sorting orders::
|
|
298
|
+
|
|
299
|
+
sage: def neg_key(x):
|
|
300
|
+
....: return -L.basis().keys().index(x)
|
|
301
|
+
sage: PBW2 = L.pbw_basis(basis_key=neg_key)
|
|
302
|
+
sage: E,H,F = PBW.algebra_generators()
|
|
303
|
+
sage: PBW2(E*H*F)
|
|
304
|
+
PBW[-alpha[1]]*PBW[alphacheck[1]]*PBW[alpha[1]]
|
|
305
|
+
- 4*PBW[-alpha[1]]*PBW[alpha[1]]
|
|
306
|
+
+ PBW[alphacheck[1]]^2
|
|
307
|
+
- 2*PBW[alphacheck[1]]
|
|
308
|
+
|
|
309
|
+
We can lift from another Lie algebra and its PBW basis that
|
|
310
|
+
coerces into the defining Lie algebra::
|
|
311
|
+
|
|
312
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
313
|
+
sage: LZ = lie_algebras.sl(ZZ, 2)
|
|
314
|
+
sage: L.has_coerce_map_from(LZ) and L != LZ
|
|
315
|
+
True
|
|
316
|
+
sage: PBW = L.pbw_basis()
|
|
317
|
+
sage: PBWZ = LZ.pbw_basis()
|
|
318
|
+
sage: PBW.coerce_map_from(LZ)
|
|
319
|
+
Composite map:
|
|
320
|
+
From: Lie algebra of ['A', 1] in the Chevalley basis
|
|
321
|
+
To: Universal enveloping algebra of Lie algebra of ['A', 1] in the Chevalley basis
|
|
322
|
+
in the Poincare-Birkhoff-Witt basis
|
|
323
|
+
Defn: Coercion map:
|
|
324
|
+
From: Lie algebra of ['A', 1] in the Chevalley basis
|
|
325
|
+
To: Lie algebra of ['A', 1] in the Chevalley basis
|
|
326
|
+
then
|
|
327
|
+
Generic morphism:
|
|
328
|
+
From: Lie algebra of ['A', 1] in the Chevalley basis
|
|
329
|
+
To: Universal enveloping algebra of Lie algebra of ['A', 1] in the Chevalley basis
|
|
330
|
+
in the Poincare-Birkhoff-Witt basis
|
|
331
|
+
sage: PBW.coerce_map_from(PBWZ)
|
|
332
|
+
Generic morphism:
|
|
333
|
+
From: Universal enveloping algebra of Lie algebra of ['A', 1] in the Chevalley basis
|
|
334
|
+
in the Poincare-Birkhoff-Witt basis
|
|
335
|
+
To: Universal enveloping algebra of Lie algebra of ['A', 1] in the Chevalley basis
|
|
336
|
+
in the Poincare-Birkhoff-Witt basis
|
|
337
|
+
|
|
338
|
+
TESTS:
|
|
339
|
+
|
|
340
|
+
Check that we can take the preimage (:issue:`23375`)::
|
|
341
|
+
|
|
342
|
+
sage: L = lie_algebras.cross_product(QQ)
|
|
343
|
+
sage: pbw = L.pbw_basis()
|
|
344
|
+
sage: L(pbw(L.an_element()))
|
|
345
|
+
X + Y + Z
|
|
346
|
+
sage: L(pbw(L.an_element())) == L.an_element()
|
|
347
|
+
True
|
|
348
|
+
sage: L(prod(pbw.gens()))
|
|
349
|
+
Traceback (most recent call last):
|
|
350
|
+
...
|
|
351
|
+
ValueError: PBW['X']*PBW['Y']*PBW['Z'] is not in the image
|
|
352
|
+
sage: L(pbw.one())
|
|
353
|
+
Traceback (most recent call last):
|
|
354
|
+
...
|
|
355
|
+
ValueError: 1 is not in the image
|
|
356
|
+
"""
|
|
357
|
+
if R == self._g:
|
|
358
|
+
# Make this into the lift map
|
|
359
|
+
I = self._indices
|
|
360
|
+
|
|
361
|
+
def basis_function(x):
|
|
362
|
+
return self.monomial(I.gen(x))
|
|
363
|
+
|
|
364
|
+
def inv_supp(m):
|
|
365
|
+
return None if m.length() != 1 else m.leading_support()
|
|
366
|
+
# TODO: this diagonal, but with a smaller indexing set...
|
|
367
|
+
return self._g.module_morphism(basis_function, codomain=self,
|
|
368
|
+
triangular='upper', unitriangular=True,
|
|
369
|
+
inverse_on_support=inv_supp)
|
|
370
|
+
|
|
371
|
+
coerce_map = self._g.coerce_map_from(R)
|
|
372
|
+
if coerce_map:
|
|
373
|
+
return self.coerce_map_from(self._g) * coerce_map
|
|
374
|
+
|
|
375
|
+
if isinstance(R, PoincareBirkhoffWittBasis):
|
|
376
|
+
if self._g == R._g:
|
|
377
|
+
I = self._indices
|
|
378
|
+
|
|
379
|
+
def basis_function(x):
|
|
380
|
+
return self.prod(self.monomial(I.gen(g)**e)
|
|
381
|
+
for g, e in x._sorted_items())
|
|
382
|
+
# TODO: this diagonal, but with a smaller indexing set...
|
|
383
|
+
return R.module_morphism(basis_function, codomain=self)
|
|
384
|
+
coerce_map = self._g.coerce_map_from(R._g)
|
|
385
|
+
if coerce_map:
|
|
386
|
+
I = self._indices
|
|
387
|
+
lift = self.coerce_map_from(self._g)
|
|
388
|
+
|
|
389
|
+
def basis_function(x):
|
|
390
|
+
return self.prod(lift(coerce_map(g))**e
|
|
391
|
+
for g, e in x._sorted_items())
|
|
392
|
+
# TODO: this diagonal, but with a smaller indexing set...
|
|
393
|
+
return R.module_morphism(basis_function, codomain=self)
|
|
394
|
+
|
|
395
|
+
return super()._coerce_map_from_(R)
|
|
396
|
+
|
|
397
|
+
def lie_algebra(self):
|
|
398
|
+
"""
|
|
399
|
+
Return the underlying Lie algebra of ``self``.
|
|
400
|
+
|
|
401
|
+
EXAMPLES::
|
|
402
|
+
|
|
403
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
404
|
+
sage: PBW = L.pbw_basis()
|
|
405
|
+
sage: PBW.lie_algebra() is L
|
|
406
|
+
True
|
|
407
|
+
"""
|
|
408
|
+
return self._g
|
|
409
|
+
|
|
410
|
+
def algebra_generators(self):
|
|
411
|
+
"""
|
|
412
|
+
Return the algebra generators of ``self``.
|
|
413
|
+
|
|
414
|
+
EXAMPLES::
|
|
415
|
+
|
|
416
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
417
|
+
sage: PBW = L.pbw_basis()
|
|
418
|
+
sage: PBW.algebra_generators()
|
|
419
|
+
Finite family {alpha[1]: PBW[alpha[1]], alphacheck[1]: PBW[alphacheck[1]], -alpha[1]: PBW[-alpha[1]]}
|
|
420
|
+
"""
|
|
421
|
+
G = self._indices.gens()
|
|
422
|
+
return Family(self._indices._indices, lambda x: self.monomial(G[x]),
|
|
423
|
+
name="generator map")
|
|
424
|
+
|
|
425
|
+
gens = algebra_generators
|
|
426
|
+
|
|
427
|
+
@cached_method
|
|
428
|
+
def one_basis(self):
|
|
429
|
+
"""
|
|
430
|
+
Return the basis element indexing `1`.
|
|
431
|
+
|
|
432
|
+
EXAMPLES::
|
|
433
|
+
|
|
434
|
+
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H'])
|
|
435
|
+
sage: PBW = L.pbw_basis()
|
|
436
|
+
sage: ob = PBW.one_basis(); ob
|
|
437
|
+
1
|
|
438
|
+
sage: ob.parent()
|
|
439
|
+
Free abelian monoid indexed by {'E', 'F', 'H'}
|
|
440
|
+
"""
|
|
441
|
+
return self._indices.one()
|
|
442
|
+
|
|
443
|
+
@cached_method
|
|
444
|
+
def product_on_basis(self, lhs, rhs):
|
|
445
|
+
"""
|
|
446
|
+
Return the product of the two basis elements ``lhs`` and ``rhs``.
|
|
447
|
+
|
|
448
|
+
EXAMPLES::
|
|
449
|
+
|
|
450
|
+
sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3, names=['E','F','H'])
|
|
451
|
+
sage: PBW = L.pbw_basis()
|
|
452
|
+
sage: I = PBW.indices()
|
|
453
|
+
sage: PBW.product_on_basis(I.gen('E'), I.gen('F'))
|
|
454
|
+
PBW['E']*PBW['F']
|
|
455
|
+
sage: PBW.product_on_basis(I.gen('E'), I.gen('H'))
|
|
456
|
+
PBW['E']*PBW['H']
|
|
457
|
+
sage: PBW.product_on_basis(I.gen('H'), I.gen('E'))
|
|
458
|
+
PBW['E']*PBW['H'] + 2*PBW['E']
|
|
459
|
+
sage: PBW.product_on_basis(I.gen('F'), I.gen('E'))
|
|
460
|
+
PBW['E']*PBW['F'] - PBW['H']
|
|
461
|
+
sage: PBW.product_on_basis(I.gen('F'), I.gen('H'))
|
|
462
|
+
PBW['F']*PBW['H']
|
|
463
|
+
sage: PBW.product_on_basis(I.gen('H'), I.gen('F'))
|
|
464
|
+
PBW['F']*PBW['H'] - 2*PBW['F']
|
|
465
|
+
sage: PBW.product_on_basis(I.gen('H')**2, I.gen('F')**2)
|
|
466
|
+
PBW['F']^2*PBW['H']^2 - 8*PBW['F']^2*PBW['H'] + 16*PBW['F']^2
|
|
467
|
+
|
|
468
|
+
sage: E,F,H = PBW.algebra_generators()
|
|
469
|
+
sage: E*F - F*E
|
|
470
|
+
PBW['H']
|
|
471
|
+
sage: H * F * E
|
|
472
|
+
PBW['E']*PBW['F']*PBW['H'] - PBW['H']^2
|
|
473
|
+
sage: E * F * H * E
|
|
474
|
+
PBW['E']^2*PBW['F']*PBW['H'] + 2*PBW['E']^2*PBW['F']
|
|
475
|
+
- PBW['E']*PBW['H']^2 - 2*PBW['E']*PBW['H']
|
|
476
|
+
|
|
477
|
+
TESTS:
|
|
478
|
+
|
|
479
|
+
Check that :issue:`23268` is fixed::
|
|
480
|
+
|
|
481
|
+
sage: MS = MatrixSpace(QQ, 2,2)
|
|
482
|
+
sage: gl = LieAlgebra(associative=MS)
|
|
483
|
+
sage: Ugl = gl.pbw_basis()
|
|
484
|
+
sage: prod(Ugl.gens())
|
|
485
|
+
PBW[(0, 0)]*PBW[(0, 1)]*PBW[(1, 0)]*PBW[(1, 1)]
|
|
486
|
+
sage: prod(reversed(list(Ugl.gens())))
|
|
487
|
+
PBW[(0, 0)]*PBW[(0, 1)]*PBW[(1, 0)]*PBW[(1, 1)]
|
|
488
|
+
- PBW[(0, 0)]^2*PBW[(1, 1)] + PBW[(0, 0)]*PBW[(1, 1)]^2
|
|
489
|
+
"""
|
|
490
|
+
# Some trivial base cases
|
|
491
|
+
if lhs == self.one_basis():
|
|
492
|
+
return self.monomial(rhs)
|
|
493
|
+
if rhs == self.one_basis():
|
|
494
|
+
return self.monomial(lhs)
|
|
495
|
+
|
|
496
|
+
I = self._indices
|
|
497
|
+
trail = lhs.trailing_support()
|
|
498
|
+
lead = rhs.leading_support()
|
|
499
|
+
if self._basis_key(trail) <= self._basis_key(lead):
|
|
500
|
+
return self.monomial(lhs * rhs)
|
|
501
|
+
|
|
502
|
+
# Create the commutator
|
|
503
|
+
# We have xy - yx = [x, y] -> xy = yx + [x, y] and we have x > y
|
|
504
|
+
terms = self._g.monomial(trail).bracket(self._g.monomial(lead))
|
|
505
|
+
lead = I.gen(lead)
|
|
506
|
+
trail = I.gen(trail)
|
|
507
|
+
mc = terms.monomial_coefficients(copy=False)
|
|
508
|
+
terms = self.sum_of_terms((I.gen(t), c) for t,c in mc.items())
|
|
509
|
+
terms += self.monomial(lead * trail)
|
|
510
|
+
return self.monomial(lhs // trail) * terms * self.monomial(rhs // lead)
|
|
511
|
+
|
|
512
|
+
def degree_on_basis(self, m):
|
|
513
|
+
"""
|
|
514
|
+
Return the degree of the basis element indexed by ``m``.
|
|
515
|
+
|
|
516
|
+
EXAMPLES::
|
|
517
|
+
|
|
518
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
519
|
+
sage: PBW = L.pbw_basis()
|
|
520
|
+
sage: E,H,F = PBW.algebra_generators()
|
|
521
|
+
sage: PBW.degree_on_basis(E.leading_support())
|
|
522
|
+
1
|
|
523
|
+
sage: m = ((H*F)^10).trailing_support(key=PBW._monomial_key) # long time
|
|
524
|
+
sage: PBW.degree_on_basis(m) # long time
|
|
525
|
+
20
|
|
526
|
+
sage: ((H*F*E)^4).maximal_degree() # long time
|
|
527
|
+
12
|
|
528
|
+
"""
|
|
529
|
+
return m.length()
|
|
530
|
+
|
|
531
|
+
def casimir_element(self, order=2, *args, **kwds):
|
|
532
|
+
r"""
|
|
533
|
+
Return the Casimir element of ``self``.
|
|
534
|
+
|
|
535
|
+
.. SEEALSO::
|
|
536
|
+
|
|
537
|
+
:meth:`~sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods.casimir_element`
|
|
538
|
+
|
|
539
|
+
INPUT:
|
|
540
|
+
|
|
541
|
+
- ``order`` -- (default: ``2``) the order of the Casimir element
|
|
542
|
+
|
|
543
|
+
EXAMPLES::
|
|
544
|
+
|
|
545
|
+
sage: L = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
546
|
+
sage: U = L.pbw_basis()
|
|
547
|
+
sage: C = U.casimir_element(); C
|
|
548
|
+
1/4*PBW[alpha[2]]*PBW[-alpha[2]] + 1/12*PBW[alpha[1]]*PBW[-alpha[1]]
|
|
549
|
+
+ 1/12*PBW[alpha[1] + alpha[2]]*PBW[-alpha[1] - alpha[2]] + 1/12*PBW[2*alpha[1] + alpha[2]]*PBW[-2*alpha[1] - alpha[2]]
|
|
550
|
+
+ 1/4*PBW[3*alpha[1] + alpha[2]]*PBW[-3*alpha[1] - alpha[2]]
|
|
551
|
+
+ 1/4*PBW[3*alpha[1] + 2*alpha[2]]*PBW[-3*alpha[1] - 2*alpha[2]]
|
|
552
|
+
+ 1/12*PBW[alphacheck[1]]^2 + 1/4*PBW[alphacheck[1]]*PBW[alphacheck[2]]
|
|
553
|
+
+ 1/4*PBW[alphacheck[2]]^2 - 5/12*PBW[alphacheck[1]] - 3/4*PBW[alphacheck[2]]
|
|
554
|
+
sage: all(g * C == C * g for g in U.algebra_generators())
|
|
555
|
+
True
|
|
556
|
+
|
|
557
|
+
TESTS::
|
|
558
|
+
|
|
559
|
+
sage: H = lie_algebras.Heisenberg(QQ, oo)
|
|
560
|
+
sage: U = H.pbw_basis()
|
|
561
|
+
sage: U.casimir_element()
|
|
562
|
+
Traceback (most recent call last):
|
|
563
|
+
...
|
|
564
|
+
ValueError: the Lie algebra must be finite dimensional
|
|
565
|
+
"""
|
|
566
|
+
from sage.rings.infinity import Infinity
|
|
567
|
+
if self._g.dimension() == Infinity:
|
|
568
|
+
raise ValueError("the Lie algebra must be finite dimensional")
|
|
569
|
+
return self._g.casimir_element(order=order, UEA=self, *args, **kwds)
|
|
570
|
+
|
|
571
|
+
def center(self):
|
|
572
|
+
r"""
|
|
573
|
+
Return the center of ``self``.
|
|
574
|
+
|
|
575
|
+
.. SEEALSO::
|
|
576
|
+
|
|
577
|
+
:class:`~sage.algebras.lie_algebras.center_uea.CenterUEA`
|
|
578
|
+
|
|
579
|
+
EXAMPLES::
|
|
580
|
+
|
|
581
|
+
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
|
|
582
|
+
sage: U = g.pbw_basis()
|
|
583
|
+
sage: U.center() # needs sage.rings.number_field
|
|
584
|
+
Center of Universal enveloping algebra of Lie algebra of ['A', 2]
|
|
585
|
+
in the Chevalley basis in the Poincare-Birkhoff-Witt basis
|
|
586
|
+
|
|
587
|
+
sage: g = lie_algebras.Heisenberg(GF(3), 4)
|
|
588
|
+
sage: U = g.pbw_basis()
|
|
589
|
+
sage: U.center() # needs sage.rings.number_field
|
|
590
|
+
Center of Universal enveloping algebra of Heisenberg algebra of rank 4
|
|
591
|
+
over Finite Field of size 3 in the Poincare-Birkhoff-Witt basis
|
|
592
|
+
"""
|
|
593
|
+
from sage.algebras.lie_algebras.center_uea import CenterUEA
|
|
594
|
+
return CenterUEA(self._g, self)
|
|
595
|
+
|
|
596
|
+
class Element(CombinatorialFreeModule.Element):
|
|
597
|
+
def _act_on_(self, x, self_on_left):
|
|
598
|
+
"""
|
|
599
|
+
Return the action of ``self`` on ``x`` by seeing if there is an
|
|
600
|
+
action of the defining Lie algebra.
|
|
601
|
+
|
|
602
|
+
EXAMPLES::
|
|
603
|
+
|
|
604
|
+
sage: L = lie_algebras.VirasoroAlgebra(QQ)
|
|
605
|
+
sage: d = L.basis()
|
|
606
|
+
sage: x = d[-1]*d[-2]*d[-1] + 3*d[-3]
|
|
607
|
+
sage: x
|
|
608
|
+
PBW[-2]*PBW[-1]^2 + PBW[-3]*PBW[-1] + 3*PBW[-3]
|
|
609
|
+
sage: M = L.verma_module(1/2,3/4)
|
|
610
|
+
sage: v = M.highest_weight_vector()
|
|
611
|
+
sage: x * v
|
|
612
|
+
3*d[-3]*v + d[-3]*d[-1]*v + d[-2]*d[-1]*d[-1]*v
|
|
613
|
+
"""
|
|
614
|
+
# Try the _acted_upon_ first as it might have a direct PBW action
|
|
615
|
+
# implemented that is faster
|
|
616
|
+
ret = x._acted_upon_(self, not self_on_left)
|
|
617
|
+
if ret is not None:
|
|
618
|
+
return ret
|
|
619
|
+
cm = get_coercion_model()
|
|
620
|
+
L = self.parent()._g
|
|
621
|
+
if self_on_left:
|
|
622
|
+
if cm.discover_action(L, x.parent(), mul):
|
|
623
|
+
ret = x.parent().zero()
|
|
624
|
+
for mon, coeff in self._monomial_coefficients.items():
|
|
625
|
+
term = coeff * x
|
|
626
|
+
for k, exp in reversed(mon._sorted_items()):
|
|
627
|
+
for _ in range(exp):
|
|
628
|
+
term = L.monomial(k) * term
|
|
629
|
+
ret += term
|
|
630
|
+
return ret
|
|
631
|
+
else:
|
|
632
|
+
if cm.discover_action(x.parent(), L, mul):
|
|
633
|
+
ret = x.parent().zero()
|
|
634
|
+
for mon, coeff in self._monomial_coefficients.items():
|
|
635
|
+
term = coeff * x
|
|
636
|
+
for k, exp in reversed(mon._sorted_items()):
|
|
637
|
+
for _ in range(exp):
|
|
638
|
+
term = term * L.monomial(k)
|
|
639
|
+
ret += term
|
|
640
|
+
return ret
|
|
641
|
+
return None
|
|
642
|
+
|
|
643
|
+
|
|
644
|
+
class PoincareBirkhoffWittBasisSemisimpleLieAlgebra(PoincareBirkhoffWittBasis):
|
|
645
|
+
r"""
|
|
646
|
+
The Poincare-Birkhoff-Witt basis of a finite dimensional triangular
|
|
647
|
+
Kac-Moody Lie algebra (i.e., a semisimple Lie algebra).
|
|
648
|
+
"""
|
|
649
|
+
def __init__(self, g, basis_key=None, *args, **kwds):
|
|
650
|
+
r"""
|
|
651
|
+
Initialize ``self``.
|
|
652
|
+
|
|
653
|
+
EXAMPLES::
|
|
654
|
+
|
|
655
|
+
sage: U = lie_algebras.so(QQ, 5).pbw_basis()
|
|
656
|
+
sage: TestSuite(U).run()
|
|
657
|
+
|
|
658
|
+
sage: L = lie_algebras.sl(QQ, 2)
|
|
659
|
+
sage: PBW = L.pbw_basis()
|
|
660
|
+
sage: E, F, H = PBW.algebra_generators()
|
|
661
|
+
sage: TestSuite(PBW).run(elements=[E, F, H])
|
|
662
|
+
sage: TestSuite(PBW).run(elements=[E, F, H, E*F + H]) # long time
|
|
663
|
+
"""
|
|
664
|
+
super().__init__(g, basis_key, *args, **kwds)
|
|
665
|
+
if self._basis_key == self._g._triangular_key:
|
|
666
|
+
self._triangular_pbw = self
|
|
667
|
+
else:
|
|
668
|
+
self._triangular_pbw = self._g.pbw_basis(basis_key=self._g._triangular_key)
|
|
669
|
+
|
|
670
|
+
def e(self, i=None):
|
|
671
|
+
r"""
|
|
672
|
+
Return the generators `e` of ``self``.
|
|
673
|
+
|
|
674
|
+
INPUT:
|
|
675
|
+
|
|
676
|
+
- ``i`` -- (optional) if specified, return just the
|
|
677
|
+
generator `e_i`
|
|
678
|
+
|
|
679
|
+
EXAMPLES::
|
|
680
|
+
|
|
681
|
+
sage: U = lie_algebras.so(QQ, 5).pbw_basis()
|
|
682
|
+
sage: U.e()
|
|
683
|
+
Finite family {1: PBW[alpha[1]], 2: PBW[alpha[2]]}
|
|
684
|
+
sage: U.e(1)
|
|
685
|
+
PBW[alpha[1]]
|
|
686
|
+
"""
|
|
687
|
+
if i is None:
|
|
688
|
+
return Family({i: self.e(i) for i in self._g.cartan_type().index_set()})
|
|
689
|
+
return self(self._g.e(i))
|
|
690
|
+
|
|
691
|
+
def f(self, i=None):
|
|
692
|
+
r"""
|
|
693
|
+
Return the generators `f` of ``self``.
|
|
694
|
+
|
|
695
|
+
INPUT:
|
|
696
|
+
|
|
697
|
+
- ``i`` -- (optional) if specified, return just the
|
|
698
|
+
generator `f_i`
|
|
699
|
+
|
|
700
|
+
EXAMPLES::
|
|
701
|
+
|
|
702
|
+
sage: U = lie_algebras.so(QQ, 5).pbw_basis()
|
|
703
|
+
sage: U.f()
|
|
704
|
+
Finite family {1: PBW[-alpha[1]], 2: PBW[-alpha[2]]}
|
|
705
|
+
sage: U.f(1)
|
|
706
|
+
PBW[-alpha[1]]
|
|
707
|
+
"""
|
|
708
|
+
if i is None:
|
|
709
|
+
return Family({i: self.f(i) for i in self._g.cartan_type().index_set()})
|
|
710
|
+
return self(self._g.f(i))
|
|
711
|
+
|
|
712
|
+
def contravariant_form(self, x, y):
|
|
713
|
+
r"""
|
|
714
|
+
Return the (universal) contravariant form of ``x`` and ``y``.
|
|
715
|
+
|
|
716
|
+
Let `\varphi \colon U(\mathfrak{g}) \to U(\mathfrak{h})` denote
|
|
717
|
+
the projection onto the Cartan subalgebra and `\tau` be the transpose
|
|
718
|
+
map. The *(universal) contravariant form* is defined as
|
|
719
|
+
|
|
720
|
+
.. MATH::
|
|
721
|
+
|
|
722
|
+
(x, y) = \varphi(\tau(x) y).
|
|
723
|
+
|
|
724
|
+
EXAMPLES::
|
|
725
|
+
|
|
726
|
+
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
|
|
727
|
+
sage: U = g.pbw_basis()
|
|
728
|
+
sage: f1, f2 = U.f()
|
|
729
|
+
sage: e1, e2 = U.e()
|
|
730
|
+
sage: U.contravariant_form(U.one(), U.one())
|
|
731
|
+
1
|
|
732
|
+
sage: U.contravariant_form(f1, f1)
|
|
733
|
+
PBW[alphacheck[1]]
|
|
734
|
+
sage: U.contravariant_form(f2, f2)
|
|
735
|
+
PBW[alphacheck[2]]
|
|
736
|
+
sage: U.contravariant_form(f1*f2, f1*f2)
|
|
737
|
+
PBW[alphacheck[1]]*PBW[alphacheck[2]] + 3*PBW[alphacheck[2]]
|
|
738
|
+
sage: U.contravariant_form(e1*e1*e2, e2*e1*e2)
|
|
739
|
+
0
|
|
740
|
+
sage: cas = U.casimir_element()
|
|
741
|
+
sage: ccc = U.contravariant_form(cas, cas); ccc
|
|
742
|
+
1/144*PBW[alphacheck[1]]^4 + 1/24*PBW[alphacheck[1]]^3*PBW[alphacheck[2]]
|
|
743
|
+
+ 5/48*PBW[alphacheck[1]]^2*PBW[alphacheck[2]]^2
|
|
744
|
+
+ 1/8*PBW[alphacheck[1]]*PBW[alphacheck[2]]^3 + 1/16*PBW[alphacheck[2]]^4
|
|
745
|
+
+ 5/72*PBW[alphacheck[1]]^3 + 1/3*PBW[alphacheck[1]]^2*PBW[alphacheck[2]]
|
|
746
|
+
+ 7/12*PBW[alphacheck[1]]*PBW[alphacheck[2]]^2 + 3/8*PBW[alphacheck[2]]^3
|
|
747
|
+
+ 25/144*PBW[alphacheck[1]]^2 + 5/8*PBW[alphacheck[1]]*PBW[alphacheck[2]]
|
|
748
|
+
+ 9/16*PBW[alphacheck[2]]^2
|
|
749
|
+
sage: ccc.parent() is U
|
|
750
|
+
True
|
|
751
|
+
"""
|
|
752
|
+
x = self._triangular_pbw(x)
|
|
753
|
+
y = self._triangular_pbw(y)
|
|
754
|
+
temp = (x.transpose() * y)._monomial_coefficients
|
|
755
|
+
part = self._g._part_on_basis
|
|
756
|
+
ret = {mon: temp[mon] for mon in temp if all(part(b) == 0 for b in mon.support())}
|
|
757
|
+
# TODO: Construct this direct in ``self``
|
|
758
|
+
return self(self._triangular_pbw.element_class(self._triangular_pbw, ret))
|
|
759
|
+
|
|
760
|
+
@cached_method
|
|
761
|
+
def _transpose_on_basis(self, m):
|
|
762
|
+
"""
|
|
763
|
+
Return the transpose map applied to the basis element indexed by ``m``.
|
|
764
|
+
|
|
765
|
+
EXAMPLES::
|
|
766
|
+
|
|
767
|
+
sage: g = LieAlgebra(QQ, cartan_type=['E', 6])
|
|
768
|
+
sage: U = g.pbw_basis()
|
|
769
|
+
sage: f1, f2, f3, f4, f5, f6 = U.f()
|
|
770
|
+
sage: e1, e2, e3, e4, e5, e6 = U.e()
|
|
771
|
+
sage: elt = e1 * e4^2 * f1 * f2^3
|
|
772
|
+
sage: U._transpose_on_basis(elt.support()[0])
|
|
773
|
+
PBW[alpha[2]]^3*PBW[alpha[1]]*PBW[-alpha[4]]^2*PBW[-alpha[1]]
|
|
774
|
+
"""
|
|
775
|
+
I = self._indices
|
|
776
|
+
basis_mapping = self._g._transpose_basis_mapping
|
|
777
|
+
return self.prod(self.monomial(I({basis_mapping[k]: e}))
|
|
778
|
+
for k, e in reversed(m._sorted_items()))
|
|
779
|
+
|
|
780
|
+
@lazy_attribute
|
|
781
|
+
def transpose(self):
|
|
782
|
+
r"""
|
|
783
|
+
The transpose map.
|
|
784
|
+
|
|
785
|
+
EXAMPLES::
|
|
786
|
+
|
|
787
|
+
sage: g = LieAlgebra(QQ, cartan_type=['F', 4])
|
|
788
|
+
sage: U = g.pbw_basis()
|
|
789
|
+
sage: U.transpose
|
|
790
|
+
Generic endomorphism of Universal enveloping algebra of Lie algebra
|
|
791
|
+
of ['F', 4] in the Chevalley basis in the Poincare-Birkhoff-Witt basis
|
|
792
|
+
"""
|
|
793
|
+
return self.module_morphism(self._transpose_on_basis, codomain=self)
|
|
794
|
+
|
|
795
|
+
class Element(PoincareBirkhoffWittBasis.Element):
|
|
796
|
+
def transpose(self):
|
|
797
|
+
r"""
|
|
798
|
+
Return the transpose map of ``self``.
|
|
799
|
+
|
|
800
|
+
This is the transpose map on the Lie algebra extended
|
|
801
|
+
as an anti-involution of ``self``.
|
|
802
|
+
|
|
803
|
+
EXAMPLES::
|
|
804
|
+
|
|
805
|
+
sage: g = LieAlgebra(QQ, cartan_type=['D', 4])
|
|
806
|
+
sage: U = g.pbw_basis()
|
|
807
|
+
sage: e = U.e()
|
|
808
|
+
sage: f = U.f()
|
|
809
|
+
sage: elts = [e[1], e[1]*e[2], e[3]+e[4], e[1]*e[3]*e[4] + e[2],
|
|
810
|
+
....: f[1], f[1]*f[2], f[3]+f[4], e[1]*e[3]*e[4] + e[2],
|
|
811
|
+
....: e[1]*f[1], f[1]*e[1], (e[2]*f[2] - f[2]*e[2])^2]
|
|
812
|
+
sage: all((b*bp).transpose() == bp.transpose() * b.transpose()
|
|
813
|
+
....: for b in elts for bp in elts)
|
|
814
|
+
True
|
|
815
|
+
"""
|
|
816
|
+
return self.parent().transpose(self)
|