passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,1212 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
r"""
|
|
3
|
+
Miscellaneous special functions
|
|
4
|
+
|
|
5
|
+
This module provides easy access to many of Maxima and PARI's
|
|
6
|
+
special functions.
|
|
7
|
+
|
|
8
|
+
Maxima's special functions package (which includes spherical
|
|
9
|
+
harmonic functions, spherical Bessel functions (of the 1st and 2nd
|
|
10
|
+
kind), and spherical Hankel functions (of the 1st and 2nd kind))
|
|
11
|
+
was written by Barton Willis of the University of Nebraska at
|
|
12
|
+
Kearney. It is released under the terms of the General Public
|
|
13
|
+
License (GPL).
|
|
14
|
+
|
|
15
|
+
Support for elliptic functions and integrals was written by Raymond
|
|
16
|
+
Toy. It is placed under the terms of the General Public License
|
|
17
|
+
(GPL) that governs the distribution of Maxima.
|
|
18
|
+
|
|
19
|
+
Next, we summarize some of the properties of the functions
|
|
20
|
+
implemented here.
|
|
21
|
+
|
|
22
|
+
- **Spherical harmonics**: Laplace's equation in spherical coordinates is:
|
|
23
|
+
|
|
24
|
+
.. MATH::
|
|
25
|
+
|
|
26
|
+
\frac{1}{r^2} \frac{\partial}{\partial r}
|
|
27
|
+
\left( r^2 \frac{\partial f}{\partial r} \right) +
|
|
28
|
+
\frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}
|
|
29
|
+
\left( \sin\theta \frac{\partial f}{\partial \theta} \right) +
|
|
30
|
+
\frac{1}{r^2\sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} = 0.
|
|
31
|
+
|
|
32
|
+
Note that the spherical coordinates `\theta` and `\varphi` are defined here
|
|
33
|
+
as follows: `\theta` is the colatitude or polar angle, ranging from
|
|
34
|
+
`0\leq\theta\leq\pi` and `\varphi` the azimuth or longitude, ranging from
|
|
35
|
+
`0\leq\varphi<2\pi`.
|
|
36
|
+
|
|
37
|
+
The general solution which remains finite towards infinity is a linear
|
|
38
|
+
combination of functions of the form
|
|
39
|
+
|
|
40
|
+
.. MATH::
|
|
41
|
+
|
|
42
|
+
r^{-1-\ell} \cos (m \varphi) P_\ell^m (\cos{\theta} )
|
|
43
|
+
|
|
44
|
+
and
|
|
45
|
+
|
|
46
|
+
.. MATH::
|
|
47
|
+
|
|
48
|
+
r^{-1-\ell} \sin (m \varphi) P_\ell^m (\cos{\theta} )
|
|
49
|
+
|
|
50
|
+
where `P_\ell^m` are the associated Legendre polynomials
|
|
51
|
+
(cf. :class:`~sage.functions.orthogonal_polys.Func_assoc_legendre_P`),
|
|
52
|
+
and with integer parameters `\ell \ge 0` and `m` from `0` to `\ell`. Put in
|
|
53
|
+
another way, the solutions with integer parameters `\ell \ge 0` and
|
|
54
|
+
`- \ell\leq m\leq \ell`, can be written as linear combinations of:
|
|
55
|
+
|
|
56
|
+
.. MATH::
|
|
57
|
+
|
|
58
|
+
U_{\ell,m}(r,\theta , \varphi ) =
|
|
59
|
+
r^{-1-\ell} Y_\ell^m( \theta , \varphi )
|
|
60
|
+
|
|
61
|
+
where the functions `Y` are the spherical harmonic functions with
|
|
62
|
+
parameters `\ell`, `m`, which can be written as:
|
|
63
|
+
|
|
64
|
+
.. MATH::
|
|
65
|
+
|
|
66
|
+
Y_\ell^m( \theta , \varphi ) =
|
|
67
|
+
\sqrt{ \frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!} }
|
|
68
|
+
\, e^{i m \varphi } \, P_\ell^m ( \cos{\theta} ) .
|
|
69
|
+
|
|
70
|
+
The spherical harmonics obey the normalisation condition
|
|
71
|
+
|
|
72
|
+
.. MATH::
|
|
73
|
+
|
|
74
|
+
\int_{\theta=0}^\pi\int_{\varphi=0}^{2\pi}
|
|
75
|
+
Y_\ell^mY_{\ell'}^{m'*}\,d\Omega =
|
|
76
|
+
\delta_{\ell\ell'}\delta_{mm'}\quad\quad d\Omega =
|
|
77
|
+
\sin\theta\,d\varphi\,d\theta .
|
|
78
|
+
|
|
79
|
+
- The **incomplete elliptic integrals** (of the first kind, etc.) are:
|
|
80
|
+
|
|
81
|
+
.. MATH::
|
|
82
|
+
|
|
83
|
+
\begin{array}{c}
|
|
84
|
+
\displaystyle\int_0^\phi \frac{1}{\sqrt{1 - m\sin(x)^2}}\, dx,\\
|
|
85
|
+
\displaystyle\int_0^\phi \sqrt{1 - m\sin(x)^2}\, dx,\\
|
|
86
|
+
\displaystyle\int_0^\phi \frac{\sqrt{1-mt^2}}{\sqrt(1 - t^2)}\, dx,\\
|
|
87
|
+
\displaystyle\int_0^\phi
|
|
88
|
+
\frac{1}{\sqrt{1 - m\sin(x)^2\sqrt{1 - n\sin(x)^2}}}\, dx,
|
|
89
|
+
\end{array}
|
|
90
|
+
|
|
91
|
+
and the complete ones are obtained by taking `\phi =\pi/2`.
|
|
92
|
+
|
|
93
|
+
.. WARNING::
|
|
94
|
+
|
|
95
|
+
SciPy's versions are poorly documented and seem less accurate than the
|
|
96
|
+
Maxima and PARI versions. Typically they are limited by hardware floats
|
|
97
|
+
precision.
|
|
98
|
+
|
|
99
|
+
REFERENCES:
|
|
100
|
+
|
|
101
|
+
- Abramowitz and Stegun: *Handbook of Mathematical Functions* [AS1964]_
|
|
102
|
+
|
|
103
|
+
- :wikipedia:`Spherical_harmonics`
|
|
104
|
+
|
|
105
|
+
- :wikipedia:`Helmholtz_equation`
|
|
106
|
+
|
|
107
|
+
- `Online Encyclopedia of Special Functions
|
|
108
|
+
<http://algo.inria.fr/esf/index.html>`_
|
|
109
|
+
|
|
110
|
+
AUTHORS:
|
|
111
|
+
|
|
112
|
+
- David Joyner (2006-13-06): initial version
|
|
113
|
+
|
|
114
|
+
- David Joyner (2006-30-10): bug fixes to pari wrappers of Bessel
|
|
115
|
+
functions, hypergeometric_U
|
|
116
|
+
|
|
117
|
+
- William Stein (2008-02): Impose some sanity checks.
|
|
118
|
+
|
|
119
|
+
- David Joyner (2008-02-16): optional calls to scipy and replace all ``#random`` by ``...``
|
|
120
|
+
|
|
121
|
+
- David Joyner (2008-04-23): addition of elliptic integrals
|
|
122
|
+
|
|
123
|
+
- Eviatar Bach (2013): making elliptic integrals symbolic
|
|
124
|
+
|
|
125
|
+
- Eric Gourgoulhon (2022): add Condon-Shortley phase to spherical harmonics
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
# ****************************************************************************
|
|
129
|
+
# Copyright (C) 2006 William Stein <wstein@gmail.com>
|
|
130
|
+
# 2006 David Joyner <wdj@usna.edu>
|
|
131
|
+
#
|
|
132
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
133
|
+
#
|
|
134
|
+
# This code is distributed in the hope that it will be useful,
|
|
135
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
136
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
137
|
+
# General Public License for more details.
|
|
138
|
+
#
|
|
139
|
+
# The full text of the GPL is available at:
|
|
140
|
+
#
|
|
141
|
+
# https://www.gnu.org/licenses/
|
|
142
|
+
# ****************************************************************************
|
|
143
|
+
|
|
144
|
+
import sage.rings.abc
|
|
145
|
+
|
|
146
|
+
from sage.misc.functional import sqrt
|
|
147
|
+
from sage.misc.lazy_import import lazy_import
|
|
148
|
+
from sage.rings.integer import Integer
|
|
149
|
+
from sage.rings.integer_ring import ZZ
|
|
150
|
+
from sage.structure.element import parent as s_parent
|
|
151
|
+
from sage.symbolic.function import BuiltinFunction
|
|
152
|
+
|
|
153
|
+
lazy_import('sage.functions.jacobi', 'jacobi_am_f')
|
|
154
|
+
lazy_import('sage.functions.log', ['exp'])
|
|
155
|
+
lazy_import('sage.functions.trig', ['sin', 'cot'])
|
|
156
|
+
|
|
157
|
+
lazy_import('sage.misc.latex', 'latex')
|
|
158
|
+
|
|
159
|
+
lazy_import('sage.symbolic.constants', ['I', 'pi'])
|
|
160
|
+
|
|
161
|
+
lazy_import('sage.libs.mpmath.utils', 'call', as_='_mpmath_utils_call')
|
|
162
|
+
lazy_import('mpmath',
|
|
163
|
+
['spherharm', 'ellipe', 'ellipf', 'ellipk', 'ellippi'],
|
|
164
|
+
as_=['_mpmath_spherharm', '_mpmath_ellipe', '_mpmath_ellipf',
|
|
165
|
+
'_mpmath_ellipk', '_mpmath_ellippi'])
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
class SphericalHarmonic(BuiltinFunction):
|
|
169
|
+
r"""
|
|
170
|
+
Return the spherical harmonic function `Y_n^m(\theta, \varphi)`.
|
|
171
|
+
|
|
172
|
+
For integers `n > -1`, `|m| \leq n`, simplification is done automatically.
|
|
173
|
+
Numeric evaluation is supported for complex `n` and `m`.
|
|
174
|
+
|
|
175
|
+
EXAMPLES::
|
|
176
|
+
|
|
177
|
+
sage: # needs sage.symbolic
|
|
178
|
+
sage: x, y = var('x, y')
|
|
179
|
+
sage: spherical_harmonic(3, 2, x, y)
|
|
180
|
+
1/8*sqrt(30)*sqrt(7)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
|
|
181
|
+
sage: spherical_harmonic(3, 2, 1, 2)
|
|
182
|
+
1/8*sqrt(30)*sqrt(7)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
|
|
183
|
+
sage: spherical_harmonic(3 + I, 2., 1, 2)
|
|
184
|
+
-0.351154337307488 - 0.415562233975369*I
|
|
185
|
+
sage: latex(spherical_harmonic(3, 2, x, y, hold=True))
|
|
186
|
+
Y_{3}^{2}\left(x, y\right)
|
|
187
|
+
sage: spherical_harmonic(1, 2, x, y)
|
|
188
|
+
0
|
|
189
|
+
|
|
190
|
+
The degree `n` and the order `m` can be symbolic::
|
|
191
|
+
|
|
192
|
+
sage: # needs sage.symbolic
|
|
193
|
+
sage: n, m = var('n m')
|
|
194
|
+
sage: spherical_harmonic(n, m, x, y)
|
|
195
|
+
spherical_harmonic(n, m, x, y)
|
|
196
|
+
sage: latex(spherical_harmonic(n, m, x, y))
|
|
197
|
+
Y_{n}^{m}\left(x, y\right)
|
|
198
|
+
sage: diff(spherical_harmonic(n, m, x, y), x)
|
|
199
|
+
m*cot(x)*spherical_harmonic(n, m, x, y)
|
|
200
|
+
+ sqrt(-(m + n + 1)*(m - n))*e^(-I*y)*spherical_harmonic(n, m + 1, x, y)
|
|
201
|
+
sage: diff(spherical_harmonic(n, m, x, y), y)
|
|
202
|
+
I*m*spherical_harmonic(n, m, x, y)
|
|
203
|
+
|
|
204
|
+
The convention regarding the Condon-Shortley phase `(-1)^m` is the same
|
|
205
|
+
as for SymPy's spherical harmonics and :wikipedia:`Spherical_harmonics`::
|
|
206
|
+
|
|
207
|
+
sage: # needs sage.symbolic
|
|
208
|
+
sage: spherical_harmonic(1, 1, x, y)
|
|
209
|
+
-1/4*sqrt(3)*sqrt(2)*e^(I*y)*sin(x)/sqrt(pi)
|
|
210
|
+
sage: from sympy import Ynm # needs sympy
|
|
211
|
+
sage: Ynm(1, 1, x, y).expand(func=True) # needs sympy
|
|
212
|
+
-sqrt(6)*exp(I*y)*sin(x)/(4*sqrt(pi))
|
|
213
|
+
sage: spherical_harmonic(1, 1, x, y) - Ynm(1, 1, x, y) # needs sympy
|
|
214
|
+
0
|
|
215
|
+
|
|
216
|
+
It also agrees with SciPy's spherical harmonics::
|
|
217
|
+
|
|
218
|
+
sage: spherical_harmonic(1, 1, pi/2, pi).n() # abs tol 1e-14 # needs sage.symbolic
|
|
219
|
+
0.345494149471335
|
|
220
|
+
|
|
221
|
+
sage: # needs scipy sage.symbolic
|
|
222
|
+
sage: import numpy as np
|
|
223
|
+
sage: if int(np.version.short_version[0]) > 1:
|
|
224
|
+
....: _ = np.set_printoptions(legacy="1.25")
|
|
225
|
+
sage: import scipy.version
|
|
226
|
+
sage: if scipy.version.version < '1.15.0':
|
|
227
|
+
....: from scipy.special import sph_harm # NB: arguments x and y are swapped
|
|
228
|
+
....: sph_harm(1, 1, pi.n(), (pi/2).n()) # abs tol 1e-14
|
|
229
|
+
....: else:
|
|
230
|
+
....: from scipy.special import sph_harm_y
|
|
231
|
+
....: sph_harm_y(1, 1, (pi/2).n(), pi.n()).item() # abs tol 1e-9
|
|
232
|
+
(0.3454941494713355-4.231083042742082e-17j)
|
|
233
|
+
|
|
234
|
+
Note that this convention differs from the one in Maxima, as revealed by
|
|
235
|
+
the sign difference for odd values of `m`::
|
|
236
|
+
|
|
237
|
+
sage: maxima.spherical_harmonic(1, 1, x, y).sage() # needs sage.symbolic
|
|
238
|
+
1/2*sqrt(3/2)*e^(I*y)*sin(x)/sqrt(pi)
|
|
239
|
+
|
|
240
|
+
It follows that, contrary to Maxima, SageMath uses the same sign convention
|
|
241
|
+
for spherical harmonics as SymPy, SciPy, Mathematica and
|
|
242
|
+
:wikipedia:`Table_of_spherical_harmonics`.
|
|
243
|
+
|
|
244
|
+
REFERENCES:
|
|
245
|
+
|
|
246
|
+
- :wikipedia:`Spherical_harmonics`
|
|
247
|
+
"""
|
|
248
|
+
def __init__(self):
|
|
249
|
+
r"""
|
|
250
|
+
TESTS::
|
|
251
|
+
|
|
252
|
+
sage: n, m, theta, phi = var('n m theta phi') # needs sage.symbolic
|
|
253
|
+
sage: spherical_harmonic(n, m, theta, phi)._sympy_() # needs sympy sage.symbolic
|
|
254
|
+
Ynm(n, m, theta, phi)
|
|
255
|
+
"""
|
|
256
|
+
BuiltinFunction.__init__(self, 'spherical_harmonic', nargs=4,
|
|
257
|
+
conversions=dict(
|
|
258
|
+
maple='SphericalY',
|
|
259
|
+
mathematica='SphericalHarmonicY',
|
|
260
|
+
maxima='spherical_harmonic',
|
|
261
|
+
sympy='Ynm'))
|
|
262
|
+
|
|
263
|
+
def _eval_(self, n, m, theta, phi, **kwargs):
|
|
264
|
+
r"""
|
|
265
|
+
TESTS::
|
|
266
|
+
|
|
267
|
+
sage: # needs sage.symbolic
|
|
268
|
+
sage: x, y = var('x y')
|
|
269
|
+
sage: spherical_harmonic(1, 2, x, y)
|
|
270
|
+
0
|
|
271
|
+
sage: spherical_harmonic(1, -2, x, y)
|
|
272
|
+
0
|
|
273
|
+
sage: spherical_harmonic(1/2, 2, x, y)
|
|
274
|
+
spherical_harmonic(1/2, 2, x, y)
|
|
275
|
+
sage: spherical_harmonic(3, 2, x, y)
|
|
276
|
+
1/8*sqrt(30)*sqrt(7)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
|
|
277
|
+
sage: spherical_harmonic(3, 2, 1, 2)
|
|
278
|
+
1/8*sqrt(30)*sqrt(7)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
|
|
279
|
+
sage: spherical_harmonic(3 + I, 2., 1, 2)
|
|
280
|
+
-0.351154337307488 - 0.415562233975369*I
|
|
281
|
+
|
|
282
|
+
Check that :issue:`20939` is fixed::
|
|
283
|
+
|
|
284
|
+
sage: ex = spherical_harmonic(3, 2, 1, 2*pi/3) # needs sage.symbolic
|
|
285
|
+
sage: QQbar(ex * sqrt(pi)/cos(1)/sin(1)^2).minpoly() # needs sage.rings.number_field sage.symbolic
|
|
286
|
+
x^4 + 105/32*x^2 + 11025/1024
|
|
287
|
+
|
|
288
|
+
Check whether Sage yields correct results compared to Maxima,
|
|
289
|
+
up to the Condon-Shortley phase factor `(-1)^m`
|
|
290
|
+
(see :issue:`25034` and :issue:`33117`)::
|
|
291
|
+
|
|
292
|
+
sage: # needs sage.symbolic
|
|
293
|
+
sage: spherical_harmonic(1, 1, pi/3, pi/6).n() # abs tol 1e-14
|
|
294
|
+
-0.259120612103502 - 0.149603355150537*I
|
|
295
|
+
sage: maxima.spherical_harmonic(1, 1, pi/3, pi/6).n() # abs tol 1e-14
|
|
296
|
+
0.259120612103502 + 0.149603355150537*I
|
|
297
|
+
sage: spherical_harmonic(1, -1, pi/3, pi/6).n() # abs tol 1e-14
|
|
298
|
+
0.259120612103502 - 0.149603355150537*I
|
|
299
|
+
sage: maxima.spherical_harmonic(1, -1, pi/3, pi/6).n() # abs tol 1e-14
|
|
300
|
+
-0.259120612103502 + 0.149603355150537*I
|
|
301
|
+
|
|
302
|
+
Check that :issue:`33501` is fixed::
|
|
303
|
+
|
|
304
|
+
sage: spherical_harmonic(2, 1, x, y) # needs sage.symbolic
|
|
305
|
+
-1/4*sqrt(6)*sqrt(5)*cos(x)*e^(I*y)*sin(x)/sqrt(pi)
|
|
306
|
+
sage: spherical_harmonic(5, -3, x, y) # needs sage.symbolic
|
|
307
|
+
-1/32*(9*sqrt(385)*sin(x)^4 - 8*sqrt(385)*sin(x)^2)*e^(-3*I*y)*sin(x)/sqrt(pi)
|
|
308
|
+
"""
|
|
309
|
+
if n in ZZ and m in ZZ and n > -1:
|
|
310
|
+
if abs(m) > n:
|
|
311
|
+
return ZZ(0)
|
|
312
|
+
if m == 0 and theta.is_zero():
|
|
313
|
+
return sqrt((2*n+1)/4/pi)
|
|
314
|
+
from sage.arith.misc import factorial
|
|
315
|
+
from sage.functions.trig import cos
|
|
316
|
+
from sage.functions.orthogonal_polys import gen_legendre_P
|
|
317
|
+
res = (sqrt(factorial(n-m) * (2*n+1) / (4*pi * factorial(n+m)))
|
|
318
|
+
* gen_legendre_P(n, m, cos(theta))
|
|
319
|
+
* exp(I*m*phi)).simplify_trig()
|
|
320
|
+
res = res.substitute({sqrt(sin(theta)**2): sin(theta)})
|
|
321
|
+
return res
|
|
322
|
+
|
|
323
|
+
def _evalf_(self, n, m, theta, phi, parent=None, **kwds):
|
|
324
|
+
r"""
|
|
325
|
+
TESTS::
|
|
326
|
+
|
|
327
|
+
sage: spherical_harmonic(3 + I, 2, 1, 2).n(100) # needs sage.symbolic
|
|
328
|
+
-0.35115433730748836508201061672 - 0.41556223397536866209990358597*I
|
|
329
|
+
sage: spherical_harmonic(I, I, I, I).n() # needs sage.symbolic
|
|
330
|
+
7.66678546069894 - 0.265754432549751*I
|
|
331
|
+
|
|
332
|
+
Consistency with ``_eval_``::
|
|
333
|
+
|
|
334
|
+
sage: d = lambda a, b: abs(spherical_harmonic(a, b, 1., 2.)
|
|
335
|
+
....: - spherical_harmonic(a, b, 1, 2).n())
|
|
336
|
+
sage: ab = [(0, 0), (1, -1), (1, 0), (1, 1), (3, 2), (3, 3)]
|
|
337
|
+
sage: all(d(a, b) < 1e-14 for a, b in ab) # needs sage.symbolic
|
|
338
|
+
True
|
|
339
|
+
"""
|
|
340
|
+
return _mpmath_utils_call(_mpmath_spherharm, n, m, theta, phi, parent=parent)
|
|
341
|
+
|
|
342
|
+
def _derivative_(self, n, m, theta, phi, diff_param):
|
|
343
|
+
r"""
|
|
344
|
+
TESTS::
|
|
345
|
+
|
|
346
|
+
sage: # needs sage.symbolic
|
|
347
|
+
sage: n, m, theta, phi = var('n m theta phi')
|
|
348
|
+
sage: Ynm = spherical_harmonic(n, m, theta, phi)
|
|
349
|
+
sage: DY_theta = Ynm.diff(theta); DY_theta
|
|
350
|
+
m*cot(theta)*spherical_harmonic(n, m, theta, phi)
|
|
351
|
+
+ sqrt(-(m + n + 1)*(m - n))*e^(-I*phi)*spherical_harmonic(n, m + 1, theta, phi)
|
|
352
|
+
sage: Ynm.diff(phi)
|
|
353
|
+
I*m*spherical_harmonic(n, m, theta, phi)
|
|
354
|
+
|
|
355
|
+
Check that :issue:`33117` is fixed::
|
|
356
|
+
|
|
357
|
+
sage: # needs sage.symbolic
|
|
358
|
+
sage: DY_theta.subs({n: 1, m: 0})
|
|
359
|
+
-1/2*sqrt(3)*sin(theta)/sqrt(pi)
|
|
360
|
+
sage: Ynm.subs({n: 1, m: 0}).diff(theta)
|
|
361
|
+
-1/2*sqrt(3)*sin(theta)/sqrt(pi)
|
|
362
|
+
sage: bool(DY_theta.subs({n: 1, m: 0}) == Ynm.subs({n: 1, m: 0}).diff(theta))
|
|
363
|
+
True
|
|
364
|
+
sage: bool(DY_theta.subs({n: 1, m: 1}) == Ynm.subs({n: 1, m: 1}).diff(theta))
|
|
365
|
+
True
|
|
366
|
+
sage: bool(DY_theta.subs({n: 1, m: -1}) == Ynm.subs({n: 1, m: -1}).diff(theta))
|
|
367
|
+
True
|
|
368
|
+
"""
|
|
369
|
+
if diff_param == 2:
|
|
370
|
+
return (m * cot(theta) * spherical_harmonic(n, m, theta, phi) +
|
|
371
|
+
sqrt((n - m) * (n + m + 1)) * exp(-I * phi) *
|
|
372
|
+
spherical_harmonic(n, m + 1, theta, phi))
|
|
373
|
+
if diff_param == 3:
|
|
374
|
+
return I * m * spherical_harmonic(n, m, theta, phi)
|
|
375
|
+
|
|
376
|
+
raise ValueError('only derivative with respect to theta or phi'
|
|
377
|
+
' supported')
|
|
378
|
+
|
|
379
|
+
def _latex_(self):
|
|
380
|
+
r"""
|
|
381
|
+
TESTS::
|
|
382
|
+
|
|
383
|
+
sage: latex(spherical_harmonic)
|
|
384
|
+
Y_n^m
|
|
385
|
+
"""
|
|
386
|
+
return r"Y_n^m"
|
|
387
|
+
|
|
388
|
+
def _print_latex_(self, n, m, theta, phi):
|
|
389
|
+
r"""
|
|
390
|
+
TESTS::
|
|
391
|
+
|
|
392
|
+
sage: y = var('y') # needs sage.symbolic
|
|
393
|
+
sage: latex(spherical_harmonic(3, 2, x, y, hold=True)) # needs sage.symbolic
|
|
394
|
+
Y_{3}^{2}\left(x, y\right)
|
|
395
|
+
"""
|
|
396
|
+
return r"Y_{{{}}}^{{{}}}\left({}, {}\right)".format(
|
|
397
|
+
latex(n), latex(m), latex(theta), latex(phi))
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
spherical_harmonic = SphericalHarmonic()
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
# elliptic functions and integrals
|
|
404
|
+
|
|
405
|
+
def elliptic_j(z, prec=53):
|
|
406
|
+
r"""
|
|
407
|
+
Return the elliptic modular `j`-function evaluated at `z`.
|
|
408
|
+
|
|
409
|
+
INPUT:
|
|
410
|
+
|
|
411
|
+
- ``z`` -- complex; a complex number with positive imaginary part
|
|
412
|
+
|
|
413
|
+
- ``prec`` -- (default: 53) precision in bits for the complex field
|
|
414
|
+
|
|
415
|
+
OUTPUT: (complex) the value of `j(z)`
|
|
416
|
+
|
|
417
|
+
ALGORITHM:
|
|
418
|
+
|
|
419
|
+
Calls the ``pari`` function ``ellj()``.
|
|
420
|
+
|
|
421
|
+
AUTHOR:
|
|
422
|
+
|
|
423
|
+
John Cremona
|
|
424
|
+
|
|
425
|
+
EXAMPLES::
|
|
426
|
+
|
|
427
|
+
sage: # needs sage.libs.pari
|
|
428
|
+
sage: elliptic_j(CC(i)) # needs sage.rings.real_mpfr sage.symbolic
|
|
429
|
+
1728.00000000000
|
|
430
|
+
sage: elliptic_j(sqrt(-2.0)) # needs sage.rings.complex_double
|
|
431
|
+
8000.00000000000
|
|
432
|
+
sage: z = ComplexField(100)(1, sqrt(11))/2 # needs sage.rings.real_mpfr sage.symbolic
|
|
433
|
+
sage: elliptic_j(z) # needs sage.rings.real_mpfr sage.symbolic
|
|
434
|
+
-32768.000...
|
|
435
|
+
sage: elliptic_j(z).real().round() # needs sage.rings.real_mpfr sage.symbolic
|
|
436
|
+
-32768
|
|
437
|
+
|
|
438
|
+
::
|
|
439
|
+
|
|
440
|
+
sage: tau = (1 + sqrt(-163))/2 # needs sage.symbolic
|
|
441
|
+
sage: (-elliptic_j(tau.n(100)).real().round())^(1/3) # needs sage.symbolic
|
|
442
|
+
640320
|
|
443
|
+
|
|
444
|
+
This example shows the need for higher precision than the default one of
|
|
445
|
+
the `ComplexField`, see :issue:`28355`::
|
|
446
|
+
|
|
447
|
+
sage: # needs sage.symbolic
|
|
448
|
+
sage: -elliptic_j(tau) # rel tol 1e-2
|
|
449
|
+
2.62537412640767e17 - 732.558854258998*I
|
|
450
|
+
sage: -elliptic_j(tau, 75) # rel tol 1e-2
|
|
451
|
+
2.625374126407680000000e17 - 0.0001309913593909879441262*I
|
|
452
|
+
sage: -elliptic_j(tau, 100) # rel tol 1e-2
|
|
453
|
+
2.6253741264076799999999999999e17 - 1.3012822400356887122945119790e-12*I
|
|
454
|
+
sage: (-elliptic_j(tau, 100).real().round())^(1/3)
|
|
455
|
+
640320
|
|
456
|
+
"""
|
|
457
|
+
CC = z.parent()
|
|
458
|
+
if not isinstance(CC, sage.rings.abc.ComplexField):
|
|
459
|
+
from sage.rings.complex_mpfr import ComplexField
|
|
460
|
+
CC = ComplexField(prec)
|
|
461
|
+
try:
|
|
462
|
+
z = CC(z)
|
|
463
|
+
except ValueError:
|
|
464
|
+
raise ValueError("elliptic_j only defined for complex arguments.")
|
|
465
|
+
from sage.libs.pari import pari
|
|
466
|
+
return CC(pari(z).ellj())
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
# elliptic integrals
|
|
470
|
+
|
|
471
|
+
class EllipticE(BuiltinFunction):
|
|
472
|
+
r"""
|
|
473
|
+
Return the incomplete elliptic integral of the
|
|
474
|
+
second kind:
|
|
475
|
+
|
|
476
|
+
.. MATH::
|
|
477
|
+
|
|
478
|
+
E(\varphi\,|\,m)=\int_0^\varphi \sqrt{1 - m\sin(x)^2}\, dx.
|
|
479
|
+
|
|
480
|
+
EXAMPLES::
|
|
481
|
+
|
|
482
|
+
sage: z = var("z") # needs sage.symbolic
|
|
483
|
+
sage: elliptic_e(z, 1) # needs sage.symbolic
|
|
484
|
+
elliptic_e(z, 1)
|
|
485
|
+
sage: elliptic_e(z, 1).simplify() # not tested # needs sage.symbolic
|
|
486
|
+
2*round(z/pi) - sin(pi*round(z/pi) - z)
|
|
487
|
+
sage: elliptic_e(z, 0) # needs sage.symbolic
|
|
488
|
+
z
|
|
489
|
+
sage: elliptic_e(0.5, 0.1) # abs tol 2e-15 # needs mpmath
|
|
490
|
+
0.498011394498832
|
|
491
|
+
sage: elliptic_e(1/2, 1/10).n(200) # needs sage.symbolic
|
|
492
|
+
0.4980113944988315331154610406...
|
|
493
|
+
|
|
494
|
+
.. SEEALSO::
|
|
495
|
+
|
|
496
|
+
- Taking `\varphi = \pi/2` gives
|
|
497
|
+
:func:`elliptic_ec()<sage.functions.special.EllipticEC>`.
|
|
498
|
+
|
|
499
|
+
- Taking `\varphi = \operatorname{arc\,sin}(\operatorname{sn}(u,m))`
|
|
500
|
+
gives :func:`elliptic_eu()<sage.functions.special.EllipticEU>`.
|
|
501
|
+
|
|
502
|
+
REFERENCES:
|
|
503
|
+
|
|
504
|
+
- :wikipedia:`Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind`
|
|
505
|
+
|
|
506
|
+
- :wikipedia:`Jacobi_elliptic_functions`
|
|
507
|
+
"""
|
|
508
|
+
def __init__(self):
|
|
509
|
+
r"""
|
|
510
|
+
TESTS::
|
|
511
|
+
|
|
512
|
+
sage: loads(dumps(elliptic_e))
|
|
513
|
+
elliptic_e
|
|
514
|
+
sage: elliptic_e(x, x)._sympy_() # needs sympy sage.symbolic
|
|
515
|
+
elliptic_e(x, x)
|
|
516
|
+
|
|
517
|
+
Check that :issue:`34085` is fixed::
|
|
518
|
+
|
|
519
|
+
sage: _ = var("x y") # needs sage.symbolic
|
|
520
|
+
sage: fricas(elliptic_e(x, y)) # optional - fricas, needs sage.symbolic
|
|
521
|
+
ellipticE(sin(x),y)
|
|
522
|
+
|
|
523
|
+
However, the conversion is only correct in the interval
|
|
524
|
+
`[-\pi/2, \pi/2]`::
|
|
525
|
+
|
|
526
|
+
sage: fricas(elliptic_e(x, y)).D(x).sage()/elliptic_e(x, y).diff(x) # optional - fricas, needs sage.symbolic
|
|
527
|
+
cos(x)/sqrt(-sin(x)^2 + 1)
|
|
528
|
+
|
|
529
|
+
Numerically::
|
|
530
|
+
|
|
531
|
+
sage: f = lambda x, y: elliptic_e(arcsin(x), y).subs(x=x, y=y)
|
|
532
|
+
sage: g = lambda x, y: fricas.ellipticE(x, y).sage()
|
|
533
|
+
sage: d = lambda x, y: f(x, y) - g(x, y)
|
|
534
|
+
sage: [d(N(-pi/2 + x), y) # abs tol 1e-8 # optional - fricas, needs sage.symbolic
|
|
535
|
+
....: for x in range(1, 3) for y in range(-2, 2)]
|
|
536
|
+
[0.000000000000000,
|
|
537
|
+
0.000000000000000,
|
|
538
|
+
0.000000000000000,
|
|
539
|
+
0.000000000000000,
|
|
540
|
+
5.55111512312578e-17,
|
|
541
|
+
0.000000000000000,
|
|
542
|
+
0.000000000000000,
|
|
543
|
+
0.000000000000000]
|
|
544
|
+
"""
|
|
545
|
+
BuiltinFunction.__init__(self, 'elliptic_e', nargs=2,
|
|
546
|
+
# Maple conversion left out since it uses
|
|
547
|
+
# k instead of m as the second argument
|
|
548
|
+
conversions=dict(mathematica='EllipticE',
|
|
549
|
+
maxima='elliptic_e',
|
|
550
|
+
sympy='elliptic_e',
|
|
551
|
+
fricas='((x,y)+->ellipticE(sin(x), y))'))
|
|
552
|
+
|
|
553
|
+
def _eval_(self, z, m):
|
|
554
|
+
"""
|
|
555
|
+
EXAMPLES::
|
|
556
|
+
|
|
557
|
+
sage: # needs sage.symbolic
|
|
558
|
+
sage: z = var("z")
|
|
559
|
+
sage: elliptic_e(0, x)
|
|
560
|
+
0
|
|
561
|
+
sage: elliptic_e(pi/2, x)
|
|
562
|
+
elliptic_ec(x)
|
|
563
|
+
sage: elliptic_e(z, 0)
|
|
564
|
+
z
|
|
565
|
+
sage: elliptic_e(z, 1)
|
|
566
|
+
elliptic_e(z, 1)
|
|
567
|
+
|
|
568
|
+
Here arccoth doesn't have 1 in its domain, so we just hold the expression::
|
|
569
|
+
|
|
570
|
+
sage: elliptic_e(arccoth(1), x^2*e) # needs sage.symbolic
|
|
571
|
+
elliptic_e(+Infinity, x^2*e)
|
|
572
|
+
"""
|
|
573
|
+
if z == 0:
|
|
574
|
+
return Integer(0)
|
|
575
|
+
elif z == pi / 2:
|
|
576
|
+
return elliptic_ec(m)
|
|
577
|
+
elif m == 0:
|
|
578
|
+
return z
|
|
579
|
+
|
|
580
|
+
def _evalf_(self, z, m, parent=None, algorithm=None):
|
|
581
|
+
"""
|
|
582
|
+
EXAMPLES::
|
|
583
|
+
|
|
584
|
+
sage: elliptic_e(0.5, 0.1) # needs mpmath
|
|
585
|
+
0.498011394498832
|
|
586
|
+
sage: elliptic_e(1/2, 1/10).n(200) # needs sage.symbolic
|
|
587
|
+
0.4980113944988315331154610406...
|
|
588
|
+
sage: elliptic_e(I, I).n() # needs sage.symbolic
|
|
589
|
+
-0.189847437084712 + 1.03209769372160*I
|
|
590
|
+
|
|
591
|
+
TESTS:
|
|
592
|
+
|
|
593
|
+
This gave an error in Maxima (:issue:`15046`)::
|
|
594
|
+
|
|
595
|
+
sage: elliptic_e(2.5, 2.5) # needs mpmath
|
|
596
|
+
0.535647771608740 + 1.63996015168665*I
|
|
597
|
+
"""
|
|
598
|
+
R = parent or s_parent(z)
|
|
599
|
+
return _mpmath_utils_call(_mpmath_ellipe, z, m, parent=R)
|
|
600
|
+
|
|
601
|
+
def _derivative_(self, z, m, diff_param):
|
|
602
|
+
"""
|
|
603
|
+
EXAMPLES::
|
|
604
|
+
|
|
605
|
+
sage: x, z = var('x,z') # needs sage.symbolic
|
|
606
|
+
sage: elliptic_e(z, x).diff(z, 1) # needs sage.symbolic
|
|
607
|
+
sqrt(-x*sin(z)^2 + 1)
|
|
608
|
+
sage: elliptic_e(z, x).diff(x, 1) # needs sage.symbolic
|
|
609
|
+
1/2*(elliptic_e(z, x) - elliptic_f(z, x))/x
|
|
610
|
+
"""
|
|
611
|
+
if diff_param == 0:
|
|
612
|
+
return sqrt(Integer(1) - m * sin(z) ** Integer(2))
|
|
613
|
+
elif diff_param == 1:
|
|
614
|
+
return (elliptic_e(z, m) - elliptic_f(z, m)) / (Integer(2) * m)
|
|
615
|
+
|
|
616
|
+
def _print_latex_(self, z, m):
|
|
617
|
+
r"""
|
|
618
|
+
EXAMPLES::
|
|
619
|
+
|
|
620
|
+
sage: latex(elliptic_e(pi, x)) # needs sage.symbolic
|
|
621
|
+
E(\pi\,|\,x)
|
|
622
|
+
"""
|
|
623
|
+
return r"E(%s\,|\,%s)" % (latex(z), latex(m))
|
|
624
|
+
|
|
625
|
+
|
|
626
|
+
elliptic_e = EllipticE()
|
|
627
|
+
|
|
628
|
+
|
|
629
|
+
class EllipticEC(BuiltinFunction):
|
|
630
|
+
r"""
|
|
631
|
+
Return the complete elliptic integral of the second kind:
|
|
632
|
+
|
|
633
|
+
.. MATH::
|
|
634
|
+
|
|
635
|
+
E(m)=\int_0^{\pi/2} \sqrt{1 - m\sin(x)^2}\, dx.
|
|
636
|
+
|
|
637
|
+
EXAMPLES::
|
|
638
|
+
|
|
639
|
+
sage: elliptic_ec(0.1) # needs mpmath
|
|
640
|
+
1.53075763689776
|
|
641
|
+
sage: elliptic_ec(x).diff() # needs sage.symbolic
|
|
642
|
+
1/2*(elliptic_ec(x) - elliptic_kc(x))/x
|
|
643
|
+
|
|
644
|
+
.. SEEALSO::
|
|
645
|
+
|
|
646
|
+
- :func:`elliptic_e()<sage.functions.special.EllipticE>`.
|
|
647
|
+
|
|
648
|
+
REFERENCES:
|
|
649
|
+
|
|
650
|
+
- :wikipedia:`Elliptic_integral#Complete_elliptic_integral_of_the_second_kind`
|
|
651
|
+
"""
|
|
652
|
+
def __init__(self):
|
|
653
|
+
"""
|
|
654
|
+
EXAMPLES::
|
|
655
|
+
|
|
656
|
+
sage: loads(dumps(elliptic_ec))
|
|
657
|
+
elliptic_ec
|
|
658
|
+
sage: elliptic_ec(x)._sympy_() # needs sage.symbolic
|
|
659
|
+
elliptic_e(x)
|
|
660
|
+
|
|
661
|
+
TESTS::
|
|
662
|
+
|
|
663
|
+
sage: fricas(elliptic_ec(x)) # optional - fricas, needs sage.symbolic
|
|
664
|
+
ellipticE(x)
|
|
665
|
+
|
|
666
|
+
sage: elliptic_ec(0.5) # abs tol 1e-8 # needs sage.symbolic
|
|
667
|
+
1.35064388104768
|
|
668
|
+
sage: fricas.ellipticE(0.5).sage() # abs tol 1e-8 # optional - fricas, needs sage.symbolic
|
|
669
|
+
1.3506438810476755025201749
|
|
670
|
+
"""
|
|
671
|
+
BuiltinFunction.__init__(self, 'elliptic_ec', nargs=1, latex_name='E',
|
|
672
|
+
conversions=dict(mathematica='EllipticE',
|
|
673
|
+
maxima='elliptic_ec',
|
|
674
|
+
sympy='elliptic_e',
|
|
675
|
+
fricas='ellipticE'))
|
|
676
|
+
|
|
677
|
+
def _eval_(self, x):
|
|
678
|
+
"""
|
|
679
|
+
EXAMPLES::
|
|
680
|
+
|
|
681
|
+
sage: elliptic_ec(0) # needs sage.symbolic
|
|
682
|
+
1/2*pi
|
|
683
|
+
sage: elliptic_ec(1) # needs sage.symbolic
|
|
684
|
+
1
|
|
685
|
+
sage: elliptic_ec(x) # needs sage.symbolic
|
|
686
|
+
elliptic_ec(x)
|
|
687
|
+
"""
|
|
688
|
+
if x == 0:
|
|
689
|
+
return pi / Integer(2)
|
|
690
|
+
elif x == 1:
|
|
691
|
+
return Integer(1)
|
|
692
|
+
|
|
693
|
+
def _evalf_(self, x, parent=None, algorithm=None):
|
|
694
|
+
"""
|
|
695
|
+
EXAMPLES::
|
|
696
|
+
|
|
697
|
+
sage: elliptic_ec(sqrt(2)/2).n() # needs sage.symbolic
|
|
698
|
+
1.23742252487318
|
|
699
|
+
sage: elliptic_ec(sqrt(2)/2).n(200) # needs sage.symbolic
|
|
700
|
+
1.237422524873181672854746084083...
|
|
701
|
+
sage: elliptic_ec(I).n() # needs sage.symbolic
|
|
702
|
+
1.63241178144043 - 0.369219492375499*I
|
|
703
|
+
"""
|
|
704
|
+
R = parent or s_parent(x)
|
|
705
|
+
return _mpmath_utils_call(_mpmath_ellipe, x, parent=R)
|
|
706
|
+
|
|
707
|
+
def _derivative_(self, x, diff_param):
|
|
708
|
+
"""
|
|
709
|
+
EXAMPLES::
|
|
710
|
+
|
|
711
|
+
sage: elliptic_ec(x).diff() # needs sage.symbolic
|
|
712
|
+
1/2*(elliptic_ec(x) - elliptic_kc(x))/x
|
|
713
|
+
"""
|
|
714
|
+
return (elliptic_ec(x) - elliptic_kc(x)) / (Integer(2) * x)
|
|
715
|
+
|
|
716
|
+
|
|
717
|
+
elliptic_ec = EllipticEC()
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
class EllipticEU(BuiltinFunction):
|
|
721
|
+
r"""
|
|
722
|
+
Return Jacobi's form of the incomplete elliptic integral of the second kind:
|
|
723
|
+
|
|
724
|
+
.. MATH::
|
|
725
|
+
|
|
726
|
+
E(u,m)=
|
|
727
|
+
\int_0^u \mathrm{dn}(x,m)^2\, dx = \int_0^\tau
|
|
728
|
+
\frac{\sqrt{1-m x^2}}{\sqrt{1-x^2}}\, dx.
|
|
729
|
+
|
|
730
|
+
where `\tau = \mathrm{sn}(u, m)`.
|
|
731
|
+
|
|
732
|
+
Also, ``elliptic_eu(u, m) = elliptic_e(asin(sn(u,m)),m)``.
|
|
733
|
+
|
|
734
|
+
EXAMPLES::
|
|
735
|
+
|
|
736
|
+
sage: elliptic_eu(0.5, 0.1) # needs mpmath
|
|
737
|
+
0.496054551286597
|
|
738
|
+
|
|
739
|
+
.. SEEALSO::
|
|
740
|
+
|
|
741
|
+
- :func:`elliptic_e()<sage.functions.special.EllipticE>`.
|
|
742
|
+
|
|
743
|
+
REFERENCES:
|
|
744
|
+
|
|
745
|
+
- :wikipedia:`Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind`
|
|
746
|
+
|
|
747
|
+
- :wikipedia:`Jacobi_elliptic_functions`
|
|
748
|
+
"""
|
|
749
|
+
def __init__(self):
|
|
750
|
+
r"""
|
|
751
|
+
EXAMPLES::
|
|
752
|
+
|
|
753
|
+
sage: loads(dumps(elliptic_eu))
|
|
754
|
+
elliptic_eu
|
|
755
|
+
"""
|
|
756
|
+
BuiltinFunction.__init__(self, 'elliptic_eu', nargs=2,
|
|
757
|
+
conversions=dict(maxima='elliptic_eu'))
|
|
758
|
+
|
|
759
|
+
def _eval_(self, u, m):
|
|
760
|
+
"""
|
|
761
|
+
EXAMPLES::
|
|
762
|
+
|
|
763
|
+
sage: elliptic_eu(1, 1) # needs sage.symbolic
|
|
764
|
+
elliptic_eu(1, 1)
|
|
765
|
+
"""
|
|
766
|
+
pass
|
|
767
|
+
|
|
768
|
+
def _evalf_(self, u, m, parent=None, algorithm=None):
|
|
769
|
+
"""
|
|
770
|
+
EXAMPLES::
|
|
771
|
+
|
|
772
|
+
sage: elliptic_eu(1, 1).n() # needs sage.symbolic
|
|
773
|
+
0.761594155955765
|
|
774
|
+
sage: elliptic_eu(1, 1).n(200) # needs sage.symbolic
|
|
775
|
+
0.7615941559557648881194582...
|
|
776
|
+
"""
|
|
777
|
+
R = parent or s_parent(u)
|
|
778
|
+
return _mpmath_utils_call(elliptic_eu_f, u, m, parent=R)
|
|
779
|
+
|
|
780
|
+
def _derivative_(self, u, m, diff_param):
|
|
781
|
+
"""
|
|
782
|
+
EXAMPLES::
|
|
783
|
+
|
|
784
|
+
sage: x, m = var('x,m') # needs sage.symbolic
|
|
785
|
+
sage: elliptic_eu(x, m).diff(x) # needs sage.symbolic
|
|
786
|
+
sqrt(-m*jacobi_sn(x, m)^2 + 1)*jacobi_dn(x, m)
|
|
787
|
+
sage: elliptic_eu(x, m).diff(m) # needs sage.symbolic
|
|
788
|
+
1/2*(elliptic_eu(x, m)
|
|
789
|
+
- elliptic_f(jacobi_am(x, m), m))/m
|
|
790
|
+
- 1/2*(m*jacobi_cn(x, m)*jacobi_sn(x, m)
|
|
791
|
+
- (m - 1)*x
|
|
792
|
+
- elliptic_eu(x, m)*jacobi_dn(x, m))*sqrt(-m*jacobi_sn(x, m)^2 + 1)/((m - 1)*m)
|
|
793
|
+
"""
|
|
794
|
+
from sage.functions.jacobi import jacobi, jacobi_am
|
|
795
|
+
if diff_param == 0:
|
|
796
|
+
return (sqrt(-m * jacobi('sn', u, m) ** Integer(2) +
|
|
797
|
+
Integer(1)) * jacobi('dn', u, m))
|
|
798
|
+
elif diff_param == 1:
|
|
799
|
+
return (Integer(1) / Integer(2) *
|
|
800
|
+
(elliptic_eu(u, m) - elliptic_f(jacobi_am(u, m), m)) / m -
|
|
801
|
+
Integer(1) / Integer(2) * sqrt(-m * jacobi('sn', u, m) **
|
|
802
|
+
Integer(2) + Integer(1)) * (m * jacobi('sn', u, m) *
|
|
803
|
+
jacobi('cn', u, m) - (m - Integer(1)) * u -
|
|
804
|
+
elliptic_eu(u, m) * jacobi('dn', u, m)) /
|
|
805
|
+
((m - Integer(1)) * m))
|
|
806
|
+
|
|
807
|
+
def _print_latex_(self, u, m):
|
|
808
|
+
"""
|
|
809
|
+
EXAMPLES::
|
|
810
|
+
|
|
811
|
+
sage: latex(elliptic_eu(1, x)) # needs sage.symbolic
|
|
812
|
+
E(1;x)
|
|
813
|
+
"""
|
|
814
|
+
return r"E(%s;%s)" % (latex(u), latex(m))
|
|
815
|
+
|
|
816
|
+
|
|
817
|
+
def elliptic_eu_f(u, m):
|
|
818
|
+
r"""
|
|
819
|
+
Internal function for numeric evaluation of ``elliptic_eu``, defined as
|
|
820
|
+
`E\left(\operatorname{am}(u, m)|m\right)`, where `E` is the incomplete
|
|
821
|
+
elliptic integral of the second kind and `\operatorname{am}` is the Jacobi
|
|
822
|
+
amplitude function.
|
|
823
|
+
|
|
824
|
+
EXAMPLES::
|
|
825
|
+
|
|
826
|
+
sage: from sage.functions.special import elliptic_eu_f
|
|
827
|
+
sage: elliptic_eu_f(0.5, 0.1) # needs mpmath
|
|
828
|
+
mpf('0.49605455128659691')
|
|
829
|
+
"""
|
|
830
|
+
from mpmath import mp as ctx
|
|
831
|
+
prec = ctx.prec
|
|
832
|
+
try:
|
|
833
|
+
u = ctx.convert(u)
|
|
834
|
+
m = ctx.convert(m)
|
|
835
|
+
ctx.prec += 10
|
|
836
|
+
return ctx.ellipe(jacobi_am_f(u, m), m)
|
|
837
|
+
finally:
|
|
838
|
+
ctx.prec = prec
|
|
839
|
+
|
|
840
|
+
|
|
841
|
+
elliptic_eu = EllipticEU()
|
|
842
|
+
|
|
843
|
+
|
|
844
|
+
class EllipticF(BuiltinFunction):
|
|
845
|
+
r"""
|
|
846
|
+
Return the incomplete elliptic integral of the first kind.
|
|
847
|
+
|
|
848
|
+
.. MATH::
|
|
849
|
+
|
|
850
|
+
F(\varphi\,|\,m)=\int_0^\varphi \frac{dx}{\sqrt{1 - m\sin(x)^2}},
|
|
851
|
+
|
|
852
|
+
Taking `\varphi = \pi/2` gives
|
|
853
|
+
:func:`elliptic_kc()<sage.functions.special.EllipticKC>`.
|
|
854
|
+
|
|
855
|
+
EXAMPLES::
|
|
856
|
+
|
|
857
|
+
sage: z = var("z") # needs sage.symbolic
|
|
858
|
+
sage: elliptic_f(z, 0) # needs sage.symbolic
|
|
859
|
+
z
|
|
860
|
+
sage: elliptic_f(z, 1).simplify() # needs sage.symbolic
|
|
861
|
+
log(tan(1/4*pi + 1/2*z))
|
|
862
|
+
sage: elliptic_f(0.2, 0.1) # needs mpmath
|
|
863
|
+
0.200132506747543
|
|
864
|
+
|
|
865
|
+
.. SEEALSO::
|
|
866
|
+
|
|
867
|
+
- :func:`elliptic_e()<sage.functions.special.EllipticE>`.
|
|
868
|
+
|
|
869
|
+
REFERENCES:
|
|
870
|
+
|
|
871
|
+
- :wikipedia:`Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind`
|
|
872
|
+
"""
|
|
873
|
+
def __init__(self):
|
|
874
|
+
r"""
|
|
875
|
+
EXAMPLES::
|
|
876
|
+
|
|
877
|
+
sage: loads(dumps(elliptic_f))
|
|
878
|
+
elliptic_f
|
|
879
|
+
sage: elliptic_f(x, 2)._sympy_() # needs sympy sage.symbolic
|
|
880
|
+
elliptic_f(x, 2)
|
|
881
|
+
|
|
882
|
+
Check that :issue:`34186` is fixed::
|
|
883
|
+
|
|
884
|
+
sage: _ = var("x y") # needs sage.symbolic
|
|
885
|
+
sage: fricas(elliptic_f(x, y)) # optional - fricas, needs sage.symbolic
|
|
886
|
+
ellipticF(sin(x),y)
|
|
887
|
+
|
|
888
|
+
However, the conversion is only correct in the interval
|
|
889
|
+
`[-\pi/2, \pi/2]`::
|
|
890
|
+
|
|
891
|
+
sage: fricas(elliptic_f(x, y)).D(x).sage()/elliptic_f(x, y).diff(x) # optional - fricas, needs sage.symbolic
|
|
892
|
+
cos(x)/sqrt(-sin(x)^2 + 1)
|
|
893
|
+
|
|
894
|
+
Numerically::
|
|
895
|
+
|
|
896
|
+
sage: f = lambda x, y: elliptic_f(arcsin(x), y).subs(x=x, y=y)
|
|
897
|
+
sage: g = lambda x, y: fricas.ellipticF(x, y).sage()
|
|
898
|
+
sage: d = lambda x, y: f(x, y) - g(x, y)
|
|
899
|
+
sage: [d(N(-pi/2 + x), y) # abs tol 1e-8 # optional - fricas, needs sage.symbolic
|
|
900
|
+
....: for x in range(1, 3) for y in range(-2,2)]
|
|
901
|
+
[0.000000000000000,
|
|
902
|
+
0.000000000000000,
|
|
903
|
+
0.000000000000000,
|
|
904
|
+
0.000000000000000,
|
|
905
|
+
5.55111512312578e-17,
|
|
906
|
+
0.000000000000000,
|
|
907
|
+
0.000000000000000,
|
|
908
|
+
0.000000000000000]
|
|
909
|
+
"""
|
|
910
|
+
BuiltinFunction.__init__(self, 'elliptic_f', nargs=2,
|
|
911
|
+
conversions=dict(mathematica='EllipticF',
|
|
912
|
+
maxima='elliptic_f',
|
|
913
|
+
fricas='((x,y)+->ellipticF(sin(x), y))',
|
|
914
|
+
sympy='elliptic_f'))
|
|
915
|
+
|
|
916
|
+
def _eval_(self, z, m):
|
|
917
|
+
"""
|
|
918
|
+
EXAMPLES::
|
|
919
|
+
|
|
920
|
+
sage: # needs sage.symbolic
|
|
921
|
+
sage: elliptic_f(x, 1)
|
|
922
|
+
elliptic_f(x, 1)
|
|
923
|
+
sage: elliptic_f(x, 0)
|
|
924
|
+
x
|
|
925
|
+
sage: elliptic_f(0, 1)
|
|
926
|
+
0
|
|
927
|
+
sage: elliptic_f(pi/2, x)
|
|
928
|
+
elliptic_kc(x)
|
|
929
|
+
"""
|
|
930
|
+
if m == 0:
|
|
931
|
+
return z
|
|
932
|
+
elif z == 0:
|
|
933
|
+
return Integer(0)
|
|
934
|
+
elif z == pi / 2:
|
|
935
|
+
return elliptic_kc(m)
|
|
936
|
+
|
|
937
|
+
def _evalf_(self, z, m, parent=None, algorithm=None):
|
|
938
|
+
"""
|
|
939
|
+
EXAMPLES::
|
|
940
|
+
|
|
941
|
+
sage: elliptic_f(1, 1).n() # needs sage.symbolic
|
|
942
|
+
1.22619117088352
|
|
943
|
+
sage: elliptic_f(1, 1).n(200) # needs sage.symbolic
|
|
944
|
+
1.22619117088351707081306096...
|
|
945
|
+
sage: elliptic_f(I, I).n() # needs sage.symbolic
|
|
946
|
+
0.149965060031782 + 0.925097284105771*I
|
|
947
|
+
"""
|
|
948
|
+
R = parent or s_parent(z)
|
|
949
|
+
return _mpmath_utils_call(_mpmath_ellipf, z, m, parent=R)
|
|
950
|
+
|
|
951
|
+
def _derivative_(self, z, m, diff_param):
|
|
952
|
+
"""
|
|
953
|
+
EXAMPLES::
|
|
954
|
+
|
|
955
|
+
sage: x, m = var('x,m') # needs sage.symbolic
|
|
956
|
+
sage: elliptic_f(x, m).diff(x) # needs sage.symbolic
|
|
957
|
+
1/sqrt(-m*sin(x)^2 + 1)
|
|
958
|
+
sage: elliptic_f(x, m).diff(m) # needs sage.symbolic
|
|
959
|
+
-1/2*elliptic_f(x, m)/m
|
|
960
|
+
+ 1/4*sin(2*x)/(sqrt(-m*sin(x)^2 + 1)*(m - 1))
|
|
961
|
+
- 1/2*elliptic_e(x, m)/((m - 1)*m)
|
|
962
|
+
"""
|
|
963
|
+
if diff_param == 0:
|
|
964
|
+
return Integer(1) / sqrt(Integer(1) - m * sin(z) ** Integer(2))
|
|
965
|
+
elif diff_param == 1:
|
|
966
|
+
return (elliptic_e(z, m) / (Integer(2) * (Integer(1) - m) * m) -
|
|
967
|
+
elliptic_f(z, m) / (Integer(2) * m) -
|
|
968
|
+
(sin(Integer(2) * z) /
|
|
969
|
+
(Integer(4) * (Integer(1) - m) *
|
|
970
|
+
sqrt(Integer(1) - m * sin(z) ** Integer(2)))))
|
|
971
|
+
|
|
972
|
+
def _print_latex_(self, z, m):
|
|
973
|
+
r"""
|
|
974
|
+
EXAMPLES::
|
|
975
|
+
|
|
976
|
+
sage: latex(elliptic_f(x, pi)) # needs sage.symbolic
|
|
977
|
+
F(x\,|\,\pi)
|
|
978
|
+
"""
|
|
979
|
+
return r"F(%s\,|\,%s)" % (latex(z), latex(m))
|
|
980
|
+
|
|
981
|
+
|
|
982
|
+
elliptic_f = EllipticF()
|
|
983
|
+
|
|
984
|
+
|
|
985
|
+
class EllipticKC(BuiltinFunction):
|
|
986
|
+
r"""
|
|
987
|
+
Return the complete elliptic integral of the first kind:
|
|
988
|
+
|
|
989
|
+
.. MATH::
|
|
990
|
+
|
|
991
|
+
K(m)=\int_0^{\pi/2} \frac{dx}{\sqrt{1 - m\sin(x)^2}}.
|
|
992
|
+
|
|
993
|
+
EXAMPLES::
|
|
994
|
+
|
|
995
|
+
sage: elliptic_kc(0.5) # needs mpmath
|
|
996
|
+
1.85407467730137
|
|
997
|
+
|
|
998
|
+
.. SEEALSO::
|
|
999
|
+
|
|
1000
|
+
- :func:`elliptic_f()<sage.functions.special.EllipticF>`.
|
|
1001
|
+
|
|
1002
|
+
- :func:`elliptic_ec()<sage.functions.special.EllipticEC>`.
|
|
1003
|
+
|
|
1004
|
+
REFERENCES:
|
|
1005
|
+
|
|
1006
|
+
- :wikipedia:`Elliptic_integral#Complete_elliptic_integral_of_the_first_kind`
|
|
1007
|
+
|
|
1008
|
+
- :wikipedia:`Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind`
|
|
1009
|
+
"""
|
|
1010
|
+
def __init__(self):
|
|
1011
|
+
"""
|
|
1012
|
+
EXAMPLES::
|
|
1013
|
+
|
|
1014
|
+
sage: loads(dumps(elliptic_kc))
|
|
1015
|
+
elliptic_kc
|
|
1016
|
+
sage: elliptic_kc(x)._sympy_() # needs sage.symbolic
|
|
1017
|
+
elliptic_k(x)
|
|
1018
|
+
|
|
1019
|
+
TESTS::
|
|
1020
|
+
|
|
1021
|
+
sage: fricas(elliptic_kc(x)) # optional - fricas, needs sage.symbolic
|
|
1022
|
+
ellipticK(x)
|
|
1023
|
+
|
|
1024
|
+
sage: elliptic_kc(0.3) # abs tol 1e-8 # needs mpmath
|
|
1025
|
+
1.71388944817879
|
|
1026
|
+
sage: fricas.ellipticK(0.3).sage() # abs tol 1e-3 # optional - fricas, needs sage.symbolic
|
|
1027
|
+
1.7138894481787910555457043
|
|
1028
|
+
"""
|
|
1029
|
+
BuiltinFunction.__init__(self, 'elliptic_kc', nargs=1, latex_name='K',
|
|
1030
|
+
conversions=dict(mathematica='EllipticK',
|
|
1031
|
+
maxima='elliptic_kc',
|
|
1032
|
+
sympy='elliptic_k',
|
|
1033
|
+
fricas='ellipticK'))
|
|
1034
|
+
|
|
1035
|
+
def _eval_(self, z):
|
|
1036
|
+
"""
|
|
1037
|
+
EXAMPLES::
|
|
1038
|
+
|
|
1039
|
+
sage: elliptic_kc(0) # needs sage.symbolic
|
|
1040
|
+
1/2*pi
|
|
1041
|
+
sage: elliptic_kc(1/2) # needs sage.symbolic
|
|
1042
|
+
elliptic_kc(1/2)
|
|
1043
|
+
|
|
1044
|
+
TESTS:
|
|
1045
|
+
|
|
1046
|
+
Check if complex numbers in the arguments are converted to maxima
|
|
1047
|
+
correctly (see :issue:`7557`)::
|
|
1048
|
+
|
|
1049
|
+
sage: t = jacobi_sn(1.2 + 2*I*elliptic_kc(1 - .5), .5) # needs sage.symbolic
|
|
1050
|
+
sage: maxima(t) # abs tol 1e-13 # needs sage.symbolic
|
|
1051
|
+
0.88771548861928029 - 1.7301614091485560e-15*%i
|
|
1052
|
+
sage: t.n() # abs tol 1e-13 # needs sage.symbolic
|
|
1053
|
+
0.887715488619280 - 1.73016140914856e-15*I
|
|
1054
|
+
"""
|
|
1055
|
+
if z == 0:
|
|
1056
|
+
return pi / 2
|
|
1057
|
+
else:
|
|
1058
|
+
return None
|
|
1059
|
+
|
|
1060
|
+
def _evalf_(self, z, parent=None, algorithm=None):
|
|
1061
|
+
"""
|
|
1062
|
+
EXAMPLES::
|
|
1063
|
+
|
|
1064
|
+
sage: elliptic_kc(1/2).n() # needs sage.symbolic
|
|
1065
|
+
1.85407467730137
|
|
1066
|
+
sage: elliptic_kc(1/2).n(200) # needs sage.symbolic
|
|
1067
|
+
1.85407467730137191843385034...
|
|
1068
|
+
sage: elliptic_kc(I).n() # needs sage.symbolic
|
|
1069
|
+
1.42127228104504 + 0.295380284214777*I
|
|
1070
|
+
"""
|
|
1071
|
+
R = parent or s_parent(z)
|
|
1072
|
+
return _mpmath_utils_call(_mpmath_ellipk, z, parent=R)
|
|
1073
|
+
|
|
1074
|
+
def _derivative_(self, z, diff_param):
|
|
1075
|
+
"""
|
|
1076
|
+
EXAMPLES::
|
|
1077
|
+
|
|
1078
|
+
sage: elliptic_kc(x).diff(x) # needs sage.symbolic
|
|
1079
|
+
-1/2*((x - 1)*elliptic_kc(x)
|
|
1080
|
+
+ elliptic_ec(x))/((x - 1)*x)
|
|
1081
|
+
"""
|
|
1082
|
+
return ((elliptic_ec(z) - (Integer(1) - z) * elliptic_kc(z)) /
|
|
1083
|
+
(Integer(2) * (Integer(1) - z) * z))
|
|
1084
|
+
|
|
1085
|
+
|
|
1086
|
+
elliptic_kc = EllipticKC()
|
|
1087
|
+
|
|
1088
|
+
|
|
1089
|
+
class EllipticPi(BuiltinFunction):
|
|
1090
|
+
r"""
|
|
1091
|
+
Return the incomplete elliptic integral of the third kind:
|
|
1092
|
+
|
|
1093
|
+
.. MATH::
|
|
1094
|
+
|
|
1095
|
+
\Pi(n, t, m) = \int_0^t \frac{dx}{(1 - n \sin(x)^2)\sqrt{1 - m \sin(x)^2}}.
|
|
1096
|
+
|
|
1097
|
+
INPUT:
|
|
1098
|
+
|
|
1099
|
+
- ``n`` -- a real number, called the "characteristic"
|
|
1100
|
+
|
|
1101
|
+
- ``t`` -- a real number, called the "amplitude"
|
|
1102
|
+
|
|
1103
|
+
- ``m`` -- a real number, called the "parameter"
|
|
1104
|
+
|
|
1105
|
+
EXAMPLES::
|
|
1106
|
+
|
|
1107
|
+
sage: N(elliptic_pi(1, pi/4, 1)) # needs sage.symbolic
|
|
1108
|
+
1.14779357469632
|
|
1109
|
+
|
|
1110
|
+
Compare the value computed by Maxima to the definition as a definite integral
|
|
1111
|
+
(using GSL)::
|
|
1112
|
+
|
|
1113
|
+
sage: elliptic_pi(0.1, 0.2, 0.3) # needs mpmath
|
|
1114
|
+
0.200665068220979
|
|
1115
|
+
sage: numerical_integral(1/(1-0.1*sin(x)^2)/sqrt(1-0.3*sin(x)^2), 0.0, 0.2) # needs sage.symbolic
|
|
1116
|
+
(0.2006650682209791, 2.227829789769088e-15)
|
|
1117
|
+
|
|
1118
|
+
REFERENCES:
|
|
1119
|
+
|
|
1120
|
+
- :wikipedia:`Elliptic_integral#Incomplete_elliptic_integral_of_the_third_kind`
|
|
1121
|
+
"""
|
|
1122
|
+
def __init__(self):
|
|
1123
|
+
"""
|
|
1124
|
+
EXAMPLES::
|
|
1125
|
+
|
|
1126
|
+
sage: loads(dumps(elliptic_pi))
|
|
1127
|
+
elliptic_pi
|
|
1128
|
+
sage: elliptic_pi(x, pi/4, 1)._sympy_() # needs sympy sage.symbolic
|
|
1129
|
+
elliptic_pi(x, pi/4, 1)
|
|
1130
|
+
"""
|
|
1131
|
+
BuiltinFunction.__init__(self, 'elliptic_pi', nargs=3,
|
|
1132
|
+
conversions=dict(mathematica='EllipticPi',
|
|
1133
|
+
maxima='EllipticPi',
|
|
1134
|
+
# fricas='ellipticPi', doubt
|
|
1135
|
+
sympy='elliptic_pi'))
|
|
1136
|
+
|
|
1137
|
+
def _eval_(self, n, z, m):
|
|
1138
|
+
"""
|
|
1139
|
+
EXAMPLES::
|
|
1140
|
+
|
|
1141
|
+
sage: elliptic_pi(x, x, pi) # needs sympy sage.symbolic
|
|
1142
|
+
elliptic_pi(x, x, pi)
|
|
1143
|
+
sage: elliptic_pi(0, x, pi) # needs sympy sage.symbolic
|
|
1144
|
+
elliptic_f(x, pi)
|
|
1145
|
+
"""
|
|
1146
|
+
if n == 0:
|
|
1147
|
+
return elliptic_f(z, m)
|
|
1148
|
+
|
|
1149
|
+
def _evalf_(self, n, z, m, parent=None, algorithm=None):
|
|
1150
|
+
"""
|
|
1151
|
+
EXAMPLES::
|
|
1152
|
+
|
|
1153
|
+
sage: # needs sage.symbolic
|
|
1154
|
+
sage: elliptic_pi(pi, 1/2, 1).n()
|
|
1155
|
+
0.795062820631931
|
|
1156
|
+
sage: elliptic_pi(pi, 1/2, 1).n(200)
|
|
1157
|
+
0.79506282063193125292514098445...
|
|
1158
|
+
sage: elliptic_pi(pi, 1, 1).n()
|
|
1159
|
+
0.0991592574231369 - 1.30004368185937*I
|
|
1160
|
+
sage: elliptic_pi(pi, I, I).n()
|
|
1161
|
+
0.0542471560940594 + 0.552096453413081*I
|
|
1162
|
+
"""
|
|
1163
|
+
R = parent or s_parent(z)
|
|
1164
|
+
return _mpmath_utils_call(_mpmath_ellippi, n, z, m, parent=R)
|
|
1165
|
+
|
|
1166
|
+
def _derivative_(self, n, z, m, diff_param):
|
|
1167
|
+
"""
|
|
1168
|
+
EXAMPLES::
|
|
1169
|
+
|
|
1170
|
+
sage: # needs sage.symbolic
|
|
1171
|
+
sage: n, z, m = var('n,z,m')
|
|
1172
|
+
sage: elliptic_pi(n, z, m).diff(n)
|
|
1173
|
+
1/4*(sqrt(-m*sin(z)^2 + 1)*n*sin(2*z)/(n*sin(z)^2 - 1)
|
|
1174
|
+
+ 2*(m - n)*elliptic_f(z, m)/n
|
|
1175
|
+
+ 2*(n^2 - m)*elliptic_pi(n, z, m)/n
|
|
1176
|
+
+ 2*elliptic_e(z, m))/((m - n)*(n - 1))
|
|
1177
|
+
sage: elliptic_pi(n, z, m).diff(z)
|
|
1178
|
+
-1/(sqrt(-m*sin(z)^2 + 1)*(n*sin(z)^2 - 1))
|
|
1179
|
+
sage: elliptic_pi(n, z, m).diff(m)
|
|
1180
|
+
1/4*(m*sin(2*z)/(sqrt(-m*sin(z)^2 + 1)*(m - 1))
|
|
1181
|
+
- 2*elliptic_e(z, m)/(m - 1)
|
|
1182
|
+
- 2*elliptic_pi(n, z, m))/(m - n)
|
|
1183
|
+
"""
|
|
1184
|
+
if diff_param == 0:
|
|
1185
|
+
return ((Integer(1) / (Integer(2) * (m - n) * (n - Integer(1)))) *
|
|
1186
|
+
(elliptic_e(z, m) + ((m - n) / n) * elliptic_f(z, m) +
|
|
1187
|
+
((n ** Integer(2) - m) / n) * elliptic_pi(n, z, m) -
|
|
1188
|
+
(n * sqrt(Integer(1) - m * sin(z) ** Integer(2)) *
|
|
1189
|
+
sin(Integer(2) * z)) /
|
|
1190
|
+
(Integer(2) * (Integer(1) - n * sin(z) ** Integer(2)))))
|
|
1191
|
+
elif diff_param == 1:
|
|
1192
|
+
return (Integer(1) /
|
|
1193
|
+
(sqrt(Integer(1) - m * sin(z) ** Integer(Integer(2))) *
|
|
1194
|
+
(Integer(1) - n * sin(z) ** Integer(2))))
|
|
1195
|
+
elif diff_param == 2:
|
|
1196
|
+
return ((Integer(1) / (Integer(2) * (n - m))) *
|
|
1197
|
+
(elliptic_e(z, m) / (m - Integer(1)) +
|
|
1198
|
+
elliptic_pi(n, z, m) - (m * sin(Integer(2) * z)) /
|
|
1199
|
+
(Integer(2) * (m - Integer(1)) *
|
|
1200
|
+
sqrt(Integer(1) - m * sin(z) ** Integer(2)))))
|
|
1201
|
+
|
|
1202
|
+
def _print_latex_(self, n, z, m):
|
|
1203
|
+
r"""
|
|
1204
|
+
EXAMPLES::
|
|
1205
|
+
|
|
1206
|
+
sage: latex(elliptic_pi(x, pi, 0)) # needs sage.symbolic
|
|
1207
|
+
\Pi(x,\pi,0)
|
|
1208
|
+
"""
|
|
1209
|
+
return r"\Pi(%s,%s,%s)" % (latex(n), latex(z), latex(m))
|
|
1210
|
+
|
|
1211
|
+
|
|
1212
|
+
elliptic_pi = EllipticPi()
|