passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +808 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_modules.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-d8ebe4b5.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,926 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.libs.pari (for charpoly, minimal_polynomial in __init__)
|
|
3
|
+
r"""
|
|
4
|
+
`J`-ideals of matrices
|
|
5
|
+
|
|
6
|
+
Let `B` be an `n\times n`-matrix over a principal ideal domain `D`.
|
|
7
|
+
|
|
8
|
+
For an ideal `J`, the `J`-ideal of `B` is defined to be
|
|
9
|
+
`N_J(B) = \{ f\in D[X] \mid f(B) \in M_n(J) \}`.
|
|
10
|
+
|
|
11
|
+
For a prime element `p` of `D` and `t\ge 0`, a `(p^t)`-minimal polynomial of `B`
|
|
12
|
+
is a monic polynomial `f\in N_{(p^t)}(B)` of minimal degree.
|
|
13
|
+
|
|
14
|
+
This module computes these minimal polynomials.
|
|
15
|
+
|
|
16
|
+
Let `p` be a prime element of `D`. Then there is a finite set `\mathcal{S}_p` of
|
|
17
|
+
positive integers and monic polynomials `\nu_{ps}` for `s\in\mathcal{S}_p` such
|
|
18
|
+
that for `t\ge 1`,
|
|
19
|
+
|
|
20
|
+
.. MATH::
|
|
21
|
+
|
|
22
|
+
N_{(p^t)}(B) = \mu_BD[X] + p^tD[X]
|
|
23
|
+
+ \sum_{\substack{s\in\mathcal{S}_p \\ s \le b(t) }}
|
|
24
|
+
p^{\max\{0,t-s\}}\nu_{ps}D[X]
|
|
25
|
+
|
|
26
|
+
holds where `b(t) = \min\{r\in \mathcal{S}_p \mid r \ge s\}`. The
|
|
27
|
+
degree of `\nu_{ps}` is strictly increasing in `s\in \mathcal{S}_p` and
|
|
28
|
+
`\nu_{ps}` is a `(p^s)`-minimal polynomial. If `t\le \max\mathcal{S}_p`,
|
|
29
|
+
then the summand `\mu_BD[X]` can be omitted.
|
|
30
|
+
|
|
31
|
+
All computations are done by the class
|
|
32
|
+
:class:`ComputeMinimalPolynomials` where various intermediate results
|
|
33
|
+
are cached. It provides the following methods:
|
|
34
|
+
|
|
35
|
+
* :meth:`~ComputeMinimalPolynomials.p_minimal_polynomials`
|
|
36
|
+
computes `\mathcal{S}_p` and the monic polynomials `\nu_{ps}`.
|
|
37
|
+
|
|
38
|
+
* :meth:`~ComputeMinimalPolynomials.null_ideal` determines `N_{(p^t)}(B)`.
|
|
39
|
+
|
|
40
|
+
* :meth:`~ComputeMinimalPolynomials.prime_candidates` determines all primes `p`
|
|
41
|
+
where `\mathcal{S}_p` might be non-empty.
|
|
42
|
+
|
|
43
|
+
* :meth:`~ComputeMinimalPolynomials.integer_valued_polynomials_generators`
|
|
44
|
+
determines the generators of the ring `\{f \in K[X] \mid f(B) \in M_n(D)\}`
|
|
45
|
+
of integer valued polynomials on `B`.
|
|
46
|
+
|
|
47
|
+
EXAMPLES::
|
|
48
|
+
|
|
49
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
50
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
51
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
52
|
+
sage: C.prime_candidates()
|
|
53
|
+
[2, 3, 5]
|
|
54
|
+
sage: for t in range(4):
|
|
55
|
+
....: print(C.null_ideal(2^t))
|
|
56
|
+
Principal ideal (1) of
|
|
57
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
58
|
+
Ideal (2, x^2 + x) of
|
|
59
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
60
|
+
Ideal (4, x^2 + 3*x + 2) of
|
|
61
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
62
|
+
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
|
|
63
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
64
|
+
sage: C.p_minimal_polynomials(2)
|
|
65
|
+
{2: x^2 + 3*x + 2}
|
|
66
|
+
sage: C.integer_valued_polynomials_generators()
|
|
67
|
+
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
|
|
68
|
+
|
|
69
|
+
The last output means that
|
|
70
|
+
|
|
71
|
+
.. MATH::
|
|
72
|
+
|
|
73
|
+
\{f \in \QQ[X] \mid f(B) \in M_3(\ZZ)\} =
|
|
74
|
+
(x^3 + x^2 - 12x - 20)\QQ[X] + \ZZ[X]
|
|
75
|
+
+ \frac{1}{4}(x^2 + 3x + 2) \ZZ[X].
|
|
76
|
+
|
|
77
|
+
.. TODO::
|
|
78
|
+
|
|
79
|
+
Test code over PIDs other than ZZ.
|
|
80
|
+
|
|
81
|
+
This requires implementation of
|
|
82
|
+
:meth:`~sage.matrix.matrix_integer_dense.Matrix_integer_dense.frobenius`
|
|
83
|
+
over more general domains than ZZ.
|
|
84
|
+
|
|
85
|
+
Additionally, :func:`lifting` requires modification or a bug
|
|
86
|
+
needs fixing, see
|
|
87
|
+
`AskSage Question 35555 <https://ask.sagemath.org/question/35555/lifting-a-matrix-from-mathbbqyy-1/>`_.
|
|
88
|
+
|
|
89
|
+
REFERENCES:
|
|
90
|
+
|
|
91
|
+
[Ris2016]_, [HR2016]_
|
|
92
|
+
|
|
93
|
+
AUTHORS:
|
|
94
|
+
|
|
95
|
+
- Clemens Heuberger (2016)
|
|
96
|
+
- Roswitha Rissner (2016)
|
|
97
|
+
|
|
98
|
+
ACKNOWLEDGEMENT:
|
|
99
|
+
|
|
100
|
+
- Clemens Heuberger is supported by the Austrian Science Fund (FWF):
|
|
101
|
+
P 24644-N26.
|
|
102
|
+
|
|
103
|
+
- Roswitha Rissner is supported by the Austrian Science Fund (FWF):
|
|
104
|
+
P 27816-N26.
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
Classes and Methods
|
|
108
|
+
===================
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
# *****************************************************************************
|
|
112
|
+
# Copyright (C) 2016 Clemens Heuberger <clemens.heuberger@aau.at>
|
|
113
|
+
# 2016 Roswitha Rissner <roswitha.rissner@tugraz.at>
|
|
114
|
+
#
|
|
115
|
+
# This program is free software: you can redistribute it and/or modify
|
|
116
|
+
# it under the terms of the GNU General Public License as published by
|
|
117
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
118
|
+
# (at your option) any later version.
|
|
119
|
+
# https://www.gnu.org/licenses/
|
|
120
|
+
# *****************************************************************************
|
|
121
|
+
|
|
122
|
+
from sage.matrix.constructor import matrix
|
|
123
|
+
from sage.structure.sage_object import SageObject
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
def lifting(p, t, A, G):
|
|
127
|
+
r"""
|
|
128
|
+
Compute generators of `\{f \in D[X]^d \mid Af \equiv 0 \pmod{p^{t}}\}` given
|
|
129
|
+
generators of `\{f\in D[X]^d \mid Af \equiv 0\pmod{p^{t-1}}\}`.
|
|
130
|
+
|
|
131
|
+
INPUT:
|
|
132
|
+
|
|
133
|
+
- ``p`` -- a prime element of some principal ideal domain `D`
|
|
134
|
+
|
|
135
|
+
- ``t`` -- nonnegative integer
|
|
136
|
+
|
|
137
|
+
- ``A`` -- a `c\times d` matrix over `D[X]`
|
|
138
|
+
|
|
139
|
+
- ``G`` -- a matrix over `D[X]`. The columns of
|
|
140
|
+
`\begin{pmatrix}p^{t-1}I& G\end{pmatrix}` are generators
|
|
141
|
+
of `\{ f\in D[X]^d \mid Af \equiv 0\pmod{p^{t-1}}\}`;
|
|
142
|
+
can be set to ``None`` if ``t`` is zero
|
|
143
|
+
|
|
144
|
+
OUTPUT:
|
|
145
|
+
|
|
146
|
+
A matrix `F` over `D[X]` such that the columns of
|
|
147
|
+
`\begin{pmatrix}p^tI&F&pG\end{pmatrix}` are generators of
|
|
148
|
+
`\{ f\in D[X]^d \mid Af \equiv 0\pmod{p^t}\}`.
|
|
149
|
+
|
|
150
|
+
EXAMPLES::
|
|
151
|
+
|
|
152
|
+
sage: from sage.matrix.compute_J_ideal import lifting
|
|
153
|
+
sage: X = polygen(ZZ, 'X')
|
|
154
|
+
sage: A = matrix([[1, X], [2*X, X^2]])
|
|
155
|
+
sage: G0 = lifting(5, 0, A, None)
|
|
156
|
+
sage: G1 = lifting(5, 1, A, G0); G1
|
|
157
|
+
[]
|
|
158
|
+
sage: (A*G1 % 5).is_zero()
|
|
159
|
+
True
|
|
160
|
+
sage: A = matrix([[1, X, X^2], [2*X, X^2, 3*X^3]])
|
|
161
|
+
sage: G0 = lifting(5, 0, A, None)
|
|
162
|
+
sage: G1 = lifting(5, 1, A, G0); G1
|
|
163
|
+
[3*X^2]
|
|
164
|
+
[ X]
|
|
165
|
+
[ 1]
|
|
166
|
+
sage: (A*G1 % 5).is_zero()
|
|
167
|
+
True
|
|
168
|
+
sage: G2 = lifting(5, 2, A, G1); G2
|
|
169
|
+
[15*X^2 23*X^2]
|
|
170
|
+
[ 5*X X]
|
|
171
|
+
[ 5 1]
|
|
172
|
+
sage: (A*G2 % 25).is_zero()
|
|
173
|
+
True
|
|
174
|
+
sage: lifting(5, 10, A, G1)
|
|
175
|
+
Traceback (most recent call last):
|
|
176
|
+
...
|
|
177
|
+
ValueError: A*G not zero mod 5^9
|
|
178
|
+
|
|
179
|
+
ALGORITHM:
|
|
180
|
+
|
|
181
|
+
[HR2016]_, Algorithm 1.
|
|
182
|
+
|
|
183
|
+
TESTS::
|
|
184
|
+
|
|
185
|
+
sage: A = matrix([[1, X], [X, X^2]])
|
|
186
|
+
sage: G0 = lifting(5, 0, A, None)
|
|
187
|
+
sage: G1 = lifting(5, 1, A, G0); G1
|
|
188
|
+
Traceback (most recent call last):
|
|
189
|
+
...
|
|
190
|
+
ValueError: [ 1 X|]
|
|
191
|
+
[ X X^2|] does not have full rank.
|
|
192
|
+
"""
|
|
193
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
194
|
+
|
|
195
|
+
DX = A.parent().base()
|
|
196
|
+
(X,) = DX.variable_names()
|
|
197
|
+
D = DX.base_ring()
|
|
198
|
+
d = A.ncols()
|
|
199
|
+
c = A.nrows()
|
|
200
|
+
|
|
201
|
+
if t == 0:
|
|
202
|
+
return matrix(DX, d, 0)
|
|
203
|
+
|
|
204
|
+
if not (A*G % p**(t-1)).is_zero():
|
|
205
|
+
raise ValueError("A*G not zero mod %s^%s" % (p, t-1))
|
|
206
|
+
|
|
207
|
+
R = A*G/p**(t-1)
|
|
208
|
+
R.change_ring(DX)
|
|
209
|
+
|
|
210
|
+
AR = matrix.block([[A, R]])
|
|
211
|
+
Fp = D.quotient(p*D)
|
|
212
|
+
FpX = PolynomialRing(Fp, name=X)
|
|
213
|
+
|
|
214
|
+
ARb = AR.change_ring(FpX)
|
|
215
|
+
(Db, Sb, Tb) = ARb.smith_form()
|
|
216
|
+
#assert Sb * ARb * Tb == Db
|
|
217
|
+
#assert all(i == j or Db[i, j].is_zero()
|
|
218
|
+
# for i in range(Db.nrows())
|
|
219
|
+
# for j in range(Db.ncols()))
|
|
220
|
+
|
|
221
|
+
r = Db.rank()
|
|
222
|
+
if r != c:
|
|
223
|
+
raise ValueError("{} does not have full rank.".format(ARb))
|
|
224
|
+
|
|
225
|
+
T = Tb.change_ring(DX)
|
|
226
|
+
|
|
227
|
+
F1 = matrix.block([[p**(t-1) * matrix.identity(d), G]])*T
|
|
228
|
+
F = F1.matrix_from_columns(range(r, F1.ncols()))
|
|
229
|
+
assert (A*F % (p**t)).is_zero(), "A*F=%s" % (A*F)
|
|
230
|
+
|
|
231
|
+
return F
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
def p_part(f, p):
|
|
235
|
+
r"""
|
|
236
|
+
Compute the `p`-part of a polynomial.
|
|
237
|
+
|
|
238
|
+
INPUT:
|
|
239
|
+
|
|
240
|
+
- ``f`` -- a polynomial over `D`
|
|
241
|
+
|
|
242
|
+
- ``p`` -- a prime in `D`
|
|
243
|
+
|
|
244
|
+
OUTPUT:
|
|
245
|
+
|
|
246
|
+
A polynomial `g` such that `\deg g \le \deg f` and
|
|
247
|
+
all nonzero coefficients of `f - p g` are not divisible by `p`.
|
|
248
|
+
|
|
249
|
+
EXAMPLES::
|
|
250
|
+
|
|
251
|
+
sage: from sage.matrix.compute_J_ideal import p_part
|
|
252
|
+
sage: X = polygen(ZZ, 'X')
|
|
253
|
+
sage: f = X^3 + 5*X + 25
|
|
254
|
+
sage: g = p_part(f, 5); g
|
|
255
|
+
X + 5
|
|
256
|
+
sage: f - 5*g
|
|
257
|
+
X^3
|
|
258
|
+
|
|
259
|
+
TESTS:
|
|
260
|
+
|
|
261
|
+
Return value is supposed to be a polynomial, see :issue:`22402`
|
|
262
|
+
|
|
263
|
+
sage: g = p_part(X+1, 2)
|
|
264
|
+
sage: g.parent()
|
|
265
|
+
Univariate Polynomial Ring in X over Integer Ring
|
|
266
|
+
"""
|
|
267
|
+
DX = f.parent()
|
|
268
|
+
(X,) = DX.gens()
|
|
269
|
+
return DX(sum(c//p * X**i for i, c in enumerate(f.list())
|
|
270
|
+
if c % p == 0))
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
class ComputeMinimalPolynomials(SageObject):
|
|
274
|
+
r"""
|
|
275
|
+
Create an object for computing `(p^t)`-minimal polynomials and `J`-ideals.
|
|
276
|
+
|
|
277
|
+
For an ideal `J` and a square matrix `B` over a principal ideal
|
|
278
|
+
domain `D`, the `J`-ideal of `B` is defined to be
|
|
279
|
+
`N_J(B) = \{ f\in D[X] \mid f(B) \in M_n(J) \}`.
|
|
280
|
+
|
|
281
|
+
For a prime element `p` of `D` and `t\ge 0`, a `(p^t)`-minimal
|
|
282
|
+
polynomial of `B` is a monic polynomial `f\in N_{(p^t)}(B)` of
|
|
283
|
+
minimal degree.
|
|
284
|
+
|
|
285
|
+
The characteristic polynomial of `B` is denoted by `\chi_B`; `n`
|
|
286
|
+
is the size of `B`.
|
|
287
|
+
|
|
288
|
+
INPUT:
|
|
289
|
+
|
|
290
|
+
- ``B`` -- a square matrix over a principal ideal domain `D`
|
|
291
|
+
|
|
292
|
+
OUTPUT:
|
|
293
|
+
|
|
294
|
+
An object which allows to call :meth:`p_minimal_polynomials`,
|
|
295
|
+
:meth:`null_ideal` and :meth:`integer_valued_polynomials_generators`.
|
|
296
|
+
|
|
297
|
+
EXAMPLES::
|
|
298
|
+
|
|
299
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
300
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
301
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
302
|
+
sage: C.prime_candidates()
|
|
303
|
+
[2, 3, 5]
|
|
304
|
+
sage: for t in range(4):
|
|
305
|
+
....: print(C.null_ideal(2^t))
|
|
306
|
+
Principal ideal (1) of
|
|
307
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
308
|
+
Ideal (2, x^2 + x) of
|
|
309
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
310
|
+
Ideal (4, x^2 + 3*x + 2) of
|
|
311
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
312
|
+
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
|
|
313
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
314
|
+
sage: C.p_minimal_polynomials(2)
|
|
315
|
+
{2: x^2 + 3*x + 2}
|
|
316
|
+
sage: C.integer_valued_polynomials_generators()
|
|
317
|
+
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
|
|
318
|
+
"""
|
|
319
|
+
def __init__(self, B):
|
|
320
|
+
r"""
|
|
321
|
+
Initialize the ComputeMinimalPolynomials class.
|
|
322
|
+
|
|
323
|
+
INPUT:
|
|
324
|
+
|
|
325
|
+
- ``B`` -- a square matrix
|
|
326
|
+
|
|
327
|
+
TESTS::
|
|
328
|
+
|
|
329
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
330
|
+
sage: ComputeMinimalPolynomials(matrix([[1, 2]]))
|
|
331
|
+
Traceback (most recent call last):
|
|
332
|
+
...
|
|
333
|
+
TypeError: square matrix required
|
|
334
|
+
"""
|
|
335
|
+
from sage.rings.polynomial.polynomial_ring import polygen
|
|
336
|
+
|
|
337
|
+
super().__init__()
|
|
338
|
+
if not B.is_square():
|
|
339
|
+
raise TypeError("square matrix required")
|
|
340
|
+
|
|
341
|
+
self._B = B
|
|
342
|
+
self._D = B.base_ring()
|
|
343
|
+
X = polygen(self._D)
|
|
344
|
+
adjugate = (X - B).adjugate()
|
|
345
|
+
d = B.nrows()**2
|
|
346
|
+
b = matrix(d, 1, adjugate.list())
|
|
347
|
+
self.chi_B = B.charpoly(X)
|
|
348
|
+
self.mu_B = B.minimal_polynomial()
|
|
349
|
+
self._A = matrix.block([[b , -self.chi_B*matrix.identity(d)]])
|
|
350
|
+
self._DX = X.parent()
|
|
351
|
+
self._cache = {}
|
|
352
|
+
|
|
353
|
+
def find_monic_replacements(self, p, t, pt_generators, prev_nu):
|
|
354
|
+
r"""
|
|
355
|
+
Replace possibly non-monic generators of `N_{(p^t)}(B)` by monic
|
|
356
|
+
generators.
|
|
357
|
+
|
|
358
|
+
INPUT:
|
|
359
|
+
|
|
360
|
+
- ``p`` -- a prime element of `D`
|
|
361
|
+
|
|
362
|
+
- ``t`` -- nonnegative integer
|
|
363
|
+
|
|
364
|
+
- ``pt_generators`` -- list `(g_1, \ldots, g_s)` of polynomials in
|
|
365
|
+
`D[X]` such that `N_{(p^t)}(B) = (g_1, \ldots, g_s) + pN_{(p^{t-1})}(B)`
|
|
366
|
+
|
|
367
|
+
- ``prev_nu`` -- a `(p^{t-1})`-minimal polynomial of `B`
|
|
368
|
+
|
|
369
|
+
OUTPUT:
|
|
370
|
+
|
|
371
|
+
A list `(h_1, \ldots, h_r)` of monic polynomials such that
|
|
372
|
+
`N_{(p^t)}(B) = (h_1, \ldots, h_r) + pN_{(p^{t-1})}(B)`.
|
|
373
|
+
|
|
374
|
+
EXAMPLES::
|
|
375
|
+
|
|
376
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
377
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
378
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
379
|
+
sage: x = polygen(ZZ, 'x')
|
|
380
|
+
sage: nu_1 = x^2 + x
|
|
381
|
+
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
|
|
382
|
+
sage: C.find_monic_replacements(2, 2, generators_4, nu_1)
|
|
383
|
+
[x^2 + 3*x + 2]
|
|
384
|
+
|
|
385
|
+
TESTS::
|
|
386
|
+
|
|
387
|
+
sage: C.find_monic_replacements(2, 3, generators_4, nu_1)
|
|
388
|
+
Traceback (most recent call last):
|
|
389
|
+
...
|
|
390
|
+
ValueError: [2*x^2 + 2*x, x^2 + 3*x + 2] not in N_{(2^3)}(B)
|
|
391
|
+
sage: C.find_monic_replacements(2, 2, generators_4, x^2)
|
|
392
|
+
Traceback (most recent call last):
|
|
393
|
+
...
|
|
394
|
+
ValueError: x^2 not in N_{(2^1)}(B)
|
|
395
|
+
|
|
396
|
+
ALGORITHM:
|
|
397
|
+
|
|
398
|
+
[HR2016]_, Algorithms 2 and 3.
|
|
399
|
+
"""
|
|
400
|
+
from sage.arith.misc import xgcd
|
|
401
|
+
|
|
402
|
+
if not all((g(self._B) % p**t).is_zero()
|
|
403
|
+
for g in pt_generators):
|
|
404
|
+
raise ValueError("%s not in N_{(%s^%s)}(B)" %
|
|
405
|
+
(pt_generators, p, t))
|
|
406
|
+
|
|
407
|
+
if not (prev_nu(self._B) % p**(t-1)).is_zero():
|
|
408
|
+
raise ValueError("%s not in N_{(%s^%s)}(B)" % (prev_nu, p, t-1))
|
|
409
|
+
|
|
410
|
+
(X,) = self._DX.gens()
|
|
411
|
+
|
|
412
|
+
replacements = []
|
|
413
|
+
for f in pt_generators:
|
|
414
|
+
g = f
|
|
415
|
+
p_prt = p_part(g, p)
|
|
416
|
+
|
|
417
|
+
while g != p*p_prt:
|
|
418
|
+
r = p_prt.quo_rem(prev_nu)[1]
|
|
419
|
+
g1 = g - p*p_prt
|
|
420
|
+
d, u, v = xgcd(g1.leading_coefficient(), p)
|
|
421
|
+
h = u*(p*r + g1) + v*p*prev_nu*X**(g1.degree()-prev_nu.degree())
|
|
422
|
+
replacements.append(h % p**t)
|
|
423
|
+
#reduce coefficients mod p^t to keep coefficients small
|
|
424
|
+
g = g.quo_rem(h)[1]
|
|
425
|
+
p_prt = p_part(g, p)
|
|
426
|
+
|
|
427
|
+
replacements = list(set(replacements))
|
|
428
|
+
assert all(g.is_monic() for g in replacements),\
|
|
429
|
+
"Something went wrong in find_monic_replacements"
|
|
430
|
+
|
|
431
|
+
return replacements
|
|
432
|
+
|
|
433
|
+
def current_nu(self, p, t, pt_generators, prev_nu):
|
|
434
|
+
r"""
|
|
435
|
+
Compute `(p^t)`-minimal polynomial of `B`.
|
|
436
|
+
|
|
437
|
+
INPUT:
|
|
438
|
+
|
|
439
|
+
- ``p`` -- a prime element of `D`
|
|
440
|
+
|
|
441
|
+
- ``t`` -- positive integer
|
|
442
|
+
|
|
443
|
+
- ``pt_generators`` -- list `(g_1, \ldots, g_s)` of polynomials in
|
|
444
|
+
`D[X]` such that `N_{(p^t)}(B) = (g_1, \ldots, g_s) + pN_{(p^{t-1})}(B)`
|
|
445
|
+
|
|
446
|
+
- ``prev_nu`` -- a `(p^{t-1})`-minimal polynomial of `B`
|
|
447
|
+
|
|
448
|
+
OUTPUT:
|
|
449
|
+
|
|
450
|
+
A `(p^t)`-minimal polynomial of `B`.
|
|
451
|
+
|
|
452
|
+
EXAMPLES::
|
|
453
|
+
|
|
454
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
455
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
456
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
457
|
+
sage: x = polygen(ZZ, 'x')
|
|
458
|
+
sage: nu_1 = x^2 + x
|
|
459
|
+
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
|
|
460
|
+
sage: C.current_nu(2, 2, generators_4, nu_1)
|
|
461
|
+
x^2 + 3*x + 2
|
|
462
|
+
|
|
463
|
+
ALGORITHM:
|
|
464
|
+
|
|
465
|
+
[HR2016]_, Algorithm 4.
|
|
466
|
+
|
|
467
|
+
TESTS::
|
|
468
|
+
|
|
469
|
+
sage: C.current_nu(2, 3, generators_4, nu_1)
|
|
470
|
+
Traceback (most recent call last):
|
|
471
|
+
...
|
|
472
|
+
ValueError: [2*x^2 + 2*x, x^2 + 3*x + 2] not in N_{(2^3)}(B)
|
|
473
|
+
sage: C.current_nu(2, 2, generators_4, x^2)
|
|
474
|
+
Traceback (most recent call last):
|
|
475
|
+
...
|
|
476
|
+
ValueError: x^2 not in N_{(2^1)}(B)
|
|
477
|
+
"""
|
|
478
|
+
import heapq
|
|
479
|
+
|
|
480
|
+
from sage.misc.verbose import verbose
|
|
481
|
+
|
|
482
|
+
if not all((g(self._B) % p**t).is_zero()
|
|
483
|
+
for g in pt_generators):
|
|
484
|
+
raise ValueError("%s not in N_{(%s^%s)}(B)" %
|
|
485
|
+
(pt_generators, p, t))
|
|
486
|
+
|
|
487
|
+
if not (prev_nu(self._B) % p**(t-1)).is_zero():
|
|
488
|
+
raise ValueError("%s not in N_{(%s^%s)}(B)" % (prev_nu, p, t-1))
|
|
489
|
+
|
|
490
|
+
generators = self.find_monic_replacements(p, t, pt_generators, prev_nu)
|
|
491
|
+
|
|
492
|
+
verbose("------------------------------------------")
|
|
493
|
+
verbose(pt_generators)
|
|
494
|
+
verbose("Generators with (p^t)-generating property:")
|
|
495
|
+
verbose(generators)
|
|
496
|
+
|
|
497
|
+
heap = [(f.degree(), f) for f in generators]
|
|
498
|
+
heapq.heapify(heap)
|
|
499
|
+
|
|
500
|
+
# find poly of minimal degree
|
|
501
|
+
deg_g, g = heapq.heappop(heap)
|
|
502
|
+
|
|
503
|
+
# find nu
|
|
504
|
+
while heap:
|
|
505
|
+
deg_f, f = heapq.heappop(heap)
|
|
506
|
+
#take first element in generators not equal g
|
|
507
|
+
r = (f.quo_rem(g)[1]) % p**t
|
|
508
|
+
if r != 0:
|
|
509
|
+
for h in self.find_monic_replacements(p, t, [r], prev_nu):
|
|
510
|
+
heapq.heappush(heap, (h.degree(), h))
|
|
511
|
+
if heap and heap[0][0] < deg_g:
|
|
512
|
+
deg_g, g = heapq.heappushpop(heap, (deg_g, g))
|
|
513
|
+
|
|
514
|
+
verbose([g] + [h for (deg_h, h) in heap])
|
|
515
|
+
|
|
516
|
+
return g
|
|
517
|
+
|
|
518
|
+
def mccoy_column(self, p, t, nu):
|
|
519
|
+
r"""
|
|
520
|
+
Compute matrix for McCoy's criterion.
|
|
521
|
+
|
|
522
|
+
INPUT:
|
|
523
|
+
|
|
524
|
+
- ``p`` -- a prime element in `D`
|
|
525
|
+
|
|
526
|
+
- ``t`` -- positive integer
|
|
527
|
+
|
|
528
|
+
- ``nu`` -- a `(p^t)`-minimal polynomial of `B`
|
|
529
|
+
|
|
530
|
+
OUTPUT:
|
|
531
|
+
|
|
532
|
+
An `(n^2 + 1) \times 1` matrix `g` with first entry ``nu`` such that
|
|
533
|
+
`\begin{pmatrix}b& -\chi_B I\end{pmatrix}g \equiv 0\pmod{p^t}` where `b`
|
|
534
|
+
consists of the entries of `\operatorname{adj}(X-B)`.
|
|
535
|
+
|
|
536
|
+
EXAMPLES::
|
|
537
|
+
|
|
538
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
539
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
540
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
541
|
+
sage: x = polygen(ZZ, 'x')
|
|
542
|
+
sage: nu_4 = x^2 + 3*x + 2
|
|
543
|
+
sage: g = C.mccoy_column(2, 2, nu_4)
|
|
544
|
+
sage: b = matrix(9, 1, (x - B).adjugate().list())
|
|
545
|
+
sage: M = matrix.block([[b, -B.charpoly(x)*matrix.identity(9)]])
|
|
546
|
+
sage: (M*g % 4).is_zero()
|
|
547
|
+
True
|
|
548
|
+
|
|
549
|
+
ALGORITHM:
|
|
550
|
+
|
|
551
|
+
[HR2016]_, Algorithm 5.
|
|
552
|
+
|
|
553
|
+
TESTS::
|
|
554
|
+
|
|
555
|
+
sage: nu_2 = x^2 + x
|
|
556
|
+
sage: C.mccoy_column(2, 2, nu_2)
|
|
557
|
+
Traceback (most recent call last):
|
|
558
|
+
...
|
|
559
|
+
ValueError: x^2 + x not in (2^2)-ideal
|
|
560
|
+
"""
|
|
561
|
+
if not (nu(self._B) % p**t).is_zero():
|
|
562
|
+
raise ValueError(
|
|
563
|
+
"%s not in (%s^%s)-ideal" % (nu, p, t))
|
|
564
|
+
|
|
565
|
+
column = matrix(self._DX, self._A.ncols(), 1,
|
|
566
|
+
[nu] + [(nu*b).quo_rem(self.chi_B)[0]
|
|
567
|
+
for b in self._A[:, 0].list()])
|
|
568
|
+
|
|
569
|
+
assert (self._A * column % p**t).is_zero(),\
|
|
570
|
+
"McCoy column incorrect"
|
|
571
|
+
|
|
572
|
+
return column
|
|
573
|
+
|
|
574
|
+
def p_minimal_polynomials(self, p, s_max=None):
|
|
575
|
+
r"""
|
|
576
|
+
Compute `(p^s)`-minimal polynomials `\nu_s` of `B`.
|
|
577
|
+
|
|
578
|
+
Compute a finite subset `\mathcal{S}` of the positive
|
|
579
|
+
integers and `(p^s)`-minimal polynomials
|
|
580
|
+
`\nu_s` for `s \in \mathcal{S}`.
|
|
581
|
+
|
|
582
|
+
For `0 < t \le \max \mathcal{S}`, a `(p^t)`-minimal polynomial is
|
|
583
|
+
given by `\nu_s` where
|
|
584
|
+
`s = \min\{ r \in \mathcal{S} \mid r\ge t \}`.
|
|
585
|
+
For `t > \max \mathcal{S}`, the minimal polynomial of `B` is
|
|
586
|
+
also a `(p^t)`-minimal polynomial.
|
|
587
|
+
|
|
588
|
+
INPUT:
|
|
589
|
+
|
|
590
|
+
- ``p`` -- a prime in `D`
|
|
591
|
+
|
|
592
|
+
- ``s_max`` -- positive integer (default: ``None``); if set, only
|
|
593
|
+
`(p^s)`-minimal polynomials for ``s <= s_max`` are computed
|
|
594
|
+
(see below for details)
|
|
595
|
+
|
|
596
|
+
OUTPUT:
|
|
597
|
+
|
|
598
|
+
A dictionary. Keys are the finite set `\mathcal{S}`, the values
|
|
599
|
+
are the associated `(p^s)`-minimal polynomials `\nu_s`,
|
|
600
|
+
`s \in \mathcal{S}`.
|
|
601
|
+
|
|
602
|
+
Setting ``s_max`` only affects the output if ``s_max`` is at
|
|
603
|
+
most `\max\mathcal{S}` where `\mathcal{S}` denotes the full
|
|
604
|
+
set. In that case, only those `\nu_s` with ``s <= s_max`` are
|
|
605
|
+
returned where ``s_max`` is always included even if it is not
|
|
606
|
+
included in the full set `\mathcal{S}`.
|
|
607
|
+
|
|
608
|
+
EXAMPLES::
|
|
609
|
+
|
|
610
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
611
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
612
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
613
|
+
sage: C.p_minimal_polynomials(2)
|
|
614
|
+
{2: x^2 + 3*x + 2}
|
|
615
|
+
sage: set_verbose(1)
|
|
616
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
617
|
+
sage: C.p_minimal_polynomials(2)
|
|
618
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
619
|
+
------------------------------------------
|
|
620
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
621
|
+
p = 2, t = 1:
|
|
622
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
623
|
+
Result of lifting:
|
|
624
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
625
|
+
F =
|
|
626
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
627
|
+
[x^2 + x]
|
|
628
|
+
[ x]
|
|
629
|
+
[ 0]
|
|
630
|
+
[ 1]
|
|
631
|
+
[ 1]
|
|
632
|
+
[ x + 1]
|
|
633
|
+
[ 1]
|
|
634
|
+
[ 0]
|
|
635
|
+
[ 0]
|
|
636
|
+
[ x + 1]
|
|
637
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
638
|
+
------------------------------------------
|
|
639
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
640
|
+
(x^2 + x)
|
|
641
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
642
|
+
Generators with (p^t)-generating property:
|
|
643
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
644
|
+
[x^2 + x]
|
|
645
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
646
|
+
nu = x^2 + x
|
|
647
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
648
|
+
corresponding columns for G
|
|
649
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
650
|
+
[x^2 + x]
|
|
651
|
+
[ x + 2]
|
|
652
|
+
[ 0]
|
|
653
|
+
[ 1]
|
|
654
|
+
[ 1]
|
|
655
|
+
[ x - 1]
|
|
656
|
+
[ -1]
|
|
657
|
+
[ 10]
|
|
658
|
+
[ 0]
|
|
659
|
+
[ x + 1]
|
|
660
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
661
|
+
------------------------------------------
|
|
662
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
663
|
+
p = 2, t = 2:
|
|
664
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
665
|
+
Result of lifting:
|
|
666
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
667
|
+
F =
|
|
668
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
669
|
+
[ 2*x^2 + 2*x x^2 + 3*x + 2]
|
|
670
|
+
[ 2*x x + 4]
|
|
671
|
+
[ 0 0]
|
|
672
|
+
[ 2 1]
|
|
673
|
+
[ 2 1]
|
|
674
|
+
[ 2*x + 2 x + 1]
|
|
675
|
+
[ 2 -1]
|
|
676
|
+
[ 0 10]
|
|
677
|
+
[ 0 0]
|
|
678
|
+
[ 2*x + 2 x + 3]
|
|
679
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
680
|
+
------------------------------------------
|
|
681
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
682
|
+
(2*x^2 + 2*x, x^2 + 3*x + 2)
|
|
683
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
684
|
+
Generators with (p^t)-generating property:
|
|
685
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
686
|
+
[x^2 + 3*x + 2]
|
|
687
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
688
|
+
nu = x^2 + 3*x + 2
|
|
689
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
690
|
+
corresponding columns for G
|
|
691
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
692
|
+
[x^2 + 3*x + 2]
|
|
693
|
+
[ x + 4]
|
|
694
|
+
[ 0]
|
|
695
|
+
[ 1]
|
|
696
|
+
[ 1]
|
|
697
|
+
[ x + 1]
|
|
698
|
+
[ -1]
|
|
699
|
+
[ 10]
|
|
700
|
+
[ 0]
|
|
701
|
+
[ x + 3]
|
|
702
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
703
|
+
------------------------------------------
|
|
704
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
705
|
+
p = 2, t = 3:
|
|
706
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
707
|
+
Result of lifting:
|
|
708
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
709
|
+
F =
|
|
710
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
711
|
+
[x^3 + 7*x^2 + 6*x x^3 + 3*x^2 + 2*x]
|
|
712
|
+
[ x^2 + 8*x x^2 + 4*x]
|
|
713
|
+
[ 0 0]
|
|
714
|
+
[ x x + 4]
|
|
715
|
+
[ x + 4 x]
|
|
716
|
+
[ x^2 + 5*x + 4 x^2 + x]
|
|
717
|
+
[ -x + 4 -x]
|
|
718
|
+
[ 10*x 10*x]
|
|
719
|
+
[ 0 0]
|
|
720
|
+
[ x^2 + 7*x x^2 + 3*x + 4]
|
|
721
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
722
|
+
------------------------------------------
|
|
723
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
724
|
+
(x^3 + 7*x^2 + 6*x, x^3 + 3*x^2 + 2*x)
|
|
725
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
726
|
+
Generators with (p^t)-generating property:
|
|
727
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
728
|
+
...
|
|
729
|
+
verbose 1 (...: compute_J_ideal.py, current_nu)
|
|
730
|
+
[x^3 + 3*x^2 + 2*x]
|
|
731
|
+
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
|
|
732
|
+
nu = x^3 + 3*x^2 + 2*x
|
|
733
|
+
{2: x^2 + 3*x + 2}
|
|
734
|
+
sage: set_verbose(0)
|
|
735
|
+
sage: C.p_minimal_polynomials(2, s_max=1)
|
|
736
|
+
{1: x^2 + x}
|
|
737
|
+
sage: C.p_minimal_polynomials(2, s_max=2)
|
|
738
|
+
{2: x^2 + 3*x + 2}
|
|
739
|
+
sage: C.p_minimal_polynomials(2, s_max=3)
|
|
740
|
+
{2: x^2 + 3*x + 2}
|
|
741
|
+
|
|
742
|
+
ALGORITHM:
|
|
743
|
+
|
|
744
|
+
[HR2016]_, Algorithm 5.
|
|
745
|
+
"""
|
|
746
|
+
from sage.misc.verbose import verbose
|
|
747
|
+
from sage.rings.infinity import Infinity
|
|
748
|
+
|
|
749
|
+
deg_mu = self.mu_B.degree()
|
|
750
|
+
if s_max is None:
|
|
751
|
+
s_max = Infinity
|
|
752
|
+
|
|
753
|
+
if p in self._cache:
|
|
754
|
+
(t, G, p_min_polys) = self._cache[p]
|
|
755
|
+
if t < Infinity:
|
|
756
|
+
nu = G[0][0]
|
|
757
|
+
else:
|
|
758
|
+
t = 0
|
|
759
|
+
p_min_polys = {}
|
|
760
|
+
nu = self._DX(1)
|
|
761
|
+
d = self._A.ncols()
|
|
762
|
+
G = matrix(self._DX, d, 0)
|
|
763
|
+
|
|
764
|
+
while t < s_max:
|
|
765
|
+
deg_prev_nu = nu.degree()
|
|
766
|
+
t += 1
|
|
767
|
+
verbose("------------------------------------------")
|
|
768
|
+
verbose("p = %s, t = %s:" % (p, t))
|
|
769
|
+
|
|
770
|
+
verbose("Result of lifting:")
|
|
771
|
+
verbose("F =")
|
|
772
|
+
F = lifting(p, t, self._A, G)
|
|
773
|
+
verbose(F)
|
|
774
|
+
|
|
775
|
+
nu = self.current_nu(p, t, F[0], nu)
|
|
776
|
+
|
|
777
|
+
verbose("nu = %s" % nu)
|
|
778
|
+
if nu.degree() >= deg_mu:
|
|
779
|
+
t = Infinity
|
|
780
|
+
break
|
|
781
|
+
|
|
782
|
+
if nu.degree() == deg_prev_nu:
|
|
783
|
+
G = G.delete_columns([G.ncols() - 1])
|
|
784
|
+
del p_min_polys[t-1]
|
|
785
|
+
|
|
786
|
+
column = self.mccoy_column(p, t, nu)
|
|
787
|
+
verbose("corresponding columns for G")
|
|
788
|
+
verbose(column)
|
|
789
|
+
|
|
790
|
+
G = matrix.block([[p * G, column]])
|
|
791
|
+
p_min_polys[t] = nu
|
|
792
|
+
|
|
793
|
+
self._cache[p] = (t, G, p_min_polys)
|
|
794
|
+
|
|
795
|
+
if s_max < t:
|
|
796
|
+
result = {r: polynomial
|
|
797
|
+
for r, polynomial in p_min_polys.items() if r < s_max}
|
|
798
|
+
next_t_candidates = [r for r in p_min_polys if r >= s_max]
|
|
799
|
+
if next_t_candidates:
|
|
800
|
+
next_t = min(next_t_candidates)
|
|
801
|
+
result.update({s_max: p_min_polys[next_t] % p**s_max})
|
|
802
|
+
|
|
803
|
+
return result
|
|
804
|
+
|
|
805
|
+
return p_min_polys
|
|
806
|
+
|
|
807
|
+
def null_ideal(self, b=0):
|
|
808
|
+
r"""
|
|
809
|
+
Return the `(b)`-ideal `N_{(b)}(B)=\{f\in D[X] \mid f(B)\in M_n(bD)\}`.
|
|
810
|
+
|
|
811
|
+
INPUT:
|
|
812
|
+
|
|
813
|
+
- ``b`` -- an element of `D` (default: 0)
|
|
814
|
+
|
|
815
|
+
OUTPUT: an ideal in `D[X]`
|
|
816
|
+
|
|
817
|
+
EXAMPLES::
|
|
818
|
+
|
|
819
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
820
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
821
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
822
|
+
sage: C.null_ideal()
|
|
823
|
+
Principal ideal (x^3 + x^2 - 12*x - 20) of
|
|
824
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
825
|
+
sage: C.null_ideal(2)
|
|
826
|
+
Ideal (2, x^2 + x) of
|
|
827
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
828
|
+
sage: C.null_ideal(4)
|
|
829
|
+
Ideal (4, x^2 + 3*x + 2) of
|
|
830
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
831
|
+
sage: C.null_ideal(8)
|
|
832
|
+
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of
|
|
833
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
834
|
+
sage: C.null_ideal(3)
|
|
835
|
+
Ideal (3, x^3 + x^2 - 12*x - 20) of
|
|
836
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
837
|
+
sage: C.null_ideal(6)
|
|
838
|
+
Ideal (6, 2*x^3 + 2*x^2 - 24*x - 40, 3*x^2 + 3*x) of
|
|
839
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
840
|
+
"""
|
|
841
|
+
from sage.arith.misc import factor
|
|
842
|
+
|
|
843
|
+
mu_B_coefficients = []
|
|
844
|
+
generators = []
|
|
845
|
+
|
|
846
|
+
if b == 0:
|
|
847
|
+
mu_B_coefficients = [1]
|
|
848
|
+
else:
|
|
849
|
+
for (p, t) in factor(b):
|
|
850
|
+
cofactor = b // p**t
|
|
851
|
+
p_polynomials = self.p_minimal_polynomials(p, t)
|
|
852
|
+
generators += [cofactor*p**(t-s)*nu
|
|
853
|
+
for s, nu in p_polynomials.items()]
|
|
854
|
+
if not p_polynomials or max(p_polynomials) < t:
|
|
855
|
+
mu_B_coefficients.append(cofactor)
|
|
856
|
+
|
|
857
|
+
assert all((g(self._B) % b).is_zero() for g in generators), \
|
|
858
|
+
"Polynomials not in %s-ideal" % (b,)
|
|
859
|
+
|
|
860
|
+
if mu_B_coefficients:
|
|
861
|
+
(mu_B_coefficient,) = self._D.ideal(mu_B_coefficients).gens()
|
|
862
|
+
generators = [mu_B_coefficient * self.mu_B] + generators
|
|
863
|
+
|
|
864
|
+
if b != 0:
|
|
865
|
+
generators = [self._DX(b)] + generators
|
|
866
|
+
|
|
867
|
+
return self._DX.ideal(generators)
|
|
868
|
+
|
|
869
|
+
def prime_candidates(self):
|
|
870
|
+
r"""
|
|
871
|
+
Determine those primes `p` where `\mu_B` might not be a
|
|
872
|
+
`(p)`-minimal polynomial.
|
|
873
|
+
|
|
874
|
+
OUTPUT: list of primes
|
|
875
|
+
|
|
876
|
+
EXAMPLES::
|
|
877
|
+
|
|
878
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
879
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
880
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
881
|
+
sage: C.prime_candidates()
|
|
882
|
+
[2, 3, 5]
|
|
883
|
+
sage: C.p_minimal_polynomials(2)
|
|
884
|
+
{2: x^2 + 3*x + 2}
|
|
885
|
+
sage: C.p_minimal_polynomials(3)
|
|
886
|
+
{}
|
|
887
|
+
sage: C.p_minimal_polynomials(5)
|
|
888
|
+
{}
|
|
889
|
+
|
|
890
|
+
This means that `3` and `5` were candidates, but actually, `\mu_B` turns
|
|
891
|
+
out to be a `(3)`-minimal polynomial and a `(5)`-minimal polynomial.
|
|
892
|
+
"""
|
|
893
|
+
from sage.arith.misc import factor
|
|
894
|
+
|
|
895
|
+
_, T = self._B.frobenius_form(2)
|
|
896
|
+
|
|
897
|
+
return [p for p, _ in factor(T.det())]
|
|
898
|
+
|
|
899
|
+
def integer_valued_polynomials_generators(self):
|
|
900
|
+
r"""
|
|
901
|
+
Determine the generators of the ring of integer valued polynomials on `B`.
|
|
902
|
+
|
|
903
|
+
OUTPUT:
|
|
904
|
+
|
|
905
|
+
A pair ``(mu_B, P)`` where ``P`` is a list of polynomials in `K[X]`
|
|
906
|
+
such that
|
|
907
|
+
|
|
908
|
+
.. MATH::
|
|
909
|
+
|
|
910
|
+
\{f \in K[X] \mid f(B) \in M_n(D)\} = \mu_B K[X]
|
|
911
|
+
+ \sum_{g\in P} g D[X]
|
|
912
|
+
|
|
913
|
+
where `K` denotes the fraction field of `D`.
|
|
914
|
+
|
|
915
|
+
EXAMPLES::
|
|
916
|
+
|
|
917
|
+
sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
|
|
918
|
+
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
|
|
919
|
+
sage: C = ComputeMinimalPolynomials(B)
|
|
920
|
+
sage: C.integer_valued_polynomials_generators()
|
|
921
|
+
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])
|
|
922
|
+
"""
|
|
923
|
+
return (self.mu_B, [self._DX(1)] +
|
|
924
|
+
[nu / p**s
|
|
925
|
+
for p in self.prime_candidates()
|
|
926
|
+
for s, nu in self.p_minimal_polynomials(p).items()])
|