passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,728 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
r"""
|
|
3
|
+
Quotient fields
|
|
4
|
+
"""
|
|
5
|
+
#*****************************************************************************
|
|
6
|
+
# Copyright (C) 2008 Teresa Gomez-Diaz (CNRS) <Teresa.Gomez-Diaz@univ-mlv.fr>
|
|
7
|
+
#
|
|
8
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
9
|
+
# http://www.gnu.org/licenses/
|
|
10
|
+
#******************************************************************************
|
|
11
|
+
|
|
12
|
+
from sage.categories.category_singleton import Category_singleton
|
|
13
|
+
from sage.misc.abstract_method import abstract_method
|
|
14
|
+
from sage.categories.fields import Fields
|
|
15
|
+
|
|
16
|
+
from sage.structure.element import coerce_binop
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class QuotientFields(Category_singleton):
|
|
20
|
+
"""
|
|
21
|
+
The category of quotient fields over an integral domain.
|
|
22
|
+
|
|
23
|
+
EXAMPLES::
|
|
24
|
+
|
|
25
|
+
sage: QuotientFields()
|
|
26
|
+
Category of quotient fields
|
|
27
|
+
sage: QuotientFields().super_categories()
|
|
28
|
+
[Category of fields]
|
|
29
|
+
|
|
30
|
+
TESTS::
|
|
31
|
+
|
|
32
|
+
sage: TestSuite(QuotientFields()).run()
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
def super_categories(self):
|
|
36
|
+
"""
|
|
37
|
+
EXAMPLES::
|
|
38
|
+
|
|
39
|
+
sage: QuotientFields().super_categories()
|
|
40
|
+
[Category of fields]
|
|
41
|
+
"""
|
|
42
|
+
return [Fields()]
|
|
43
|
+
|
|
44
|
+
class ParentMethods:
|
|
45
|
+
pass
|
|
46
|
+
|
|
47
|
+
class ElementMethods:
|
|
48
|
+
|
|
49
|
+
@abstract_method
|
|
50
|
+
def numerator(self):
|
|
51
|
+
pass
|
|
52
|
+
|
|
53
|
+
@abstract_method
|
|
54
|
+
def denominator(self):
|
|
55
|
+
pass
|
|
56
|
+
|
|
57
|
+
@coerce_binop
|
|
58
|
+
def gcd(self, other):
|
|
59
|
+
"""
|
|
60
|
+
Greatest common divisor.
|
|
61
|
+
|
|
62
|
+
.. NOTE::
|
|
63
|
+
|
|
64
|
+
In a field, the greatest common divisor is not very informative,
|
|
65
|
+
as it is only determined up to a unit. But in the fraction field
|
|
66
|
+
of an integral domain that provides both gcd and lcm, it is
|
|
67
|
+
possible to be a bit more specific and define the gcd uniquely
|
|
68
|
+
up to a unit of the base ring (rather than in the fraction
|
|
69
|
+
field).
|
|
70
|
+
|
|
71
|
+
AUTHOR:
|
|
72
|
+
|
|
73
|
+
- Simon King (2011-02): See :issue:`10771`
|
|
74
|
+
|
|
75
|
+
EXAMPLES::
|
|
76
|
+
|
|
77
|
+
sage: # needs sage.libs.pari
|
|
78
|
+
sage: R.<x> = QQ['x']
|
|
79
|
+
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
|
|
80
|
+
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
|
|
81
|
+
sage: factor(p)
|
|
82
|
+
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
|
|
83
|
+
sage: factor(q)
|
|
84
|
+
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
|
|
85
|
+
sage: gcd(p, q)
|
|
86
|
+
(x + 1)/(x^7 + x^5 - x^2 - 1)
|
|
87
|
+
sage: factor(gcd(p, q))
|
|
88
|
+
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^4 + x^3 + x^2 + x + 1)^-1
|
|
89
|
+
sage: factor(gcd(p, 1 + x))
|
|
90
|
+
(x - 1)^-1 * (x + 1) * (x^4 + x^3 + x^2 + x + 1)^-1
|
|
91
|
+
sage: factor(gcd(1 + x, q))
|
|
92
|
+
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1
|
|
93
|
+
|
|
94
|
+
TESTS:
|
|
95
|
+
|
|
96
|
+
The following tests that the fraction field returns a correct gcd
|
|
97
|
+
even if the base ring does not provide lcm and gcd::
|
|
98
|
+
|
|
99
|
+
sage: # needs sage.libs.pari sage.rings.number_field
|
|
100
|
+
sage: R = ZZ.extension(x^2 + 1, names='i')
|
|
101
|
+
sage: i = R.1
|
|
102
|
+
sage: gcd(5, 3 + 4*i)
|
|
103
|
+
2*i - 1
|
|
104
|
+
sage: P.<t> = R[]
|
|
105
|
+
sage: gcd(t, i)
|
|
106
|
+
Traceback (most recent call last):
|
|
107
|
+
...
|
|
108
|
+
NotImplementedError: Gaussian Integers generated by i
|
|
109
|
+
in Number Field in i with defining polynomial x^2 + 1
|
|
110
|
+
does not provide a gcd implementation for univariate polynomials
|
|
111
|
+
sage: q = t/(t + 1); q.parent()
|
|
112
|
+
Fraction Field of Univariate Polynomial Ring in t over Gaussian Integers
|
|
113
|
+
generated by i in Number Field in i with defining polynomial x^2 + 1
|
|
114
|
+
sage: gcd(q, q)
|
|
115
|
+
1
|
|
116
|
+
sage: q.gcd(0)
|
|
117
|
+
1
|
|
118
|
+
sage: (q*0).gcd(0)
|
|
119
|
+
0
|
|
120
|
+
"""
|
|
121
|
+
P = self.parent()
|
|
122
|
+
try:
|
|
123
|
+
selfN = self.numerator()
|
|
124
|
+
selfD = self.denominator()
|
|
125
|
+
selfGCD = selfN.gcd(selfD)
|
|
126
|
+
otherN = other.numerator()
|
|
127
|
+
otherD = other.denominator()
|
|
128
|
+
otherGCD = otherN.gcd(otherD)
|
|
129
|
+
selfN = selfN // selfGCD
|
|
130
|
+
selfD = selfD // selfGCD
|
|
131
|
+
otherN = otherN // otherGCD
|
|
132
|
+
otherD = otherD // otherGCD
|
|
133
|
+
tmp = P(selfN.gcd(otherN))/P(selfD.lcm(otherD))
|
|
134
|
+
return tmp
|
|
135
|
+
except (AttributeError, NotImplementedError, TypeError, ValueError):
|
|
136
|
+
zero = P.zero()
|
|
137
|
+
if self == zero and other == zero:
|
|
138
|
+
return zero
|
|
139
|
+
return P.one()
|
|
140
|
+
|
|
141
|
+
@coerce_binop
|
|
142
|
+
def lcm(self, other):
|
|
143
|
+
"""
|
|
144
|
+
Least common multiple.
|
|
145
|
+
|
|
146
|
+
In a field, the least common multiple is not very informative, as it
|
|
147
|
+
is only determined up to a unit. But in the fraction field of an
|
|
148
|
+
integral domain that provides both gcd and lcm, it is reasonable to
|
|
149
|
+
be a bit more specific and to define the least common multiple so
|
|
150
|
+
that it restricts to the usual least common multiple in the base
|
|
151
|
+
ring and is unique up to a unit of the base ring (rather than up to
|
|
152
|
+
a unit of the fraction field).
|
|
153
|
+
|
|
154
|
+
The least common multiple is easily described in terms of the
|
|
155
|
+
prime decomposition. A rational number can be written as a product
|
|
156
|
+
of primes with integer (positive or negative) powers in a unique
|
|
157
|
+
way. The least common multiple of two rational numbers `x` and `y`
|
|
158
|
+
can then be defined by specifying that the exponent of every prime
|
|
159
|
+
`p` in `lcm(x,y)` is the supremum of the exponents of `p` in `x`,
|
|
160
|
+
and the exponent of `p` in `y` (where the primes that does not
|
|
161
|
+
appear in the decomposition of `x` or `y` are considered to have
|
|
162
|
+
exponent zero).
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
AUTHOR:
|
|
166
|
+
|
|
167
|
+
- Simon King (2011-02): See :issue:`10771`
|
|
168
|
+
|
|
169
|
+
EXAMPLES::
|
|
170
|
+
|
|
171
|
+
sage: lcm(2/3, 1/5)
|
|
172
|
+
2
|
|
173
|
+
|
|
174
|
+
Indeed `2/3 = 2^1 3^{-1} 5^0` and `1/5 = 2^0 3^0
|
|
175
|
+
5^{-1}`, so `lcm(2/3,1/5)= 2^1 3^0 5^0 = 2`.
|
|
176
|
+
|
|
177
|
+
sage: lcm(1/3, 1/5)
|
|
178
|
+
1
|
|
179
|
+
sage: lcm(1/3, 1/6)
|
|
180
|
+
1/3
|
|
181
|
+
|
|
182
|
+
Some more involved examples::
|
|
183
|
+
|
|
184
|
+
sage: # needs sage.libs.pari
|
|
185
|
+
sage: R.<x> = QQ[]
|
|
186
|
+
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
|
|
187
|
+
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
|
|
188
|
+
sage: factor(p)
|
|
189
|
+
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
|
|
190
|
+
sage: factor(q)
|
|
191
|
+
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
|
|
192
|
+
sage: factor(lcm(p, q))
|
|
193
|
+
(x - 1)^-1 * (x + 1)^3 * (x^2 + 1/3) * (x^2 + 1/2)
|
|
194
|
+
sage: factor(lcm(p, 1 + x))
|
|
195
|
+
(x + 1)^3 * (x^2 + 1/2)
|
|
196
|
+
sage: factor(lcm(1 + x, q))
|
|
197
|
+
(x + 1) * (x^2 + 1/3)
|
|
198
|
+
|
|
199
|
+
TESTS:
|
|
200
|
+
|
|
201
|
+
The following tests that the fraction field returns a correct lcm
|
|
202
|
+
even if the base ring does not provide lcm and gcd::
|
|
203
|
+
|
|
204
|
+
sage: # needs sage.libs.pari sage.rings.number_field
|
|
205
|
+
sage: R = ZZ.extension(x^2+1, names='i')
|
|
206
|
+
sage: i = R.1
|
|
207
|
+
sage: P.<t> = R[]
|
|
208
|
+
sage: lcm(t, i)
|
|
209
|
+
Traceback (most recent call last):
|
|
210
|
+
...
|
|
211
|
+
NotImplementedError: Gaussian Integers generated by i in Number Field in i
|
|
212
|
+
with defining polynomial x^2 + 1 does not provide a gcd implementation for
|
|
213
|
+
univariate polynomials
|
|
214
|
+
sage: q = t/(t + 1); q.parent()
|
|
215
|
+
Fraction Field of Univariate Polynomial Ring in t over
|
|
216
|
+
Gaussian Integers generated by i in Number Field in i
|
|
217
|
+
with defining polynomial x^2 + 1
|
|
218
|
+
sage: lcm(q, q)
|
|
219
|
+
1
|
|
220
|
+
sage: q.lcm(0)
|
|
221
|
+
0
|
|
222
|
+
sage: (q*0).lcm(0)
|
|
223
|
+
0
|
|
224
|
+
|
|
225
|
+
Check that it is possible to take lcm of a rational and an integer
|
|
226
|
+
(:issue:`17852`)::
|
|
227
|
+
|
|
228
|
+
sage: (1/2).lcm(2)
|
|
229
|
+
2
|
|
230
|
+
sage: type((1/2).lcm(2))
|
|
231
|
+
<class 'sage.rings.rational.Rational'>
|
|
232
|
+
"""
|
|
233
|
+
P = self.parent()
|
|
234
|
+
try:
|
|
235
|
+
selfN = self.numerator()
|
|
236
|
+
selfD = self.denominator()
|
|
237
|
+
selfGCD = selfN.gcd(selfD)
|
|
238
|
+
otherN = other.numerator()
|
|
239
|
+
otherD = other.denominator()
|
|
240
|
+
otherGCD = otherN.gcd(otherD)
|
|
241
|
+
selfN = selfN // selfGCD
|
|
242
|
+
selfD = selfD // selfGCD
|
|
243
|
+
otherN = otherN // otherGCD
|
|
244
|
+
otherD = otherD // otherGCD
|
|
245
|
+
return P(selfN.lcm(otherN))/P(selfD.gcd(otherD))
|
|
246
|
+
except (AttributeError, NotImplementedError, TypeError, ValueError):
|
|
247
|
+
zero = P.zero()
|
|
248
|
+
if self == zero or other == zero:
|
|
249
|
+
return zero
|
|
250
|
+
return P.one()
|
|
251
|
+
|
|
252
|
+
@coerce_binop
|
|
253
|
+
def xgcd(self, other):
|
|
254
|
+
"""
|
|
255
|
+
Return a triple ``(g,s,t)`` of elements of that field such that
|
|
256
|
+
``g`` is the greatest common divisor of ``self`` and ``other`` and
|
|
257
|
+
``g = s*self + t*other``.
|
|
258
|
+
|
|
259
|
+
.. NOTE::
|
|
260
|
+
|
|
261
|
+
In a field, the greatest common divisor is not very informative,
|
|
262
|
+
as it is only determined up to a unit. But in the fraction field
|
|
263
|
+
of an integral domain that provides both xgcd and lcm, it is
|
|
264
|
+
possible to be a bit more specific and define the gcd uniquely
|
|
265
|
+
up to a unit of the base ring (rather than in the fraction
|
|
266
|
+
field).
|
|
267
|
+
|
|
268
|
+
EXAMPLES::
|
|
269
|
+
|
|
270
|
+
sage: QQ(3).xgcd(QQ(2))
|
|
271
|
+
(1, 1, -1)
|
|
272
|
+
sage: QQ(3).xgcd(QQ(1/2))
|
|
273
|
+
(1/2, 0, 1)
|
|
274
|
+
sage: QQ(1/3).xgcd(QQ(2))
|
|
275
|
+
(1/3, 1, 0)
|
|
276
|
+
sage: QQ(3/2).xgcd(QQ(5/2))
|
|
277
|
+
(1/2, 2, -1)
|
|
278
|
+
|
|
279
|
+
sage: R.<x> = QQ['x']
|
|
280
|
+
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
|
|
281
|
+
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
|
|
282
|
+
sage: factor(p) # needs sage.libs.pari
|
|
283
|
+
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
|
|
284
|
+
sage: factor(q) # needs sage.libs.pari
|
|
285
|
+
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
|
|
286
|
+
sage: g, s, t = xgcd(p, q)
|
|
287
|
+
sage: g
|
|
288
|
+
(x + 1)/(x^7 + x^5 - x^2 - 1)
|
|
289
|
+
sage: g == s*p + t*q
|
|
290
|
+
True
|
|
291
|
+
|
|
292
|
+
An example without a well defined gcd or xgcd on its base ring::
|
|
293
|
+
|
|
294
|
+
sage: # needs sage.rings.number_field
|
|
295
|
+
sage: K = QuadraticField(5)
|
|
296
|
+
sage: O = K.maximal_order()
|
|
297
|
+
sage: R = PolynomialRing(O, 'x')
|
|
298
|
+
sage: F = R.fraction_field()
|
|
299
|
+
sage: x = F.gen(0)
|
|
300
|
+
sage: x.gcd(x+1)
|
|
301
|
+
1
|
|
302
|
+
sage: x.xgcd(x+1)
|
|
303
|
+
(1, 1/x, 0)
|
|
304
|
+
sage: zero = F.zero()
|
|
305
|
+
sage: zero.gcd(x)
|
|
306
|
+
1
|
|
307
|
+
sage: zero.xgcd(x)
|
|
308
|
+
(1, 0, 1/x)
|
|
309
|
+
sage: zero.xgcd(zero)
|
|
310
|
+
(0, 0, 0)
|
|
311
|
+
"""
|
|
312
|
+
P = self.parent()
|
|
313
|
+
try:
|
|
314
|
+
selfN = self.numerator()
|
|
315
|
+
selfD = self.denominator()
|
|
316
|
+
selfGCD = selfN.gcd(selfD)
|
|
317
|
+
|
|
318
|
+
otherN = other.numerator()
|
|
319
|
+
otherD = other.denominator()
|
|
320
|
+
otherGCD = otherN.gcd(otherD)
|
|
321
|
+
|
|
322
|
+
selfN = selfN // selfGCD
|
|
323
|
+
selfD = selfD // selfGCD
|
|
324
|
+
otherN = otherN // otherGCD
|
|
325
|
+
otherD = otherD // otherGCD
|
|
326
|
+
|
|
327
|
+
lcmD = selfD.lcm(otherD)
|
|
328
|
+
g,s,t = selfN.xgcd(otherN)
|
|
329
|
+
return (P(g)/P(lcmD), P(s*selfD)/P(lcmD),P(t*otherD)/P(lcmD))
|
|
330
|
+
except (AttributeError, NotImplementedError, TypeError, ValueError):
|
|
331
|
+
zero = self.parent().zero()
|
|
332
|
+
one = self.parent().one()
|
|
333
|
+
if self != zero:
|
|
334
|
+
return (one, ~self, zero)
|
|
335
|
+
elif other != zero:
|
|
336
|
+
return (one, zero, ~other)
|
|
337
|
+
else:
|
|
338
|
+
return (zero, zero, zero)
|
|
339
|
+
|
|
340
|
+
def factor(self, *args, **kwds):
|
|
341
|
+
"""
|
|
342
|
+
Return the factorization of ``self`` over the base ring.
|
|
343
|
+
|
|
344
|
+
INPUT:
|
|
345
|
+
|
|
346
|
+
- ``*args`` -- arbitrary arguments suitable over the base ring
|
|
347
|
+
- ``**kwds`` -- arbitrary keyword arguments suitable over the base ring
|
|
348
|
+
|
|
349
|
+
OUTPUT: factorization of ``self`` over the base ring
|
|
350
|
+
|
|
351
|
+
EXAMPLES::
|
|
352
|
+
|
|
353
|
+
sage: K.<x> = QQ[]
|
|
354
|
+
sage: f = (x^3+x)/(x-3)
|
|
355
|
+
sage: f.factor() # needs sage.libs.pari
|
|
356
|
+
(x - 3)^-1 * x * (x^2 + 1)
|
|
357
|
+
|
|
358
|
+
Here is an example to show that :issue:`7868` has been resolved::
|
|
359
|
+
|
|
360
|
+
sage: R.<x,y> = GF(2)[]
|
|
361
|
+
sage: f = x*y/(x+y) # needs sage.libs.singular
|
|
362
|
+
sage: f.factor() # needs sage.libs.singular
|
|
363
|
+
(x + y)^-1 * y * x
|
|
364
|
+
"""
|
|
365
|
+
return (self.numerator().factor(*args, **kwds) /
|
|
366
|
+
self.denominator().factor(*args, **kwds))
|
|
367
|
+
|
|
368
|
+
def partial_fraction_decomposition(self, decompose_powers=True):
|
|
369
|
+
"""
|
|
370
|
+
Decompose fraction field element into a whole part and a list of
|
|
371
|
+
fraction field elements over prime power denominators.
|
|
372
|
+
|
|
373
|
+
The sum will be equal to the original fraction.
|
|
374
|
+
|
|
375
|
+
INPUT:
|
|
376
|
+
|
|
377
|
+
- ``decompose_powers`` -- boolean (default: ``True``);
|
|
378
|
+
whether to decompose prime power denominators as opposed to having
|
|
379
|
+
a single term for each irreducible factor of the denominator
|
|
380
|
+
|
|
381
|
+
OUTPUT: partial fraction decomposition of ``self`` over the base ring
|
|
382
|
+
|
|
383
|
+
AUTHORS:
|
|
384
|
+
|
|
385
|
+
- Robert Bradshaw (2007-05-31)
|
|
386
|
+
|
|
387
|
+
EXAMPLES::
|
|
388
|
+
|
|
389
|
+
sage: # needs sage.libs.pari
|
|
390
|
+
sage: S.<t> = QQ[]
|
|
391
|
+
sage: q = 1/(t+1) + 2/(t+2) + 3/(t-3); q
|
|
392
|
+
(6*t^2 + 4*t - 6)/(t^3 - 7*t - 6)
|
|
393
|
+
sage: whole, parts = q.partial_fraction_decomposition(); parts
|
|
394
|
+
[3/(t - 3), 1/(t + 1), 2/(t + 2)]
|
|
395
|
+
sage: sum(parts) == q
|
|
396
|
+
True
|
|
397
|
+
sage: q = 1/(t^3+1) + 2/(t^2+2) + 3/(t-3)^5
|
|
398
|
+
sage: whole, parts = q.partial_fraction_decomposition(); parts
|
|
399
|
+
[1/3/(t + 1), 3/(t^5 - 15*t^4 + 90*t^3 - 270*t^2 + 405*t - 243),
|
|
400
|
+
(-1/3*t + 2/3)/(t^2 - t + 1), 2/(t^2 + 2)]
|
|
401
|
+
sage: sum(parts) == q
|
|
402
|
+
True
|
|
403
|
+
sage: q = 2*t / (t + 3)^2
|
|
404
|
+
sage: q.partial_fraction_decomposition()
|
|
405
|
+
(0, [2/(t + 3), -6/(t^2 + 6*t + 9)])
|
|
406
|
+
sage: for p in q.partial_fraction_decomposition()[1]:
|
|
407
|
+
....: print(p.factor())
|
|
408
|
+
(2) * (t + 3)^-1
|
|
409
|
+
(-6) * (t + 3)^-2
|
|
410
|
+
sage: q.partial_fraction_decomposition(decompose_powers=False)
|
|
411
|
+
(0, [2*t/(t^2 + 6*t + 9)])
|
|
412
|
+
|
|
413
|
+
We can decompose over a given algebraic extension::
|
|
414
|
+
|
|
415
|
+
sage: R.<x> = QQ[sqrt(2)][] # needs fpylll sage.rings.number_field sage.symbolic
|
|
416
|
+
sage: r = 1/(x^4+1) # needs fpylll sage.rings.number_field sage.symbolic
|
|
417
|
+
sage: r.partial_fraction_decomposition() # needs fpylll sage.rings.number_field sage.symbolic
|
|
418
|
+
(0,
|
|
419
|
+
[(-1/4*sqrt2*x + 1/2)/(x^2 - sqrt2*x + 1),
|
|
420
|
+
(1/4*sqrt2*x + 1/2)/(x^2 + sqrt2*x + 1)])
|
|
421
|
+
|
|
422
|
+
sage: R.<x> = QQ[I][] # of QQ[sqrt(-1)] # needs fpylll sage.rings.number_field sage.symbolic
|
|
423
|
+
sage: r = 1/(x^4+1) # needs fpylll sage.rings.number_field sage.symbolic
|
|
424
|
+
sage: r.partial_fraction_decomposition() # needs fpylll sage.rings.number_field sage.symbolic
|
|
425
|
+
(0, [(-1/2*I)/(x^2 - I), 1/2*I/(x^2 + I)])
|
|
426
|
+
|
|
427
|
+
We can also ask Sage to find the least extension where the
|
|
428
|
+
denominator factors in linear terms::
|
|
429
|
+
|
|
430
|
+
sage: # needs sage.rings.number_field
|
|
431
|
+
sage: R.<x> = QQ[]
|
|
432
|
+
sage: r = 1/(x^4+2)
|
|
433
|
+
sage: N = r.denominator().splitting_field('a'); N
|
|
434
|
+
Number Field in a with defining polynomial x^8 - 8*x^6 + 28*x^4 + 16*x^2 + 36
|
|
435
|
+
sage: R1.<x1> = N[]
|
|
436
|
+
sage: r1 = 1/(x1^4+2)
|
|
437
|
+
sage: r1.partial_fraction_decomposition()
|
|
438
|
+
(0,
|
|
439
|
+
[(-1/224*a^6 + 13/448*a^4 - 5/56*a^2 - 25/224)/(x1 - 1/28*a^6 + 13/56*a^4 - 5/7*a^2 - 25/28),
|
|
440
|
+
(1/224*a^6 - 13/448*a^4 + 5/56*a^2 + 25/224)/(x1 + 1/28*a^6 - 13/56*a^4 + 5/7*a^2 + 25/28),
|
|
441
|
+
(-5/1344*a^7 + 43/1344*a^5 - 85/672*a^3 - 31/672*a)/(x1 - 5/168*a^7 + 43/168*a^5 - 85/84*a^3 - 31/84*a),
|
|
442
|
+
(5/1344*a^7 - 43/1344*a^5 + 85/672*a^3 + 31/672*a)/(x1 + 5/168*a^7 - 43/168*a^5 + 85/84*a^3 + 31/84*a)])
|
|
443
|
+
|
|
444
|
+
Or we may work directly over an algebraically closed field::
|
|
445
|
+
|
|
446
|
+
sage: R.<x> = QQbar[] # needs sage.rings.number_field
|
|
447
|
+
sage: r = 1/(x^4+1) # needs sage.rings.number_field
|
|
448
|
+
sage: r.partial_fraction_decomposition() # needs sage.rings.number_field
|
|
449
|
+
(0,
|
|
450
|
+
[(-0.1767766952966369? - 0.1767766952966369?*I)/(x - 0.7071067811865475? - 0.7071067811865475?*I),
|
|
451
|
+
(-0.1767766952966369? + 0.1767766952966369?*I)/(x - 0.7071067811865475? + 0.7071067811865475?*I),
|
|
452
|
+
(0.1767766952966369? - 0.1767766952966369?*I)/(x + 0.7071067811865475? - 0.7071067811865475?*I),
|
|
453
|
+
(0.1767766952966369? + 0.1767766952966369?*I)/(x + 0.7071067811865475? + 0.7071067811865475?*I)])
|
|
454
|
+
|
|
455
|
+
We do the best we can over inexact fields::
|
|
456
|
+
|
|
457
|
+
sage: # needs sage.rings.number_field sage.rings.real_mpfr
|
|
458
|
+
sage: R.<x> = RealField(20)[]
|
|
459
|
+
sage: q = 1/(x^2 + x + 2)^2 + 1/(x-1); q
|
|
460
|
+
(x^4 + 2.0000*x^3
|
|
461
|
+
+ 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 - x^2 - 4.0000)
|
|
462
|
+
sage: whole, parts = q.partial_fraction_decomposition(); parts
|
|
463
|
+
[1.0000/(x - 1.0000),
|
|
464
|
+
1.0000/(x^4 + 2.0000*x^3 + 5.0000*x^2 + 4.0000*x + 4.0000)]
|
|
465
|
+
sage: sum(parts)
|
|
466
|
+
(x^4 + 2.0000*x^3
|
|
467
|
+
+ 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3 - x^2 - 4.0000)
|
|
468
|
+
|
|
469
|
+
TESTS:
|
|
470
|
+
|
|
471
|
+
We test partial fraction for irreducible denominators::
|
|
472
|
+
|
|
473
|
+
sage: R.<x> = ZZ[]
|
|
474
|
+
sage: q = x^2/(x-1)
|
|
475
|
+
sage: q.partial_fraction_decomposition() # needs sage.libs.pari
|
|
476
|
+
(x + 1, [1/(x - 1)])
|
|
477
|
+
sage: q = x^10/(x-1)^5
|
|
478
|
+
sage: whole, parts = q.partial_fraction_decomposition() # needs sage.libs.pari
|
|
479
|
+
sage: whole + sum(parts) == q # needs sage.libs.pari
|
|
480
|
+
True
|
|
481
|
+
|
|
482
|
+
And also over finite fields (see :issue:`6052`, :issue:`9945`)::
|
|
483
|
+
|
|
484
|
+
sage: R.<x> = GF(2)[]
|
|
485
|
+
sage: q = (x+1)/(x^3+x+1)
|
|
486
|
+
sage: q.partial_fraction_decomposition() # needs sage.libs.pari
|
|
487
|
+
(0, [(x + 1)/(x^3 + x + 1)])
|
|
488
|
+
|
|
489
|
+
sage: R.<x> = GF(11)[]
|
|
490
|
+
sage: q = x + 1 + 1/(x+1) + x^2/(x^3 + 2*x + 9)
|
|
491
|
+
sage: q.partial_fraction_decomposition() # needs sage.libs.pari
|
|
492
|
+
(x + 1, [1/(x + 1), x^2/(x^3 + 2*x + 9)])
|
|
493
|
+
|
|
494
|
+
And even the rationals::
|
|
495
|
+
|
|
496
|
+
sage: (26/15).partial_fraction_decomposition()
|
|
497
|
+
(1, [1/3, 2/5])
|
|
498
|
+
sage: (26/75).partial_fraction_decomposition()
|
|
499
|
+
(-1, [2/3, 3/5, 2/25])
|
|
500
|
+
|
|
501
|
+
A larger example::
|
|
502
|
+
|
|
503
|
+
sage: S.<t> = QQ[]
|
|
504
|
+
sage: r = t / (t^3+1)^5
|
|
505
|
+
sage: r.partial_fraction_decomposition() # needs sage.libs.pari
|
|
506
|
+
(0,
|
|
507
|
+
[-35/729/(t + 1),
|
|
508
|
+
-35/729/(t^2 + 2*t + 1),
|
|
509
|
+
-25/729/(t^3 + 3*t^2 + 3*t + 1),
|
|
510
|
+
-4/243/(t^4 + 4*t^3 + 6*t^2 + 4*t + 1),
|
|
511
|
+
-1/243/(t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1),
|
|
512
|
+
(35/729*t - 35/729)/(t^2 - t + 1),
|
|
513
|
+
(25/729*t - 8/729)/(t^4 - 2*t^3 + 3*t^2 - 2*t + 1),
|
|
514
|
+
(-1/81*t + 5/81)/(t^6 - 3*t^5 + 6*t^4 - 7*t^3 + 6*t^2 - 3*t + 1),
|
|
515
|
+
(-2/27*t + 1/9)/(t^8 - 4*t^7 + 10*t^6 - 16*t^5 + 19*t^4 - 16*t^3 + 10*t^2 - 4*t + 1),
|
|
516
|
+
(-2/27*t + 1/27)/(t^10 - 5*t^9 + 15*t^8 - 30*t^7 + 45*t^6 - 51*t^5 + 45*t^4 - 30*t^3 + 15*t^2 - 5*t + 1)])
|
|
517
|
+
sage: sum(r.partial_fraction_decomposition()[1]) == r # needs sage.libs.pari
|
|
518
|
+
True
|
|
519
|
+
|
|
520
|
+
Some special cases::
|
|
521
|
+
|
|
522
|
+
sage: R = Frac(QQ['x']); x = R.gen()
|
|
523
|
+
sage: x.partial_fraction_decomposition()
|
|
524
|
+
(x, [])
|
|
525
|
+
sage: R(0).partial_fraction_decomposition()
|
|
526
|
+
(0, [])
|
|
527
|
+
sage: R(1).partial_fraction_decomposition()
|
|
528
|
+
(1, [])
|
|
529
|
+
sage: (1/x).partial_fraction_decomposition() # needs sage.libs.pari
|
|
530
|
+
(0, [1/x])
|
|
531
|
+
sage: (1/x+1/x^3).partial_fraction_decomposition() # needs sage.libs.pari
|
|
532
|
+
(0, [1/x, 1/x^3])
|
|
533
|
+
|
|
534
|
+
This was fixed in :issue:`16240`::
|
|
535
|
+
|
|
536
|
+
sage: # needs sage.libs.pari
|
|
537
|
+
sage: R.<x> = QQ['x']
|
|
538
|
+
sage: p = 1/(-x + 1)
|
|
539
|
+
sage: whole, parts = p.partial_fraction_decomposition()
|
|
540
|
+
sage: p == sum(parts)
|
|
541
|
+
True
|
|
542
|
+
sage: p = 3/(-x^4 + 1)
|
|
543
|
+
sage: whole, parts = p.partial_fraction_decomposition()
|
|
544
|
+
sage: p == sum(parts)
|
|
545
|
+
True
|
|
546
|
+
sage: p = (6*x^2 - 9*x + 5)/(-x^3 + 3*x^2 - 3*x + 1)
|
|
547
|
+
sage: whole, parts = p.partial_fraction_decomposition()
|
|
548
|
+
sage: p == sum(parts)
|
|
549
|
+
True
|
|
550
|
+
"""
|
|
551
|
+
denom = self.denominator()
|
|
552
|
+
whole, numer = self.numerator().quo_rem(denom)
|
|
553
|
+
factors = denom.factor()
|
|
554
|
+
if not self.parent().is_exact():
|
|
555
|
+
# factors not grouped in this case
|
|
556
|
+
all = {}
|
|
557
|
+
for r in factors:
|
|
558
|
+
all[r[0]] = 0
|
|
559
|
+
for r in factors:
|
|
560
|
+
all[r[0]] += r[1]
|
|
561
|
+
factors = sorted(all.items())
|
|
562
|
+
|
|
563
|
+
# TODO(robertwb): Should there be a category of univariate polynomials?
|
|
564
|
+
from sage.rings.fraction_field_element import FractionFieldElement_1poly_field
|
|
565
|
+
is_polynomial_over_field = isinstance(self, FractionFieldElement_1poly_field)
|
|
566
|
+
|
|
567
|
+
running_total = 0
|
|
568
|
+
parts = []
|
|
569
|
+
for r, e in factors:
|
|
570
|
+
powers = [1]
|
|
571
|
+
for ee in range(e):
|
|
572
|
+
powers.append(powers[-1] * r)
|
|
573
|
+
d = powers[e]
|
|
574
|
+
denom_div_d = denom // d
|
|
575
|
+
# We know the inverse exists as the two are relatively prime.
|
|
576
|
+
n = ((numer % d) * denom_div_d.inverse_mod(d)) % d
|
|
577
|
+
if not is_polynomial_over_field:
|
|
578
|
+
running_total += n * denom_div_d
|
|
579
|
+
# If the multiplicity is not one, further reduce.
|
|
580
|
+
if decompose_powers:
|
|
581
|
+
r_parts = []
|
|
582
|
+
for ee in range(e, 0, -1):
|
|
583
|
+
n, n_part = n.quo_rem(r)
|
|
584
|
+
if n_part:
|
|
585
|
+
r_parts.append(n_part/powers[ee])
|
|
586
|
+
parts.extend(reversed(r_parts))
|
|
587
|
+
else:
|
|
588
|
+
parts.append(n/powers[e])
|
|
589
|
+
|
|
590
|
+
if not is_polynomial_over_field:
|
|
591
|
+
# remainders not unique, need to re-compute whole to take into
|
|
592
|
+
# account this freedom
|
|
593
|
+
whole = (self.numerator() - running_total) // denom
|
|
594
|
+
return whole, parts
|
|
595
|
+
|
|
596
|
+
def derivative(self, *args):
|
|
597
|
+
r"""
|
|
598
|
+
The derivative of this rational function, with respect to variables
|
|
599
|
+
supplied in args.
|
|
600
|
+
|
|
601
|
+
Multiple variables and iteration counts may be supplied; see
|
|
602
|
+
documentation for the global derivative() function for more
|
|
603
|
+
details.
|
|
604
|
+
|
|
605
|
+
.. SEEALSO::
|
|
606
|
+
|
|
607
|
+
:meth:`_derivative`
|
|
608
|
+
|
|
609
|
+
EXAMPLES::
|
|
610
|
+
|
|
611
|
+
sage: F.<x> = Frac(QQ['x'])
|
|
612
|
+
sage: (1/x).derivative()
|
|
613
|
+
-1/x^2
|
|
614
|
+
|
|
615
|
+
::
|
|
616
|
+
|
|
617
|
+
sage: (x+1/x).derivative(x, 2)
|
|
618
|
+
2/x^3
|
|
619
|
+
|
|
620
|
+
::
|
|
621
|
+
|
|
622
|
+
sage: F.<x,y> = Frac(QQ['x,y'])
|
|
623
|
+
sage: (1/(x+y)).derivative(x,y) # needs sage.libs.singular
|
|
624
|
+
2/(x^3 + 3*x^2*y + 3*x*y^2 + y^3)
|
|
625
|
+
"""
|
|
626
|
+
from sage.misc.derivative import multi_derivative
|
|
627
|
+
return multi_derivative(self, args)
|
|
628
|
+
|
|
629
|
+
def _derivative(self, var=None):
|
|
630
|
+
r"""
|
|
631
|
+
Return the derivative of this rational function with respect to the
|
|
632
|
+
variable ``var``.
|
|
633
|
+
|
|
634
|
+
Over a ring with a working gcd implementation, the derivative of a
|
|
635
|
+
fraction `f/g`, supposed to be given in lowest terms, is computed as
|
|
636
|
+
`(f'(g/d) - f(g'/d))/(g(g'/d))`, where `d` is a greatest common
|
|
637
|
+
divisor of `f` and `g`.
|
|
638
|
+
|
|
639
|
+
INPUT:
|
|
640
|
+
|
|
641
|
+
- ``var`` -- variable with respect to which the derivative is computed
|
|
642
|
+
|
|
643
|
+
OUTPUT: derivative of ``self`` with respect to ``var``
|
|
644
|
+
|
|
645
|
+
.. SEEALSO::
|
|
646
|
+
|
|
647
|
+
:meth:`derivative`
|
|
648
|
+
|
|
649
|
+
EXAMPLES::
|
|
650
|
+
|
|
651
|
+
sage: F.<x> = Frac(QQ['x'])
|
|
652
|
+
sage: t = 1/x^2
|
|
653
|
+
sage: t._derivative(x)
|
|
654
|
+
-2/x^3
|
|
655
|
+
sage: t.derivative()
|
|
656
|
+
-2/x^3
|
|
657
|
+
|
|
658
|
+
::
|
|
659
|
+
|
|
660
|
+
sage: # needs sage.libs.singular
|
|
661
|
+
sage: F.<x,y> = Frac(QQ['x,y'])
|
|
662
|
+
sage: t = (x*y/(x+y))
|
|
663
|
+
sage: t._derivative(x)
|
|
664
|
+
y^2/(x^2 + 2*x*y + y^2)
|
|
665
|
+
sage: t._derivative(y)
|
|
666
|
+
x^2/(x^2 + 2*x*y + y^2)
|
|
667
|
+
|
|
668
|
+
TESTS::
|
|
669
|
+
|
|
670
|
+
sage: F.<t> = Frac(ZZ['t'])
|
|
671
|
+
sage: F(0).derivative()
|
|
672
|
+
0
|
|
673
|
+
sage: F(2).derivative()
|
|
674
|
+
0
|
|
675
|
+
sage: t.derivative()
|
|
676
|
+
1
|
|
677
|
+
sage: (1+t^2).derivative()
|
|
678
|
+
2*t
|
|
679
|
+
sage: (1/t).derivative()
|
|
680
|
+
-1/t^2
|
|
681
|
+
sage: ((t+2)/(t-1)).derivative()
|
|
682
|
+
-3/(t^2 - 2*t + 1)
|
|
683
|
+
sage: (t/(1+2*t+t^2)).derivative()
|
|
684
|
+
(-t + 1)/(t^3 + 3*t^2 + 3*t + 1)
|
|
685
|
+
"""
|
|
686
|
+
R = self.parent()
|
|
687
|
+
if var in R.gens():
|
|
688
|
+
var = R.ring()(var)
|
|
689
|
+
|
|
690
|
+
num = self.numerator()
|
|
691
|
+
den = self.denominator()
|
|
692
|
+
|
|
693
|
+
if (num.is_zero()):
|
|
694
|
+
return R.zero()
|
|
695
|
+
|
|
696
|
+
if R.is_exact():
|
|
697
|
+
try:
|
|
698
|
+
numder = num._derivative(var)
|
|
699
|
+
dender = den._derivative(var)
|
|
700
|
+
d = den.gcd(dender)
|
|
701
|
+
den = den // d
|
|
702
|
+
dender = dender // d
|
|
703
|
+
tnum = numder * den - num * dender
|
|
704
|
+
tden = self.denominator() * den
|
|
705
|
+
if not tden.is_one() and tden.is_unit():
|
|
706
|
+
try:
|
|
707
|
+
tnum = tnum * tden.inverse_of_unit()
|
|
708
|
+
tden = R.ring().one()
|
|
709
|
+
except AttributeError:
|
|
710
|
+
pass
|
|
711
|
+
except NotImplementedError:
|
|
712
|
+
pass
|
|
713
|
+
return self.__class__(R, tnum, tden,
|
|
714
|
+
coerce=False, reduce=False)
|
|
715
|
+
except AttributeError:
|
|
716
|
+
pass
|
|
717
|
+
except NotImplementedError:
|
|
718
|
+
pass
|
|
719
|
+
except TypeError:
|
|
720
|
+
pass
|
|
721
|
+
num = self.numerator()
|
|
722
|
+
den = self.denominator()
|
|
723
|
+
|
|
724
|
+
num = num._derivative(var) * den - num * den._derivative(var)
|
|
725
|
+
den = den**2
|
|
726
|
+
|
|
727
|
+
return self.__class__(R, num, den,
|
|
728
|
+
coerce=False, reduce=False)
|