passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,690 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
"""
|
|
3
|
+
Number-theoretic functions
|
|
4
|
+
"""
|
|
5
|
+
# ****************************************************************************
|
|
6
|
+
# Copyright (C) 2005 William Stein <wstein@gmail.com>
|
|
7
|
+
#
|
|
8
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
9
|
+
#
|
|
10
|
+
# This code is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
13
|
+
# General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# The full text of the GPL is available at:
|
|
16
|
+
#
|
|
17
|
+
# https://www.gnu.org/licenses/
|
|
18
|
+
# ****************************************************************************
|
|
19
|
+
import math
|
|
20
|
+
|
|
21
|
+
from sage.misc.lazy_import import lazy_import
|
|
22
|
+
from sage.rings.integer_ring import ZZ
|
|
23
|
+
from sage.symbolic.function import GinacFunction, BuiltinFunction
|
|
24
|
+
|
|
25
|
+
lazy_import('sage.functions.gamma', 'psi')
|
|
26
|
+
lazy_import('sage.functions.other', 'factorial')
|
|
27
|
+
|
|
28
|
+
lazy_import('sage.combinat.combinat', 'bernoulli_polynomial')
|
|
29
|
+
lazy_import('sage.rings.cc', 'CC')
|
|
30
|
+
lazy_import('sage.rings.complex_mpfr', ['ComplexField', 'ComplexNumber'])
|
|
31
|
+
lazy_import('sage.rings.polynomial.polynomial_real_mpfr_dense', 'PolynomialRealDense')
|
|
32
|
+
lazy_import('sage.rings.real_double', 'RDF')
|
|
33
|
+
lazy_import('sage.rings.real_mpfr', ['RR', 'RealField', 'RealNumber'])
|
|
34
|
+
|
|
35
|
+
lazy_import('sage.libs.mpmath.utils', 'call', as_='_mpmath_utils_call')
|
|
36
|
+
lazy_import('mpmath', 'zeta', as_='_mpmath_zeta')
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class Function_zeta(GinacFunction):
|
|
40
|
+
def __init__(self):
|
|
41
|
+
r"""
|
|
42
|
+
Riemann zeta function at s with s a real or complex number.
|
|
43
|
+
|
|
44
|
+
INPUT:
|
|
45
|
+
|
|
46
|
+
- ``s`` -- real or complex number
|
|
47
|
+
|
|
48
|
+
If s is a real number, the computation is done using the MPFR
|
|
49
|
+
library. When the input is not real, the computation is done using
|
|
50
|
+
the PARI C library.
|
|
51
|
+
|
|
52
|
+
EXAMPLES::
|
|
53
|
+
|
|
54
|
+
sage: RR = RealField(200) # needs sage.rings.real_mpfr
|
|
55
|
+
sage: zeta(RR(2)) # needs sage.rings.real_mpfr
|
|
56
|
+
1.6449340668482264364724151666460251892189499012067984377356
|
|
57
|
+
|
|
58
|
+
sage: # needs sage.symbolic
|
|
59
|
+
sage: zeta(x)
|
|
60
|
+
zeta(x)
|
|
61
|
+
sage: zeta(2)
|
|
62
|
+
1/6*pi^2
|
|
63
|
+
sage: zeta(2.)
|
|
64
|
+
1.64493406684823
|
|
65
|
+
sage: zeta(I)
|
|
66
|
+
zeta(I)
|
|
67
|
+
sage: zeta(I).n()
|
|
68
|
+
0.00330022368532410 - 0.418155449141322*I
|
|
69
|
+
sage: zeta(sqrt(2))
|
|
70
|
+
zeta(sqrt(2))
|
|
71
|
+
sage: zeta(sqrt(2)).n() # rel tol 1e-10
|
|
72
|
+
3.02073767948603
|
|
73
|
+
|
|
74
|
+
It is possible to use the ``hold`` argument to prevent
|
|
75
|
+
automatic evaluation::
|
|
76
|
+
|
|
77
|
+
sage: zeta(2, hold=True) # needs sage.symbolic
|
|
78
|
+
zeta(2)
|
|
79
|
+
|
|
80
|
+
To then evaluate again, we currently must use Maxima via
|
|
81
|
+
:meth:`sage.symbolic.expression.Expression.simplify`::
|
|
82
|
+
|
|
83
|
+
sage: a = zeta(2, hold=True); a.simplify() # needs sage.symbolic
|
|
84
|
+
1/6*pi^2
|
|
85
|
+
|
|
86
|
+
The Laurent expansion of `\zeta(s)` at `s=1` is
|
|
87
|
+
implemented by means of the
|
|
88
|
+
:wikipedia:`Stieltjes constants <Stieltjes_constants>`::
|
|
89
|
+
|
|
90
|
+
sage: s = SR('s') # needs sage.symbolic
|
|
91
|
+
sage: zeta(s).series(s==1, 2) # needs sage.symbolic
|
|
92
|
+
1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
|
|
93
|
+
|
|
94
|
+
Generally, the Stieltjes constants occur in the Laurent
|
|
95
|
+
expansion of `\zeta`-type singularities::
|
|
96
|
+
|
|
97
|
+
sage: zeta(2*s/(s+1)).series(s==1, 2) # needs sage.symbolic
|
|
98
|
+
2*(s - 1)^(-1) + (euler_gamma + 1) + (-1/2*stieltjes(1))*(s - 1) + Order((s - 1)^2)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
TESTS::
|
|
102
|
+
|
|
103
|
+
sage: # needs sage.symbolic
|
|
104
|
+
sage: latex(zeta(x))
|
|
105
|
+
\zeta(x)
|
|
106
|
+
sage: a = loads(dumps(zeta(x)))
|
|
107
|
+
sage: a.operator() == zeta
|
|
108
|
+
True
|
|
109
|
+
sage: zeta(x)._sympy_() # needs sympy
|
|
110
|
+
zeta(x)
|
|
111
|
+
|
|
112
|
+
sage: zeta(1) # needs sage.symbolic
|
|
113
|
+
Infinity
|
|
114
|
+
sage: zeta(x).subs(x=1) # needs sage.symbolic
|
|
115
|
+
Infinity
|
|
116
|
+
|
|
117
|
+
Check that :issue:`19799` is resolved::
|
|
118
|
+
|
|
119
|
+
sage: zeta(pi) # needs sage.symbolic
|
|
120
|
+
zeta(pi)
|
|
121
|
+
sage: zeta(pi).n() # rel tol 1e-10 # needs sage.symbolic
|
|
122
|
+
1.17624173838258
|
|
123
|
+
|
|
124
|
+
Check that :issue:`20082` is fixed::
|
|
125
|
+
|
|
126
|
+
sage: zeta(x).series(x==pi, 2) # needs sage.symbolic
|
|
127
|
+
(zeta(pi)) + (zetaderiv(1, pi))*(-pi + x) + Order((pi - x)^2)
|
|
128
|
+
sage: (zeta(x) * 1/(1 - exp(-x))).residue(x==2*pi*I) # needs sage.symbolic
|
|
129
|
+
zeta(2*I*pi)
|
|
130
|
+
|
|
131
|
+
Check that :issue:`20102` is fixed::
|
|
132
|
+
|
|
133
|
+
sage: (zeta(x)^2).series(x==1, 1) # needs sage.symbolic
|
|
134
|
+
1*(x - 1)^(-2) + (2*euler_gamma)*(x - 1)^(-1)
|
|
135
|
+
+ (euler_gamma^2 - 2*stieltjes(1)) + Order(x - 1)
|
|
136
|
+
sage: (zeta(x)^4).residue(x==1) # needs sage.symbolic
|
|
137
|
+
4/3*euler_gamma*(3*euler_gamma^2 - 2*stieltjes(1))
|
|
138
|
+
- 28/3*euler_gamma*stieltjes(1) + 2*stieltjes(2)
|
|
139
|
+
|
|
140
|
+
Check that the right infinities are returned (:issue:`19439`)::
|
|
141
|
+
|
|
142
|
+
sage: zeta(1.0) # needs sage.symbolic
|
|
143
|
+
+infinity
|
|
144
|
+
sage: zeta(SR(1.0)) # needs sage.symbolic
|
|
145
|
+
Infinity
|
|
146
|
+
|
|
147
|
+
Fixed conversion::
|
|
148
|
+
|
|
149
|
+
sage: zeta(3)._maple_init_() # needs sage.symbolic
|
|
150
|
+
'Zeta(3)'
|
|
151
|
+
sage: zeta(3)._maple_().sage() # optional - maple # needs sage.symbolic
|
|
152
|
+
zeta(3)
|
|
153
|
+
"""
|
|
154
|
+
GinacFunction.__init__(self, 'zeta',
|
|
155
|
+
conversions={'giac': 'Zeta',
|
|
156
|
+
'maple': 'Zeta',
|
|
157
|
+
'sympy': 'zeta',
|
|
158
|
+
'mathematica': 'Zeta'})
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
zeta = Function_zeta()
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
class Function_stieltjes(GinacFunction):
|
|
165
|
+
def __init__(self):
|
|
166
|
+
r"""
|
|
167
|
+
Stieltjes constant of index ``n``.
|
|
168
|
+
|
|
169
|
+
``stieltjes(0)`` is identical to the Euler-Mascheroni constant
|
|
170
|
+
(:class:`sage.symbolic.constants.EulerGamma`). The Stieltjes
|
|
171
|
+
constants are used in the series expansions of `\zeta(s)`.
|
|
172
|
+
|
|
173
|
+
INPUT:
|
|
174
|
+
|
|
175
|
+
- ``n`` -- nonnegative integer
|
|
176
|
+
|
|
177
|
+
EXAMPLES::
|
|
178
|
+
|
|
179
|
+
sage: # needs sage.symbolic
|
|
180
|
+
sage: _ = var('n')
|
|
181
|
+
sage: stieltjes(n)
|
|
182
|
+
stieltjes(n)
|
|
183
|
+
sage: stieltjes(0)
|
|
184
|
+
euler_gamma
|
|
185
|
+
sage: stieltjes(2)
|
|
186
|
+
stieltjes(2)
|
|
187
|
+
sage: stieltjes(int(2))
|
|
188
|
+
stieltjes(2)
|
|
189
|
+
sage: stieltjes(2).n(100)
|
|
190
|
+
-0.0096903631928723184845303860352
|
|
191
|
+
sage: RR = RealField(200) # needs sage.rings.real_mpfr
|
|
192
|
+
sage: stieltjes(RR(2)) # needs sage.rings.real_mpfr
|
|
193
|
+
-0.0096903631928723184845303860352125293590658061013407498807014
|
|
194
|
+
|
|
195
|
+
It is possible to use the ``hold`` argument to prevent
|
|
196
|
+
automatic evaluation::
|
|
197
|
+
|
|
198
|
+
sage: stieltjes(0, hold=True) # needs sage.symbolic
|
|
199
|
+
stieltjes(0)
|
|
200
|
+
|
|
201
|
+
sage: # needs sage.symbolic
|
|
202
|
+
sage: latex(stieltjes(n))
|
|
203
|
+
\gamma_{n}
|
|
204
|
+
sage: a = loads(dumps(stieltjes(n)))
|
|
205
|
+
sage: a.operator() == stieltjes
|
|
206
|
+
True
|
|
207
|
+
sage: stieltjes(x)._sympy_() # needs sympy
|
|
208
|
+
stieltjes(x)
|
|
209
|
+
|
|
210
|
+
sage: stieltjes(x).subs(x==0) # needs sage.symbolic
|
|
211
|
+
euler_gamma
|
|
212
|
+
"""
|
|
213
|
+
GinacFunction.__init__(self, "stieltjes", nargs=1,
|
|
214
|
+
conversions=dict(mathematica='StieltjesGamma',
|
|
215
|
+
sympy='stieltjes'),
|
|
216
|
+
latex_name=r'\gamma')
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
stieltjes = Function_stieltjes()
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
class Function_HurwitzZeta(BuiltinFunction):
|
|
223
|
+
def __init__(self):
|
|
224
|
+
r"""
|
|
225
|
+
TESTS::
|
|
226
|
+
|
|
227
|
+
sage: latex(hurwitz_zeta(x, 2)) # needs sage.symbolic
|
|
228
|
+
\zeta\left(x, 2\right)
|
|
229
|
+
sage: hurwitz_zeta(x, 2)._sympy_() # needs sympy sage.symbolic
|
|
230
|
+
zeta(x, 2)
|
|
231
|
+
"""
|
|
232
|
+
BuiltinFunction.__init__(self, 'hurwitz_zeta', nargs=2,
|
|
233
|
+
conversions=dict(mathematica='HurwitzZeta',
|
|
234
|
+
sympy='zeta'),
|
|
235
|
+
latex_name=r'\zeta')
|
|
236
|
+
|
|
237
|
+
def _eval_(self, s, x):
|
|
238
|
+
r"""
|
|
239
|
+
TESTS::
|
|
240
|
+
|
|
241
|
+
sage: # needs sage.symbolic
|
|
242
|
+
sage: hurwitz_zeta(x, 1)
|
|
243
|
+
zeta(x)
|
|
244
|
+
sage: hurwitz_zeta(4, 3)
|
|
245
|
+
1/90*pi^4 - 17/16
|
|
246
|
+
sage: hurwitz_zeta(-4, x)
|
|
247
|
+
-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
|
|
248
|
+
sage: hurwitz_zeta(0, x)
|
|
249
|
+
-x + 1/2
|
|
250
|
+
|
|
251
|
+
sage: hurwitz_zeta(3, 0.5) # needs mpmath
|
|
252
|
+
8.41439832211716
|
|
253
|
+
"""
|
|
254
|
+
if x == 1:
|
|
255
|
+
return zeta(s)
|
|
256
|
+
if s in ZZ and s > 1:
|
|
257
|
+
return ((-1) ** s) * psi(s - 1, x) / factorial(s - 1)
|
|
258
|
+
elif s in ZZ and s <= 0:
|
|
259
|
+
return -bernoulli_polynomial(x, -s + 1) / (-s + 1)
|
|
260
|
+
else:
|
|
261
|
+
return
|
|
262
|
+
|
|
263
|
+
def _evalf_(self, s, x, parent=None, algorithm=None):
|
|
264
|
+
r"""
|
|
265
|
+
TESTS::
|
|
266
|
+
|
|
267
|
+
sage: hurwitz_zeta(11/10, 1/2).n() # needs mpmath sage.symbolic
|
|
268
|
+
12.1038134956837
|
|
269
|
+
sage: hurwitz_zeta(11/10, 1/2).n(100) # needs mpmath sage.symbolic
|
|
270
|
+
12.103813495683755105709077413
|
|
271
|
+
sage: hurwitz_zeta(11/10, 1 + 1j).n() # needs mpmath sage.rings.real_mpfr
|
|
272
|
+
9.85014164287853 - 1.06139499403981*I
|
|
273
|
+
"""
|
|
274
|
+
return _mpmath_utils_call(_mpmath_zeta, s, x, parent=parent)
|
|
275
|
+
|
|
276
|
+
def _derivative_(self, s, x, diff_param):
|
|
277
|
+
r"""
|
|
278
|
+
TESTS::
|
|
279
|
+
|
|
280
|
+
sage: y = var('y') # needs sage.symbolic
|
|
281
|
+
sage: diff(hurwitz_zeta(x, y), y) # needs sage.symbolic
|
|
282
|
+
-x*hurwitz_zeta(x + 1, y)
|
|
283
|
+
"""
|
|
284
|
+
if diff_param == 1:
|
|
285
|
+
return -s * hurwitz_zeta(s + 1, x)
|
|
286
|
+
else:
|
|
287
|
+
raise NotImplementedError('derivative with respect to first '
|
|
288
|
+
'argument')
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
hurwitz_zeta_func = Function_HurwitzZeta()
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
def hurwitz_zeta(s, x, **kwargs):
|
|
295
|
+
r"""
|
|
296
|
+
The Hurwitz zeta function `\zeta(s, x)`, where `s` and `x` are complex.
|
|
297
|
+
|
|
298
|
+
The Hurwitz zeta function is one of the many zeta functions. It
|
|
299
|
+
is defined as
|
|
300
|
+
|
|
301
|
+
.. MATH::
|
|
302
|
+
|
|
303
|
+
\zeta(s, x) = \sum_{k=0}^{\infty} (k + x)^{-s}.
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
When `x = 1`, this coincides with Riemann's zeta function.
|
|
307
|
+
The Dirichlet `L`-functions may be expressed as linear combinations
|
|
308
|
+
of Hurwitz zeta functions.
|
|
309
|
+
|
|
310
|
+
EXAMPLES:
|
|
311
|
+
|
|
312
|
+
Symbolic evaluations::
|
|
313
|
+
|
|
314
|
+
sage: # needs sage.symbolic
|
|
315
|
+
sage: hurwitz_zeta(x, 1)
|
|
316
|
+
zeta(x)
|
|
317
|
+
sage: hurwitz_zeta(4, 3)
|
|
318
|
+
1/90*pi^4 - 17/16
|
|
319
|
+
sage: hurwitz_zeta(-4, x)
|
|
320
|
+
-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
|
|
321
|
+
sage: hurwitz_zeta(7, -1/2)
|
|
322
|
+
127*zeta(7) - 128
|
|
323
|
+
sage: hurwitz_zeta(-3, 1)
|
|
324
|
+
1/120
|
|
325
|
+
|
|
326
|
+
Numerical evaluations::
|
|
327
|
+
|
|
328
|
+
sage: hurwitz_zeta(3, 1/2).n() # needs mpmath
|
|
329
|
+
8.41439832211716
|
|
330
|
+
sage: hurwitz_zeta(11/10, 1/2).n() # needs sage.symbolic
|
|
331
|
+
12.1038134956837
|
|
332
|
+
sage: hurwitz_zeta(3, x).series(x, 60).subs(x=0.5).n() # needs sage.symbolic
|
|
333
|
+
8.41439832211716
|
|
334
|
+
sage: hurwitz_zeta(3, 0.5) # needs mpmath
|
|
335
|
+
8.41439832211716
|
|
336
|
+
|
|
337
|
+
REFERENCES:
|
|
338
|
+
|
|
339
|
+
- :wikipedia:`Hurwitz_zeta_function`
|
|
340
|
+
"""
|
|
341
|
+
return hurwitz_zeta_func(s, x, **kwargs)
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
class Function_zetaderiv(GinacFunction):
|
|
345
|
+
def __init__(self):
|
|
346
|
+
r"""
|
|
347
|
+
Derivatives of the Riemann zeta function.
|
|
348
|
+
|
|
349
|
+
EXAMPLES::
|
|
350
|
+
|
|
351
|
+
sage: # needs sage.symbolic
|
|
352
|
+
sage: zetaderiv(1, x)
|
|
353
|
+
zetaderiv(1, x)
|
|
354
|
+
sage: zetaderiv(1, x).diff(x)
|
|
355
|
+
zetaderiv(2, x)
|
|
356
|
+
sage: var('n')
|
|
357
|
+
n
|
|
358
|
+
sage: zetaderiv(n, x)
|
|
359
|
+
zetaderiv(n, x)
|
|
360
|
+
sage: zetaderiv(1, 4).n()
|
|
361
|
+
-0.0689112658961254
|
|
362
|
+
sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4) # needs mpmath
|
|
363
|
+
mpf('-0.068911265896125382')
|
|
364
|
+
|
|
365
|
+
TESTS::
|
|
366
|
+
|
|
367
|
+
sage: latex(zetaderiv(2, x)) # needs sage.symbolic
|
|
368
|
+
\zeta^\prime\left(2, x\right)
|
|
369
|
+
sage: a = loads(dumps(zetaderiv(2, x))) # needs sage.symbolic
|
|
370
|
+
sage: a.operator() == zetaderiv # needs sage.symbolic
|
|
371
|
+
True
|
|
372
|
+
|
|
373
|
+
sage: b = RBF(3/2, 1e-10) # needs sage.libs.flint
|
|
374
|
+
sage: zetaderiv(1, b, hold=True) # needs sage.libs.flint sage.symbolic
|
|
375
|
+
zetaderiv(1, [1.500000000 +/- 1.01e-10])
|
|
376
|
+
sage: zetaderiv(b, 1) # needs sage.libs.flint sage.symbolic
|
|
377
|
+
zetaderiv([1.500000000 +/- 1.01e-10], 1)
|
|
378
|
+
"""
|
|
379
|
+
GinacFunction.__init__(self, "zetaderiv", nargs=2,
|
|
380
|
+
conversions=dict(maple='Zeta'))
|
|
381
|
+
|
|
382
|
+
def _evalf_(self, n, x, parent=None, algorithm=None):
|
|
383
|
+
r"""
|
|
384
|
+
TESTS::
|
|
385
|
+
|
|
386
|
+
sage: zetaderiv(0, 3, hold=True).n() == zeta(3).n() # needs sage.symbolic
|
|
387
|
+
True
|
|
388
|
+
sage: zetaderiv(2, 3 + I).n() # needs sage.symbolic
|
|
389
|
+
0.0213814086193841 - 0.174938812330834*I
|
|
390
|
+
"""
|
|
391
|
+
return _mpmath_utils_call(_mpmath_zeta, x, 1, n, parent=parent)
|
|
392
|
+
|
|
393
|
+
def _method_arguments(self, k, x):
|
|
394
|
+
r"""
|
|
395
|
+
TESTS::
|
|
396
|
+
|
|
397
|
+
sage: zetaderiv(1, RBF(3/2, 0.0001)) # needs sage.libs.flint
|
|
398
|
+
[-3.93 +/- ...e-3]
|
|
399
|
+
"""
|
|
400
|
+
return [x, k]
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
zetaderiv = Function_zetaderiv()
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
def zeta_symmetric(s):
|
|
407
|
+
r"""
|
|
408
|
+
Completed function `\xi(s)` that satisfies
|
|
409
|
+
`\xi(s) = \xi(1-s)` and has zeros at the same points as the
|
|
410
|
+
Riemann zeta function.
|
|
411
|
+
|
|
412
|
+
INPUT:
|
|
413
|
+
|
|
414
|
+
- ``s`` -- real or complex number
|
|
415
|
+
|
|
416
|
+
If s is a real number the computation is done using the MPFR
|
|
417
|
+
library. When the input is not real, the computation is done using
|
|
418
|
+
the PARI C library.
|
|
419
|
+
|
|
420
|
+
More precisely,
|
|
421
|
+
|
|
422
|
+
.. MATH::
|
|
423
|
+
|
|
424
|
+
xi(s) = \gamma(s/2 + 1) * (s-1) * \pi^{-s/2} * \zeta(s).
|
|
425
|
+
|
|
426
|
+
EXAMPLES::
|
|
427
|
+
|
|
428
|
+
sage: # needs sage.rings.real_mpfr
|
|
429
|
+
sage: RR = RealField(200)
|
|
430
|
+
sage: zeta_symmetric(RR(0.7))
|
|
431
|
+
0.49758041465112690357779107525638385212657443284080589766062
|
|
432
|
+
|
|
433
|
+
sage: # needs sage.libs.pari sage.rings.real_mpfr
|
|
434
|
+
sage: zeta_symmetric(0.7)
|
|
435
|
+
0.497580414651127
|
|
436
|
+
sage: zeta_symmetric(1 - 0.7)
|
|
437
|
+
0.497580414651127
|
|
438
|
+
sage: C.<i> = ComplexField()
|
|
439
|
+
sage: zeta_symmetric(0.5 + i*14.0)
|
|
440
|
+
0.000201294444235258 + 1.49077798716757e-19*I
|
|
441
|
+
sage: zeta_symmetric(0.5 + i*14.1)
|
|
442
|
+
0.0000489893483255687 + 4.40457132572236e-20*I
|
|
443
|
+
sage: zeta_symmetric(0.5 + i*14.2)
|
|
444
|
+
-0.0000868931282620101 + 7.11507675693612e-20*I
|
|
445
|
+
|
|
446
|
+
REFERENCE:
|
|
447
|
+
|
|
448
|
+
- I copied the definition of xi from
|
|
449
|
+
http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html
|
|
450
|
+
"""
|
|
451
|
+
if not isinstance(s, (ComplexNumber, RealNumber)):
|
|
452
|
+
s = ComplexField()(s)
|
|
453
|
+
|
|
454
|
+
R = s.parent()
|
|
455
|
+
if s == 1: # deal with poles, hopefully
|
|
456
|
+
return R(0.5)
|
|
457
|
+
|
|
458
|
+
return (s/2 + 1).gamma() * (s-1) * (R.pi()**(-s/2)) * s.zeta()
|
|
459
|
+
|
|
460
|
+
|
|
461
|
+
class DickmanRho(BuiltinFunction):
|
|
462
|
+
r"""
|
|
463
|
+
Dickman's function is the continuous function satisfying the
|
|
464
|
+
differential equation
|
|
465
|
+
|
|
466
|
+
.. MATH::
|
|
467
|
+
|
|
468
|
+
x \rho'(x) + \rho(x-1) = 0
|
|
469
|
+
|
|
470
|
+
with initial conditions `\rho(x)=1` for
|
|
471
|
+
`0 \le x \le 1`. It is useful in estimating the frequency
|
|
472
|
+
of smooth numbers as asymptotically
|
|
473
|
+
|
|
474
|
+
.. MATH::
|
|
475
|
+
|
|
476
|
+
\Psi(a, a^{1/s}) \sim a \rho(s)
|
|
477
|
+
|
|
478
|
+
where `\Psi(a,b)` is the number of `b`-smooth
|
|
479
|
+
numbers less than `a`.
|
|
480
|
+
|
|
481
|
+
ALGORITHM:
|
|
482
|
+
|
|
483
|
+
Dickmans's function is analytic on the interval
|
|
484
|
+
`[n,n+1]` for each integer `n`. To evaluate at
|
|
485
|
+
`n+t, 0 \le t < 1`, a power series is recursively computed
|
|
486
|
+
about `n+1/2` using the differential equation stated above.
|
|
487
|
+
As high precision arithmetic may be needed for intermediate results
|
|
488
|
+
the computed series are cached for later use.
|
|
489
|
+
|
|
490
|
+
Simple explicit formulas are used for the intervals [0,1] and
|
|
491
|
+
[1,2].
|
|
492
|
+
|
|
493
|
+
EXAMPLES::
|
|
494
|
+
|
|
495
|
+
sage: # needs sage.symbolic
|
|
496
|
+
sage: dickman_rho(2)
|
|
497
|
+
0.306852819440055
|
|
498
|
+
sage: dickman_rho(10)
|
|
499
|
+
2.77017183772596e-11
|
|
500
|
+
sage: dickman_rho(10.00000000000000000000000000000000000000)
|
|
501
|
+
2.77017183772595898875812120063434232634e-11
|
|
502
|
+
sage: plot(log(dickman_rho(x)), (x, 0, 15)) # needs sage.plot
|
|
503
|
+
Graphics object consisting of 1 graphics primitive
|
|
504
|
+
|
|
505
|
+
AUTHORS:
|
|
506
|
+
|
|
507
|
+
- Robert Bradshaw (2008-09)
|
|
508
|
+
|
|
509
|
+
REFERENCES:
|
|
510
|
+
|
|
511
|
+
- G. Marsaglia, A. Zaman, J. Marsaglia. "Numerical
|
|
512
|
+
Solutions to some Classical Differential-Difference Equations."
|
|
513
|
+
Mathematics of Computation, Vol. 53, No. 187 (1989).
|
|
514
|
+
"""
|
|
515
|
+
def __init__(self):
|
|
516
|
+
"""
|
|
517
|
+
Construct an object to represent Dickman's rho function.
|
|
518
|
+
|
|
519
|
+
TESTS::
|
|
520
|
+
|
|
521
|
+
sage: dickman_rho(x) # needs sage.symbolic
|
|
522
|
+
dickman_rho(x)
|
|
523
|
+
sage: dickman_rho(3) # needs sage.symbolic
|
|
524
|
+
0.0486083882911316
|
|
525
|
+
sage: dickman_rho(pi) # needs sage.symbolic
|
|
526
|
+
0.0359690758968463
|
|
527
|
+
"""
|
|
528
|
+
self._cur_prec = 0
|
|
529
|
+
BuiltinFunction.__init__(self, "dickman_rho", 1)
|
|
530
|
+
|
|
531
|
+
def _eval_(self, x):
|
|
532
|
+
"""
|
|
533
|
+
EXAMPLES::
|
|
534
|
+
|
|
535
|
+
sage: [dickman_rho(n) for n in [1..10]] # needs sage.symbolic
|
|
536
|
+
[1.00000000000000, 0.306852819440055, 0.0486083882911316,
|
|
537
|
+
0.00491092564776083, 0.000354724700456040, 0.0000196496963539553,
|
|
538
|
+
8.74566995329392e-7, 3.23206930422610e-8, 1.01624828273784e-9,
|
|
539
|
+
2.77017183772596e-11]
|
|
540
|
+
sage: dickman_rho(0) # needs sage.symbolic
|
|
541
|
+
1.00000000000000
|
|
542
|
+
"""
|
|
543
|
+
if not isinstance(x, RealNumber):
|
|
544
|
+
try:
|
|
545
|
+
x = RR(x)
|
|
546
|
+
except (TypeError, ValueError):
|
|
547
|
+
return None
|
|
548
|
+
if x < 0:
|
|
549
|
+
return x.parent()(0)
|
|
550
|
+
elif x <= 1:
|
|
551
|
+
return x.parent()(1)
|
|
552
|
+
elif x <= 2:
|
|
553
|
+
return 1 - x.log()
|
|
554
|
+
n = x.floor()
|
|
555
|
+
if self._cur_prec < x.parent().prec() or n not in self._f:
|
|
556
|
+
|
|
557
|
+
from sage.misc.misc import increase_recursion_limit
|
|
558
|
+
|
|
559
|
+
self._cur_prec = rel_prec = x.parent().prec()
|
|
560
|
+
# Go a bit beyond so we're not constantly re-computing.
|
|
561
|
+
max = x.parent()(1.1)*x + 10
|
|
562
|
+
abs_prec = (-self.approximate(max).log2() + rel_prec + 2*max.log2()).ceil()
|
|
563
|
+
self._f = {}
|
|
564
|
+
with increase_recursion_limit(int(max)):
|
|
565
|
+
self._compute_power_series(max.floor(), abs_prec, cache_ring=x.parent())
|
|
566
|
+
return self._f[n](2*(x-n-x.parent()(0.5)))
|
|
567
|
+
|
|
568
|
+
def power_series(self, n, abs_prec):
|
|
569
|
+
"""
|
|
570
|
+
This function returns the power series about `n+1/2` used
|
|
571
|
+
to evaluate Dickman's function. It is scaled such that the interval
|
|
572
|
+
`[n,n+1]` corresponds to `x` in `[-1,1]`.
|
|
573
|
+
|
|
574
|
+
INPUT:
|
|
575
|
+
|
|
576
|
+
- ``n`` -- the lower endpoint of the interval for which
|
|
577
|
+
this power series holds
|
|
578
|
+
|
|
579
|
+
- ``abs_prec`` -- the absolute precision of the
|
|
580
|
+
resulting power series
|
|
581
|
+
|
|
582
|
+
EXAMPLES::
|
|
583
|
+
|
|
584
|
+
sage: # needs sage.rings.real_mpfr
|
|
585
|
+
sage: f = dickman_rho.power_series(2, 20); f
|
|
586
|
+
-9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8
|
|
587
|
+
- 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4
|
|
588
|
+
- 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032
|
|
589
|
+
sage: f(-1), f(0), f(1)
|
|
590
|
+
(0.30685, 0.13032, 0.048608)
|
|
591
|
+
sage: dickman_rho(2), dickman_rho(2.5), dickman_rho(3)
|
|
592
|
+
(0.306852819440055, 0.130319561832251, 0.0486083882911316)
|
|
593
|
+
"""
|
|
594
|
+
return self._compute_power_series(n, abs_prec, cache_ring=None)
|
|
595
|
+
|
|
596
|
+
def _compute_power_series(self, n, abs_prec, cache_ring=None):
|
|
597
|
+
"""
|
|
598
|
+
Compute the power series giving Dickman's function on `[n, n+1]`, by
|
|
599
|
+
recursion in `n`. For internal use; ``self.power_series()`` is a wrapper
|
|
600
|
+
around this intended for the user.
|
|
601
|
+
|
|
602
|
+
INPUT:
|
|
603
|
+
|
|
604
|
+
- ``n`` -- the lower endpoint of the interval for which
|
|
605
|
+
this power series holds
|
|
606
|
+
|
|
607
|
+
- ``abs_prec`` -- the absolute precision of the
|
|
608
|
+
resulting power series
|
|
609
|
+
|
|
610
|
+
- ``cache_ring`` -- for internal use, caches the power
|
|
611
|
+
series at this precision
|
|
612
|
+
|
|
613
|
+
EXAMPLES::
|
|
614
|
+
|
|
615
|
+
sage: # needs sage.rings.real_mpfr
|
|
616
|
+
sage: f = dickman_rho.power_series(2, 20); f
|
|
617
|
+
-9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8
|
|
618
|
+
- 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4
|
|
619
|
+
- 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032
|
|
620
|
+
"""
|
|
621
|
+
if n <= 1:
|
|
622
|
+
if n <= -1:
|
|
623
|
+
return PolynomialRealDense(RealField(abs_prec)['x'])
|
|
624
|
+
if n == 0:
|
|
625
|
+
return PolynomialRealDense(RealField(abs_prec)['x'], [1])
|
|
626
|
+
elif n == 1:
|
|
627
|
+
nterms = (RDF(abs_prec) * RDF(2).log()/RDF(3).log()).ceil()
|
|
628
|
+
R = RealField(abs_prec)
|
|
629
|
+
neg_three = ZZ(-3)
|
|
630
|
+
coeffs = [1 - R(1.5).log()] + [neg_three**-k/k for k in range(1, nterms)]
|
|
631
|
+
f = PolynomialRealDense(R['x'], coeffs)
|
|
632
|
+
if cache_ring is not None:
|
|
633
|
+
self._f[n] = f.truncate_abs(f[0] >> (cache_ring.prec()+1)).change_ring(cache_ring)
|
|
634
|
+
return f
|
|
635
|
+
else:
|
|
636
|
+
f = self._compute_power_series(n-1, abs_prec, cache_ring)
|
|
637
|
+
# integrand = f / (2n+1 + x)
|
|
638
|
+
# We calculate this way because the most significant term is the constant term,
|
|
639
|
+
# and so we want to push the error accumulation and remainder out to the least
|
|
640
|
+
# significant terms.
|
|
641
|
+
integrand = f.reverse().quo_rem(PolynomialRealDense(f.parent(), [1, 2*n+1]))[0].reverse()
|
|
642
|
+
integrand = integrand.truncate_abs(RR(2)**-abs_prec)
|
|
643
|
+
iintegrand = integrand.integral()
|
|
644
|
+
ff = PolynomialRealDense(f.parent(), [f(1) + iintegrand(-1)]) - iintegrand
|
|
645
|
+
i = 0
|
|
646
|
+
while abs(f[i]) < abs(f[i+1]):
|
|
647
|
+
i += 1
|
|
648
|
+
rel_prec = int(abs_prec + abs(RR(f[i])).log2())
|
|
649
|
+
if cache_ring is not None:
|
|
650
|
+
self._f[n] = ff.truncate_abs(ff[0] >> (cache_ring.prec()+1)).change_ring(cache_ring)
|
|
651
|
+
return ff.change_ring(RealField(rel_prec))
|
|
652
|
+
|
|
653
|
+
def approximate(self, x, parent=None):
|
|
654
|
+
r"""
|
|
655
|
+
Approximate using de Bruijn's formula.
|
|
656
|
+
|
|
657
|
+
.. MATH::
|
|
658
|
+
|
|
659
|
+
\rho(x) \sim \frac{exp(-x \xi + Ei(\xi))}{\sqrt{2\pi x}\xi}
|
|
660
|
+
|
|
661
|
+
which is asymptotically equal to Dickman's function, and is much
|
|
662
|
+
faster to compute.
|
|
663
|
+
|
|
664
|
+
REFERENCES:
|
|
665
|
+
|
|
666
|
+
- N. De Bruijn, "The Asymptotic behavior of a function
|
|
667
|
+
occurring in the theory of primes." J. Indian Math Soc. v 15.
|
|
668
|
+
(1951)
|
|
669
|
+
|
|
670
|
+
EXAMPLES::
|
|
671
|
+
|
|
672
|
+
sage: dickman_rho.approximate(10) # needs sage.rings.real_mpfr
|
|
673
|
+
2.41739196365564e-11
|
|
674
|
+
sage: dickman_rho(10) # needs sage.symbolic
|
|
675
|
+
2.77017183772596e-11
|
|
676
|
+
sage: dickman_rho.approximate(1000) # needs sage.rings.real_mpfr
|
|
677
|
+
4.32938809066403e-3464
|
|
678
|
+
"""
|
|
679
|
+
log, exp, sqrt, pi = math.log, math.exp, math.sqrt, math.pi
|
|
680
|
+
x = float(x)
|
|
681
|
+
xi = log(x)
|
|
682
|
+
y = (exp(xi)-1.0)/xi - x
|
|
683
|
+
while abs(y) > 1e-12:
|
|
684
|
+
dydxi = (exp(xi)*(xi-1.0) + 1.0)/(xi*xi)
|
|
685
|
+
xi -= y/dydxi
|
|
686
|
+
y = (exp(xi)-1.0)/xi - x
|
|
687
|
+
return (-x*xi + RR(xi).eint()).exp() / (sqrt(2*pi*x)*xi)
|
|
688
|
+
|
|
689
|
+
|
|
690
|
+
dickman_rho = DickmanRho()
|