passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +808 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-0cd532bd.so.1 +0 -0
- passagemath_modules.libs/libgfortran-2c33b284.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-0e7fc84e.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-42cda06f.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-d8ebe4b5.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-aaecbfc0.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-905cb27d.3.29.so +0 -0
- passagemath_modules.libs/libquadmath-bb76a5fc.so.0.0.0 +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-x86_64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-x86_64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-x86_64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-x86_64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-x86_64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-x86_64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-x86_64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-x86_64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-x86_64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-x86_64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-x86_64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-x86_64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-x86_64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-x86_64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,604 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
r"""
|
|
3
|
+
Chain homotopies and chain contractions
|
|
4
|
+
|
|
5
|
+
Chain homotopies are standard constructions in homological algebra:
|
|
6
|
+
given chain complexes `C` and `D` and chain maps `f, g: C \to D`, say
|
|
7
|
+
with differential of degree `-1`, a *chain homotopy* `H` between `f` and
|
|
8
|
+
`g` is a collection of maps `H_n: C_n \to D_{n+1}` satisfying
|
|
9
|
+
|
|
10
|
+
.. MATH::
|
|
11
|
+
|
|
12
|
+
\partial_D H + H \partial_C = f - g.
|
|
13
|
+
|
|
14
|
+
The presence of a chain homotopy defines an equivalence relation
|
|
15
|
+
(*chain homotopic*) on chain maps. If `f` and `g` are chain homotopic,
|
|
16
|
+
then one can show that `f` and `g` induce the same map on homology.
|
|
17
|
+
|
|
18
|
+
Chain contractions are not as well known. The papers [MAR2009]_, [RMA2009]_,
|
|
19
|
+
and [PR2015]_ provide some references. Given two chain complexes `C` and
|
|
20
|
+
`D`, a *chain contraction* is a chain homotopy `H: C \to C` for which
|
|
21
|
+
there are chain maps `\pi: C \to D` ("projection") and `\iota: D \to
|
|
22
|
+
C` ("inclusion") such that
|
|
23
|
+
|
|
24
|
+
- `H` is a chain homotopy between `1_C` and `\iota \pi`,
|
|
25
|
+
- `\pi \iota = 1_D`,
|
|
26
|
+
- `\pi H = 0`,
|
|
27
|
+
- `H \iota = 0`,
|
|
28
|
+
- `H H = 0`.
|
|
29
|
+
|
|
30
|
+
Such a chain homotopy provides a strong relation between the chain
|
|
31
|
+
complexes `C` and `D`; for example, their homology groups are
|
|
32
|
+
isomorphic.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
########################################################################
|
|
36
|
+
# Copyright (C) 2015 John H. Palmieri <palmieri@math.washington.edu>
|
|
37
|
+
#
|
|
38
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
39
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
40
|
+
# the License, or (at your option) any later version.
|
|
41
|
+
#
|
|
42
|
+
# https://www.gnu.org/licenses/
|
|
43
|
+
########################################################################
|
|
44
|
+
|
|
45
|
+
from sage.categories.morphism import Morphism
|
|
46
|
+
from sage.categories.homset import Hom
|
|
47
|
+
from sage.homology.chain_complex_morphism import ChainComplexMorphism
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
# In a perfect world, this would inherit from something like
|
|
51
|
+
# "TwoMorphism" rather than "Morphism"...
|
|
52
|
+
class ChainHomotopy(Morphism):
|
|
53
|
+
r"""
|
|
54
|
+
A chain homotopy.
|
|
55
|
+
|
|
56
|
+
A chain homotopy `H` between chain maps `f, g: C \to D` is a sequence
|
|
57
|
+
of maps `H_n: C_n \to D_{n+1}` (if the chain complexes are graded
|
|
58
|
+
homologically) satisfying
|
|
59
|
+
|
|
60
|
+
.. MATH::
|
|
61
|
+
|
|
62
|
+
\partial_D H + H \partial_C = f - g.
|
|
63
|
+
|
|
64
|
+
INPUT:
|
|
65
|
+
|
|
66
|
+
- ``matrices`` -- dictionary of matrices, keyed by dimension
|
|
67
|
+
- ``f`` -- chain map `C \to D`
|
|
68
|
+
- ``g`` -- (optional) chain map `C \to D`
|
|
69
|
+
|
|
70
|
+
The dictionary ``matrices`` defines ``H`` by specifying the matrix
|
|
71
|
+
defining it in each degree: the entry `m` corresponding to key `i`
|
|
72
|
+
gives the linear transformation `C_i \to D_{i+1}`.
|
|
73
|
+
|
|
74
|
+
If `f` is specified but not `g`, then `g` can be recovered from
|
|
75
|
+
the defining formula. That is, if `g` is not specified, then it
|
|
76
|
+
is defined to be `f - \partial_D H - H \partial_C`.
|
|
77
|
+
|
|
78
|
+
Note that the degree of the differential on the chain complex `C`
|
|
79
|
+
must agree with that for `D`, and those degrees determine the
|
|
80
|
+
"degree" of the chain homotopy map: if the degree of the
|
|
81
|
+
differential is `d`, then the chain homotopy consists of a
|
|
82
|
+
sequence of maps `C_n \to C_{n-d}`. The keys in the dictionary
|
|
83
|
+
``matrices`` specify the starting degrees.
|
|
84
|
+
|
|
85
|
+
EXAMPLES::
|
|
86
|
+
|
|
87
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
88
|
+
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
|
|
89
|
+
sage: D = ChainComplex({0: zero_matrix(ZZ, 1)})
|
|
90
|
+
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
|
|
91
|
+
sage: g = Hom(C,D)({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
|
|
92
|
+
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1)}, f, g)
|
|
93
|
+
|
|
94
|
+
Note that the maps `f` and `g` are stored in the attributes ``H._f``
|
|
95
|
+
and ``H._g``::
|
|
96
|
+
|
|
97
|
+
sage: H._f
|
|
98
|
+
Chain complex morphism:
|
|
99
|
+
From: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
100
|
+
To: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
101
|
+
sage: H._f.in_degree(0)
|
|
102
|
+
[1]
|
|
103
|
+
sage: H._g.in_degree(0)
|
|
104
|
+
[0]
|
|
105
|
+
|
|
106
|
+
A non-example::
|
|
107
|
+
|
|
108
|
+
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1)}, f, g)
|
|
109
|
+
Traceback (most recent call last):
|
|
110
|
+
...
|
|
111
|
+
ValueError: the data do not define a valid chain homotopy
|
|
112
|
+
"""
|
|
113
|
+
def __init__(self, matrices, f, g=None):
|
|
114
|
+
r"""
|
|
115
|
+
Create a chain homotopy between the given chain maps
|
|
116
|
+
from a dictionary of matrices.
|
|
117
|
+
|
|
118
|
+
EXAMPLES:
|
|
119
|
+
|
|
120
|
+
If ``g`` is not specified, it is set equal to
|
|
121
|
+
`f - (H \partial + \partial H)`. ::
|
|
122
|
+
|
|
123
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
124
|
+
sage: C = ChainComplex({1: matrix(ZZ, 1, 2, (1,0)), 2: matrix(ZZ, 2, 1, (0, 2))},
|
|
125
|
+
....: degree_of_differential=-1)
|
|
126
|
+
sage: D = ChainComplex({2: matrix(ZZ, 1, 1, (6,))}, degree_of_differential=-1)
|
|
127
|
+
sage: f_d = {1: matrix(ZZ, 1, 2, (0,3)), 2: identity_matrix(ZZ, 1)}
|
|
128
|
+
sage: f = Hom(C,D)(f_d)
|
|
129
|
+
sage: H_d = {0: identity_matrix(ZZ, 1), 1: matrix(ZZ, 1, 2, (2,2))}
|
|
130
|
+
sage: H = ChainHomotopy(H_d, f)
|
|
131
|
+
sage: H._g.in_degree(0)
|
|
132
|
+
[]
|
|
133
|
+
sage: H._g.in_degree(1)
|
|
134
|
+
[-13 -9]
|
|
135
|
+
sage: H._g.in_degree(2)
|
|
136
|
+
[-3]
|
|
137
|
+
|
|
138
|
+
TESTS:
|
|
139
|
+
|
|
140
|
+
Try to construct a chain homotopy in which the maps do not
|
|
141
|
+
have matching domains and codomains::
|
|
142
|
+
|
|
143
|
+
sage: g = Hom(C,C)({}) # the zero chain map
|
|
144
|
+
sage: H = ChainHomotopy(H_d, f, g)
|
|
145
|
+
Traceback (most recent call last):
|
|
146
|
+
...
|
|
147
|
+
ValueError: the chain maps are not compatible
|
|
148
|
+
"""
|
|
149
|
+
domain = f.domain()
|
|
150
|
+
codomain = f.codomain()
|
|
151
|
+
deg = domain.degree_of_differential()
|
|
152
|
+
# Check that the chain complexes are compatible. This should
|
|
153
|
+
# never arise, because first there should be errors in
|
|
154
|
+
# constructing the chain maps. But just in case...
|
|
155
|
+
if domain.degree_of_differential() != codomain.degree_of_differential():
|
|
156
|
+
raise ValueError('the chain complexes are not compatible')
|
|
157
|
+
if g is not None:
|
|
158
|
+
# Check that the chain maps are compatible.
|
|
159
|
+
if not (domain == g.domain() and codomain ==
|
|
160
|
+
g.codomain()):
|
|
161
|
+
raise ValueError('the chain maps are not compatible')
|
|
162
|
+
# Check that the data define a chain homotopy.
|
|
163
|
+
for i in domain.differential():
|
|
164
|
+
if i in matrices and i+deg in matrices:
|
|
165
|
+
if not (codomain.differential(i-deg) * matrices[i] + matrices[i+deg] * domain.differential(i) == f.in_degree(i) - g.in_degree(i)):
|
|
166
|
+
raise ValueError('the data do not define a valid chain homotopy')
|
|
167
|
+
elif i in matrices:
|
|
168
|
+
if not (codomain.differential(i-deg) * matrices[i] == f.in_degree(i) - g.in_degree(i)):
|
|
169
|
+
raise ValueError('the data do not define a valid chain homotopy')
|
|
170
|
+
elif i+deg in matrices:
|
|
171
|
+
if not (matrices[i+deg] * domain.differential(i) == f.in_degree(i) - g.in_degree(i)):
|
|
172
|
+
raise ValueError('the data do not define a valid chain homotopy')
|
|
173
|
+
else:
|
|
174
|
+
# Define g.
|
|
175
|
+
g_data = {}
|
|
176
|
+
for i in domain.differential():
|
|
177
|
+
if i in matrices and i+deg in matrices:
|
|
178
|
+
g_data[i] = f.in_degree(i) - matrices[i+deg] * domain.differential(i) - codomain.differential(i-deg) * matrices[i]
|
|
179
|
+
elif i in matrices:
|
|
180
|
+
g_data[i] = f.in_degree(i) - codomain.differential(i-deg) * matrices[i]
|
|
181
|
+
elif i+deg in matrices:
|
|
182
|
+
g_data[i] = f.in_degree(i) - matrices[i+deg] * domain.differential(i)
|
|
183
|
+
g = ChainComplexMorphism(g_data, domain, codomain)
|
|
184
|
+
self._matrix_dictionary = {}
|
|
185
|
+
for i in matrices:
|
|
186
|
+
m = matrices[i]
|
|
187
|
+
# Use immutable matrices because they're hashable.
|
|
188
|
+
m.set_immutable()
|
|
189
|
+
self._matrix_dictionary[i] = m
|
|
190
|
+
self._f = f
|
|
191
|
+
self._g = g
|
|
192
|
+
Morphism.__init__(self, Hom(domain, codomain))
|
|
193
|
+
|
|
194
|
+
def is_algebraic_gradient_vector_field(self):
|
|
195
|
+
r"""
|
|
196
|
+
An algebraic gradient vector field is a linear map
|
|
197
|
+
`H: C \to C` such that `H H = 0`.
|
|
198
|
+
|
|
199
|
+
(Some authors also require that `H \partial H = H`, whereas
|
|
200
|
+
some make this part of the definition of "homology gradient
|
|
201
|
+
vector field. We have made the second choice.) See
|
|
202
|
+
Molina-Abril and Réal [MAR2009]_ and Réal and Molina-Abril
|
|
203
|
+
[RMA2009]_ for this and related terminology.
|
|
204
|
+
|
|
205
|
+
See also :meth:`is_homology_gradient_vector_field`.
|
|
206
|
+
|
|
207
|
+
EXAMPLES::
|
|
208
|
+
|
|
209
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
210
|
+
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
|
|
211
|
+
|
|
212
|
+
The chain complex `C` is chain homotopy equivalent to a copy of
|
|
213
|
+
`\ZZ` in degree 0. Two chain maps `C \to C` will be chain
|
|
214
|
+
homotopic as long as they agree in degree 0. ::
|
|
215
|
+
|
|
216
|
+
sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1),
|
|
217
|
+
....: 1: matrix(ZZ, 1, 1, [3]),
|
|
218
|
+
....: 2: matrix(ZZ, 1, 1, [3])})
|
|
219
|
+
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1),
|
|
220
|
+
....: 1: matrix(ZZ, 1, 1, [2]),
|
|
221
|
+
....: 2: matrix(ZZ, 1, 1, [2])})
|
|
222
|
+
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
|
|
223
|
+
....: 1: zero_matrix(ZZ, 1),
|
|
224
|
+
....: 2: identity_matrix(ZZ, 1)}, f, g)
|
|
225
|
+
sage: H.is_algebraic_gradient_vector_field()
|
|
226
|
+
True
|
|
227
|
+
|
|
228
|
+
A chain homotopy which is not an algebraic gradient vector field::
|
|
229
|
+
|
|
230
|
+
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
|
|
231
|
+
....: 1: identity_matrix(ZZ, 1),
|
|
232
|
+
....: 2: identity_matrix(ZZ, 1)}, f, g)
|
|
233
|
+
sage: H.is_algebraic_gradient_vector_field()
|
|
234
|
+
False
|
|
235
|
+
"""
|
|
236
|
+
if self.domain() != self.codomain():
|
|
237
|
+
return False
|
|
238
|
+
deg = self.domain().degree_of_differential()
|
|
239
|
+
matrices = self._matrix_dictionary
|
|
240
|
+
for i in matrices:
|
|
241
|
+
if i-deg in matrices:
|
|
242
|
+
if matrices[i-deg] * matrices[i] != 0:
|
|
243
|
+
return False
|
|
244
|
+
return True
|
|
245
|
+
|
|
246
|
+
def is_homology_gradient_vector_field(self):
|
|
247
|
+
r"""
|
|
248
|
+
A homology gradient vector field is an algebraic gradient vector
|
|
249
|
+
field `H: C \to C` (i.e., a chain homotopy satisfying `H
|
|
250
|
+
H = 0`) such that `\partial H \partial = \partial` and `H
|
|
251
|
+
\partial H = H`.
|
|
252
|
+
|
|
253
|
+
See Molina-Abril and Réal [MAR2009]_ and Réal and Molina-Abril
|
|
254
|
+
[RMA2009]_ for this and related terminology.
|
|
255
|
+
|
|
256
|
+
See also :meth:`is_algebraic_gradient_vector_field`.
|
|
257
|
+
|
|
258
|
+
EXAMPLES::
|
|
259
|
+
|
|
260
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
261
|
+
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
|
|
262
|
+
|
|
263
|
+
sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1),
|
|
264
|
+
....: 1: matrix(ZZ, 1, 1, [3]),
|
|
265
|
+
....: 2: matrix(ZZ, 1, 1, [3])})
|
|
266
|
+
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1),
|
|
267
|
+
....: 1: matrix(ZZ, 1, 1, [2]),
|
|
268
|
+
....: 2: matrix(ZZ, 1, 1, [2])})
|
|
269
|
+
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
|
|
270
|
+
....: 1: zero_matrix(ZZ, 1),
|
|
271
|
+
....: 2: identity_matrix(ZZ, 1)}, f, g)
|
|
272
|
+
sage: H.is_homology_gradient_vector_field()
|
|
273
|
+
True
|
|
274
|
+
"""
|
|
275
|
+
if not self.is_algebraic_gradient_vector_field():
|
|
276
|
+
return False
|
|
277
|
+
deg = self.domain().degree_of_differential()
|
|
278
|
+
matrices = self._matrix_dictionary
|
|
279
|
+
for i in matrices:
|
|
280
|
+
if i+deg in matrices:
|
|
281
|
+
diff_i = self.domain().differential(i)
|
|
282
|
+
if diff_i * matrices[i+deg] * diff_i != diff_i:
|
|
283
|
+
return False
|
|
284
|
+
if matrices[i] * self.domain().differential(i-deg) * matrices[i] != matrices[i]:
|
|
285
|
+
return False
|
|
286
|
+
return True
|
|
287
|
+
|
|
288
|
+
def in_degree(self, n):
|
|
289
|
+
"""
|
|
290
|
+
The matrix representing this chain homotopy in degree ``n``.
|
|
291
|
+
|
|
292
|
+
INPUT:
|
|
293
|
+
|
|
294
|
+
- ``n`` -- degree
|
|
295
|
+
|
|
296
|
+
EXAMPLES::
|
|
297
|
+
|
|
298
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
299
|
+
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
|
|
300
|
+
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
|
|
301
|
+
sage: f = Hom(C, D)({})
|
|
302
|
+
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
|
|
303
|
+
sage: H.in_degree(1)
|
|
304
|
+
[3 1]
|
|
305
|
+
|
|
306
|
+
This returns an appropriately sized zero matrix if the chain
|
|
307
|
+
homotopy is not defined in degree n::
|
|
308
|
+
|
|
309
|
+
sage: H.in_degree(-3)
|
|
310
|
+
[]
|
|
311
|
+
"""
|
|
312
|
+
try:
|
|
313
|
+
return self._matrix_dictionary[n]
|
|
314
|
+
except KeyError:
|
|
315
|
+
from sage.matrix.constructor import zero_matrix
|
|
316
|
+
deg = self.domain().degree_of_differential()
|
|
317
|
+
rows = self.codomain().free_module_rank(n-deg)
|
|
318
|
+
cols = self.domain().free_module_rank(n)
|
|
319
|
+
return zero_matrix(self.domain().base_ring(), rows, cols)
|
|
320
|
+
|
|
321
|
+
def dual(self):
|
|
322
|
+
r"""
|
|
323
|
+
Dual chain homotopy to this one.
|
|
324
|
+
|
|
325
|
+
That is, if this one is a chain homotopy between chain maps
|
|
326
|
+
`f, g: C \to D`, then its dual is a chain homotopy between the
|
|
327
|
+
dual of `f` and the dual of `g`, from `D^*` to `C^*`. It is
|
|
328
|
+
represented in each degree by the transpose of the
|
|
329
|
+
corresponding matrix.
|
|
330
|
+
|
|
331
|
+
EXAMPLES::
|
|
332
|
+
|
|
333
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
334
|
+
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
|
|
335
|
+
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
|
|
336
|
+
sage: f = Hom(C, D)({})
|
|
337
|
+
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
|
|
338
|
+
sage: H.in_degree(1)
|
|
339
|
+
[3 1]
|
|
340
|
+
sage: H.dual().in_degree(0)
|
|
341
|
+
[3]
|
|
342
|
+
[1]
|
|
343
|
+
"""
|
|
344
|
+
matrix_dict = self._matrix_dictionary
|
|
345
|
+
deg = self.domain().degree_of_differential()
|
|
346
|
+
matrices = {i-deg: matrix_dict[i].transpose() for i in matrix_dict}
|
|
347
|
+
return ChainHomotopy(matrices, self._f.dual(), self._g.dual())
|
|
348
|
+
|
|
349
|
+
def __hash__(self):
|
|
350
|
+
"""
|
|
351
|
+
TESTS::
|
|
352
|
+
|
|
353
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
354
|
+
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
|
|
355
|
+
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
|
|
356
|
+
sage: f = Hom(C, D)({})
|
|
357
|
+
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
|
|
358
|
+
sage: hash(H) # random
|
|
359
|
+
314159265358979
|
|
360
|
+
"""
|
|
361
|
+
return hash(self._f) ^ hash(self._g) ^ hash(tuple(self._matrix_dictionary.items()))
|
|
362
|
+
|
|
363
|
+
def _repr_(self):
|
|
364
|
+
"""
|
|
365
|
+
String representation.
|
|
366
|
+
|
|
367
|
+
EXAMPLES::
|
|
368
|
+
|
|
369
|
+
sage: from sage.homology.chain_homotopy import ChainHomotopy
|
|
370
|
+
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
|
|
371
|
+
sage: D = ChainComplex({0: zero_matrix(ZZ, 1)})
|
|
372
|
+
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
|
|
373
|
+
sage: g = Hom(C,D)({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
|
|
374
|
+
sage: ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1)}, f, g)
|
|
375
|
+
Chain homotopy between:
|
|
376
|
+
Chain complex morphism:
|
|
377
|
+
From: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
378
|
+
To: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
379
|
+
and Chain complex morphism:
|
|
380
|
+
From: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
381
|
+
To: Chain complex with at most 2 nonzero terms over Integer Ring
|
|
382
|
+
"""
|
|
383
|
+
s = 'Chain homotopy between:'
|
|
384
|
+
s += '\n {}'.format('\n '.join(self._f._repr_().split('\n')))
|
|
385
|
+
s += '\n and {}'.format('\n '.join(self._g._repr_().split('\n')))
|
|
386
|
+
return s
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
class ChainContraction(ChainHomotopy):
|
|
390
|
+
r"""
|
|
391
|
+
A chain contraction.
|
|
392
|
+
|
|
393
|
+
An algebraic gradient vector field `H: C \to C` (that is a chain
|
|
394
|
+
homotopy satisfying `H H = 0`) for which there are chain
|
|
395
|
+
maps `\pi: C \to D` ("projection") and `\iota: D \to C`
|
|
396
|
+
("inclusion") such that
|
|
397
|
+
|
|
398
|
+
- `H` is a chain homotopy between `1_C` and `\iota \pi`,
|
|
399
|
+
- `\pi \iota = 1_D`,
|
|
400
|
+
- `\pi H = 0`,
|
|
401
|
+
- `H \iota = 0`.
|
|
402
|
+
|
|
403
|
+
``H`` is defined by a dictionary ``matrices`` of matrices.
|
|
404
|
+
|
|
405
|
+
INPUT:
|
|
406
|
+
|
|
407
|
+
- ``matrices`` -- dictionary of matrices, keyed by dimension
|
|
408
|
+
- ``pi`` -- a chain map `C \to D`
|
|
409
|
+
- ``iota`` -- a chain map `D \to C`
|
|
410
|
+
|
|
411
|
+
EXAMPLES::
|
|
412
|
+
|
|
413
|
+
sage: from sage.homology.chain_homotopy import ChainContraction
|
|
414
|
+
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
|
|
415
|
+
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)})
|
|
416
|
+
|
|
417
|
+
The chain complex `C` is chain homotopy equivalent to `D`, which is just
|
|
418
|
+
a copy of `\ZZ` in degree 0, and we construct a chain contraction::
|
|
419
|
+
|
|
420
|
+
sage: pi = Hom(C,D)({0: identity_matrix(ZZ, 1)})
|
|
421
|
+
sage: iota = Hom(D,C)({0: identity_matrix(ZZ, 1)})
|
|
422
|
+
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1),
|
|
423
|
+
....: 1: zero_matrix(ZZ, 1),
|
|
424
|
+
....: 2: identity_matrix(ZZ, 1)}, pi, iota)
|
|
425
|
+
"""
|
|
426
|
+
def __init__(self, matrices, pi, iota):
|
|
427
|
+
r"""
|
|
428
|
+
Create a chain contraction from the given data.
|
|
429
|
+
|
|
430
|
+
EXAMPLES::
|
|
431
|
+
|
|
432
|
+
sage: from sage.homology.chain_homotopy import ChainContraction
|
|
433
|
+
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
|
|
434
|
+
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)})
|
|
435
|
+
|
|
436
|
+
The chain complex `C` is chain homotopy equivalent to `D`,
|
|
437
|
+
which is just a copy of `\ZZ` in degree 0, and we try
|
|
438
|
+
construct a chain contraction, but get the map `\iota` wrong::
|
|
439
|
+
|
|
440
|
+
sage: pi = Hom(C,D)({0: identity_matrix(ZZ, 1)})
|
|
441
|
+
sage: iota = Hom(D,C)({0: zero_matrix(ZZ, 1)})
|
|
442
|
+
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2: identity_matrix(ZZ, 1)}, pi, iota)
|
|
443
|
+
Traceback (most recent call last):
|
|
444
|
+
...
|
|
445
|
+
ValueError: the composite 'pi iota' is not the identity
|
|
446
|
+
|
|
447
|
+
Another bad `\iota`::
|
|
448
|
+
|
|
449
|
+
sage: iota = pi # wrong domain, codomain
|
|
450
|
+
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1), 2: identity_matrix(ZZ, 1)}, pi, iota)
|
|
451
|
+
Traceback (most recent call last):
|
|
452
|
+
...
|
|
453
|
+
ValueError: the chain maps are not composable
|
|
454
|
+
|
|
455
|
+
`\iota` is okay, but wrong data defining `H`::
|
|
456
|
+
|
|
457
|
+
sage: iota = Hom(D,C)({0: identity_matrix(ZZ, 1)})
|
|
458
|
+
sage: H = ChainContraction({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1), 2: identity_matrix(ZZ, 1)}, pi, iota)
|
|
459
|
+
Traceback (most recent call last):
|
|
460
|
+
...
|
|
461
|
+
ValueError: not an algebraic gradient vector field
|
|
462
|
+
"""
|
|
463
|
+
from sage.matrix.constructor import identity_matrix
|
|
464
|
+
from .chain_complex_morphism import ChainComplexMorphism
|
|
465
|
+
|
|
466
|
+
if not (pi.domain() == iota.codomain()
|
|
467
|
+
and pi.codomain() == iota.domain()):
|
|
468
|
+
raise ValueError('the chain maps are not composable')
|
|
469
|
+
C = pi.domain()
|
|
470
|
+
D = pi.codomain()
|
|
471
|
+
base_ring = C.base_ring()
|
|
472
|
+
|
|
473
|
+
# Check that the composite 'pi iota' is 1.
|
|
474
|
+
for i in D.nonzero_degrees():
|
|
475
|
+
if pi.in_degree(i) * iota.in_degree(i) != identity_matrix(base_ring, D.free_module_rank(i)):
|
|
476
|
+
raise ValueError("the composite 'pi iota' is not the identity")
|
|
477
|
+
|
|
478
|
+
# Construct the chain map 'id_C'.
|
|
479
|
+
id_C_dict = {}
|
|
480
|
+
for i in C.nonzero_degrees():
|
|
481
|
+
id_C_dict[i] = identity_matrix(base_ring, C.free_module_rank(i))
|
|
482
|
+
id_C = ChainComplexMorphism(id_C_dict, C, C)
|
|
483
|
+
|
|
484
|
+
# Now check that
|
|
485
|
+
# - `H` is a chain homotopy between `id_C` and `\iota \pi`
|
|
486
|
+
# - `HH = 0`
|
|
487
|
+
ChainHomotopy.__init__(self, matrices, id_C, iota * pi)
|
|
488
|
+
if not self.is_algebraic_gradient_vector_field():
|
|
489
|
+
raise ValueError('not an algebraic gradient vector field')
|
|
490
|
+
# Check that `\pi H = 0`:
|
|
491
|
+
deg = C.degree_of_differential()
|
|
492
|
+
for i in matrices:
|
|
493
|
+
if pi.in_degree(i-deg) * matrices[i] != 0:
|
|
494
|
+
raise ValueError('the data do not define a valid chain contraction: pi H != 0')
|
|
495
|
+
# Check that `H \iota = 0`:
|
|
496
|
+
for i in iota._matrix_dictionary:
|
|
497
|
+
if i in matrices:
|
|
498
|
+
if matrices[i] * iota.in_degree(i) != 0:
|
|
499
|
+
raise ValueError('the data do not define a valid chain contraction: H iota != 0')
|
|
500
|
+
self._pi = pi
|
|
501
|
+
self._iota = iota
|
|
502
|
+
|
|
503
|
+
def pi(self):
|
|
504
|
+
r"""
|
|
505
|
+
The chain map `\pi` associated to this chain contraction.
|
|
506
|
+
|
|
507
|
+
EXAMPLES::
|
|
508
|
+
|
|
509
|
+
sage: # needs sage.graphs
|
|
510
|
+
sage: S2 = simplicial_complexes.Sphere(2)
|
|
511
|
+
sage: phi, M = S2.algebraic_topological_model(QQ)
|
|
512
|
+
sage: phi.pi()
|
|
513
|
+
Chain complex morphism:
|
|
514
|
+
From: Chain complex with at most 3 nonzero terms over Rational Field
|
|
515
|
+
To: Chain complex with at most 3 nonzero terms over Rational Field
|
|
516
|
+
sage: phi.pi().in_degree(0) # Every vertex represents a homology class.
|
|
517
|
+
[1 1 1 1]
|
|
518
|
+
sage: phi.pi().in_degree(1) # No homology in degree 1.
|
|
519
|
+
[]
|
|
520
|
+
|
|
521
|
+
The degree 2 homology generator is detected on a single simplex::
|
|
522
|
+
|
|
523
|
+
sage: phi.pi().in_degree(2) # needs sage.graphs
|
|
524
|
+
[0 0 0 1]
|
|
525
|
+
"""
|
|
526
|
+
return self._pi
|
|
527
|
+
|
|
528
|
+
def iota(self):
|
|
529
|
+
r"""
|
|
530
|
+
The chain map `\iota` associated to this chain contraction.
|
|
531
|
+
|
|
532
|
+
EXAMPLES::
|
|
533
|
+
|
|
534
|
+
sage: S2 = simplicial_complexes.Sphere(2) # needs sage.graphs
|
|
535
|
+
sage: phi, M = S2.algebraic_topological_model(QQ) # needs sage.graphs
|
|
536
|
+
sage: phi.iota() # needs sage.graphs
|
|
537
|
+
Chain complex morphism:
|
|
538
|
+
From: Chain complex with at most 3 nonzero terms over Rational Field
|
|
539
|
+
To: Chain complex with at most 3 nonzero terms over Rational Field
|
|
540
|
+
|
|
541
|
+
Lifting the degree zero homology class gives a single vertex::
|
|
542
|
+
|
|
543
|
+
sage: phi.iota().in_degree(0) # needs sage.graphs
|
|
544
|
+
[0]
|
|
545
|
+
[0]
|
|
546
|
+
[0]
|
|
547
|
+
[1]
|
|
548
|
+
|
|
549
|
+
Lifting the degree two homology class gives the signed sum of
|
|
550
|
+
all of the 2-simplices::
|
|
551
|
+
|
|
552
|
+
sage: phi.iota().in_degree(2) # needs sage.graphs
|
|
553
|
+
[-1]
|
|
554
|
+
[ 1]
|
|
555
|
+
[-1]
|
|
556
|
+
[ 1]
|
|
557
|
+
"""
|
|
558
|
+
return self._iota
|
|
559
|
+
|
|
560
|
+
def dual(self):
|
|
561
|
+
"""
|
|
562
|
+
The chain contraction dual to this one.
|
|
563
|
+
|
|
564
|
+
This is useful when switching from homology to cohomology.
|
|
565
|
+
|
|
566
|
+
EXAMPLES::
|
|
567
|
+
|
|
568
|
+
sage: S2 = simplicial_complexes.Sphere(2) # needs sage.graphs
|
|
569
|
+
sage: phi, M = S2.algebraic_topological_model(QQ) # needs sage.graphs
|
|
570
|
+
sage: phi.iota() # needs sage.graphs
|
|
571
|
+
Chain complex morphism:
|
|
572
|
+
From: Chain complex with at most 3 nonzero terms over Rational Field
|
|
573
|
+
To: Chain complex with at most 3 nonzero terms over Rational Field
|
|
574
|
+
|
|
575
|
+
Lifting the degree zero homology class gives a single vertex,
|
|
576
|
+
but the degree zero cohomology class needs to be detected on
|
|
577
|
+
every vertex, and vice versa for degree 2::
|
|
578
|
+
|
|
579
|
+
sage: # needs sage.graphs
|
|
580
|
+
sage: phi.iota().in_degree(0)
|
|
581
|
+
[0]
|
|
582
|
+
[0]
|
|
583
|
+
[0]
|
|
584
|
+
[1]
|
|
585
|
+
sage: phi.dual().iota().in_degree(0)
|
|
586
|
+
[1]
|
|
587
|
+
[1]
|
|
588
|
+
[1]
|
|
589
|
+
[1]
|
|
590
|
+
sage: phi.iota().in_degree(2)
|
|
591
|
+
[-1]
|
|
592
|
+
[ 1]
|
|
593
|
+
[-1]
|
|
594
|
+
[ 1]
|
|
595
|
+
sage: phi.dual().iota().in_degree(2)
|
|
596
|
+
[0]
|
|
597
|
+
[0]
|
|
598
|
+
[0]
|
|
599
|
+
[1]
|
|
600
|
+
"""
|
|
601
|
+
matrix_dict = self._matrix_dictionary
|
|
602
|
+
deg = self.domain().degree_of_differential()
|
|
603
|
+
matrices = {i-deg: matrix_dict[i].transpose() for i in matrix_dict}
|
|
604
|
+
return ChainContraction(matrices, self.iota().dual(), self.pi().dual())
|