passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,826 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
# sage.doctest: needs sage.schemes
|
|
3
|
+
r"""
|
|
4
|
+
Jacobians of function fields
|
|
5
|
+
|
|
6
|
+
This module provides base classes for Jacobians of function fields.
|
|
7
|
+
|
|
8
|
+
Jacobian
|
|
9
|
+
--------
|
|
10
|
+
|
|
11
|
+
The Jacobian of a function field is created by default in the Hess model, with
|
|
12
|
+
a base divisor of degree `g` the genus of the function field. The base divisor
|
|
13
|
+
is automatically chosen if not given. ::
|
|
14
|
+
|
|
15
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
16
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
17
|
+
sage: F = C.function_field()
|
|
18
|
+
sage: J = F.jacobian()
|
|
19
|
+
sage: J
|
|
20
|
+
Jacobian of Function field in z defined by z^3 + 23*y^2*z + 6 (Hess model)
|
|
21
|
+
sage: J.base_divisor().degree()
|
|
22
|
+
1
|
|
23
|
+
|
|
24
|
+
Explicitly specify a model if you want Jacobians in different models. ::
|
|
25
|
+
|
|
26
|
+
sage: J_km = F.jacobian(model='km_large')
|
|
27
|
+
sage: J_km
|
|
28
|
+
Jacobian of Function field in z defined by z^3 + 23*y^2*z + 6 (Khuri-Makdisi large model)
|
|
29
|
+
|
|
30
|
+
Group of rational points
|
|
31
|
+
------------------------
|
|
32
|
+
|
|
33
|
+
The group of rational points of a Jacobian is created from the Jacobian. A
|
|
34
|
+
point of the Jacobian group is determined by a divisor of degree zero. To
|
|
35
|
+
represent the point, a divisor of the form `D-B` is selected where `D` is an
|
|
36
|
+
effective divisor of the same degree with the base divisor `B`. Hence the point
|
|
37
|
+
is simply represented by the divisor `D`. ::
|
|
38
|
+
|
|
39
|
+
sage: G = J.group()
|
|
40
|
+
sage: G.order()
|
|
41
|
+
30
|
|
42
|
+
sage: pl1 = C([1,8,1]).place()
|
|
43
|
+
sage: pl2 = C([2,10,1]).place()
|
|
44
|
+
sage: p1 = G.point(pl1 - pl2)
|
|
45
|
+
sage: p1
|
|
46
|
+
[Place (y + 1, z + 6)]
|
|
47
|
+
sage: p2 = G.point(pl2 - pl1)
|
|
48
|
+
sage: p2
|
|
49
|
+
[Place (y + 28, z + 6)]
|
|
50
|
+
sage: p1 + p2 == G.zero()
|
|
51
|
+
True
|
|
52
|
+
sage: p1.order()
|
|
53
|
+
5
|
|
54
|
+
|
|
55
|
+
We can get the corresponding point in the Jacobian in a different model. ::
|
|
56
|
+
|
|
57
|
+
sage: p1km = J_km(p1)
|
|
58
|
+
sage: p1km.order()
|
|
59
|
+
5
|
|
60
|
+
sage: p1km
|
|
61
|
+
Point of Jacobian determined by
|
|
62
|
+
[ 1 0 0 0 0 0 11 0 0]
|
|
63
|
+
[ 0 1 0 0 0 0 18 0 0]
|
|
64
|
+
[ 0 0 1 0 0 0 11 0 0]
|
|
65
|
+
[ 0 0 0 1 0 0 18 1 0]
|
|
66
|
+
[ 0 0 0 0 1 0 25 0 19]
|
|
67
|
+
[ 0 0 0 0 0 1 8 8 0]
|
|
68
|
+
|
|
69
|
+
AUTHORS:
|
|
70
|
+
|
|
71
|
+
- Kwankyu Lee (2022-01-24): initial version
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
# ****************************************************************************
|
|
75
|
+
# Copyright (C) 2022 Kwankyu Lee <ekwankyu@gmail.com>
|
|
76
|
+
#
|
|
77
|
+
# This program is free software: you can redistribute it and/or modify
|
|
78
|
+
# it under the terms of the GNU General Public License as published by
|
|
79
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
80
|
+
# (at your option) any later version.
|
|
81
|
+
# https://www.gnu.org/licenses/
|
|
82
|
+
# ****************************************************************************
|
|
83
|
+
|
|
84
|
+
import math
|
|
85
|
+
|
|
86
|
+
from sage.arith.misc import integer_floor, integer_ceil
|
|
87
|
+
|
|
88
|
+
from sage.structure.parent import Parent
|
|
89
|
+
from sage.structure.element import ModuleElement
|
|
90
|
+
|
|
91
|
+
from sage.categories.commutative_additive_groups import CommutativeAdditiveGroups
|
|
92
|
+
from sage.categories.schemes import Jacobians
|
|
93
|
+
from sage.categories.pushout import ConstructionFunctor, pushout
|
|
94
|
+
|
|
95
|
+
from sage.rings.integer_ring import IntegerRing
|
|
96
|
+
from sage.rings.integer import Integer
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
class JacobianPoint_base(ModuleElement):
|
|
100
|
+
"""
|
|
101
|
+
Abstract base class of points of Jacobian groups.
|
|
102
|
+
"""
|
|
103
|
+
pass
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class JacobianPoint_finite_field_base(JacobianPoint_base):
|
|
107
|
+
"""
|
|
108
|
+
Points of Jacobians over finite fields.
|
|
109
|
+
"""
|
|
110
|
+
def order(self):
|
|
111
|
+
"""
|
|
112
|
+
Return the order of this point.
|
|
113
|
+
|
|
114
|
+
EXAMPLES::
|
|
115
|
+
|
|
116
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
117
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
118
|
+
sage: F = C.function_field()
|
|
119
|
+
sage: h = C.function(y/x).divisor_of_poles()
|
|
120
|
+
sage: J = C.jacobian(model='km_large', base_div=h)
|
|
121
|
+
sage: G = J.group()
|
|
122
|
+
sage: b = F.get_place(1)
|
|
123
|
+
sage: pl = C([-1,2,1]).place()
|
|
124
|
+
sage: p = G.point(pl - b)
|
|
125
|
+
sage: p.order()
|
|
126
|
+
15
|
|
127
|
+
|
|
128
|
+
ALGORITHM: Shanks' Baby Step Giant Step
|
|
129
|
+
"""
|
|
130
|
+
G = self.parent()
|
|
131
|
+
B = G._bound_on_order()
|
|
132
|
+
q = integer_ceil(B.sqrt())
|
|
133
|
+
zero = G.zero()
|
|
134
|
+
|
|
135
|
+
# baby steps
|
|
136
|
+
b = [zero]
|
|
137
|
+
g = self
|
|
138
|
+
for i in range(q - 1):
|
|
139
|
+
if g == zero:
|
|
140
|
+
return i + 1
|
|
141
|
+
b.append(g)
|
|
142
|
+
g = g + self
|
|
143
|
+
|
|
144
|
+
# giant steps
|
|
145
|
+
g0 = self.multiple(-q)
|
|
146
|
+
g = g0
|
|
147
|
+
for i in range(q - 1):
|
|
148
|
+
for r in range(q):
|
|
149
|
+
if g == b[r]:
|
|
150
|
+
return q * (i + 1) + r
|
|
151
|
+
g = g + g0
|
|
152
|
+
|
|
153
|
+
# order is neither smaller or nor larger than this
|
|
154
|
+
return q**2
|
|
155
|
+
|
|
156
|
+
def frobenius(self):
|
|
157
|
+
"""
|
|
158
|
+
Return the image of the point acted by the Frobenius automorphism.
|
|
159
|
+
|
|
160
|
+
EXAMPLES::
|
|
161
|
+
|
|
162
|
+
sage: k = GF(7)
|
|
163
|
+
sage: A.<x,y> = AffineSpace(k,2)
|
|
164
|
+
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
|
|
165
|
+
sage: J = C.jacobian(model='hess')
|
|
166
|
+
sage: G1 = J.group()
|
|
167
|
+
sage: G1.order()
|
|
168
|
+
11
|
|
169
|
+
sage: K = k.extension(3)
|
|
170
|
+
sage: G3 = J.group(K)
|
|
171
|
+
sage: pts1 = G1.get_points(11)
|
|
172
|
+
sage: pts3 = G3.get_points(12)
|
|
173
|
+
sage: pt = next(pt for pt in pts3 if pt not in pts1)
|
|
174
|
+
sage: pt.frobenius() == pt
|
|
175
|
+
False
|
|
176
|
+
sage: pt.frobenius().frobenius().frobenius() == pt
|
|
177
|
+
True
|
|
178
|
+
"""
|
|
179
|
+
G = self.parent()
|
|
180
|
+
return G._frobenius_on(self)
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
class JacobianGroupFunctor(ConstructionFunctor):
|
|
184
|
+
"""
|
|
185
|
+
A construction functor for Jacobian groups.
|
|
186
|
+
|
|
187
|
+
EXAMPLES::
|
|
188
|
+
|
|
189
|
+
sage: k = GF(7)
|
|
190
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
191
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
192
|
+
sage: J = C.jacobian(model='hess')
|
|
193
|
+
sage: G = J.group()
|
|
194
|
+
sage: F, obj = G.construction()
|
|
195
|
+
sage: F
|
|
196
|
+
JacobianGroupFunctor
|
|
197
|
+
"""
|
|
198
|
+
rank = 20
|
|
199
|
+
|
|
200
|
+
def __init__(self, base_field, field):
|
|
201
|
+
"""
|
|
202
|
+
Initialize.
|
|
203
|
+
|
|
204
|
+
TESTS::
|
|
205
|
+
|
|
206
|
+
sage: k = GF(7)
|
|
207
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
208
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
209
|
+
sage: J = C.jacobian(model='hess')
|
|
210
|
+
sage: K = k.extension(2)
|
|
211
|
+
sage: G = J.group(K)
|
|
212
|
+
sage: F, obj = G.construction()
|
|
213
|
+
sage: TestSuite(F).run()
|
|
214
|
+
"""
|
|
215
|
+
super().__init__(Jacobians(base_field), CommutativeAdditiveGroups())
|
|
216
|
+
|
|
217
|
+
self._field = field
|
|
218
|
+
|
|
219
|
+
def _apply_functor(self, jacobian):
|
|
220
|
+
"""
|
|
221
|
+
Apply this functor to ``jacobian``.
|
|
222
|
+
|
|
223
|
+
INPUT:
|
|
224
|
+
|
|
225
|
+
- ``jacobian`` -- a Jacobian
|
|
226
|
+
|
|
227
|
+
EXAMPLES::
|
|
228
|
+
|
|
229
|
+
sage: k = GF(7)
|
|
230
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
231
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
232
|
+
sage: J = C.jacobian(model='hess')
|
|
233
|
+
sage: K = k.extension(2)
|
|
234
|
+
sage: G = J.group(K)
|
|
235
|
+
sage: F, obj = G.construction()
|
|
236
|
+
sage: F(obj) is G # indirect doctest
|
|
237
|
+
True
|
|
238
|
+
"""
|
|
239
|
+
return jacobian.group(self._field)
|
|
240
|
+
|
|
241
|
+
def merge(self, other):
|
|
242
|
+
"""
|
|
243
|
+
Return the functor merging ``self`` and ``other``.
|
|
244
|
+
|
|
245
|
+
INPUT:
|
|
246
|
+
|
|
247
|
+
- ``other`` -- a functor
|
|
248
|
+
|
|
249
|
+
EXAMPLES::
|
|
250
|
+
|
|
251
|
+
sage: k = GF(7)
|
|
252
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
253
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
254
|
+
sage: J = C.jacobian(model='hess')
|
|
255
|
+
sage: K2 = k.extension(2)
|
|
256
|
+
sage: G2 = J.group(K2)
|
|
257
|
+
sage: K3 = k.extension(3)
|
|
258
|
+
sage: G3 = J.group(K3)
|
|
259
|
+
sage: sage.categories.pushout.pushout(G2, G3) # indirect doctest
|
|
260
|
+
Group of rational points of Jacobian over Finite Field in z6 of size 7^6 (Hess model)
|
|
261
|
+
"""
|
|
262
|
+
if not isinstance(other, JacobianGroupFunctor):
|
|
263
|
+
return None
|
|
264
|
+
if not self.domain() == other.domain():
|
|
265
|
+
return None
|
|
266
|
+
K = pushout(self._field, other._field)
|
|
267
|
+
return JacobianGroupFunctor(self.domain().base(), K)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
class JacobianGroup_base(Parent):
|
|
271
|
+
"""
|
|
272
|
+
Groups of rational points of Jacobians.
|
|
273
|
+
|
|
274
|
+
INPUT:
|
|
275
|
+
|
|
276
|
+
- ``parent`` -- a Jacobian
|
|
277
|
+
|
|
278
|
+
- ``function_field`` -- a function field
|
|
279
|
+
|
|
280
|
+
- ``base_div`` -- an effective divisor of the function field
|
|
281
|
+
|
|
282
|
+
EXAMPLES::
|
|
283
|
+
|
|
284
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
285
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
286
|
+
sage: J = C.jacobian(model='hess')
|
|
287
|
+
sage: J.group()
|
|
288
|
+
Group of rational points of Jacobian over Finite Field of size 7 (Hess model)
|
|
289
|
+
"""
|
|
290
|
+
_embedding_map_class = None
|
|
291
|
+
|
|
292
|
+
def __init__(self, parent, function_field, base_div):
|
|
293
|
+
"""
|
|
294
|
+
Initialize.
|
|
295
|
+
|
|
296
|
+
TESTS::
|
|
297
|
+
|
|
298
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
299
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
300
|
+
sage: J = C.jacobian(model='hess')
|
|
301
|
+
sage: G = J.group()
|
|
302
|
+
sage: TestSuite(G).run(skip=['_test_elements', '_test_pickling'])
|
|
303
|
+
"""
|
|
304
|
+
super().__init__(base=IntegerRing(), category=CommutativeAdditiveGroups())
|
|
305
|
+
|
|
306
|
+
self._parent = parent
|
|
307
|
+
self._function_field = function_field
|
|
308
|
+
self._genus = parent._function_field.genus() # equals function_field.genus()
|
|
309
|
+
self._base_div = base_div
|
|
310
|
+
|
|
311
|
+
def _repr_(self):
|
|
312
|
+
"""
|
|
313
|
+
Return the string representation of ``self``.
|
|
314
|
+
|
|
315
|
+
EXAMPLES::
|
|
316
|
+
|
|
317
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
318
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
319
|
+
sage: b = C([0,1,0]).place()
|
|
320
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
321
|
+
sage: J.group()
|
|
322
|
+
Group of rational points of Jacobian over Finite Field of size 7 (Hess model)
|
|
323
|
+
"""
|
|
324
|
+
F = self._function_field
|
|
325
|
+
k = F.constant_base_field()
|
|
326
|
+
return f'Group of rational points of Jacobian over {k}'
|
|
327
|
+
|
|
328
|
+
def _coerce_map_from_(self, S):
|
|
329
|
+
"""
|
|
330
|
+
Return the coerce map from ``S`` if ``S`` is embedded to ``self``.
|
|
331
|
+
|
|
332
|
+
EXAMPLES::
|
|
333
|
+
|
|
334
|
+
sage: k = GF(7)
|
|
335
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
336
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
337
|
+
sage: b = C([0,1,0]).place()
|
|
338
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
339
|
+
sage: G1 = J.group()
|
|
340
|
+
sage: K = k.extension(3)
|
|
341
|
+
sage: G3 = J.group(K)
|
|
342
|
+
sage: G3.has_coerce_map_from(G1)
|
|
343
|
+
True
|
|
344
|
+
"""
|
|
345
|
+
if isinstance(S, JacobianGroup_base) and S.parent() is self.parent():
|
|
346
|
+
K = self._function_field.constant_base_field()
|
|
347
|
+
k = S._function_field.constant_base_field()
|
|
348
|
+
if K.has_coerce_map_from(k):
|
|
349
|
+
return self._embedding_map_class(S, self)
|
|
350
|
+
return None
|
|
351
|
+
|
|
352
|
+
def construction(self):
|
|
353
|
+
"""
|
|
354
|
+
Return the data for a functorial construction of this Jacobian group.
|
|
355
|
+
|
|
356
|
+
EXAMPLES::
|
|
357
|
+
|
|
358
|
+
sage: k = GF(7)
|
|
359
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
360
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
361
|
+
sage: J = C.jacobian(model='hess')
|
|
362
|
+
sage: K2 = k.extension(2)
|
|
363
|
+
sage: G2 = J.group(K2)
|
|
364
|
+
sage: K3= k.extension(3)
|
|
365
|
+
sage: G3 = J.group(K3)
|
|
366
|
+
sage: p1, p2 = G2.get_points(2)
|
|
367
|
+
sage: q1, q2 = G3.get_points(2)
|
|
368
|
+
sage: (p1 + q1).parent() is (p2 + q2).parent()
|
|
369
|
+
True
|
|
370
|
+
"""
|
|
371
|
+
k = self._parent._function_field.constant_base_field()
|
|
372
|
+
K = self._function_field.constant_base_field()
|
|
373
|
+
return (JacobianGroupFunctor(k, K), self._parent)
|
|
374
|
+
|
|
375
|
+
def parent(self):
|
|
376
|
+
"""
|
|
377
|
+
Return the Jacobian to which this Jacobian group belongs.
|
|
378
|
+
|
|
379
|
+
EXAMPLES::
|
|
380
|
+
|
|
381
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
382
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
383
|
+
sage: J = C.jacobian(model='hess')
|
|
384
|
+
sage: G = J.group()
|
|
385
|
+
sage: G.parent()
|
|
386
|
+
Jacobian of Projective Plane Curve over Finite Field of size 7
|
|
387
|
+
defined by x^3 - y^2*z - 2*z^3 (Hess model)
|
|
388
|
+
"""
|
|
389
|
+
return self._parent
|
|
390
|
+
|
|
391
|
+
def function_field(self):
|
|
392
|
+
"""
|
|
393
|
+
Return the function field to which this Jacobian group attached.
|
|
394
|
+
|
|
395
|
+
EXAMPLES::
|
|
396
|
+
|
|
397
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
398
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
399
|
+
sage: J = C.jacobian(model='hess')
|
|
400
|
+
sage: G = J.group()
|
|
401
|
+
sage: G.function_field()
|
|
402
|
+
Function field in z defined by z^3 + 4*y^2*z + 3
|
|
403
|
+
"""
|
|
404
|
+
return self._function_field
|
|
405
|
+
|
|
406
|
+
def base_divisor(self):
|
|
407
|
+
"""
|
|
408
|
+
Return the base divisor that is used to represent points of this group.
|
|
409
|
+
|
|
410
|
+
EXAMPLES::
|
|
411
|
+
|
|
412
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
413
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
414
|
+
sage: b = C([0,1,0]).place()
|
|
415
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
416
|
+
sage: G = J.group()
|
|
417
|
+
sage: G.base_divisor()
|
|
418
|
+
Place (1/y, 1/y*z)
|
|
419
|
+
sage: _ == 1*b
|
|
420
|
+
True
|
|
421
|
+
|
|
422
|
+
The base divisor is the denominator (negative part) of the divisor of
|
|
423
|
+
degree zero that represents a point. ::
|
|
424
|
+
|
|
425
|
+
sage: p = C([-1,2,1]).place()
|
|
426
|
+
sage: G.point(p - b).divisor()
|
|
427
|
+
- Place (1/y, 1/y*z)
|
|
428
|
+
+ Place (y + 2, z + 1)
|
|
429
|
+
"""
|
|
430
|
+
return self._base_div
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
class JacobianGroup_finite_field_base(JacobianGroup_base):
|
|
434
|
+
"""
|
|
435
|
+
Jacobian groups of function fields over finite fields.
|
|
436
|
+
|
|
437
|
+
EXAMPLES::
|
|
438
|
+
|
|
439
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
440
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
441
|
+
sage: b = C([0,1,0]).place()
|
|
442
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
443
|
+
sage: J.group()
|
|
444
|
+
Group of rational points of Jacobian over Finite Field of size 7 (Hess model)
|
|
445
|
+
"""
|
|
446
|
+
def _bound_on_order(self):
|
|
447
|
+
"""
|
|
448
|
+
Return an upper bound on the order of the abelian group.
|
|
449
|
+
|
|
450
|
+
This bound depends on the genus and the order of the constant field
|
|
451
|
+
of the function field. This simple bound is from [Hes2004]_.
|
|
452
|
+
|
|
453
|
+
EXAMPLES::
|
|
454
|
+
|
|
455
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
456
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
457
|
+
sage: b = C([0,1,0]).place()
|
|
458
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
459
|
+
sage: G = J.group()
|
|
460
|
+
sage: G._bound_on_order()
|
|
461
|
+
23
|
|
462
|
+
"""
|
|
463
|
+
F = self._function_field
|
|
464
|
+
q = F.constant_base_field().order()
|
|
465
|
+
g = self._genus
|
|
466
|
+
|
|
467
|
+
c = 2*g/(q.sqrt() - 1)
|
|
468
|
+
return integer_floor(math.exp(c)*q**g)
|
|
469
|
+
|
|
470
|
+
def order(self, algorithm='numeric'):
|
|
471
|
+
"""
|
|
472
|
+
Return the order of the Jacobian group.
|
|
473
|
+
|
|
474
|
+
INPUT:
|
|
475
|
+
|
|
476
|
+
- ``algorithm`` -- ``'numeric'`` (default) or ``'algebraic'``
|
|
477
|
+
|
|
478
|
+
EXAMPLES::
|
|
479
|
+
|
|
480
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(7), 2)
|
|
481
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
482
|
+
sage: b = C([0,1,0]).place()
|
|
483
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
484
|
+
sage: G = J.group()
|
|
485
|
+
sage: G.order()
|
|
486
|
+
7
|
|
487
|
+
"""
|
|
488
|
+
F = self._parent._function_field
|
|
489
|
+
g = F.genus()
|
|
490
|
+
b = self._function_field.constant_base_field().degree() // F.constant_base_field().degree()
|
|
491
|
+
|
|
492
|
+
f = F.L_polynomial()
|
|
493
|
+
|
|
494
|
+
if algorithm == 'numeric':
|
|
495
|
+
# numeric method - fast but might be inaccurate by numerical noise
|
|
496
|
+
from sage.rings.qqbar import AlgebraicField
|
|
497
|
+
h = Integer(math.prod([(1-a**(-b))**m for a, m in f.change_ring(AlgebraicField()).roots()]))
|
|
498
|
+
return h
|
|
499
|
+
|
|
500
|
+
# algebraic method - slow
|
|
501
|
+
|
|
502
|
+
es = []
|
|
503
|
+
s = -1
|
|
504
|
+
for i in range(1, 2*g + 1):
|
|
505
|
+
es.append(s*f[i])
|
|
506
|
+
s = -s
|
|
507
|
+
es
|
|
508
|
+
|
|
509
|
+
ps = [es[0]]
|
|
510
|
+
for i in range(1, 2*g):
|
|
511
|
+
p = 0
|
|
512
|
+
s = 1
|
|
513
|
+
for j in range(i):
|
|
514
|
+
p = p + s*es[j]*ps[-j-1]
|
|
515
|
+
s = -s
|
|
516
|
+
ps.append(p + s*(i + 1)*es[i])
|
|
517
|
+
|
|
518
|
+
while len(ps) < b*2*g:
|
|
519
|
+
p = 0
|
|
520
|
+
s = 1
|
|
521
|
+
for j in range(2*g):
|
|
522
|
+
p = p + s*es[j]*ps[-j-1]
|
|
523
|
+
s = -s
|
|
524
|
+
ps.append(p)
|
|
525
|
+
|
|
526
|
+
qs = [ps[b*(i + 1) - 1] for i in range(2*g)]
|
|
527
|
+
|
|
528
|
+
fs = [qs[0]]
|
|
529
|
+
for i in range(1, 2*g):
|
|
530
|
+
k = qs[i]
|
|
531
|
+
s = -1
|
|
532
|
+
for j in range(i):
|
|
533
|
+
k = k + s*fs[j]*qs[i - j - 1]
|
|
534
|
+
s = -s
|
|
535
|
+
fs.append(-s*k // (i + 1))
|
|
536
|
+
|
|
537
|
+
bs = [1]
|
|
538
|
+
s = -1
|
|
539
|
+
for i in range(2*g):
|
|
540
|
+
bs.append(s*fs[i])
|
|
541
|
+
s = -s
|
|
542
|
+
|
|
543
|
+
return sum(bs)
|
|
544
|
+
|
|
545
|
+
def get_points(self, n):
|
|
546
|
+
"""
|
|
547
|
+
Return `n` points of the Jacobian group.
|
|
548
|
+
|
|
549
|
+
If `n` is greater than the order of the group, then returns
|
|
550
|
+
all points of the group.
|
|
551
|
+
|
|
552
|
+
INPUT:
|
|
553
|
+
|
|
554
|
+
- ``n`` -- integer
|
|
555
|
+
|
|
556
|
+
EXAMPLES::
|
|
557
|
+
|
|
558
|
+
sage: k = GF(7)
|
|
559
|
+
sage: A.<x,y> = AffineSpace(k,2)
|
|
560
|
+
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
|
|
561
|
+
sage: J = C.jacobian(model='hess')
|
|
562
|
+
sage: G = J.group()
|
|
563
|
+
sage: pts = G.get_points(G.order())
|
|
564
|
+
sage: len(pts)
|
|
565
|
+
11
|
|
566
|
+
"""
|
|
567
|
+
lst = []
|
|
568
|
+
S = iter(self)
|
|
569
|
+
try:
|
|
570
|
+
for i in range(n):
|
|
571
|
+
lst.append(next(S))
|
|
572
|
+
except StopIteration:
|
|
573
|
+
pass
|
|
574
|
+
|
|
575
|
+
return lst
|
|
576
|
+
|
|
577
|
+
|
|
578
|
+
class Jacobian_base(Parent):
|
|
579
|
+
"""
|
|
580
|
+
Jacobians of function fields.
|
|
581
|
+
|
|
582
|
+
EXAMPLES::
|
|
583
|
+
|
|
584
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
585
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
586
|
+
sage: F.jacobian()
|
|
587
|
+
Jacobian of Function field in y defined by y^2 + y + (x^2 + 1)/x (Hess model)
|
|
588
|
+
"""
|
|
589
|
+
def __init__(self, function_field, base_div, **kwds):
|
|
590
|
+
"""
|
|
591
|
+
Initialize.
|
|
592
|
+
|
|
593
|
+
TESTS::
|
|
594
|
+
|
|
595
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
596
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
597
|
+
sage: J = F.jacobian()
|
|
598
|
+
sage: TestSuite(J).run()
|
|
599
|
+
"""
|
|
600
|
+
self._function_field = function_field
|
|
601
|
+
self._base_div = base_div
|
|
602
|
+
self._system = {}
|
|
603
|
+
self._base_place = None
|
|
604
|
+
self._curve = kwds.get('curve')
|
|
605
|
+
super().__init__(category=Jacobians(function_field.constant_base_field()),
|
|
606
|
+
base=function_field.constant_base_field(),
|
|
607
|
+
facade=True)
|
|
608
|
+
|
|
609
|
+
def _repr_(self):
|
|
610
|
+
"""
|
|
611
|
+
Return the string representation of ``self``.
|
|
612
|
+
|
|
613
|
+
EXAMPLES::
|
|
614
|
+
|
|
615
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
616
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
617
|
+
sage: F.jacobian()
|
|
618
|
+
Jacobian of Function field in y defined by y^2 + y + (x^2 + 1)/x (Hess model)
|
|
619
|
+
"""
|
|
620
|
+
return f'Jacobian of {self.base_curve()}'
|
|
621
|
+
|
|
622
|
+
def _an_element_(self):
|
|
623
|
+
"""
|
|
624
|
+
Return an element of ``self``.
|
|
625
|
+
|
|
626
|
+
TESTS::
|
|
627
|
+
|
|
628
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
629
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
630
|
+
sage: J = F.jacobian()
|
|
631
|
+
sage: J.an_element()
|
|
632
|
+
[Place (1/x, 1/x*y)]
|
|
633
|
+
"""
|
|
634
|
+
return next(iter(self.group()))
|
|
635
|
+
|
|
636
|
+
def __call__(self, x):
|
|
637
|
+
"""
|
|
638
|
+
Return the point of ``self`` constructed from ``x``.
|
|
639
|
+
|
|
640
|
+
It is assumed that ``self`` and ``x`` are points of the Jacobians
|
|
641
|
+
attached to the same function field.
|
|
642
|
+
|
|
643
|
+
TESTS::
|
|
644
|
+
|
|
645
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
646
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
647
|
+
sage: J_hess = F.jacobian(model='hess')
|
|
648
|
+
sage: G = J_hess.group()
|
|
649
|
+
sage: p = G.get_points(3)[2]
|
|
650
|
+
sage: Jkm = F.jacobian(model='km_large')
|
|
651
|
+
sage: q = Jkm(p)
|
|
652
|
+
sage: p.order() == q.order()
|
|
653
|
+
True
|
|
654
|
+
sage: J_hess(q) == p
|
|
655
|
+
True
|
|
656
|
+
|
|
657
|
+
If ``x`` is an effective divisor, it is checked that the degree
|
|
658
|
+
is equal to the degree of the base divisor. See :issue:`38623`.
|
|
659
|
+
|
|
660
|
+
sage: K.<x> = FunctionField(GF(7))
|
|
661
|
+
sage: _.<t> = K[]
|
|
662
|
+
sage: F.<y> = K.extension(t^2 - x^6 - 3)
|
|
663
|
+
sage: O = F.maximal_order()
|
|
664
|
+
sage: D1 = (O.ideal(x + 1, y + 2) * O.ideal(x + 2, y + 2)).divisor()
|
|
665
|
+
sage: I = O.ideal(x + 3, y+5) * O.ideal(x + 4, y + 5) * O.ideal(x + 5, y + 5)
|
|
666
|
+
sage: D2 = I.divisor()
|
|
667
|
+
sage: J = F.jacobian(model='hess')
|
|
668
|
+
sage: J(D1)
|
|
669
|
+
[Place (x + 1, y + 2) + Place (x + 2, y + 2)]
|
|
670
|
+
sage: J(D2)
|
|
671
|
+
Traceback (most recent call last):
|
|
672
|
+
...
|
|
673
|
+
ValueError: effective divisor is not of degree 2
|
|
674
|
+
sage: J.base_divisor().degree()
|
|
675
|
+
2
|
|
676
|
+
"""
|
|
677
|
+
F = self._function_field
|
|
678
|
+
if isinstance(x, JacobianPoint_base):
|
|
679
|
+
Gx = x.parent()
|
|
680
|
+
Jx = Gx.parent()
|
|
681
|
+
if Jx._function_field is F:
|
|
682
|
+
k = Gx._function_field.constant_base_field()
|
|
683
|
+
G = self.group(k)
|
|
684
|
+
K = G._function_field
|
|
685
|
+
return G.point(K.divisor_group()(x.divisor()))
|
|
686
|
+
if x in F.place_set():
|
|
687
|
+
return self(x - x.degree()*self._base_place)
|
|
688
|
+
if x == 0:
|
|
689
|
+
return self.group().zero()
|
|
690
|
+
if x in F.divisor_group():
|
|
691
|
+
return self.group()(x)
|
|
692
|
+
raise ValueError(f"cannot create a point of the Jacobian from {x}")
|
|
693
|
+
|
|
694
|
+
def curve(self):
|
|
695
|
+
"""
|
|
696
|
+
Return the projective curve to which this Jacobian is attached.
|
|
697
|
+
|
|
698
|
+
If the Jacobian was constructed from a function field, then returns nothing.
|
|
699
|
+
|
|
700
|
+
EXAMPLES::
|
|
701
|
+
|
|
702
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
703
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
704
|
+
sage: J = F.jacobian()
|
|
705
|
+
sage: J.curve()
|
|
706
|
+
"""
|
|
707
|
+
return self._curve
|
|
708
|
+
|
|
709
|
+
def base_curve(self):
|
|
710
|
+
"""
|
|
711
|
+
Return the base curve or the function field that abstractly defines a curve.
|
|
712
|
+
|
|
713
|
+
EXAMPLES::
|
|
714
|
+
|
|
715
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
716
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
717
|
+
sage: J = F.jacobian()
|
|
718
|
+
sage: J.base_curve()
|
|
719
|
+
Function field in y defined by y^2 + y + (x^2 + 1)/x
|
|
720
|
+
"""
|
|
721
|
+
return self._function_field if self._curve is None else self._curve
|
|
722
|
+
|
|
723
|
+
def facade_for(self):
|
|
724
|
+
"""
|
|
725
|
+
Return the system of groups that this Jacobian is a facade for.
|
|
726
|
+
|
|
727
|
+
The Jacobian can be seen as a facade for all groups of rational points
|
|
728
|
+
over field extensions of the base constant field of the function field.
|
|
729
|
+
This method returns only the internally constructed system of such
|
|
730
|
+
groups.
|
|
731
|
+
|
|
732
|
+
EXAMPLES::
|
|
733
|
+
|
|
734
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
735
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
736
|
+
sage: J = F.jacobian()
|
|
737
|
+
sage: J.facade_for()
|
|
738
|
+
[Group of rational points of Jacobian over Finite Field of size 2 (Hess model)]
|
|
739
|
+
"""
|
|
740
|
+
if not self._system:
|
|
741
|
+
return [self.group()]
|
|
742
|
+
return [self.group(k) for k in self._system]
|
|
743
|
+
|
|
744
|
+
def base_divisor(self):
|
|
745
|
+
"""
|
|
746
|
+
Return the base divisor used to construct the Jacobian.
|
|
747
|
+
|
|
748
|
+
EXAMPLES::
|
|
749
|
+
|
|
750
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
751
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
752
|
+
sage: b = F.get_place(1)
|
|
753
|
+
sage: J = F.jacobian(base_div=b)
|
|
754
|
+
sage: J.base_divisor() == b
|
|
755
|
+
True
|
|
756
|
+
"""
|
|
757
|
+
return self._base_div
|
|
758
|
+
|
|
759
|
+
def group(self, k_ext=None):
|
|
760
|
+
"""
|
|
761
|
+
Return the group of rational points of the Jacobian.
|
|
762
|
+
|
|
763
|
+
EXAMPLES::
|
|
764
|
+
|
|
765
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
766
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
767
|
+
sage: b = F.get_place(1)
|
|
768
|
+
sage: J = F.jacobian(base_div=b)
|
|
769
|
+
sage: J.group()
|
|
770
|
+
Group of rational points of Jacobian over Finite Field of size 2 (Hess model)
|
|
771
|
+
"""
|
|
772
|
+
F = self._function_field
|
|
773
|
+
k = F.constant_base_field()
|
|
774
|
+
|
|
775
|
+
if k_ext in self._system:
|
|
776
|
+
return self._system[k_ext][0]
|
|
777
|
+
|
|
778
|
+
if k_ext is None or k_ext is k:
|
|
779
|
+
ext = F.extension_constant_field(k)
|
|
780
|
+
grp = self._group_class(self, F, self._base_div)
|
|
781
|
+
if self._base_place is not None:
|
|
782
|
+
grp._base_place = self._base_place
|
|
783
|
+
self._system[k] = (grp, ext)
|
|
784
|
+
else:
|
|
785
|
+
ext = F.extension_constant_field(k_ext)
|
|
786
|
+
base_div = ext.conorm_divisor(self._base_div)
|
|
787
|
+
grp = self._group_class(self, ext.top(), base_div)
|
|
788
|
+
if self._base_place is not None:
|
|
789
|
+
grp._base_place = ext.conorm_place(self._base_place)
|
|
790
|
+
self._system[k_ext] = (grp, ext)
|
|
791
|
+
|
|
792
|
+
return grp
|
|
793
|
+
|
|
794
|
+
def set_base_place(self, place):
|
|
795
|
+
"""
|
|
796
|
+
Set ``place`` as the base place.
|
|
797
|
+
|
|
798
|
+
INPUT:
|
|
799
|
+
|
|
800
|
+
- ``place`` -- a rational place of the function field
|
|
801
|
+
|
|
802
|
+
The base place `B` is used to map a rational place `P` of the function
|
|
803
|
+
field to the point of the Jacobian defined by the divisor `P - B`.
|
|
804
|
+
|
|
805
|
+
EXAMPLES::
|
|
806
|
+
|
|
807
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
808
|
+
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
|
|
809
|
+
sage: J = F.jacobian()
|
|
810
|
+
sage: B = F.get_place(1)
|
|
811
|
+
sage: J.set_base_place(B)
|
|
812
|
+
sage: Q = F.places()[-1]
|
|
813
|
+
sage: J(Q)
|
|
814
|
+
[Place (x + 1, x*y + 1)]
|
|
815
|
+
sage: J(Q).parent()
|
|
816
|
+
Group of rational points of Jacobian over Finite Field of size 2 (Hess model)
|
|
817
|
+
sage: J(B)
|
|
818
|
+
[Place (x, x*y)]
|
|
819
|
+
sage: J(B).is_zero()
|
|
820
|
+
True
|
|
821
|
+
"""
|
|
822
|
+
self._base_place = place
|
|
823
|
+
|
|
824
|
+
for k in self._system:
|
|
825
|
+
grp, ext = self._system[k]
|
|
826
|
+
grp._base_place = ext.conorm_place(place)
|