passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,1053 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
# sage.doctest: needs sage.schemes
|
|
3
|
+
r"""
|
|
4
|
+
Jacobians in Hess model
|
|
5
|
+
|
|
6
|
+
This module implements Jacobian arithmetic based on divisor representation by
|
|
7
|
+
ideals. This approach to Jacobian arithmetic implementation is attributed to
|
|
8
|
+
Hess [Hes2002]_.
|
|
9
|
+
|
|
10
|
+
Jacobian
|
|
11
|
+
--------
|
|
12
|
+
|
|
13
|
+
To create a Jacobian in Hess model, specify ``'hess'`` model and provide a base divisor
|
|
14
|
+
of degree `g`, which is the genus of the function field::
|
|
15
|
+
|
|
16
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
17
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
18
|
+
sage: C.geometric_genus()
|
|
19
|
+
1
|
|
20
|
+
sage: B = C([0,1,0]).place()
|
|
21
|
+
sage: B.degree()
|
|
22
|
+
1
|
|
23
|
+
sage: J = C.jacobian(model='hess', base_div=B)
|
|
24
|
+
sage: J
|
|
25
|
+
Jacobian of Projective Plane Curve over Finite Field of size 29
|
|
26
|
+
defined by x^3 - y^2*z + 5*z^3 (Hess model)
|
|
27
|
+
|
|
28
|
+
Group of rational points
|
|
29
|
+
------------------------
|
|
30
|
+
|
|
31
|
+
The group of rational points of a Jacobian is created from the Jacobian. A
|
|
32
|
+
point of the Jacobian group is determined by a divisor (of degree zero) of the
|
|
33
|
+
form `D - B` where `D` is an effective divisor of degree `g` and `B` is the base
|
|
34
|
+
divisor. Hence a point of the Jacobian group is represented by `D`.
|
|
35
|
+
|
|
36
|
+
::
|
|
37
|
+
|
|
38
|
+
sage: G = J.group()
|
|
39
|
+
sage: P1 = C([1,8,1]).place()
|
|
40
|
+
sage: P2 = C([2,10,1]).place()
|
|
41
|
+
sage: p1 = G(P1)
|
|
42
|
+
sage: p2 = G(P2)
|
|
43
|
+
sage: p1
|
|
44
|
+
[Place (y + 21, z + 28)]
|
|
45
|
+
sage: p2
|
|
46
|
+
[Place (y + 24, z + 14)]
|
|
47
|
+
sage: p1 + p2
|
|
48
|
+
[Place (y + 8, z + 28)]
|
|
49
|
+
|
|
50
|
+
AUTHORS:
|
|
51
|
+
|
|
52
|
+
- Kwankyu Lee (2022-01-24): initial version
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
# ****************************************************************************
|
|
56
|
+
# Copyright (C) 2022 Kwankyu Lee <ekwankyu@gmail.com>
|
|
57
|
+
#
|
|
58
|
+
# This program is free software: you can redistribute it and/or modify
|
|
59
|
+
# it under the terms of the GNU General Public License as published by
|
|
60
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
61
|
+
# (at your option) any later version.
|
|
62
|
+
# https://www.gnu.org/licenses/
|
|
63
|
+
# ****************************************************************************
|
|
64
|
+
|
|
65
|
+
from sage.misc.cachefunc import cached_method
|
|
66
|
+
|
|
67
|
+
from sage.structure.unique_representation import UniqueRepresentation
|
|
68
|
+
from sage.structure.richcmp import op_EQ, richcmp
|
|
69
|
+
|
|
70
|
+
from sage.categories.map import Map
|
|
71
|
+
from sage.categories.commutative_additive_groups import CommutativeAdditiveGroups
|
|
72
|
+
from sage.categories.homset import Hom
|
|
73
|
+
|
|
74
|
+
from sage.arith.misc import integer_ceil
|
|
75
|
+
from sage.arith.functions import lcm
|
|
76
|
+
|
|
77
|
+
from sage.rings.integer import Integer
|
|
78
|
+
from sage.matrix.constructor import matrix
|
|
79
|
+
|
|
80
|
+
from sage.combinat.integer_vector_weighted import WeightedIntegerVectors
|
|
81
|
+
|
|
82
|
+
from .place import FunctionFieldPlace
|
|
83
|
+
from .divisor import FunctionFieldDivisor
|
|
84
|
+
|
|
85
|
+
from .jacobian_base import (Jacobian_base,
|
|
86
|
+
JacobianGroup_base,
|
|
87
|
+
JacobianGroup_finite_field_base,
|
|
88
|
+
JacobianPoint_base,
|
|
89
|
+
JacobianPoint_finite_field_base)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class JacobianPoint(JacobianPoint_base):
|
|
93
|
+
"""
|
|
94
|
+
Points of Jacobians represented by a pair of ideals.
|
|
95
|
+
|
|
96
|
+
If a point of Jacobian is determined by `D`, then the divisor `D` is
|
|
97
|
+
represented by a pair of ideals in the finite maximal order and the
|
|
98
|
+
infinite maximal order of the function field.
|
|
99
|
+
|
|
100
|
+
For efficiency reasons, the actual ideals stored are the inverted ideals
|
|
101
|
+
of the ideals representing the divisor `D`.
|
|
102
|
+
|
|
103
|
+
INPUT:
|
|
104
|
+
|
|
105
|
+
- ``parent`` -- Jacobian group
|
|
106
|
+
|
|
107
|
+
- ``dS`` -- an ideal of the finite maximal order of a function field
|
|
108
|
+
|
|
109
|
+
- ``ds`` -- an ideal of infinite maximal order of a function field
|
|
110
|
+
|
|
111
|
+
EXAMPLES::
|
|
112
|
+
|
|
113
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
114
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
115
|
+
sage: b = C([0,1,0]).place()
|
|
116
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
117
|
+
sage: pl = C([1,8,1]).place()
|
|
118
|
+
sage: p = G.point(pl - b)
|
|
119
|
+
sage: dS, ds = p._data
|
|
120
|
+
sage: -(dS.divisor() + ds.divisor()) == pl
|
|
121
|
+
True
|
|
122
|
+
"""
|
|
123
|
+
def __init__(self, parent, dS, ds):
|
|
124
|
+
"""
|
|
125
|
+
Initialize.
|
|
126
|
+
|
|
127
|
+
TESTS::
|
|
128
|
+
|
|
129
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
130
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
131
|
+
sage: b = C([0,1,0]).place()
|
|
132
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
133
|
+
sage: pl = C([1,8,1]).place()
|
|
134
|
+
sage: p = G.point(pl - b)
|
|
135
|
+
sage: TestSuite(p).run(skip=['_test_category','_test_pickling'])
|
|
136
|
+
"""
|
|
137
|
+
super().__init__(parent)
|
|
138
|
+
self._data = (dS, ds)
|
|
139
|
+
|
|
140
|
+
def _repr_(self):
|
|
141
|
+
"""
|
|
142
|
+
Return the string representation of ``self``.
|
|
143
|
+
|
|
144
|
+
EXAMPLES::
|
|
145
|
+
|
|
146
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
147
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
148
|
+
sage: b = C([0,1,0]).place()
|
|
149
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
150
|
+
sage: G.zero()
|
|
151
|
+
[Place (1/y, 1/y*z)]
|
|
152
|
+
"""
|
|
153
|
+
dS, ds = self._data
|
|
154
|
+
divisor = (~dS).divisor() + (~ds).divisor()
|
|
155
|
+
return f'[{divisor}]'
|
|
156
|
+
|
|
157
|
+
def __hash__(self):
|
|
158
|
+
"""
|
|
159
|
+
Return the hash of ``self``.
|
|
160
|
+
|
|
161
|
+
EXAMPLES::
|
|
162
|
+
|
|
163
|
+
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
|
|
164
|
+
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
|
|
165
|
+
sage: f = x/(y + 1)
|
|
166
|
+
sage: d = f.divisor()
|
|
167
|
+
sage: {d: 1}
|
|
168
|
+
{Place (1/x, 1/x^4*y^2 + 1/x^2*y + 1)
|
|
169
|
+
+ Place (1/x, 1/x^2*y + 1)
|
|
170
|
+
+ 3*Place (x, (1/(x^3 + x^2 + x))*y^2)
|
|
171
|
+
- 6*Place (x + 1, y + 1): 1}
|
|
172
|
+
"""
|
|
173
|
+
return hash(self._data)
|
|
174
|
+
|
|
175
|
+
def _richcmp_(self, other, op):
|
|
176
|
+
"""
|
|
177
|
+
Compare ``self`` with ``other`` with respect to operator ``op``.
|
|
178
|
+
|
|
179
|
+
EXAMPLES::
|
|
180
|
+
|
|
181
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
182
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
183
|
+
sage: b = C([0,1,0]).place()
|
|
184
|
+
sage: pl1 = C([-1,2,1]).place()
|
|
185
|
+
sage: pl2 = C([2,10,1]).place()
|
|
186
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
187
|
+
sage: p1 = G.point(pl1 - b)
|
|
188
|
+
sage: p2 = G.point(pl2 - b)
|
|
189
|
+
sage: p1 == p1
|
|
190
|
+
True
|
|
191
|
+
sage: p1 != p2
|
|
192
|
+
True
|
|
193
|
+
sage: p1 > p1
|
|
194
|
+
False
|
|
195
|
+
sage: p1 > p2
|
|
196
|
+
False
|
|
197
|
+
sage: p1 < p2
|
|
198
|
+
True
|
|
199
|
+
"""
|
|
200
|
+
if op is op_EQ:
|
|
201
|
+
J = self.parent()
|
|
202
|
+
idS, ids = self._data
|
|
203
|
+
jdS, jds = other._data
|
|
204
|
+
return J._normalize(idS / jdS, ids / jds) is not None
|
|
205
|
+
else:
|
|
206
|
+
return richcmp(self._data, other._data, op)
|
|
207
|
+
|
|
208
|
+
def _add_(self, other):
|
|
209
|
+
"""
|
|
210
|
+
Return the sum of ``self`` and ``other``.
|
|
211
|
+
|
|
212
|
+
EXAMPLES::
|
|
213
|
+
|
|
214
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
215
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
216
|
+
sage: b = C([0,1,0]).place()
|
|
217
|
+
sage: pl1 = C([-1,2,1]).place()
|
|
218
|
+
sage: pl2 = C([2,10,1]).place()
|
|
219
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
220
|
+
sage: p1 = G.point(pl1 - b)
|
|
221
|
+
sage: p2 = G.point(pl2 - b)
|
|
222
|
+
sage: p1 + p2
|
|
223
|
+
[Place (y + 8, z + 3)]
|
|
224
|
+
sage: p1 + p2 == p2 + p1
|
|
225
|
+
True
|
|
226
|
+
"""
|
|
227
|
+
G = self.parent()
|
|
228
|
+
idS, ids = self._data
|
|
229
|
+
jdS, jds = other._data
|
|
230
|
+
bdS, bds = G._base_point
|
|
231
|
+
dS, ds = G._normalize(idS * jdS * bdS, ids * jds * bds)
|
|
232
|
+
return G.element_class(self.parent(), dS, ds)
|
|
233
|
+
|
|
234
|
+
def _neg_(self):
|
|
235
|
+
"""
|
|
236
|
+
Return the negative of this point.
|
|
237
|
+
|
|
238
|
+
EXAMPLES::
|
|
239
|
+
|
|
240
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
241
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
242
|
+
sage: b = C([0,1,0]).place()
|
|
243
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
244
|
+
sage: pl = C([-1,2,1]).place()
|
|
245
|
+
sage: p = G.point(pl - b)
|
|
246
|
+
sage: -p
|
|
247
|
+
[Place (y + 27, z + 1)]
|
|
248
|
+
sage: -(-p) == p
|
|
249
|
+
True
|
|
250
|
+
"""
|
|
251
|
+
G = self.parent()
|
|
252
|
+
idS, ids = self._data
|
|
253
|
+
bdS2, bds2 = G._base_point_double
|
|
254
|
+
dS, ds = G._normalize(~(idS * bdS2), ~(ids * bds2))
|
|
255
|
+
return G.element_class(self.parent(), dS, ds)
|
|
256
|
+
|
|
257
|
+
def multiple(self, n):
|
|
258
|
+
"""
|
|
259
|
+
Return the ``n``-th multiple of this point.
|
|
260
|
+
|
|
261
|
+
EXAMPLES::
|
|
262
|
+
|
|
263
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
264
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
265
|
+
sage: b = C([0,1,0]).place()
|
|
266
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
267
|
+
sage: pl = C([-1,2,1]).place()
|
|
268
|
+
sage: p = G.point(pl - b)
|
|
269
|
+
sage: p.multiple(100)
|
|
270
|
+
[Place (1/y, 1/y*z + 8)]
|
|
271
|
+
"""
|
|
272
|
+
if n == 0:
|
|
273
|
+
return self.parent().zero()
|
|
274
|
+
|
|
275
|
+
G = self.parent()
|
|
276
|
+
idS, ids = self._data
|
|
277
|
+
bdS, bds = G._base_point
|
|
278
|
+
bdS2, bds2 = G._base_point_double
|
|
279
|
+
idSbdS2 = idS * bdS2
|
|
280
|
+
idsbds2 = ids * bds2
|
|
281
|
+
|
|
282
|
+
if n < 0:
|
|
283
|
+
bits = Integer(-n).digits(2)
|
|
284
|
+
else:
|
|
285
|
+
bits = Integer(n).digits(2)
|
|
286
|
+
bits.pop()
|
|
287
|
+
|
|
288
|
+
dS = idS
|
|
289
|
+
ds = ids
|
|
290
|
+
for i in range(len(bits)):
|
|
291
|
+
b = bits.pop()
|
|
292
|
+
if b > 0:
|
|
293
|
+
dS, ds = G._normalize(dS * dS * idSbdS2, ds * ds * idsbds2)
|
|
294
|
+
else:
|
|
295
|
+
dS, ds = G._normalize(dS * dS * bdS, ds * ds * bds)
|
|
296
|
+
if n < 0:
|
|
297
|
+
dS, ds = G._normalize(~(dS * bdS2), ~(ds * bds2))
|
|
298
|
+
|
|
299
|
+
return G.element_class(self.parent(), dS, ds)
|
|
300
|
+
|
|
301
|
+
def addflip(self, other):
|
|
302
|
+
"""
|
|
303
|
+
Return the addflip of this and ``other`` point.
|
|
304
|
+
|
|
305
|
+
EXAMPLES::
|
|
306
|
+
|
|
307
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
308
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
309
|
+
sage: b = C([0,1,0]).place()
|
|
310
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
311
|
+
sage: pl1 = C([-1,2,1]).place()
|
|
312
|
+
sage: pl2 = C([2,19,1]).place()
|
|
313
|
+
sage: p1 = G.point(pl1 - b)
|
|
314
|
+
sage: p2 = G.point(pl2 - b)
|
|
315
|
+
sage: p1.addflip(p2)
|
|
316
|
+
[Place (y + 8, z + 27)]
|
|
317
|
+
sage: _ == -(p1 + p2)
|
|
318
|
+
True
|
|
319
|
+
"""
|
|
320
|
+
return -(self + other)
|
|
321
|
+
|
|
322
|
+
def defining_divisor(self):
|
|
323
|
+
"""
|
|
324
|
+
Return the effective divisor that defines this point.
|
|
325
|
+
|
|
326
|
+
EXAMPLES::
|
|
327
|
+
|
|
328
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
329
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
330
|
+
sage: b = C([0,1,0]).place()
|
|
331
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
332
|
+
sage: pl = C([-1,2,1]).place()
|
|
333
|
+
sage: p = G.point(pl - b)
|
|
334
|
+
sage: p.defining_divisor() == pl
|
|
335
|
+
True
|
|
336
|
+
"""
|
|
337
|
+
dS, ds = self._data
|
|
338
|
+
return (~dS).divisor() + (~ds).divisor()
|
|
339
|
+
|
|
340
|
+
def order(self, bound=None):
|
|
341
|
+
"""
|
|
342
|
+
Return the order of this point.
|
|
343
|
+
|
|
344
|
+
ALGORITHM: Shanks' Baby Step Giant Step
|
|
345
|
+
|
|
346
|
+
EXAMPLES::
|
|
347
|
+
|
|
348
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
349
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
350
|
+
sage: b = C([0,1,0]).place()
|
|
351
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
352
|
+
sage: p = C([-1,2,1]).place()
|
|
353
|
+
sage: pt = G.point(p - b)
|
|
354
|
+
sage: pt.order()
|
|
355
|
+
30
|
|
356
|
+
"""
|
|
357
|
+
if bound is None: # naive
|
|
358
|
+
J = self.parent()
|
|
359
|
+
zero = J.zero()
|
|
360
|
+
|
|
361
|
+
m = self
|
|
362
|
+
r = 1
|
|
363
|
+
while m != zero:
|
|
364
|
+
m = m + self
|
|
365
|
+
r += 1
|
|
366
|
+
return r
|
|
367
|
+
|
|
368
|
+
# if bound is given, deploy Shanks' Baby Step Giant Step
|
|
369
|
+
|
|
370
|
+
J = self.parent()
|
|
371
|
+
B = J.bound_on_order()
|
|
372
|
+
q = integer_ceil(B.sqrt())
|
|
373
|
+
zero = J.zero()
|
|
374
|
+
|
|
375
|
+
# baby steps
|
|
376
|
+
b = [zero]
|
|
377
|
+
g = self
|
|
378
|
+
for i in range(q - 1):
|
|
379
|
+
if g == zero:
|
|
380
|
+
return i + 1
|
|
381
|
+
b.append(g)
|
|
382
|
+
g = g + self
|
|
383
|
+
|
|
384
|
+
# giant steps
|
|
385
|
+
g0 = (-q) * self
|
|
386
|
+
g = g0
|
|
387
|
+
for i in range(q - 1):
|
|
388
|
+
for r in range(q):
|
|
389
|
+
if g == b[r]:
|
|
390
|
+
return q * (i + 1) + r
|
|
391
|
+
g = g + g0
|
|
392
|
+
|
|
393
|
+
# order is neither smaller or nor larger than this
|
|
394
|
+
return q**2
|
|
395
|
+
|
|
396
|
+
def divisor(self):
|
|
397
|
+
"""
|
|
398
|
+
Return the divisor representing this point.
|
|
399
|
+
|
|
400
|
+
EXAMPLES::
|
|
401
|
+
|
|
402
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(29), 2)
|
|
403
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
404
|
+
sage: b = C([0,1,0]).place()
|
|
405
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
406
|
+
sage: pl = C([-1,2,1]).place()
|
|
407
|
+
sage: p = G.point(pl - b)
|
|
408
|
+
sage: G.point(p.divisor()) == p
|
|
409
|
+
True
|
|
410
|
+
"""
|
|
411
|
+
J = self.parent()
|
|
412
|
+
dS, ds = self._data
|
|
413
|
+
return (~dS).divisor() + (~ds).divisor() - J._base_div
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
class JacobianPoint_finite_field(JacobianPoint, JacobianPoint_finite_field_base):
|
|
417
|
+
"""
|
|
418
|
+
Points of Jacobians over finite fields
|
|
419
|
+
"""
|
|
420
|
+
pass
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
class JacobianGroupEmbedding(Map):
|
|
424
|
+
"""
|
|
425
|
+
Embeddings between Jacobian groups.
|
|
426
|
+
|
|
427
|
+
INPUT:
|
|
428
|
+
|
|
429
|
+
- ``base_group`` -- Jacobian group over a base field
|
|
430
|
+
|
|
431
|
+
- ``extension_group`` -- Jacobian group over an extension field
|
|
432
|
+
|
|
433
|
+
EXAMPLES::
|
|
434
|
+
|
|
435
|
+
sage: k = GF(17)
|
|
436
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
437
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
438
|
+
sage: b = C([0,1,0]).place()
|
|
439
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
440
|
+
sage: G1 = J.group()
|
|
441
|
+
sage: K = k.extension(3)
|
|
442
|
+
sage: G3 = J.group(K)
|
|
443
|
+
sage: G3.coerce_map_from(G1)
|
|
444
|
+
Jacobian group embedding map:
|
|
445
|
+
From: Group of rational points of Jacobian
|
|
446
|
+
over Finite Field of size 17 (Hess model)
|
|
447
|
+
To: Group of rational points of Jacobian
|
|
448
|
+
over Finite Field in z3 of size 17^3 (Hess model)
|
|
449
|
+
"""
|
|
450
|
+
def __init__(self, base_group, extension_group):
|
|
451
|
+
"""
|
|
452
|
+
Initialize.
|
|
453
|
+
|
|
454
|
+
TESTS::
|
|
455
|
+
|
|
456
|
+
sage: k = GF(17)
|
|
457
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
458
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
459
|
+
sage: b = C([0,1,0]).place()
|
|
460
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
461
|
+
sage: G1 = J.group()
|
|
462
|
+
sage: K = k.extension(3)
|
|
463
|
+
sage: G3 = J.group(K)
|
|
464
|
+
sage: map = G3.coerce_map_from(G1)
|
|
465
|
+
sage: TestSuite(map).run(skip=['_test_category', '_test_pickling'])
|
|
466
|
+
"""
|
|
467
|
+
F = base_group._function_field
|
|
468
|
+
F_base = F.base_field()
|
|
469
|
+
K = F.constant_base_field()
|
|
470
|
+
|
|
471
|
+
F_ext = extension_group._function_field
|
|
472
|
+
F_ext_base = F_ext.base_field()
|
|
473
|
+
K_ext = F_ext.constant_base_field()
|
|
474
|
+
|
|
475
|
+
# construct embedding of F into F_ext
|
|
476
|
+
embedK = K_ext.coerce_map_from(K)
|
|
477
|
+
embedF_base = F_base.hom(F_ext_base.gen(), embedK)
|
|
478
|
+
if F.degree() > 1:
|
|
479
|
+
embedF = F.hom(F_ext.gen(), embedF_base)
|
|
480
|
+
else:
|
|
481
|
+
embedF = embedF_base
|
|
482
|
+
|
|
483
|
+
self._embedF = embedF
|
|
484
|
+
self._O_ext = F_ext.maximal_order()
|
|
485
|
+
self._Oinf_ext = F_ext.maximal_order_infinite()
|
|
486
|
+
|
|
487
|
+
Map.__init__(self, Hom(base_group, extension_group, CommutativeAdditiveGroups()))
|
|
488
|
+
|
|
489
|
+
def _repr_type(self):
|
|
490
|
+
"""
|
|
491
|
+
Return string representation of ``self``.
|
|
492
|
+
|
|
493
|
+
TESTS::
|
|
494
|
+
|
|
495
|
+
sage: k = GF(17)
|
|
496
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
497
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
498
|
+
sage: b = C([0,1,0]).place()
|
|
499
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
500
|
+
sage: G1 = J.group()
|
|
501
|
+
sage: K = k.extension(3)
|
|
502
|
+
sage: G3 = J.group(K)
|
|
503
|
+
sage: G3.coerce_map_from(G1) # indirect doctest
|
|
504
|
+
Jacobian group embedding map:
|
|
505
|
+
From: Group of rational points of Jacobian
|
|
506
|
+
over Finite Field of size 17 (Hess model)
|
|
507
|
+
To: Group of rational points of Jacobian
|
|
508
|
+
over Finite Field in z3 of size 17^3 (Hess model)
|
|
509
|
+
"""
|
|
510
|
+
return 'Jacobian group embedding'
|
|
511
|
+
|
|
512
|
+
def _call_(self, x):
|
|
513
|
+
"""
|
|
514
|
+
Conorm map from F to F_ext.
|
|
515
|
+
|
|
516
|
+
TESTS::
|
|
517
|
+
|
|
518
|
+
sage: k = GF(7)
|
|
519
|
+
sage: A.<x,y> = AffineSpace(k, 2)
|
|
520
|
+
sage: C = Curve(y^5 - x^3 - 2*x - 1).projective_closure()
|
|
521
|
+
sage: J = C.jacobian(model='hess')
|
|
522
|
+
sage: G1 = J.group()
|
|
523
|
+
sage: K = k.extension(3)
|
|
524
|
+
sage: G3 = J.group(K)
|
|
525
|
+
sage: m = G3.coerce_map_from(G1)
|
|
526
|
+
sage: m(G1.zero()) == G3.zero()
|
|
527
|
+
True
|
|
528
|
+
"""
|
|
529
|
+
embedF = self._embedF
|
|
530
|
+
O_ext = self._O_ext
|
|
531
|
+
Oinf_ext = self._Oinf_ext
|
|
532
|
+
|
|
533
|
+
idS, ids = x._data
|
|
534
|
+
dS = O_ext.ideal([embedF(g) for g in idS.gens()])
|
|
535
|
+
ds = Oinf_ext.ideal([embedF(g) for g in ids.gens()])
|
|
536
|
+
return self.codomain().element_class(self.codomain(), dS, ds)
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
class JacobianGroup(UniqueRepresentation, JacobianGroup_base):
|
|
540
|
+
"""
|
|
541
|
+
Groups of rational points of a Jacobian.
|
|
542
|
+
|
|
543
|
+
INPUT:
|
|
544
|
+
|
|
545
|
+
- ``parent`` -- a Jacobian
|
|
546
|
+
|
|
547
|
+
- ``function_field`` -- a function field
|
|
548
|
+
|
|
549
|
+
- ``base_div`` -- an effective divisor of the function field
|
|
550
|
+
|
|
551
|
+
EXAMPLES::
|
|
552
|
+
|
|
553
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
554
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
555
|
+
sage: b = C([0,1,0]).place()
|
|
556
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
557
|
+
sage: J.group()
|
|
558
|
+
Group of rational points of Jacobian
|
|
559
|
+
over Finite Field of size 17 (Hess model)
|
|
560
|
+
"""
|
|
561
|
+
Element = JacobianPoint
|
|
562
|
+
_embedding_map_class = JacobianGroupEmbedding
|
|
563
|
+
|
|
564
|
+
def __init__(self, parent, function_field, base_div):
|
|
565
|
+
"""
|
|
566
|
+
Initialize.
|
|
567
|
+
|
|
568
|
+
TESTS::
|
|
569
|
+
|
|
570
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
571
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
572
|
+
sage: b = C([0,1,0]).place()
|
|
573
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
574
|
+
sage: G = J.group()
|
|
575
|
+
sage: TestSuite(G).run(skip=['_test_elements', '_test_pickling'])
|
|
576
|
+
"""
|
|
577
|
+
super().__init__(parent, function_field, base_div)
|
|
578
|
+
|
|
579
|
+
bdS, bds = self._get_dS_ds(-base_div)
|
|
580
|
+
try:
|
|
581
|
+
bdS._gens_two() # speed up multiplication with these ideals
|
|
582
|
+
bds._ideal._gens_two() # by storing vector forms of two generators
|
|
583
|
+
except AttributeError:
|
|
584
|
+
pass
|
|
585
|
+
self._base_point = (bdS, bds)
|
|
586
|
+
self._base_point_double = (bdS * bdS, bds * bds)
|
|
587
|
+
|
|
588
|
+
self._base_place = None
|
|
589
|
+
|
|
590
|
+
def _repr_(self):
|
|
591
|
+
"""
|
|
592
|
+
Return the string representation of ``self``.
|
|
593
|
+
|
|
594
|
+
EXAMPLES::
|
|
595
|
+
|
|
596
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
597
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
598
|
+
sage: b = C([0,1,0]).place()
|
|
599
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
600
|
+
sage: J.group()
|
|
601
|
+
Group of rational points of Jacobian
|
|
602
|
+
over Finite Field of size 17 (Hess model)
|
|
603
|
+
"""
|
|
604
|
+
r = super()._repr_()
|
|
605
|
+
return r + ' (Hess model)'
|
|
606
|
+
|
|
607
|
+
def _element_constructor_(self, x):
|
|
608
|
+
"""
|
|
609
|
+
Construct an element of ``self`` from ``x``.
|
|
610
|
+
|
|
611
|
+
If ``x`` is an effective divisor, then it must be of
|
|
612
|
+
degree `g`, the genus of the function field.
|
|
613
|
+
|
|
614
|
+
EXAMPLES::
|
|
615
|
+
|
|
616
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
617
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
618
|
+
sage: b = C([0,1,0]).place()
|
|
619
|
+
sage: G = C.jacobian(model='hess', base_div=b).group()
|
|
620
|
+
sage: G(0)
|
|
621
|
+
[Place (1/y, 1/y*z)]
|
|
622
|
+
"""
|
|
623
|
+
if x == 0:
|
|
624
|
+
return self.zero()
|
|
625
|
+
|
|
626
|
+
if isinstance(x, FunctionFieldPlace):
|
|
627
|
+
if (self._base_place is not None
|
|
628
|
+
and x in self._function_field.place_set()
|
|
629
|
+
and x.degree() == 1):
|
|
630
|
+
x = x - self._base_place
|
|
631
|
+
else:
|
|
632
|
+
x = x.divisor()
|
|
633
|
+
|
|
634
|
+
if (isinstance(x, FunctionFieldDivisor)
|
|
635
|
+
and x in self._function_field.divisor_group()):
|
|
636
|
+
if x.degree() == 0:
|
|
637
|
+
return self.point(x)
|
|
638
|
+
if x.is_effective():
|
|
639
|
+
if x.degree() != self._genus:
|
|
640
|
+
raise ValueError(f"effective divisor is not of degree {self._genus}")
|
|
641
|
+
return self.element_class(self, *self._get_dS_ds(x))
|
|
642
|
+
|
|
643
|
+
raise ValueError(f"cannot construct a point from {x}")
|
|
644
|
+
|
|
645
|
+
def _get_dS_ds(self, divisor):
|
|
646
|
+
"""
|
|
647
|
+
Return (dS,ds) representation of the divisor.
|
|
648
|
+
|
|
649
|
+
TESTS::
|
|
650
|
+
|
|
651
|
+
sage: k = GF(17)
|
|
652
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
653
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
654
|
+
sage: b = C([0,1,0]).place()
|
|
655
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
656
|
+
sage: G = J.group()
|
|
657
|
+
sage: pl = C([2,8,1]).place()
|
|
658
|
+
sage: dS, ds = G._get_dS_ds(2*pl)
|
|
659
|
+
sage: (~dS).divisor() + (~ds).divisor() == 2*pl
|
|
660
|
+
True
|
|
661
|
+
"""
|
|
662
|
+
F = self._function_field
|
|
663
|
+
O = F.maximal_order()
|
|
664
|
+
Oinf = F.maximal_order_infinite()
|
|
665
|
+
|
|
666
|
+
I = O.ideal(1)
|
|
667
|
+
J = Oinf.ideal(1)
|
|
668
|
+
for p in divisor._data:
|
|
669
|
+
m = divisor._data[p]
|
|
670
|
+
if p.is_infinite_place():
|
|
671
|
+
J *= p.prime_ideal() ** (-m)
|
|
672
|
+
else:
|
|
673
|
+
I *= p.prime_ideal() ** (-m)
|
|
674
|
+
|
|
675
|
+
return I, J
|
|
676
|
+
|
|
677
|
+
def _normalize(self, I, J):
|
|
678
|
+
"""
|
|
679
|
+
Return a pair of normalized ideals from `I` and `J`.
|
|
680
|
+
|
|
681
|
+
INPUT:
|
|
682
|
+
|
|
683
|
+
- ``I`` -- an ideal of the finite maximal order
|
|
684
|
+
|
|
685
|
+
- ``J`` -- an ideal of the infinite maximal order
|
|
686
|
+
|
|
687
|
+
The output represents an effective divisor linearly equivalent to the
|
|
688
|
+
divisor represented by the given ideals `I` and `J`.
|
|
689
|
+
|
|
690
|
+
ALGORITHM:
|
|
691
|
+
|
|
692
|
+
Computes a function `f` in the Riemann-Roch space of the divisor `D`
|
|
693
|
+
represented by the (inverted) ideals `I` and `J`. The output is the
|
|
694
|
+
pair of the (inverted) ideals representing the effective divisor `(f) + D`,
|
|
695
|
+
which is linearly equivalent to `D`.
|
|
696
|
+
|
|
697
|
+
TESTS::
|
|
698
|
+
|
|
699
|
+
sage: k = GF(17)
|
|
700
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
701
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
702
|
+
sage: b = C([0,1,0]).place()
|
|
703
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
704
|
+
sage: G = J.group()
|
|
705
|
+
sage: pl = C([2,8,1]).place()
|
|
706
|
+
sage: p = G.point(pl - b)
|
|
707
|
+
sage: dS, ds = (p + p)._data # indirect doctest
|
|
708
|
+
sage: G.point((~dS).divisor() + (~ds).divisor() - b) == p + p
|
|
709
|
+
True
|
|
710
|
+
"""
|
|
711
|
+
F = self._function_field
|
|
712
|
+
n = F.degree()
|
|
713
|
+
|
|
714
|
+
O = F.maximal_order()
|
|
715
|
+
Oinf = F.maximal_order_infinite()
|
|
716
|
+
|
|
717
|
+
# Step 1: construct matrix M of rational functions in x such that
|
|
718
|
+
# M * B == C where B = [b1,b1,...,bn], C =[v1,v2,...,vn]
|
|
719
|
+
V, fr, to = F.free_module(map=True)
|
|
720
|
+
B = matrix([to(b) for b in J.gens_over_base()])
|
|
721
|
+
C = matrix([to(v) for v in I.gens_over_base()])
|
|
722
|
+
M = C * B.inverse()
|
|
723
|
+
|
|
724
|
+
# Step 2: get the denominator d of M and set mat = d * M
|
|
725
|
+
den = lcm([e.denominator() for e in M.list()])
|
|
726
|
+
R = den.parent() # polynomial ring
|
|
727
|
+
one = R.one()
|
|
728
|
+
mat = matrix(R, n, [e.numerator() for e in (den * M).list()])
|
|
729
|
+
gens = list(I.gens_over_base())
|
|
730
|
+
|
|
731
|
+
# Step 3: transform mat to a weak Popov form, together with gens
|
|
732
|
+
|
|
733
|
+
# initialise pivot_row and conflicts list
|
|
734
|
+
found = None
|
|
735
|
+
pivot_row = [[] for i in range(n)]
|
|
736
|
+
conflicts = []
|
|
737
|
+
for i in range(n):
|
|
738
|
+
bestp = -1
|
|
739
|
+
best = -1
|
|
740
|
+
for c in range(n):
|
|
741
|
+
d = mat[i, c].degree()
|
|
742
|
+
if d >= best:
|
|
743
|
+
bestp = c
|
|
744
|
+
best = d
|
|
745
|
+
|
|
746
|
+
if best <= den.degree():
|
|
747
|
+
found = i
|
|
748
|
+
break
|
|
749
|
+
|
|
750
|
+
if best >= 0:
|
|
751
|
+
pivot_row[bestp].append((i, best))
|
|
752
|
+
if len(pivot_row[bestp]) > 1:
|
|
753
|
+
conflicts.append(bestp)
|
|
754
|
+
|
|
755
|
+
if found is None:
|
|
756
|
+
# while there is a conflict, do a simple transformation
|
|
757
|
+
while conflicts:
|
|
758
|
+
c = conflicts.pop()
|
|
759
|
+
row = pivot_row[c]
|
|
760
|
+
i, ideg = row.pop()
|
|
761
|
+
j, jdeg = row.pop()
|
|
762
|
+
|
|
763
|
+
if jdeg > ideg:
|
|
764
|
+
i, j = j, i
|
|
765
|
+
ideg, jdeg = jdeg, ideg
|
|
766
|
+
|
|
767
|
+
coeff = - mat[i, c].lc() / mat[j, c].lc()
|
|
768
|
+
s = coeff * one.shift(ideg - jdeg)
|
|
769
|
+
|
|
770
|
+
mat.add_multiple_of_row(i, j, s)
|
|
771
|
+
gens[i] += s * gens[j]
|
|
772
|
+
|
|
773
|
+
row.append((j, jdeg))
|
|
774
|
+
|
|
775
|
+
bestp = -1
|
|
776
|
+
best = -1
|
|
777
|
+
for c in range(n):
|
|
778
|
+
d = mat[i, c].degree()
|
|
779
|
+
if d >= best:
|
|
780
|
+
bestp = c
|
|
781
|
+
best = d
|
|
782
|
+
|
|
783
|
+
if best <= den.degree():
|
|
784
|
+
found = i
|
|
785
|
+
break
|
|
786
|
+
|
|
787
|
+
if best >= 0:
|
|
788
|
+
pivot_row[bestp].append((i, best))
|
|
789
|
+
if len(pivot_row[bestp]) > 1:
|
|
790
|
+
conflicts.append(bestp)
|
|
791
|
+
else:
|
|
792
|
+
return None
|
|
793
|
+
|
|
794
|
+
f = gens[found]
|
|
795
|
+
return (O.ideal(~f) * I, Oinf.ideal(~f) * J)
|
|
796
|
+
|
|
797
|
+
def point(self, divisor):
|
|
798
|
+
"""
|
|
799
|
+
Return the point represented by the divisor of degree zero.
|
|
800
|
+
|
|
801
|
+
EXAMPLES::
|
|
802
|
+
|
|
803
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
804
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
805
|
+
sage: b = C([0,1,0]).place()
|
|
806
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
807
|
+
sage: G = J.group()
|
|
808
|
+
sage: p = C([-1,2,1]).place()
|
|
809
|
+
sage: G.point(p - b)
|
|
810
|
+
[Place (y + 2, z + 1)]
|
|
811
|
+
"""
|
|
812
|
+
if divisor.degree() != 0:
|
|
813
|
+
raise ValueError('divisor not of degree zero')
|
|
814
|
+
c = divisor + self._base_div
|
|
815
|
+
f = c.basis_function_space()[0]
|
|
816
|
+
d = f.divisor() + c
|
|
817
|
+
dS, ds = self._get_dS_ds(d)
|
|
818
|
+
return self.element_class(self, dS, ds)
|
|
819
|
+
|
|
820
|
+
@cached_method
|
|
821
|
+
def zero(self):
|
|
822
|
+
"""
|
|
823
|
+
Return the zero element of this group.
|
|
824
|
+
|
|
825
|
+
EXAMPLES::
|
|
826
|
+
|
|
827
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
828
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
829
|
+
sage: b = C([0,1,0]).place()
|
|
830
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
831
|
+
sage: G = J.group()
|
|
832
|
+
sage: G.zero()
|
|
833
|
+
[Place (1/y, 1/y*z)]
|
|
834
|
+
"""
|
|
835
|
+
bdS, bds = self._base_point
|
|
836
|
+
return self.element_class(self, ~bdS, ~bds)
|
|
837
|
+
|
|
838
|
+
|
|
839
|
+
class JacobianGroup_finite_field(JacobianGroup, JacobianGroup_finite_field_base):
|
|
840
|
+
"""
|
|
841
|
+
Jacobian groups of function fields over finite fields.
|
|
842
|
+
|
|
843
|
+
INPUT:
|
|
844
|
+
|
|
845
|
+
- ``parent`` -- a Jacobian
|
|
846
|
+
|
|
847
|
+
- ``function_field`` -- a function field
|
|
848
|
+
|
|
849
|
+
- ``base_div`` -- an effective divisor of the function field
|
|
850
|
+
|
|
851
|
+
EXAMPLES::
|
|
852
|
+
|
|
853
|
+
sage: k = GF(17)
|
|
854
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
855
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
856
|
+
sage: b = C([0,1,0]).place()
|
|
857
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
858
|
+
sage: G1 = J.group()
|
|
859
|
+
sage: K = k.extension(3)
|
|
860
|
+
sage: G3 = J.group(K)
|
|
861
|
+
sage: G3.coerce_map_from(G1)
|
|
862
|
+
Jacobian group embedding map:
|
|
863
|
+
From: Group of rational points of Jacobian
|
|
864
|
+
over Finite Field of size 17 (Hess model)
|
|
865
|
+
To: Group of rational points of Jacobian
|
|
866
|
+
over Finite Field in z3 of size 17^3 (Hess model)
|
|
867
|
+
"""
|
|
868
|
+
Element = JacobianPoint_finite_field
|
|
869
|
+
|
|
870
|
+
def __init__(self, parent, function_field, base_div):
|
|
871
|
+
"""
|
|
872
|
+
Initialize.
|
|
873
|
+
|
|
874
|
+
TESTS::
|
|
875
|
+
|
|
876
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
877
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
878
|
+
sage: b = C([0,1,0]).place()
|
|
879
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
880
|
+
sage: G = J.group()
|
|
881
|
+
sage: TestSuite(G).run(skip=['_test_elements','_test_pickling'])
|
|
882
|
+
"""
|
|
883
|
+
super().__init__(parent, function_field, base_div)
|
|
884
|
+
|
|
885
|
+
F = self._function_field
|
|
886
|
+
K = F.constant_base_field()
|
|
887
|
+
|
|
888
|
+
R = F.base_field() # base rational function field
|
|
889
|
+
x = R.gen()
|
|
890
|
+
y = F.gen()
|
|
891
|
+
|
|
892
|
+
r = self._parent._function_field.constant_base_field().degree()
|
|
893
|
+
frob_K = K.frobenius_endomorphism(r)
|
|
894
|
+
frob_R = R.hom(x, base_morphism=frob_K)
|
|
895
|
+
frob_F = F.hom(y, base_morphism=frob_R)
|
|
896
|
+
|
|
897
|
+
self._frobenius = frob_F
|
|
898
|
+
|
|
899
|
+
def __iter__(self):
|
|
900
|
+
"""
|
|
901
|
+
Return generator of points of this group.
|
|
902
|
+
|
|
903
|
+
TESTS::
|
|
904
|
+
|
|
905
|
+
sage: k = GF(7)
|
|
906
|
+
sage: A.<x,y> = AffineSpace(k,2)
|
|
907
|
+
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
|
|
908
|
+
sage: J = C.jacobian(model='hess')
|
|
909
|
+
sage: G = J.group()
|
|
910
|
+
sage: len([pt for pt in G]) # needs sage.combinat
|
|
911
|
+
11
|
|
912
|
+
"""
|
|
913
|
+
g = self._parent._function_field.genus()
|
|
914
|
+
F = self._function_field
|
|
915
|
+
O = F.maximal_order()
|
|
916
|
+
Oinf = F.maximal_order_infinite()
|
|
917
|
+
|
|
918
|
+
deg = 1
|
|
919
|
+
support = []
|
|
920
|
+
degrees = []
|
|
921
|
+
multiples = []
|
|
922
|
+
lst = []
|
|
923
|
+
|
|
924
|
+
places_infinite = F.places_infinite()
|
|
925
|
+
generators = [iter(places_infinite)]
|
|
926
|
+
num_of_infinite_places = len(places_infinite)
|
|
927
|
+
while True:
|
|
928
|
+
while True:
|
|
929
|
+
try:
|
|
930
|
+
new_pl = next(generators[-1])
|
|
931
|
+
break
|
|
932
|
+
except StopIteration:
|
|
933
|
+
if deg > g:
|
|
934
|
+
return
|
|
935
|
+
generators.append(F._places_finite(deg))
|
|
936
|
+
deg += 1
|
|
937
|
+
multiples.append((g + 1) * [None])
|
|
938
|
+
P = ~new_pl.prime_ideal()
|
|
939
|
+
dn = new_pl.degree()
|
|
940
|
+
I0 = O.ideal(1)
|
|
941
|
+
J0 = Oinf.ideal(1)
|
|
942
|
+
dr = 0
|
|
943
|
+
for r in range(1, g // new_pl.degree() + 1):
|
|
944
|
+
if new_pl.is_infinite_place():
|
|
945
|
+
J0 = J0 * P
|
|
946
|
+
else:
|
|
947
|
+
I0 = I0 * P
|
|
948
|
+
multiples[-1][r] = (I0, J0)
|
|
949
|
+
dr = dr + dn
|
|
950
|
+
for weights in WeightedIntegerVectors(g - dr, degrees):
|
|
951
|
+
I = I0
|
|
952
|
+
J = J0
|
|
953
|
+
for i in range(len(support)):
|
|
954
|
+
w = weights[i]
|
|
955
|
+
if w > 0:
|
|
956
|
+
dS, ds = multiples[i][w]
|
|
957
|
+
if i < num_of_infinite_places:
|
|
958
|
+
J *= ds # dS is the unit ideal
|
|
959
|
+
else:
|
|
960
|
+
I *= dS # ds is the unit ideal
|
|
961
|
+
pt = self.element_class(self, I, J)
|
|
962
|
+
if pt not in lst:
|
|
963
|
+
lst.append(pt)
|
|
964
|
+
yield pt
|
|
965
|
+
support.append(new_pl)
|
|
966
|
+
degrees.append(new_pl.degree())
|
|
967
|
+
|
|
968
|
+
def _frobenius_on(self, pt):
|
|
969
|
+
"""
|
|
970
|
+
Return the image of ``pt`` acted by the Frobenius automorphism.
|
|
971
|
+
|
|
972
|
+
EXAMPLES::
|
|
973
|
+
|
|
974
|
+
sage: k = GF(7)
|
|
975
|
+
sage: A.<x,y> = AffineSpace(k,2)
|
|
976
|
+
sage: C = Curve(y^2 + x^3 + 2*x + 1).projective_closure()
|
|
977
|
+
sage: J = C.jacobian(model='hess')
|
|
978
|
+
sage: G1 = J.group()
|
|
979
|
+
sage: G1.order()
|
|
980
|
+
11
|
|
981
|
+
sage: K = k.extension(3)
|
|
982
|
+
sage: G3 = J.group(K)
|
|
983
|
+
|
|
984
|
+
sage: # needs sage.combinat
|
|
985
|
+
sage: pts1 = G1.get_points(11)
|
|
986
|
+
sage: pts3 = G3.get_points(12)
|
|
987
|
+
sage: pt = next(pt for pt in pts3 if pt not in pts1)
|
|
988
|
+
sage: pt.frobenius().frobenius().frobenius() == pt # indirect doctest
|
|
989
|
+
True
|
|
990
|
+
sage: pt.frobenius() == pt
|
|
991
|
+
False
|
|
992
|
+
"""
|
|
993
|
+
frob_F = self._frobenius
|
|
994
|
+
|
|
995
|
+
F = self._function_field
|
|
996
|
+
O = F.maximal_order()
|
|
997
|
+
Oinf = F.maximal_order_infinite()
|
|
998
|
+
|
|
999
|
+
idS, ids = pt._data
|
|
1000
|
+
dS = O.ideal([frob_F(g) for g in idS.gens()])
|
|
1001
|
+
ds = Oinf.ideal([frob_F(g) for g in ids.gens()])
|
|
1002
|
+
return self.element_class(self, dS, ds)
|
|
1003
|
+
|
|
1004
|
+
|
|
1005
|
+
class Jacobian(Jacobian_base, UniqueRepresentation):
|
|
1006
|
+
"""
|
|
1007
|
+
Jacobians of function fields.
|
|
1008
|
+
|
|
1009
|
+
EXAMPLES::
|
|
1010
|
+
|
|
1011
|
+
sage: k = GF(17)
|
|
1012
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
1013
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
1014
|
+
sage: b = C([0,1,0]).place()
|
|
1015
|
+
sage: C.jacobian(model='hess', base_div=b)
|
|
1016
|
+
Jacobian of Projective Plane Curve over Finite Field of size 17
|
|
1017
|
+
defined by x^3 - y^2*z + 5*z^3 (Hess model)
|
|
1018
|
+
"""
|
|
1019
|
+
def __init__(self, function_field, base_div, **kwds):
|
|
1020
|
+
"""
|
|
1021
|
+
Initialize.
|
|
1022
|
+
|
|
1023
|
+
TESTS::
|
|
1024
|
+
|
|
1025
|
+
sage: k = GF(17)
|
|
1026
|
+
sage: P2.<x,y,z> = ProjectiveSpace(k, 2)
|
|
1027
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
1028
|
+
sage: b = C([0,1,0]).place()
|
|
1029
|
+
sage: J = C.jacobian(model='hess', base_div=b)
|
|
1030
|
+
sage: TestSuite(J).run(skip=['_test_elements','_test_pickling'])
|
|
1031
|
+
"""
|
|
1032
|
+
super().__init__(function_field, base_div, **kwds)
|
|
1033
|
+
|
|
1034
|
+
if function_field.constant_base_field().is_finite():
|
|
1035
|
+
self._group_class = JacobianGroup_finite_field
|
|
1036
|
+
else:
|
|
1037
|
+
self._group_class = JacobianGroup
|
|
1038
|
+
|
|
1039
|
+
def _repr_(self):
|
|
1040
|
+
"""
|
|
1041
|
+
Return the string representation of ``self``.
|
|
1042
|
+
|
|
1043
|
+
TESTS::
|
|
1044
|
+
|
|
1045
|
+
sage: P2.<x,y,z> = ProjectiveSpace(GF(17), 2)
|
|
1046
|
+
sage: C = Curve(x^3 + 5*z^3 - y^2*z, P2)
|
|
1047
|
+
sage: b = C([0,1,0]).place()
|
|
1048
|
+
sage: C.jacobian(model='hess', base_div=b)
|
|
1049
|
+
Jacobian of Projective Plane Curve over Finite Field of size 17
|
|
1050
|
+
defined by x^3 - y^2*z + 5*z^3 (Hess model)
|
|
1051
|
+
"""
|
|
1052
|
+
r = super()._repr_()
|
|
1053
|
+
return r + ' (Hess model)'
|