passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,362 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
r"""
|
|
3
|
+
Educational versions of Groebner basis algorithms: triangular factorization
|
|
4
|
+
|
|
5
|
+
In this file is the implementation of two algorithms in [Laz1992]_.
|
|
6
|
+
|
|
7
|
+
The main algorithm is ``Triangular``; a secondary algorithm, necessary for the
|
|
8
|
+
first, is ``ElimPolMin``. As per Lazard's formulation, the implementation works
|
|
9
|
+
with any term ordering, not only lexicographic.
|
|
10
|
+
|
|
11
|
+
Lazard does not specify a few of the subalgorithms implemented as the
|
|
12
|
+
functions
|
|
13
|
+
|
|
14
|
+
* ``is_triangular``,
|
|
15
|
+
* ``is_linearly_dependent``, and
|
|
16
|
+
* ``linear_representation``.
|
|
17
|
+
|
|
18
|
+
The implementations are not hard, and the choice of algorithm is described
|
|
19
|
+
with the relevant function.
|
|
20
|
+
|
|
21
|
+
No attempt was made to optimize these algorithms as the emphasis of this
|
|
22
|
+
implementation is a clean and easy presentation.
|
|
23
|
+
|
|
24
|
+
Examples appear with the appropriate function.
|
|
25
|
+
|
|
26
|
+
AUTHORS:
|
|
27
|
+
|
|
28
|
+
- John Perry (2009-02-24): initial version, but some words of
|
|
29
|
+
documentation were stolen shamelessly from Martin Albrecht's
|
|
30
|
+
``toy_buchberger.py``.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def is_triangular(B) -> bool:
|
|
35
|
+
"""
|
|
36
|
+
Check whether the basis ``B`` of an ideal is triangular.
|
|
37
|
+
|
|
38
|
+
That is: check whether the largest variable in ``B[i]`` with
|
|
39
|
+
respect to the ordering of the base ring ``R`` is ``R.gens()[i]``.
|
|
40
|
+
|
|
41
|
+
The algorithm is based on the definition of a triangular basis,
|
|
42
|
+
given by Lazard in 1992 in [Laz1992]_.
|
|
43
|
+
|
|
44
|
+
INPUT:
|
|
45
|
+
|
|
46
|
+
- ``B`` -- list/tuple of polynomials or a multivariate polynomial ideal
|
|
47
|
+
|
|
48
|
+
OUTPUT: ``True`` if the basis is triangular; ``False`` otherwise
|
|
49
|
+
|
|
50
|
+
EXAMPLES::
|
|
51
|
+
|
|
52
|
+
sage: from sage.rings.polynomial.toy_variety import is_triangular
|
|
53
|
+
sage: R.<x,y,z> = PolynomialRing(QQ)
|
|
54
|
+
sage: p1 = x^2*y + z^2
|
|
55
|
+
sage: p2 = y*z + z^3
|
|
56
|
+
sage: p3 = y+z
|
|
57
|
+
sage: is_triangular(R.ideal(p1,p2,p3))
|
|
58
|
+
False
|
|
59
|
+
sage: p3 = z^2 - 3
|
|
60
|
+
sage: is_triangular(R.ideal(p1,p2,p3))
|
|
61
|
+
True
|
|
62
|
+
"""
|
|
63
|
+
# type checking in a probably vain attempt to avoid stupid errors
|
|
64
|
+
if isinstance(B, (list, tuple)):
|
|
65
|
+
G = B
|
|
66
|
+
else:
|
|
67
|
+
try:
|
|
68
|
+
G = B.gens()
|
|
69
|
+
except Exception:
|
|
70
|
+
raise TypeError("is_triangular wants as input an ideal, or a list of polynomials\n")
|
|
71
|
+
vars = G[0].parent().gens()
|
|
72
|
+
n = len(G)
|
|
73
|
+
# We expect the polynomials of G to be ordered G[i].lm() > G[i+1].lm();
|
|
74
|
+
# by definition, the largest variable that appears in G[i] must be vars[i].
|
|
75
|
+
for i in range(n):
|
|
76
|
+
for t in G[i].monomials():
|
|
77
|
+
for x in vars[0:i]:
|
|
78
|
+
if t.degree(x) != 0:
|
|
79
|
+
return False
|
|
80
|
+
return True
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def coefficient_matrix(polys):
|
|
84
|
+
"""
|
|
85
|
+
Generate the matrix ``M`` whose entries are the coefficients of ``polys``.
|
|
86
|
+
|
|
87
|
+
The entries of row ``i`` of ``M`` consist of the coefficients of
|
|
88
|
+
``polys[i]``.
|
|
89
|
+
|
|
90
|
+
INPUT:
|
|
91
|
+
|
|
92
|
+
- ``polys`` -- list/tuple of polynomials
|
|
93
|
+
|
|
94
|
+
OUTPUT: a matrix ``M`` of the coefficients of ``polys``
|
|
95
|
+
|
|
96
|
+
EXAMPLES::
|
|
97
|
+
|
|
98
|
+
sage: from sage.rings.polynomial.toy_variety import coefficient_matrix
|
|
99
|
+
sage: R.<x,y> = PolynomialRing(QQ)
|
|
100
|
+
sage: coefficient_matrix([x^2 + 1, y^2 + 1, x*y + 1]) # needs sage.modules
|
|
101
|
+
[1 0 0 1]
|
|
102
|
+
[0 0 1 1]
|
|
103
|
+
[0 1 0 1]
|
|
104
|
+
|
|
105
|
+
.. NOTE::
|
|
106
|
+
|
|
107
|
+
This function may be merged with
|
|
108
|
+
:meth:`sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic.coefficient_matrix()` in the future.
|
|
109
|
+
"""
|
|
110
|
+
from sage.matrix.constructor import matrix
|
|
111
|
+
R = polys[0].base_ring()
|
|
112
|
+
mons = set()
|
|
113
|
+
for each in polys:
|
|
114
|
+
mons = mons.union(each.monomials())
|
|
115
|
+
mons = list(mons)
|
|
116
|
+
mons.sort(reverse=True)
|
|
117
|
+
M = matrix(R, len(polys), len(mons))
|
|
118
|
+
for i in range(len(polys)):
|
|
119
|
+
imons = polys[i].monomials()
|
|
120
|
+
if polys[0].parent().ngens() == 1:
|
|
121
|
+
icoeffs = polys[i].coefficients()[::-1]
|
|
122
|
+
else:
|
|
123
|
+
icoeffs = polys[i].coefficients()
|
|
124
|
+
for j in range(len(imons)):
|
|
125
|
+
M[i, mons.index(imons[j])] = icoeffs[j]
|
|
126
|
+
return M
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
def is_linearly_dependent(polys) -> bool:
|
|
130
|
+
"""
|
|
131
|
+
Decide whether the polynomials of ``polys`` are linearly dependent.
|
|
132
|
+
|
|
133
|
+
Here ``polys`` is a collection of polynomials.
|
|
134
|
+
|
|
135
|
+
The algorithm creates a matrix of coefficients of the monomials of
|
|
136
|
+
``polys``. It computes the echelon form of the matrix, then checks whether
|
|
137
|
+
any of the rows is the zero vector.
|
|
138
|
+
|
|
139
|
+
Essentially this relies on the fact that the monomials are linearly
|
|
140
|
+
independent, and therefore is building a linear map from the vector space of
|
|
141
|
+
the monomials to the canonical basis of ``R^n``, where ``n`` is the number of
|
|
142
|
+
distinct monomials in ``polys``. There is a zero vector iff there is a
|
|
143
|
+
linear dependence among ``polys``.
|
|
144
|
+
|
|
145
|
+
The case where ``polys=[]`` is considered to be not linearly dependent.
|
|
146
|
+
|
|
147
|
+
INPUT:
|
|
148
|
+
|
|
149
|
+
- ``polys`` -- list/tuple of polynomials
|
|
150
|
+
|
|
151
|
+
OUTPUT:
|
|
152
|
+
|
|
153
|
+
``True`` if the elements of ``polys`` are linearly dependent;
|
|
154
|
+
``False`` otherwise.
|
|
155
|
+
|
|
156
|
+
EXAMPLES::
|
|
157
|
+
|
|
158
|
+
sage: from sage.rings.polynomial.toy_variety import is_linearly_dependent
|
|
159
|
+
sage: R.<x,y> = PolynomialRing(QQ)
|
|
160
|
+
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
|
|
161
|
+
sage: p = 3*B[0] - 2*B[1] + B[2]
|
|
162
|
+
sage: is_linearly_dependent(B + [p]) # needs sage.modules
|
|
163
|
+
True
|
|
164
|
+
sage: p = x*B[0]
|
|
165
|
+
sage: is_linearly_dependent(B + [p]) # needs sage.modules
|
|
166
|
+
False
|
|
167
|
+
sage: is_linearly_dependent([])
|
|
168
|
+
False
|
|
169
|
+
sage: R.<x> = PolynomialRing(QQ)
|
|
170
|
+
sage: B = [x^147 + x^99,
|
|
171
|
+
....: 2*x^123 + x^75,
|
|
172
|
+
....: x^147 + 2*x^123 + 2*x^75,
|
|
173
|
+
....: 2*x^147 + x^99 + x^75]
|
|
174
|
+
sage: is_linearly_dependent(B) # needs sage.modules
|
|
175
|
+
True
|
|
176
|
+
"""
|
|
177
|
+
if not polys:
|
|
178
|
+
return False
|
|
179
|
+
M = coefficient_matrix(polys).echelon_form()
|
|
180
|
+
return any(M.row(each).is_zero() for each in range(M.nrows()))
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def linear_representation(p, polys):
|
|
184
|
+
"""
|
|
185
|
+
Assuming that ``p`` is a linear combination of ``polys``,
|
|
186
|
+
determine coefficients that describe the linear combination.
|
|
187
|
+
|
|
188
|
+
This probably does not work for any inputs except ``p``, a polynomial,
|
|
189
|
+
and ``polys``, a sequence of polynomials.
|
|
190
|
+
If ``p`` is not in fact a linear combination of ``polys``,
|
|
191
|
+
the function raises an exception.
|
|
192
|
+
|
|
193
|
+
The algorithm creates a matrix of coefficients of the monomials of
|
|
194
|
+
``polys`` and ``p``, with the coefficients of ``p`` in the last
|
|
195
|
+
row. It augments this matrix with the appropriate identity matrix, then
|
|
196
|
+
computes the echelon form of the augmented matrix. The last row should
|
|
197
|
+
contain zeroes in the first columns, and the last
|
|
198
|
+
columns contain a linear dependence relation. Solving for
|
|
199
|
+
the desired linear relation is straightforward.
|
|
200
|
+
|
|
201
|
+
INPUT:
|
|
202
|
+
|
|
203
|
+
- ``p`` -- a polynomial
|
|
204
|
+
- ``polys`` -- list/tuple of polynomials
|
|
205
|
+
|
|
206
|
+
OUTPUT:
|
|
207
|
+
|
|
208
|
+
If ``n == len(polys)``, returns ``[a[0],a[1],...,a[n-1]]``
|
|
209
|
+
such that ``p == a[0]*poly[0] + ... + a[n-1]*poly[n-1]``.
|
|
210
|
+
|
|
211
|
+
EXAMPLES::
|
|
212
|
+
|
|
213
|
+
sage: # needs sage.modules sage.rings.finite_rings
|
|
214
|
+
sage: from sage.rings.polynomial.toy_variety import linear_representation
|
|
215
|
+
sage: R.<x,y> = PolynomialRing(GF(32003))
|
|
216
|
+
sage: B = [x^2 + 1, y^2 + 1, x*y + 1]
|
|
217
|
+
sage: p = 3*B[0] - 2*B[1] + B[2]
|
|
218
|
+
sage: linear_representation(p, B)
|
|
219
|
+
[3, 32001, 1]
|
|
220
|
+
"""
|
|
221
|
+
from sage.matrix.constructor import diagonal_matrix
|
|
222
|
+
R = p.base_ring()
|
|
223
|
+
M = coefficient_matrix(polys + [p]).augment(diagonal_matrix(R, [1 for each in range(len(polys) + 1)]))
|
|
224
|
+
M.echelonize()
|
|
225
|
+
j = M.ncols() - 1
|
|
226
|
+
n = M.nrows() - 1
|
|
227
|
+
offset = M.ncols() - M.nrows()
|
|
228
|
+
return [M[n, offset + each] / (-M[n, j]) for each in range(len(polys))]
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
def triangular_factorization(B, n=-1):
|
|
232
|
+
"""
|
|
233
|
+
Compute the triangular factorization of the Groebner basis ``B`` of an ideal.
|
|
234
|
+
|
|
235
|
+
This will not work properly if ``B`` is not a Groebner basis!
|
|
236
|
+
|
|
237
|
+
The algorithm used is that described in a 1992 paper by Daniel Lazard [Laz1992]_.
|
|
238
|
+
It is not necessary for the term ordering to be lexicographic.
|
|
239
|
+
|
|
240
|
+
INPUT:
|
|
241
|
+
|
|
242
|
+
- ``B`` -- list/tuple of polynomials or a multivariate polynomial ideal
|
|
243
|
+
- ``n`` -- the recursion parameter (default: ``-1``)
|
|
244
|
+
|
|
245
|
+
OUTPUT: list ``T`` of triangular sets ``T_0``, ``T_1``, etc.
|
|
246
|
+
|
|
247
|
+
EXAMPLES::
|
|
248
|
+
|
|
249
|
+
sage: # needs sage.rings.finite_rings
|
|
250
|
+
sage: from sage.misc.verbose import set_verbose
|
|
251
|
+
sage: set_verbose(0)
|
|
252
|
+
sage: from sage.rings.polynomial.toy_variety import triangular_factorization
|
|
253
|
+
sage: R.<x,y,z> = PolynomialRing(GF(32003))
|
|
254
|
+
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
|
|
255
|
+
sage: p2 = z^2 - z
|
|
256
|
+
sage: p3 = (x-2)^2*(y-1)^3
|
|
257
|
+
sage: I = R.ideal(p1,p2,p3)
|
|
258
|
+
sage: triangular_factorization(I.groebner_basis()) # needs sage.libs.singular
|
|
259
|
+
[[x^2 - 4*x + 4, y, z - 1],
|
|
260
|
+
[x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z - 1],
|
|
261
|
+
[x^2 - 4*x + 4, y, z],
|
|
262
|
+
[x^5 - 3*x^4 + 3*x^3 - x^2, y - 1, z]]
|
|
263
|
+
"""
|
|
264
|
+
# type checking in a probably vain attempt to avoid stupid errors
|
|
265
|
+
if isinstance(B, (tuple, list)):
|
|
266
|
+
G = B
|
|
267
|
+
else:
|
|
268
|
+
try:
|
|
269
|
+
G = B.gens()
|
|
270
|
+
except Exception:
|
|
271
|
+
raise TypeError("triangular_factorization wants as input an ideal, or a list of polynomials\n")
|
|
272
|
+
# easy cases
|
|
273
|
+
if not G:
|
|
274
|
+
return []
|
|
275
|
+
if is_triangular(G):
|
|
276
|
+
return [G]
|
|
277
|
+
# this is what we get paid for...
|
|
278
|
+
# first, find the univariate polynomial in the ideal
|
|
279
|
+
# corresponding to the smallest variable under consideration
|
|
280
|
+
p = elim_pol(G, n)
|
|
281
|
+
R = p.parent()
|
|
282
|
+
family = []
|
|
283
|
+
# recursively build the family,
|
|
284
|
+
# looping through the factors of p
|
|
285
|
+
for q, a in p.factor():
|
|
286
|
+
# Construct an analog to I in (R.quotient(R.ideal(q)))[x_0,x_1,...x_{n-1}]
|
|
287
|
+
ideal_I = R.ideal([each.reduce([q]) for each in G])
|
|
288
|
+
if len(ideal_I.gens()) == 1:
|
|
289
|
+
# save some effort
|
|
290
|
+
H = [ideal_I.gens()[0]]
|
|
291
|
+
else:
|
|
292
|
+
H = ideal_I.groebner_basis()
|
|
293
|
+
T = triangular_factorization(list(H), n - 1)
|
|
294
|
+
# now add the current factor q of p to the factorization
|
|
295
|
+
for each in T:
|
|
296
|
+
each.append(q)
|
|
297
|
+
family.extend(T)
|
|
298
|
+
return family
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
def elim_pol(B, n=-1):
|
|
302
|
+
"""
|
|
303
|
+
Find the unique monic polynomial of lowest degree and lowest variable
|
|
304
|
+
in the ideal described by ``B``.
|
|
305
|
+
|
|
306
|
+
For the purposes of the triangularization algorithm, it is necessary to
|
|
307
|
+
preserve the ring, so ``n`` specifies which variable to check.
|
|
308
|
+
By default, we check the last one, which should also be the smallest.
|
|
309
|
+
|
|
310
|
+
The algorithm may not work if you are trying to cheat:
|
|
311
|
+
``B`` should describe the Groebner basis of a zero-dimensional ideal.
|
|
312
|
+
However, it is not necessary for the Groebner basis to be lexicographic.
|
|
313
|
+
|
|
314
|
+
The algorithm is taken from a 1993 paper by Lazard [Laz1992]_.
|
|
315
|
+
|
|
316
|
+
INPUT:
|
|
317
|
+
|
|
318
|
+
- ``B`` -- list/tuple of polynomials or a multivariate polynomial ideal
|
|
319
|
+
- ``n`` -- the variable to check (see above) (default: ``-1``)
|
|
320
|
+
|
|
321
|
+
EXAMPLES::
|
|
322
|
+
|
|
323
|
+
sage: # needs sage.rings.finite_rings
|
|
324
|
+
sage: from sage.misc.verbose import set_verbose
|
|
325
|
+
sage: set_verbose(0)
|
|
326
|
+
sage: from sage.rings.polynomial.toy_variety import elim_pol
|
|
327
|
+
sage: R.<x,y,z> = PolynomialRing(GF(32003))
|
|
328
|
+
sage: p1 = x^2*(x-1)^3*y^2*(z-3)^3
|
|
329
|
+
sage: p2 = z^2 - z
|
|
330
|
+
sage: p3 = (x-2)^2*(y-1)^3
|
|
331
|
+
sage: I = R.ideal(p1,p2,p3)
|
|
332
|
+
sage: elim_pol(I.groebner_basis()) # needs sage.libs.singular
|
|
333
|
+
z^2 - z
|
|
334
|
+
"""
|
|
335
|
+
# type checking in a probably vain attempt to avoid stupid errors
|
|
336
|
+
if isinstance(B, (list, tuple)):
|
|
337
|
+
G = B
|
|
338
|
+
else:
|
|
339
|
+
try:
|
|
340
|
+
G = B.gens()
|
|
341
|
+
except Exception:
|
|
342
|
+
raise TypeError("elim_pol wants as input an ideal or a list of polynomials")
|
|
343
|
+
|
|
344
|
+
# setup -- main algorithm
|
|
345
|
+
x = G[0].parent().gens()[n]
|
|
346
|
+
monom = x**0
|
|
347
|
+
nfm = monom.reduce(G)
|
|
348
|
+
lnf = []
|
|
349
|
+
listmonom = []
|
|
350
|
+
# ratchet up the degree of monom, adding each time a normal form,
|
|
351
|
+
# until finally the normal form is a linear combination
|
|
352
|
+
# of the previous normal forms
|
|
353
|
+
while not is_linearly_dependent(lnf + [nfm]):
|
|
354
|
+
lnf.insert(0, nfm)
|
|
355
|
+
listmonom.append(monom)
|
|
356
|
+
monom = x * monom
|
|
357
|
+
nfm = monom.reduce(G)
|
|
358
|
+
result = monom
|
|
359
|
+
coeffs = linear_representation(nfm, lnf)
|
|
360
|
+
for each in range(len(coeffs)):
|
|
361
|
+
result -= coeffs[each] * lnf[each]
|
|
362
|
+
return result
|
|
Binary file
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
from sage.structure.element cimport ModuleElement
|
|
3
|
+
from sage.rings.power_series_ring_element cimport PowerSeries
|
|
4
|
+
|
|
5
|
+
cdef class PowerSeries_mpoly(PowerSeries):
|
|
6
|
+
cdef ModuleElement __f
|
|
7
|
+
cdef object _poly
|
|
8
|
+
cdef object __list
|
|
9
|
+
cdef bint _truncated
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
# NOT ready to be used -- possibly should be deleted.
|
|
3
|
+
|
|
4
|
+
from sage.rings.power_series_ring_element cimport PowerSeries
|
|
5
|
+
from sage.structure.element cimport Element
|
|
6
|
+
from sage.rings.infinity import infinity
|
|
7
|
+
from sage.rings.polynomial.multi_polynomial_ring_base import MPolynomialRing_base
|
|
8
|
+
from sage.rings import power_series_poly
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
try:
|
|
12
|
+
from cypari2.handle_error import PariError
|
|
13
|
+
except ImportError:
|
|
14
|
+
PariError = ()
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
cdef class PowerSeries_mpoly(PowerSeries):
|
|
18
|
+
|
|
19
|
+
def __init__(self, parent, f=0, prec=infinity, int check=1, is_gen=0):
|
|
20
|
+
"""
|
|
21
|
+
EXAMPLES::
|
|
22
|
+
|
|
23
|
+
sage: S.<x> = QQ[]
|
|
24
|
+
sage: R.<y> = S[[]]
|
|
25
|
+
sage: f = x + 2*y + x*y
|
|
26
|
+
sage: loads(f.dumps()) == f
|
|
27
|
+
True
|
|
28
|
+
"""
|
|
29
|
+
S = parent._mpoly_ring()
|
|
30
|
+
if isinstance(f, Element) and (<Element>f)._parent is S:
|
|
31
|
+
#if check and not (prec is infinity):
|
|
32
|
+
# self.__f = f.truncate(S.gens()[-1], prec)
|
|
33
|
+
# self._truncated = 1
|
|
34
|
+
#else:
|
|
35
|
+
self.__f = f
|
|
36
|
+
else:
|
|
37
|
+
# We use the generic code, since the coercion rules can be
|
|
38
|
+
# very complicated. This is non-optimal, but much easier
|
|
39
|
+
# to maintain.
|
|
40
|
+
g = power_series_poly.PowerSeries_poly(parent, f=f,
|
|
41
|
+
prec=prec, check=check).polynomial()
|
|
42
|
+
|
|
43
|
+
# Now g is a polynomial in the indeterminate over the base
|
|
44
|
+
# ring. We have to construct a multivariate polynomial
|
|
45
|
+
# from g in S efficiently.
|
|
46
|
+
|
|
47
|
+
# Let d be the dictionary that will represent this object
|
|
48
|
+
# that we're creating. We compute d explicitly below.
|
|
49
|
+
|
|
50
|
+
v = g.list()
|
|
51
|
+
# Take each of the coefficients of g, make into a polydict,
|
|
52
|
+
# and then create corresponding entries of d.
|
|
53
|
+
B = parent.base_ring()
|
|
54
|
+
i = S.ngens() - 1
|
|
55
|
+
|
|
56
|
+
# We divide the computation of d into 2 cases in order to
|
|
57
|
+
# avoid having an if statement in the inner loop of a
|
|
58
|
+
# doubly-nested for loop.
|
|
59
|
+
d = {}
|
|
60
|
+
if isinstance(B, MPolynomialRing_base):
|
|
61
|
+
for i in range(len(v)):
|
|
62
|
+
for n, c in v[i].monomial_coefficients().items():
|
|
63
|
+
d[tuple(n) + (i,)] = c
|
|
64
|
+
else:
|
|
65
|
+
for i in range(len(v)):
|
|
66
|
+
for n, c in v[i].monomial_coefficients().items():
|
|
67
|
+
d[(n,i)] = c
|
|
68
|
+
|
|
69
|
+
self.__f = S(d)
|
|
70
|
+
|
|
71
|
+
PowerSeries.__init__(self, parent, prec, is_gen)
|
|
72
|
+
|
|
73
|
+
def __reduce__(self):
|
|
74
|
+
# do *not* delete old versions.
|
|
75
|
+
return make_powerseries_mpoly_v0, (self._parent, self.__f, self._prec, self._is_gen)
|
|
76
|
+
|
|
77
|
+
def __call__(self, *args, **kwds):
|
|
78
|
+
if len(kwds) == 0 and len(args) == 1:
|
|
79
|
+
R = self.parent()._mpoly_ring()
|
|
80
|
+
return self.__f.substitute({R.gen(0):args[0]})
|
|
81
|
+
else:
|
|
82
|
+
return self.__f(*args, **kwds)
|
|
83
|
+
|
|
84
|
+
def do_truncation(self):
|
|
85
|
+
if self._truncated:
|
|
86
|
+
return
|
|
87
|
+
S = self.parent()._mpoly_ring()
|
|
88
|
+
self.__f = self.__f.truncate(S.gens()[-1], self._prec)
|
|
89
|
+
self._truncated = 1
|
|
90
|
+
|
|
91
|
+
def _repr_(self):
|
|
92
|
+
if not self._truncated:
|
|
93
|
+
self.do_truncation()
|
|
94
|
+
return PowerSeries._repr_(self)
|
|
95
|
+
|
|
96
|
+
def list(self):
|
|
97
|
+
if self.__list is None:
|
|
98
|
+
self.__list = self.polynomial().list()
|
|
99
|
+
return self.__list
|
|
100
|
+
|
|
101
|
+
def polynomial(self):
|
|
102
|
+
if self._poly is None:
|
|
103
|
+
S = self.parent()._mpoly_ring()
|
|
104
|
+
self._poly = self.__f.polynomial(S.gens()[-1])
|
|
105
|
+
return self._poly
|
|
106
|
+
|
|
107
|
+
def _mpoly(self):
|
|
108
|
+
return self.__f
|
|
109
|
+
|
|
110
|
+
cpdef _mul_(self, right_r):
|
|
111
|
+
"""
|
|
112
|
+
Return the product of two power series.
|
|
113
|
+
"""
|
|
114
|
+
prec = self._mul_prec(right_r)
|
|
115
|
+
return PowerSeries_mpoly(self._parent,
|
|
116
|
+
self.__f * (<PowerSeries_mpoly>right_r).__f,
|
|
117
|
+
prec = prec,
|
|
118
|
+
check =True)
|
|
119
|
+
|
|
120
|
+
def __iter__(self):
|
|
121
|
+
"""
|
|
122
|
+
Return an iterator over the coefficients of this power series.
|
|
123
|
+
"""
|
|
124
|
+
return iter(self.__f)
|
|
125
|
+
|
|
126
|
+
def __neg__(self):
|
|
127
|
+
"""
|
|
128
|
+
Return the negative of this power series.
|
|
129
|
+
"""
|
|
130
|
+
return PowerSeries_mpoly(self._parent, -self.__f,
|
|
131
|
+
self._prec, check=False)
|
|
132
|
+
|
|
133
|
+
cpdef _add_(self, right_m):
|
|
134
|
+
"""
|
|
135
|
+
EXAMPLES:
|
|
136
|
+
"""
|
|
137
|
+
cdef PowerSeries_mpoly right = <PowerSeries_mpoly>right_m
|
|
138
|
+
return PowerSeries_mpoly(self._parent, self.__f + right.__f,
|
|
139
|
+
self.common_prec_c(right), check=True)
|
|
140
|
+
|
|
141
|
+
cpdef _sub_(self, right_m):
|
|
142
|
+
"""
|
|
143
|
+
Return difference of two power series.
|
|
144
|
+
|
|
145
|
+
EXAMPLES:
|
|
146
|
+
"""
|
|
147
|
+
cdef PowerSeries_mpoly right = <PowerSeries_mpoly>right_m
|
|
148
|
+
return PowerSeries_mpoly(self._parent, self.__f - right.__f,
|
|
149
|
+
self.common_prec_c(right), check=True)
|
|
150
|
+
|
|
151
|
+
cpdef _rmul_(self, Element c):
|
|
152
|
+
return PowerSeries_mpoly(self._parent, self.__f._rmul_(c),
|
|
153
|
+
self._prec, check=False)
|
|
154
|
+
|
|
155
|
+
cpdef _lmul_(self, Element c):
|
|
156
|
+
return PowerSeries_mpoly(self._parent, self.__f._lmul_(c),
|
|
157
|
+
self._prec, check=False)
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def make_powerseries_mpoly_v0(parent, f, prec, is_gen):
|
|
161
|
+
return PowerSeries_mpoly(parent, f, prec, 0, is_gen)
|
|
Binary file
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
from sage.rings.power_series_ring_element cimport PowerSeries
|
|
3
|
+
from sage.rings.polynomial.polynomial_element cimport Polynomial
|
|
4
|
+
from sage.categories.action cimport Action
|
|
5
|
+
|
|
6
|
+
cdef class PowerSeries_poly(PowerSeries):
|
|
7
|
+
cdef Polynomial __f
|
|
8
|
+
|
|
9
|
+
cdef class BaseRingFloorDivAction(Action):
|
|
10
|
+
pass
|