passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,980 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
# sage.doctest: needs sage.combinat sage.graphs sage.modules
|
|
3
|
+
r"""
|
|
4
|
+
Highest Weight Crystals
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2010 Anne Schilling <anne at math.ucdavis.edu>
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
# https://www.gnu.org/licenses/
|
|
11
|
+
# *****************************************************************************
|
|
12
|
+
|
|
13
|
+
from sage.misc.cachefunc import cached_method
|
|
14
|
+
from sage.categories.category_singleton import Category_singleton
|
|
15
|
+
from sage.categories.crystals import (Crystals, CrystalHomset,
|
|
16
|
+
CrystalMorphismByGenerators)
|
|
17
|
+
from sage.categories.tensor import TensorProductsCategory
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class HighestWeightCrystals(Category_singleton):
|
|
21
|
+
"""
|
|
22
|
+
The category of highest weight crystals.
|
|
23
|
+
|
|
24
|
+
A crystal is highest weight if it is acyclic; in particular, every
|
|
25
|
+
connected component has a unique highest weight element, and that
|
|
26
|
+
element generate the component.
|
|
27
|
+
|
|
28
|
+
EXAMPLES::
|
|
29
|
+
|
|
30
|
+
sage: C = HighestWeightCrystals()
|
|
31
|
+
sage: C
|
|
32
|
+
Category of highest weight crystals
|
|
33
|
+
sage: C.super_categories()
|
|
34
|
+
[Category of crystals]
|
|
35
|
+
sage: C.example()
|
|
36
|
+
Highest weight crystal of type A_3 of highest weight omega_1
|
|
37
|
+
|
|
38
|
+
TESTS::
|
|
39
|
+
|
|
40
|
+
sage: TestSuite(C).run()
|
|
41
|
+
sage: B = HighestWeightCrystals().example()
|
|
42
|
+
sage: TestSuite(B).run(verbose = True)
|
|
43
|
+
running ._test_an_element() . . . pass
|
|
44
|
+
running ._test_cardinality() . . . pass
|
|
45
|
+
running ._test_category() . . . pass
|
|
46
|
+
running ._test_construction() . . . pass
|
|
47
|
+
running ._test_elements() . . .
|
|
48
|
+
Running the test suite of self.an_element()
|
|
49
|
+
running ._test_category() . . . pass
|
|
50
|
+
running ._test_eq() . . . pass
|
|
51
|
+
running ._test_new() . . . pass
|
|
52
|
+
running ._test_not_implemented_methods() . . . pass
|
|
53
|
+
running ._test_pickling() . . . pass
|
|
54
|
+
running ._test_stembridge_local_axioms() . . . pass
|
|
55
|
+
pass
|
|
56
|
+
running ._test_elements_eq_reflexive() . . . pass
|
|
57
|
+
running ._test_elements_eq_symmetric() . . . pass
|
|
58
|
+
running ._test_elements_eq_transitive() . . . pass
|
|
59
|
+
running ._test_elements_neq() . . . pass
|
|
60
|
+
running ._test_enumerated_set_contains() . . . pass
|
|
61
|
+
running ._test_enumerated_set_iter_cardinality() . . . pass
|
|
62
|
+
running ._test_enumerated_set_iter_list() . . . pass
|
|
63
|
+
running ._test_eq() . . . pass
|
|
64
|
+
running ._test_fast_iter() . . . pass
|
|
65
|
+
running ._test_new() . . . pass
|
|
66
|
+
running ._test_not_implemented_methods() . . . pass
|
|
67
|
+
running ._test_pickling() . . . pass
|
|
68
|
+
running ._test_some_elements() . . . pass
|
|
69
|
+
running ._test_stembridge_local_axioms() . . . pass
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
def super_categories(self):
|
|
73
|
+
r"""
|
|
74
|
+
EXAMPLES::
|
|
75
|
+
|
|
76
|
+
sage: HighestWeightCrystals().super_categories()
|
|
77
|
+
[Category of crystals]
|
|
78
|
+
"""
|
|
79
|
+
return [Crystals()]
|
|
80
|
+
|
|
81
|
+
def example(self):
|
|
82
|
+
"""
|
|
83
|
+
Return an example of highest weight crystals, as per
|
|
84
|
+
:meth:`Category.example`.
|
|
85
|
+
|
|
86
|
+
EXAMPLES::
|
|
87
|
+
|
|
88
|
+
sage: B = HighestWeightCrystals().example(); B
|
|
89
|
+
Highest weight crystal of type A_3 of highest weight omega_1
|
|
90
|
+
"""
|
|
91
|
+
from sage.categories.crystals import Crystals
|
|
92
|
+
return Crystals().example()
|
|
93
|
+
|
|
94
|
+
def additional_structure(self):
|
|
95
|
+
r"""
|
|
96
|
+
Return ``None``.
|
|
97
|
+
|
|
98
|
+
Indeed, the category of highest weight crystals defines no
|
|
99
|
+
additional structure: it only guarantees the existence of a
|
|
100
|
+
unique highest weight element in each component.
|
|
101
|
+
|
|
102
|
+
.. SEEALSO:: :meth:`Category.additional_structure`
|
|
103
|
+
|
|
104
|
+
.. TODO:: Should this category be a :class:`CategoryWithAxiom`?
|
|
105
|
+
|
|
106
|
+
EXAMPLES::
|
|
107
|
+
|
|
108
|
+
sage: HighestWeightCrystals().additional_structure()
|
|
109
|
+
"""
|
|
110
|
+
return None
|
|
111
|
+
|
|
112
|
+
class ParentMethods:
|
|
113
|
+
|
|
114
|
+
@cached_method
|
|
115
|
+
def highest_weight_vectors(self):
|
|
116
|
+
r"""
|
|
117
|
+
Return the highest weight vectors of ``self``.
|
|
118
|
+
|
|
119
|
+
This default implementation selects among the module
|
|
120
|
+
generators those that are highest weight, and caches the result.
|
|
121
|
+
A crystal element `b` is highest weight if `e_i(b)=0` for all `i` in the
|
|
122
|
+
index set.
|
|
123
|
+
|
|
124
|
+
EXAMPLES::
|
|
125
|
+
|
|
126
|
+
sage: C = crystals.Letters(['A',5])
|
|
127
|
+
sage: C.highest_weight_vectors()
|
|
128
|
+
(1,)
|
|
129
|
+
|
|
130
|
+
::
|
|
131
|
+
|
|
132
|
+
sage: C = crystals.Letters(['A',2])
|
|
133
|
+
sage: T = crystals.TensorProduct(C, C, C, generators=[[C(2),C(1),C(1)],
|
|
134
|
+
....: [C(1),C(2),C(1)]])
|
|
135
|
+
sage: T.highest_weight_vectors()
|
|
136
|
+
([2, 1, 1], [1, 2, 1])
|
|
137
|
+
"""
|
|
138
|
+
return tuple(g for g in self.module_generators if g.is_highest_weight())
|
|
139
|
+
|
|
140
|
+
def highest_weight_vector(self):
|
|
141
|
+
r"""
|
|
142
|
+
Return the highest weight vector if there is a single one;
|
|
143
|
+
otherwise, raises an error.
|
|
144
|
+
|
|
145
|
+
Caveat: this assumes that :meth:`.highest_weight_vectors`
|
|
146
|
+
returns a list or tuple.
|
|
147
|
+
|
|
148
|
+
EXAMPLES::
|
|
149
|
+
|
|
150
|
+
sage: C = crystals.Letters(['A',5])
|
|
151
|
+
sage: C.highest_weight_vector()
|
|
152
|
+
1
|
|
153
|
+
"""
|
|
154
|
+
hw = self.highest_weight_vectors()
|
|
155
|
+
if len(hw) == 1:
|
|
156
|
+
return hw[0]
|
|
157
|
+
else:
|
|
158
|
+
raise RuntimeError("The crystal does not have exactly one highest weight vector")
|
|
159
|
+
|
|
160
|
+
# TODO: Not every highest weight crystal is a lowest weight crystal
|
|
161
|
+
@cached_method
|
|
162
|
+
def lowest_weight_vectors(self):
|
|
163
|
+
r"""
|
|
164
|
+
Return the lowest weight vectors of ``self``.
|
|
165
|
+
|
|
166
|
+
This default implementation selects among all elements of the crystal
|
|
167
|
+
those that are lowest weight, and cache the result.
|
|
168
|
+
A crystal element `b` is lowest weight if `f_i(b)=0` for all `i` in the
|
|
169
|
+
index set.
|
|
170
|
+
|
|
171
|
+
EXAMPLES::
|
|
172
|
+
|
|
173
|
+
sage: C = crystals.Letters(['A',5])
|
|
174
|
+
sage: C.lowest_weight_vectors()
|
|
175
|
+
(6,)
|
|
176
|
+
|
|
177
|
+
::
|
|
178
|
+
|
|
179
|
+
sage: C = crystals.Letters(['A',2])
|
|
180
|
+
sage: T = crystals.TensorProduct(C, C, C,generators=[[C(2),C(1),C(1)],
|
|
181
|
+
....: [C(1),C(2),C(1)]])
|
|
182
|
+
sage: T.lowest_weight_vectors()
|
|
183
|
+
([3, 2, 3], [3, 3, 2])
|
|
184
|
+
"""
|
|
185
|
+
return tuple(g for g in self if g.is_lowest_weight())
|
|
186
|
+
|
|
187
|
+
def __iter__(self, index_set=None, max_depth=float("inf")):
|
|
188
|
+
"""
|
|
189
|
+
Return the iterator of ``self``.
|
|
190
|
+
|
|
191
|
+
INPUT:
|
|
192
|
+
|
|
193
|
+
- ``index_set`` -- (default: ``None``) the index set; if ``None``
|
|
194
|
+
then use the index set of the crystal
|
|
195
|
+
|
|
196
|
+
- ``max_depth`` -- (default: infinity) the maximum depth to build
|
|
197
|
+
|
|
198
|
+
EXAMPLES::
|
|
199
|
+
|
|
200
|
+
sage: C = crystals.LSPaths(['A',2,1],[0,1,0])
|
|
201
|
+
sage: sorted([p for p in C.__iter__(max_depth=3)], key=str)
|
|
202
|
+
[(-Lambda[0] + 2*Lambda[2] - delta,),
|
|
203
|
+
(-Lambda[0] + Lambda[1] + 1/2*Lambda[2] - delta, Lambda[0] - 1/2*Lambda[2]),
|
|
204
|
+
(1/2*Lambda[0] + Lambda[1] - Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[2] - 1/2*delta),
|
|
205
|
+
(2*Lambda[0] - Lambda[2],),
|
|
206
|
+
(Lambda[0] - Lambda[1] + Lambda[2],),
|
|
207
|
+
(Lambda[1],)]
|
|
208
|
+
sage: [p for p in C.__iter__(index_set=[0, 1], max_depth=3)]
|
|
209
|
+
[(Lambda[1],), (Lambda[0] - Lambda[1] + Lambda[2],), (-Lambda[0] + 2*Lambda[2] - delta,)]
|
|
210
|
+
"""
|
|
211
|
+
if index_set is None:
|
|
212
|
+
index_set = self.index_set()
|
|
213
|
+
from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet
|
|
214
|
+
return RecursivelyEnumeratedSet(self.module_generators,
|
|
215
|
+
lambda x: [x.f(i) for i in index_set],
|
|
216
|
+
structure='graded',
|
|
217
|
+
max_depth=max_depth).breadth_first_search_iterator()
|
|
218
|
+
|
|
219
|
+
@cached_method
|
|
220
|
+
def q_dimension(self, q=None, prec=None, use_product=False):
|
|
221
|
+
r"""
|
|
222
|
+
Return the `q`-dimension of ``self``.
|
|
223
|
+
|
|
224
|
+
Let `B(\lambda)` denote a highest weight crystal. Recall that
|
|
225
|
+
the degree of the `\mu`-weight space of `B(\lambda)` (under
|
|
226
|
+
the principal gradation) is equal to
|
|
227
|
+
`\langle \rho^{\vee}, \lambda - \mu \rangle` where
|
|
228
|
+
`\langle \rho^{\vee}, \alpha_i \rangle = 1` for all `i \in I`
|
|
229
|
+
(in particular, take `\rho^{\vee} = \sum_{i \in I} h_i`).
|
|
230
|
+
|
|
231
|
+
The `q`-dimension of a highest weight crystal `B(\lambda)` is
|
|
232
|
+
defined as
|
|
233
|
+
|
|
234
|
+
.. MATH::
|
|
235
|
+
|
|
236
|
+
\dim_q B(\lambda) := \sum_{j \geq 0} \dim(B_j) q^j,
|
|
237
|
+
|
|
238
|
+
where `B_j` denotes the degree `j` portion of `B(\lambda)`. This
|
|
239
|
+
can be expressed as the product
|
|
240
|
+
|
|
241
|
+
.. MATH::
|
|
242
|
+
|
|
243
|
+
\dim_q B(\lambda) = \prod_{\alpha^{\vee} \in \Delta_+^{\vee}}
|
|
244
|
+
\left( \frac{1 - q^{\langle \lambda + \rho, \alpha^{\vee}
|
|
245
|
+
\rangle}}{1 - q^{\langle \rho, \alpha^{\vee} \rangle}}
|
|
246
|
+
\right)^{\mathrm{mult}\, \alpha},
|
|
247
|
+
|
|
248
|
+
where `\Delta_+^{\vee}` denotes the set of positive coroots.
|
|
249
|
+
Taking the limit as `q \to 1` gives the dimension of `B(\lambda)`.
|
|
250
|
+
For more information, see [Ka1990]_ Section 10.10.
|
|
251
|
+
|
|
252
|
+
INPUT:
|
|
253
|
+
|
|
254
|
+
- ``q`` -- the (generic) parameter `q`
|
|
255
|
+
|
|
256
|
+
- ``prec`` -- (default: ``None``) the precision of the power
|
|
257
|
+
series ring to use if the crystal is not known to be finite
|
|
258
|
+
(i.e. the number of terms returned).
|
|
259
|
+
If ``None``, then the result is returned as a lazy power series.
|
|
260
|
+
|
|
261
|
+
- ``use_product`` -- boolean (default: ``False``); if we have a
|
|
262
|
+
finite crystal and ``True``, use the product formula
|
|
263
|
+
|
|
264
|
+
EXAMPLES::
|
|
265
|
+
|
|
266
|
+
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
|
|
267
|
+
sage: qdim = C.q_dimension(); qdim
|
|
268
|
+
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
|
|
269
|
+
sage: qdim(1)
|
|
270
|
+
8
|
|
271
|
+
sage: len(C) == qdim(1)
|
|
272
|
+
True
|
|
273
|
+
sage: C.q_dimension(use_product=True) == qdim
|
|
274
|
+
True
|
|
275
|
+
sage: C.q_dimension(prec=20)
|
|
276
|
+
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
|
|
277
|
+
sage: C.q_dimension(prec=2)
|
|
278
|
+
2*q + 1
|
|
279
|
+
|
|
280
|
+
sage: R.<t> = QQ[]
|
|
281
|
+
sage: C.q_dimension(q=t^2)
|
|
282
|
+
t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1
|
|
283
|
+
|
|
284
|
+
sage: C = crystals.Tableaux(['A',2], shape=[5,2])
|
|
285
|
+
sage: C.q_dimension()
|
|
286
|
+
q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5
|
|
287
|
+
+ 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1
|
|
288
|
+
|
|
289
|
+
sage: C = crystals.Tableaux(['B',2], shape=[2,1])
|
|
290
|
+
sage: qdim = C.q_dimension(); qdim
|
|
291
|
+
q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5
|
|
292
|
+
+ 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1
|
|
293
|
+
sage: qdim == C.q_dimension(use_product=True)
|
|
294
|
+
True
|
|
295
|
+
|
|
296
|
+
sage: C = crystals.Tableaux(['D',4], shape=[2,1])
|
|
297
|
+
sage: C.q_dimension()
|
|
298
|
+
q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11
|
|
299
|
+
+ 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5
|
|
300
|
+
+ 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1
|
|
301
|
+
|
|
302
|
+
We check with a finite tensor product::
|
|
303
|
+
|
|
304
|
+
sage: TP = crystals.TensorProduct(C, C)
|
|
305
|
+
sage: TP.cardinality()
|
|
306
|
+
25600
|
|
307
|
+
sage: qdim = TP.q_dimension(use_product=True); qdim # long time
|
|
308
|
+
q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26
|
|
309
|
+
+ 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21
|
|
310
|
+
+ 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16
|
|
311
|
+
+ 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11
|
|
312
|
+
+ 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6
|
|
313
|
+
+ 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26
|
|
314
|
+
sage: qdim(1) # long time
|
|
315
|
+
25600
|
|
316
|
+
sage: TP.q_dimension() == qdim # long time
|
|
317
|
+
True
|
|
318
|
+
|
|
319
|
+
The `q`-dimensions of infinite crystals are returned
|
|
320
|
+
as formal power series::
|
|
321
|
+
|
|
322
|
+
sage: C = crystals.LSPaths(['A',2,1], [1,0,0])
|
|
323
|
+
sage: C.q_dimension(prec=5)
|
|
324
|
+
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5)
|
|
325
|
+
sage: C.q_dimension(prec=10)
|
|
326
|
+
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
|
|
327
|
+
+ 9*q^7 + 13*q^8 + 16*q^9 + O(q^10)
|
|
328
|
+
sage: qdim = C.q_dimension(); qdim
|
|
329
|
+
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 + O(q^7)
|
|
330
|
+
sage: qdim[:16]
|
|
331
|
+
[1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70]
|
|
332
|
+
"""
|
|
333
|
+
from sage.rings.integer_ring import ZZ
|
|
334
|
+
WLR = self.weight_lattice_realization()
|
|
335
|
+
I = self.index_set()
|
|
336
|
+
mg = self.highest_weight_vectors()
|
|
337
|
+
max_deg = float('inf') if prec is None else prec - 1
|
|
338
|
+
|
|
339
|
+
def iter_by_deg(gens):
|
|
340
|
+
next = set(gens)
|
|
341
|
+
deg = -1
|
|
342
|
+
while next and deg < max_deg:
|
|
343
|
+
deg += 1
|
|
344
|
+
yield len(next)
|
|
345
|
+
todo = next
|
|
346
|
+
next = set()
|
|
347
|
+
while todo:
|
|
348
|
+
x = todo.pop()
|
|
349
|
+
for i in I:
|
|
350
|
+
y = x.f(i)
|
|
351
|
+
if y is not None:
|
|
352
|
+
next.add(y)
|
|
353
|
+
# def iter_by_deg
|
|
354
|
+
|
|
355
|
+
from sage.categories.finite_crystals import FiniteCrystals
|
|
356
|
+
if self in FiniteCrystals():
|
|
357
|
+
if q is None:
|
|
358
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
359
|
+
q = PolynomialRing(ZZ, 'q').gen(0)
|
|
360
|
+
|
|
361
|
+
if use_product:
|
|
362
|
+
# Since we are in the classical case, all roots occur with multiplicity 1
|
|
363
|
+
pos_coroots = [x.associated_coroot() for x in WLR.positive_roots()]
|
|
364
|
+
rho = WLR.rho()
|
|
365
|
+
P = q.parent()
|
|
366
|
+
ret = P.zero()
|
|
367
|
+
for v in self.highest_weight_vectors():
|
|
368
|
+
hw = v.weight()
|
|
369
|
+
ret += P.prod((1 - q**(rho+hw).scalar(ac)) / (1 - q**rho.scalar(ac))
|
|
370
|
+
for ac in pos_coroots)
|
|
371
|
+
# We do a cast since the result would otherwise live in the fraction field
|
|
372
|
+
return P(ret)
|
|
373
|
+
|
|
374
|
+
elif prec is None:
|
|
375
|
+
# If we're here, we may not be a finite crystal.
|
|
376
|
+
# In fact, we're probably infinite.
|
|
377
|
+
from sage.rings.lazy_series_ring import LazyPowerSeriesRing
|
|
378
|
+
if q is None:
|
|
379
|
+
P = LazyPowerSeriesRing(ZZ, names='q')
|
|
380
|
+
else:
|
|
381
|
+
P = q.parent()
|
|
382
|
+
if not isinstance(P, LazyPowerSeriesRing):
|
|
383
|
+
raise TypeError("the parent of q must be a lazy power series ring")
|
|
384
|
+
ret = P(iter_by_deg(mg))
|
|
385
|
+
return ret
|
|
386
|
+
|
|
387
|
+
from sage.rings.power_series_ring import PowerSeriesRing, PowerSeriesRing_generic
|
|
388
|
+
if q is None:
|
|
389
|
+
q = PowerSeriesRing(ZZ, 'q', default_prec=prec).gen(0)
|
|
390
|
+
P = q.parent()
|
|
391
|
+
ret = P.sum(c * q**deg for deg, c in enumerate(iter_by_deg(mg)))
|
|
392
|
+
if ret.degree() == max_deg and isinstance(P, PowerSeriesRing_generic):
|
|
393
|
+
ret = P(ret, prec)
|
|
394
|
+
return ret
|
|
395
|
+
|
|
396
|
+
# TODO: This is not correct if a factor has multiple heads (i.e., we
|
|
397
|
+
# should have a category for uniqueness of highest/lowest weights)
|
|
398
|
+
connected_components_generators = highest_weight_vectors
|
|
399
|
+
|
|
400
|
+
def _Hom_(self, Y, category=None, **options):
|
|
401
|
+
r"""
|
|
402
|
+
Return the homset from ``self`` to ``Y`` in the
|
|
403
|
+
category ``category``.
|
|
404
|
+
|
|
405
|
+
INPUT:
|
|
406
|
+
|
|
407
|
+
- ``Y`` -- a crystal
|
|
408
|
+
- ``category`` -- a subcategory of :class:`HighestWeightCrysals`()
|
|
409
|
+
or ``None``
|
|
410
|
+
|
|
411
|
+
The sole purpose of this method is to construct the homset as a
|
|
412
|
+
:class:`~sage.categories.highest_weight_crystals.HighestWeightCrystalHomset`.
|
|
413
|
+
If ``category`` is specified and is not a subcategory of
|
|
414
|
+
:class:`HighestWeightCrystals`, a :exc:`TypeError` is raised
|
|
415
|
+
instead
|
|
416
|
+
|
|
417
|
+
This method is not meant to be called directly. Please use
|
|
418
|
+
:func:`sage.categories.homset.Hom` instead.
|
|
419
|
+
|
|
420
|
+
EXAMPLES::
|
|
421
|
+
|
|
422
|
+
sage: B = crystals.Tableaux(['A',2], shape=[2,1])
|
|
423
|
+
sage: H = B._Hom_(B)
|
|
424
|
+
sage: H
|
|
425
|
+
Set of Crystal Morphisms from The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
|
|
426
|
+
to The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
|
|
427
|
+
sage: type(H)
|
|
428
|
+
<class 'sage.categories.highest_weight_crystals.HighestWeightCrystalHomset_with_category'>
|
|
429
|
+
|
|
430
|
+
TESTS:
|
|
431
|
+
|
|
432
|
+
Check that we fallback first to trying a crystal homset
|
|
433
|
+
(:issue:`19458`)::
|
|
434
|
+
|
|
435
|
+
sage: Binf = crystals.infinity.Tableaux(['A',2])
|
|
436
|
+
sage: Bi = crystals.elementary.Elementary(Binf.cartan_type(), 1)
|
|
437
|
+
sage: tens = Bi.tensor(Binf)
|
|
438
|
+
sage: Hom(Binf, tens)
|
|
439
|
+
Set of Crystal Morphisms from ...
|
|
440
|
+
"""
|
|
441
|
+
if category is None:
|
|
442
|
+
category = self.category()
|
|
443
|
+
elif not category.is_subcategory(Crystals()):
|
|
444
|
+
raise TypeError("{} is not a subcategory of Crystals()".format(category))
|
|
445
|
+
if Y not in Crystals():
|
|
446
|
+
raise TypeError("{} is not a crystal".format(Y))
|
|
447
|
+
return HighestWeightCrystalHomset(self, Y, category=category, **options)
|
|
448
|
+
|
|
449
|
+
def digraph(self, subset=None, index_set=None, depth=None):
|
|
450
|
+
"""
|
|
451
|
+
Return the DiGraph associated to ``self``.
|
|
452
|
+
|
|
453
|
+
INPUT:
|
|
454
|
+
|
|
455
|
+
- ``subset`` -- (optional) a subset of vertices for
|
|
456
|
+
which the digraph should be constructed
|
|
457
|
+
|
|
458
|
+
- ``index_set`` -- (optional) the index set to draw arrows
|
|
459
|
+
|
|
460
|
+
- ``depth`` -- the depth to draw; optional only for finite crystals
|
|
461
|
+
|
|
462
|
+
EXAMPLES::
|
|
463
|
+
|
|
464
|
+
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
|
|
465
|
+
sage: T.digraph()
|
|
466
|
+
Digraph on 8 vertices
|
|
467
|
+
sage: S = T.subcrystal(max_depth=2)
|
|
468
|
+
sage: len(S)
|
|
469
|
+
5
|
|
470
|
+
sage: G = T.digraph(subset=list(S))
|
|
471
|
+
sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True)
|
|
472
|
+
True
|
|
473
|
+
|
|
474
|
+
TESTS:
|
|
475
|
+
|
|
476
|
+
The following example demonstrates the speed improvement.
|
|
477
|
+
The speedup in non-affine types is small however::
|
|
478
|
+
|
|
479
|
+
sage: depth = 5
|
|
480
|
+
sage: C = crystals.AlcovePaths(['A',2,1], [1,1,0])
|
|
481
|
+
sage: general_digraph = Crystals().parent_class.digraph
|
|
482
|
+
sage: S = C.subcrystal(max_depth=depth, direction='lower')
|
|
483
|
+
sage: %timeit C.digraph(depth=depth) # not tested
|
|
484
|
+
10 loops, best of 3: 48.9 ms per loop
|
|
485
|
+
sage: %timeit general_digraph(C, subset=S) # not tested
|
|
486
|
+
10 loops, best of 3: 96.5 ms per loop
|
|
487
|
+
sage: G1 = C.digraph(depth=depth)
|
|
488
|
+
sage: G2 = general_digraph(C, subset=S)
|
|
489
|
+
sage: G1.is_isomorphic(G2, edge_labels=True)
|
|
490
|
+
True
|
|
491
|
+
"""
|
|
492
|
+
if subset is not None:
|
|
493
|
+
return Crystals().parent_class.digraph(self, subset, index_set)
|
|
494
|
+
|
|
495
|
+
if self not in Crystals().Finite() and depth is None:
|
|
496
|
+
raise NotImplementedError("crystals not known to be finite must"
|
|
497
|
+
" specify either the subset or depth")
|
|
498
|
+
|
|
499
|
+
from sage.graphs.digraph import DiGraph
|
|
500
|
+
if index_set is None:
|
|
501
|
+
index_set = self.index_set()
|
|
502
|
+
|
|
503
|
+
rank = 0
|
|
504
|
+
d = {g: {} for g in self.module_generators}
|
|
505
|
+
visited = set(d.keys())
|
|
506
|
+
|
|
507
|
+
while depth is None or rank < depth:
|
|
508
|
+
recently_visited = set()
|
|
509
|
+
for x in visited:
|
|
510
|
+
d.setdefault(x, {}) # does nothing if there's a default
|
|
511
|
+
for i in index_set:
|
|
512
|
+
xfi = x.f(i)
|
|
513
|
+
if xfi is not None:
|
|
514
|
+
d[x][xfi] = i
|
|
515
|
+
recently_visited.add(xfi)
|
|
516
|
+
if not recently_visited: # No new nodes, nothing more to do
|
|
517
|
+
break
|
|
518
|
+
rank += 1
|
|
519
|
+
visited = recently_visited
|
|
520
|
+
|
|
521
|
+
G = DiGraph(d)
|
|
522
|
+
from sage.graphs.dot2tex_utils import have_dot2tex
|
|
523
|
+
if have_dot2tex():
|
|
524
|
+
G.set_latex_options(format='dot2tex',
|
|
525
|
+
edge_labels=True,
|
|
526
|
+
color_by_label=self.cartan_type()._index_set_coloring)
|
|
527
|
+
return G
|
|
528
|
+
|
|
529
|
+
class ElementMethods:
|
|
530
|
+
def string_parameters(self, word=None):
|
|
531
|
+
r"""
|
|
532
|
+
Return the string parameters of ``self`` corresponding to the
|
|
533
|
+
reduced word ``word``.
|
|
534
|
+
|
|
535
|
+
Given a reduced expression `w = s_{i_1} \cdots s_{i_k}`,
|
|
536
|
+
the string parameters of `b \in B` corresponding to `w`
|
|
537
|
+
are `(a_1, \ldots, a_k)` such that
|
|
538
|
+
|
|
539
|
+
.. MATH::
|
|
540
|
+
|
|
541
|
+
\begin{aligned}
|
|
542
|
+
e_{i_m}^{a_m} \cdots e_{i_1}^{a_1} b & \neq 0 \\
|
|
543
|
+
e_{i_m}^{a_m+1} \cdots e_{i_1}^{a_1} b & = 0
|
|
544
|
+
\end{aligned}
|
|
545
|
+
|
|
546
|
+
for all `1 \leq m \leq k`.
|
|
547
|
+
|
|
548
|
+
For connected components isomorphic to `B(\lambda)` or
|
|
549
|
+
`B(\infty)`, if `w = w_0` is the longest element of the
|
|
550
|
+
Weyl group, then the path determined by the string
|
|
551
|
+
parametrization terminates at the highest weight vector.
|
|
552
|
+
|
|
553
|
+
INPUT:
|
|
554
|
+
|
|
555
|
+
- ``word`` -- a word in the alphabet of the index set; if not
|
|
556
|
+
specified and we are in finite type, then this will be some
|
|
557
|
+
reduced expression for the long element determined by the
|
|
558
|
+
Weyl group
|
|
559
|
+
|
|
560
|
+
EXAMPLES::
|
|
561
|
+
|
|
562
|
+
sage: B = crystals.infinity.NakajimaMonomials(['A',3])
|
|
563
|
+
sage: mg = B.highest_weight_vector()
|
|
564
|
+
sage: w0 = [1,2,1,3,2,1]
|
|
565
|
+
sage: mg.string_parameters(w0)
|
|
566
|
+
[0, 0, 0, 0, 0, 0]
|
|
567
|
+
sage: mg.f_string([1]).string_parameters(w0)
|
|
568
|
+
[1, 0, 0, 0, 0, 0]
|
|
569
|
+
sage: mg.f_string([1,1,1]).string_parameters(w0)
|
|
570
|
+
[3, 0, 0, 0, 0, 0]
|
|
571
|
+
sage: mg.f_string([1,1,1,2,2]).string_parameters(w0)
|
|
572
|
+
[1, 2, 2, 0, 0, 0]
|
|
573
|
+
sage: mg.f_string([1,1,1,2,2]) == mg.f_string([1,1,2,2,1])
|
|
574
|
+
True
|
|
575
|
+
sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1])
|
|
576
|
+
sage: x.string_parameters(w0)
|
|
577
|
+
[4, 1, 1, 2, 2, 2]
|
|
578
|
+
sage: x.string_parameters([3,2,1,3,2,3])
|
|
579
|
+
[2, 3, 7, 0, 0, 0]
|
|
580
|
+
sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2)
|
|
581
|
+
True
|
|
582
|
+
|
|
583
|
+
::
|
|
584
|
+
|
|
585
|
+
sage: B = crystals.infinity.Tableaux("A5")
|
|
586
|
+
sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6],
|
|
587
|
+
....: [2,2,2,2,2,2,2,2,2,4,5,5,5,6],
|
|
588
|
+
....: [3,3,3,3,3,3,3,5],
|
|
589
|
+
....: [4,4,4,6,6,6],
|
|
590
|
+
....: [5,6]])
|
|
591
|
+
sage: b.string_parameters([1,2,1,3,2,1,4,3,2,1,5,4,3,2,1])
|
|
592
|
+
[0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6]
|
|
593
|
+
|
|
594
|
+
sage: B = crystals.infinity.Tableaux("G2")
|
|
595
|
+
sage: b = B(rows=[[1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],[2,3,3,3]])
|
|
596
|
+
sage: b.string_parameters([2,1,2,1,2,1])
|
|
597
|
+
[5, 13, 11, 15, 4, 4]
|
|
598
|
+
sage: b.string_parameters([1,2,1,2,1,2])
|
|
599
|
+
[7, 12, 15, 8, 10, 0]
|
|
600
|
+
|
|
601
|
+
::
|
|
602
|
+
|
|
603
|
+
sage: C = crystals.Tableaux(['C',2], shape=[2,1])
|
|
604
|
+
sage: mg = C.highest_weight_vector()
|
|
605
|
+
sage: lw = C.lowest_weight_vectors()[0]
|
|
606
|
+
sage: lw.string_parameters([1,2,1,2])
|
|
607
|
+
[1, 2, 3, 1]
|
|
608
|
+
sage: lw.string_parameters([2,1,2,1])
|
|
609
|
+
[1, 3, 2, 1]
|
|
610
|
+
sage: lw.e_string([2,1,1,1,2,2,1]) == mg
|
|
611
|
+
True
|
|
612
|
+
sage: lw.e_string([1,2,2,1,1,1,2]) == mg
|
|
613
|
+
True
|
|
614
|
+
|
|
615
|
+
TESTS::
|
|
616
|
+
|
|
617
|
+
sage: B = crystals.infinity.NakajimaMonomials(['B',3])
|
|
618
|
+
sage: mg = B.highest_weight_vector()
|
|
619
|
+
sage: mg.string_parameters()
|
|
620
|
+
[0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
621
|
+
sage: w0 = WeylGroup(['B',3]).long_element().reduced_word()
|
|
622
|
+
sage: def f_word(params):
|
|
623
|
+
....: return reversed([index for i, index in enumerate(w0)
|
|
624
|
+
....: for _ in range(params[i])])
|
|
625
|
+
sage: all(mg.f_string( f_word(x.value.string_parameters(w0)) ) == x.value
|
|
626
|
+
....: for x in B.subcrystal(max_depth=4))
|
|
627
|
+
True
|
|
628
|
+
|
|
629
|
+
sage: B = crystals.infinity.NakajimaMonomials(['A',2,1])
|
|
630
|
+
sage: mg = B.highest_weight_vector()
|
|
631
|
+
sage: mg.string_parameters()
|
|
632
|
+
Traceback (most recent call last):
|
|
633
|
+
...
|
|
634
|
+
ValueError: the word must be specified because the
|
|
635
|
+
Weyl group is not finite
|
|
636
|
+
"""
|
|
637
|
+
if word is None:
|
|
638
|
+
if not self.cartan_type().is_finite():
|
|
639
|
+
raise ValueError("the word must be specified because"
|
|
640
|
+
" the Weyl group is not finite")
|
|
641
|
+
from sage.combinat.root_system.weyl_group import WeylGroup
|
|
642
|
+
word = WeylGroup(self.cartan_type()).long_element().reduced_word()
|
|
643
|
+
x = self
|
|
644
|
+
params = []
|
|
645
|
+
for i in word:
|
|
646
|
+
count = 0
|
|
647
|
+
y = x.e(i)
|
|
648
|
+
while y is not None:
|
|
649
|
+
x = y
|
|
650
|
+
y = x.e(i)
|
|
651
|
+
count += 1
|
|
652
|
+
params.append(count)
|
|
653
|
+
return params
|
|
654
|
+
|
|
655
|
+
class TensorProducts(TensorProductsCategory):
|
|
656
|
+
"""
|
|
657
|
+
The category of highest weight crystals constructed by tensor
|
|
658
|
+
product of highest weight crystals.
|
|
659
|
+
"""
|
|
660
|
+
@cached_method
|
|
661
|
+
def extra_super_categories(self):
|
|
662
|
+
"""
|
|
663
|
+
EXAMPLES::
|
|
664
|
+
|
|
665
|
+
sage: HighestWeightCrystals().TensorProducts().extra_super_categories()
|
|
666
|
+
[Category of highest weight crystals]
|
|
667
|
+
"""
|
|
668
|
+
return [self.base_category()]
|
|
669
|
+
|
|
670
|
+
class ParentMethods:
|
|
671
|
+
"""
|
|
672
|
+
Implement operations on tensor products of crystals.
|
|
673
|
+
"""
|
|
674
|
+
@cached_method
|
|
675
|
+
def highest_weight_vectors(self):
|
|
676
|
+
r"""
|
|
677
|
+
Return the highest weight vectors of ``self``.
|
|
678
|
+
|
|
679
|
+
This works by using a backtracing algorithm since if
|
|
680
|
+
`b_2 \otimes b_1` is highest weight then `b_1` is
|
|
681
|
+
highest weight.
|
|
682
|
+
|
|
683
|
+
EXAMPLES::
|
|
684
|
+
|
|
685
|
+
sage: C = crystals.Tableaux(['D',4], shape=[2,2])
|
|
686
|
+
sage: D = crystals.Tableaux(['D',4], shape=[1])
|
|
687
|
+
sage: T = crystals.TensorProduct(D, C)
|
|
688
|
+
sage: T.highest_weight_vectors()
|
|
689
|
+
([[[1]], [[1, 1], [2, 2]]],
|
|
690
|
+
[[[3]], [[1, 1], [2, 2]]],
|
|
691
|
+
[[[-2]], [[1, 1], [2, 2]]])
|
|
692
|
+
sage: L = filter(lambda x: x.is_highest_weight(), T)
|
|
693
|
+
sage: tuple(L) == T.highest_weight_vectors()
|
|
694
|
+
True
|
|
695
|
+
|
|
696
|
+
TESTS:
|
|
697
|
+
|
|
698
|
+
We check this works with Kashiwara's convention for
|
|
699
|
+
tensor products::
|
|
700
|
+
|
|
701
|
+
sage: C = crystals.Tableaux(['B',3], shape=[2,2])
|
|
702
|
+
sage: D = crystals.Tableaux(['B',3], shape=[1])
|
|
703
|
+
sage: T = crystals.TensorProduct(D, C)
|
|
704
|
+
sage: T.options(convention='Kashiwara')
|
|
705
|
+
sage: T.highest_weight_vectors()
|
|
706
|
+
([[[1, 1], [2, 2]], [[1]]],
|
|
707
|
+
[[[1, 1], [2, 2]], [[3]]],
|
|
708
|
+
[[[1, 1], [2, 2]], [[-2]]])
|
|
709
|
+
sage: T.options._reset()
|
|
710
|
+
sage: T.highest_weight_vectors()
|
|
711
|
+
([[[1]], [[1, 1], [2, 2]]],
|
|
712
|
+
[[[3]], [[1, 1], [2, 2]]],
|
|
713
|
+
[[[-2]], [[1, 1], [2, 2]]])
|
|
714
|
+
"""
|
|
715
|
+
return tuple(self.highest_weight_vectors_iterator())
|
|
716
|
+
|
|
717
|
+
def highest_weight_vectors_iterator(self):
|
|
718
|
+
r"""
|
|
719
|
+
Iterate over the highest weight vectors of ``self``.
|
|
720
|
+
|
|
721
|
+
This works by using a backtracing algorithm since if
|
|
722
|
+
`b_2 \otimes b_1` is highest weight then `b_1` is
|
|
723
|
+
highest weight.
|
|
724
|
+
|
|
725
|
+
EXAMPLES::
|
|
726
|
+
|
|
727
|
+
sage: C = crystals.Tableaux(['D',4], shape=[2,2])
|
|
728
|
+
sage: D = crystals.Tableaux(['D',4], shape=[1])
|
|
729
|
+
sage: T = crystals.TensorProduct(D, C)
|
|
730
|
+
sage: tuple(T.highest_weight_vectors_iterator())
|
|
731
|
+
([[[1]], [[1, 1], [2, 2]]],
|
|
732
|
+
[[[3]], [[1, 1], [2, 2]]],
|
|
733
|
+
[[[-2]], [[1, 1], [2, 2]]])
|
|
734
|
+
sage: L = filter(lambda x: x.is_highest_weight(), T)
|
|
735
|
+
sage: tuple(L) == tuple(T.highest_weight_vectors_iterator())
|
|
736
|
+
True
|
|
737
|
+
|
|
738
|
+
TESTS:
|
|
739
|
+
|
|
740
|
+
We check this works with Kashiwara's convention for
|
|
741
|
+
tensor products::
|
|
742
|
+
|
|
743
|
+
sage: C = crystals.Tableaux(['B',3], shape=[2,2])
|
|
744
|
+
sage: D = crystals.Tableaux(['B',3], shape=[1])
|
|
745
|
+
sage: T = crystals.TensorProduct(D, C)
|
|
746
|
+
sage: T.options(convention='Kashiwara')
|
|
747
|
+
sage: tuple(T.highest_weight_vectors_iterator())
|
|
748
|
+
([[[1, 1], [2, 2]], [[1]]],
|
|
749
|
+
[[[1, 1], [2, 2]], [[3]]],
|
|
750
|
+
[[[1, 1], [2, 2]], [[-2]]])
|
|
751
|
+
sage: T.options._reset()
|
|
752
|
+
sage: tuple(T.highest_weight_vectors_iterator())
|
|
753
|
+
([[[1]], [[1, 1], [2, 2]]],
|
|
754
|
+
[[[3]], [[1, 1], [2, 2]]],
|
|
755
|
+
[[[-2]], [[1, 1], [2, 2]]])
|
|
756
|
+
|
|
757
|
+
This currently is not implemented for infinite crystals::
|
|
758
|
+
|
|
759
|
+
sage: P = RootSystem(['A',3,1]).weight_lattice(extended=True)
|
|
760
|
+
sage: M = crystals.NakajimaMonomials(P.fundamental_weight(0))
|
|
761
|
+
sage: T = tensor([M, M])
|
|
762
|
+
sage: list(T.highest_weight_vectors_iterator())
|
|
763
|
+
Traceback (most recent call last):
|
|
764
|
+
...
|
|
765
|
+
NotImplementedError: not implemented for infinite crystals
|
|
766
|
+
|
|
767
|
+
Check that :issue:`30493` is fixed::
|
|
768
|
+
|
|
769
|
+
sage: CW = CartanType("G", 2)
|
|
770
|
+
sage: C = crystals.Letters(CW)
|
|
771
|
+
sage: C.highest_weight_vectors()
|
|
772
|
+
(1,)
|
|
773
|
+
sage: T = crystals.TensorProduct(C)
|
|
774
|
+
sage: T.highest_weight_vectors()
|
|
775
|
+
([1],)
|
|
776
|
+
"""
|
|
777
|
+
if len(self.crystals) == 1:
|
|
778
|
+
for b in self.crystals[0].highest_weight_vectors():
|
|
779
|
+
yield self.element_class(self, [b])
|
|
780
|
+
return
|
|
781
|
+
I = self.index_set()
|
|
782
|
+
try:
|
|
783
|
+
T_elts = [C.list() for C in self.crystals[:-1]]
|
|
784
|
+
except (TypeError, NotImplementedError, AttributeError):
|
|
785
|
+
raise NotImplementedError("not implemented for infinite crystals")
|
|
786
|
+
from sage.categories.regular_crystals import RegularCrystals
|
|
787
|
+
if self in RegularCrystals:
|
|
788
|
+
def hw_test(b2, i, d):
|
|
789
|
+
return d < 0
|
|
790
|
+
else:
|
|
791
|
+
def hw_test(b2, i, d):
|
|
792
|
+
return d < 0 and b2.e(i) is not None
|
|
793
|
+
T_len = [len(elts) for elts in T_elts]
|
|
794
|
+
m = len(self.crystals) - 1
|
|
795
|
+
for b in self.crystals[-1].highest_weight_vectors():
|
|
796
|
+
T_pos = m - 1 # current tensor position
|
|
797
|
+
T_cur = [0]*m # index of current element for each tensor position
|
|
798
|
+
path = [None]*m + [b]
|
|
799
|
+
# cache phi for path up to current tensor position
|
|
800
|
+
T_phi = [None]*(m-1) + [{i: b.phi(i) for i in I}]
|
|
801
|
+
while T_pos < m:
|
|
802
|
+
if T_cur[T_pos] == T_len[T_pos]:
|
|
803
|
+
T_cur[T_pos] = 0
|
|
804
|
+
T_pos += 1
|
|
805
|
+
continue
|
|
806
|
+
|
|
807
|
+
b2 = T_elts[T_pos][T_cur[T_pos]]
|
|
808
|
+
T_cur[T_pos] += 1
|
|
809
|
+
b1_phi = T_phi[T_pos]
|
|
810
|
+
b1_phi_minus_b2_epsilon = {}
|
|
811
|
+
# break if (b2, b1) is not highest weight
|
|
812
|
+
for i in I:
|
|
813
|
+
d = b1_phi[i] - b2.epsilon(i)
|
|
814
|
+
# In the non-regular case, d may be nan.
|
|
815
|
+
# In this case b2.e(i) is None,
|
|
816
|
+
# and we may rely on max(0, nan) == 0.
|
|
817
|
+
# In the regular case, the next line is simply
|
|
818
|
+
# if d < 0:
|
|
819
|
+
if hw_test(b2, i, d):
|
|
820
|
+
break
|
|
821
|
+
b1_phi_minus_b2_epsilon[i] = d
|
|
822
|
+
else:
|
|
823
|
+
path[T_pos] = b2
|
|
824
|
+
if T_pos:
|
|
825
|
+
T_pos -= 1
|
|
826
|
+
# In the regular case, the next line is simply
|
|
827
|
+
# T_phi[T_pos] = {i: b2.phi(i) + b1_phi_minus_b2_epsilon[i] for i in I}
|
|
828
|
+
T_phi[T_pos] = {i: b2.phi(i) + max(0, b1_phi_minus_b2_epsilon[i])
|
|
829
|
+
for i in I}
|
|
830
|
+
else:
|
|
831
|
+
yield self.element_class(self, path)
|
|
832
|
+
|
|
833
|
+
###############################################################################
|
|
834
|
+
## Morphisms
|
|
835
|
+
|
|
836
|
+
|
|
837
|
+
class HighestWeightCrystalMorphism(CrystalMorphismByGenerators):
|
|
838
|
+
r"""
|
|
839
|
+
A virtual crystal morphism whose domain is a highest weight crystal.
|
|
840
|
+
|
|
841
|
+
INPUT:
|
|
842
|
+
|
|
843
|
+
- ``parent`` -- a homset
|
|
844
|
+
- ``on_gens`` -- a function or list that determines the image of the
|
|
845
|
+
generators (if given a list, then this uses the order of the
|
|
846
|
+
generators of the domain) of the domain under ``self``
|
|
847
|
+
- ``cartan_type`` -- (optional) a Cartan type; the default is the
|
|
848
|
+
Cartan type of the domain
|
|
849
|
+
- ``virtualization`` -- (optional) a dictionary whose keys are
|
|
850
|
+
in the index set of the domain and whose values are lists of
|
|
851
|
+
entries in the index set of the codomain
|
|
852
|
+
- ``scaling_factors`` -- (optional) a dictionary whose keys are in
|
|
853
|
+
the index set of the domain and whose values are scaling factors
|
|
854
|
+
for the weight, `\varepsilon` and `\varphi`
|
|
855
|
+
- ``gens`` -- (optional) a list of generators to define the morphism;
|
|
856
|
+
the default is to use the highest weight vectors of the crystal
|
|
857
|
+
- ``check`` -- boolean (default: ``True``); check if the crystal morphism
|
|
858
|
+
is valid
|
|
859
|
+
"""
|
|
860
|
+
def __init__(self, parent, on_gens, cartan_type=None,
|
|
861
|
+
virtualization=None, scaling_factors=None,
|
|
862
|
+
gens=None, check=True):
|
|
863
|
+
"""
|
|
864
|
+
Construct a crystal morphism.
|
|
865
|
+
|
|
866
|
+
TESTS::
|
|
867
|
+
|
|
868
|
+
sage: B = crystals.infinity.Tableaux(['B',2])
|
|
869
|
+
sage: C = crystals.infinity.NakajimaMonomials(['B',2])
|
|
870
|
+
sage: psi = B.crystal_morphism(C.module_generators)
|
|
871
|
+
|
|
872
|
+
sage: B = crystals.Tableaux(['B',3], shape=[1])
|
|
873
|
+
sage: C = crystals.Tableaux(['D',4], shape=[2])
|
|
874
|
+
sage: H = Hom(B, C)
|
|
875
|
+
sage: psi = H(C.module_generators)
|
|
876
|
+
"""
|
|
877
|
+
if cartan_type is None:
|
|
878
|
+
cartan_type = parent.domain().cartan_type()
|
|
879
|
+
if isinstance(on_gens, dict):
|
|
880
|
+
gens = on_gens.keys()
|
|
881
|
+
I = cartan_type.index_set()
|
|
882
|
+
if gens is None:
|
|
883
|
+
if cartan_type == parent.domain().cartan_type():
|
|
884
|
+
gens = parent.domain().highest_weight_vectors()
|
|
885
|
+
else:
|
|
886
|
+
gens = tuple(x for x in parent.domain() if x.is_highest_weight(I))
|
|
887
|
+
self._hw_gens = True
|
|
888
|
+
elif check:
|
|
889
|
+
self._hw_gens = all(x.is_highest_weight(I) for x in gens)
|
|
890
|
+
else:
|
|
891
|
+
self._hw_gens = False
|
|
892
|
+
CrystalMorphismByGenerators.__init__(self, parent, on_gens, cartan_type,
|
|
893
|
+
virtualization, scaling_factors,
|
|
894
|
+
gens, check)
|
|
895
|
+
|
|
896
|
+
def _call_(self, x):
|
|
897
|
+
"""
|
|
898
|
+
Return the image of ``x`` under ``self``.
|
|
899
|
+
|
|
900
|
+
TESTS::
|
|
901
|
+
|
|
902
|
+
sage: B = crystals.infinity.Tableaux(['B',2])
|
|
903
|
+
sage: C = crystals.infinity.NakajimaMonomials(['B',2])
|
|
904
|
+
sage: psi = B.crystal_morphism(C.module_generators)
|
|
905
|
+
sage: b = B.highest_weight_vector()
|
|
906
|
+
sage: psi(b)
|
|
907
|
+
1
|
|
908
|
+
sage: c = psi(b.f_string([1,1,1,2,2,1,2,2])); c
|
|
909
|
+
Y(1,0)^-4 Y(2,0)^4 Y(2,1)^-4
|
|
910
|
+
sage: c == C.highest_weight_vector().f_string([1,1,1,2,2,1,2,2])
|
|
911
|
+
True
|
|
912
|
+
|
|
913
|
+
sage: B = crystals.Tableaux(['B',3], shape=[1])
|
|
914
|
+
sage: C = crystals.Tableaux(['D',4], shape=[2])
|
|
915
|
+
sage: H = Hom(B, C)
|
|
916
|
+
sage: psi = H(C.module_generators)
|
|
917
|
+
sage: psi(B.module_generators[0])
|
|
918
|
+
[[1, 1]]
|
|
919
|
+
|
|
920
|
+
We check with the morphism defined on the lowest weight vector::
|
|
921
|
+
|
|
922
|
+
sage: B = crystals.Tableaux(['A',2], shape=[1])
|
|
923
|
+
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
|
|
924
|
+
sage: T = crystals.elementary.T(['A',2], La[2])
|
|
925
|
+
sage: Bp = T.tensor(B)
|
|
926
|
+
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
|
|
927
|
+
sage: H = Hom(Bp, C)
|
|
928
|
+
sage: x = C.module_generators[0].f_string([1,2])
|
|
929
|
+
sage: psi = H({Bp.lowest_weight_vectors()[0]: x})
|
|
930
|
+
sage: psi
|
|
931
|
+
['A', 2] Crystal morphism:
|
|
932
|
+
From: Full tensor product of the crystals
|
|
933
|
+
[The T crystal of type ['A', 2] and weight Lambda[2],
|
|
934
|
+
The crystal of tableaux of type ['A', 2] and shape(s) [[1]]]
|
|
935
|
+
To: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
|
|
936
|
+
Defn: [Lambda[2], [[3]]] |--> [[1, 3], [2]]
|
|
937
|
+
sage: psi(Bp.highest_weight_vector())
|
|
938
|
+
[[1, 1], [2]]
|
|
939
|
+
"""
|
|
940
|
+
if not self._hw_gens:
|
|
941
|
+
return CrystalMorphismByGenerators._call_(self, x)
|
|
942
|
+
mg, path = x.to_highest_weight(self._cartan_type.index_set())
|
|
943
|
+
cur = self._on_gens(mg)
|
|
944
|
+
for i in reversed(path):
|
|
945
|
+
if cur is None:
|
|
946
|
+
return None
|
|
947
|
+
s = []
|
|
948
|
+
sf = self._scaling_factors[i]
|
|
949
|
+
for j in self._virtualization[i]:
|
|
950
|
+
s += [j]*sf
|
|
951
|
+
cur = cur.f_string(s)
|
|
952
|
+
return cur
|
|
953
|
+
|
|
954
|
+
|
|
955
|
+
class HighestWeightCrystalHomset(CrystalHomset):
|
|
956
|
+
"""
|
|
957
|
+
The set of crystal morphisms from a highest weight crystal to
|
|
958
|
+
another crystal.
|
|
959
|
+
|
|
960
|
+
.. SEEALSO::
|
|
961
|
+
|
|
962
|
+
See :class:`sage.categories.crystals.CrystalHomset` for more
|
|
963
|
+
information.
|
|
964
|
+
"""
|
|
965
|
+
def __init__(self, X, Y, category=None):
|
|
966
|
+
"""
|
|
967
|
+
Initialize ``self``.
|
|
968
|
+
|
|
969
|
+
TESTS::
|
|
970
|
+
|
|
971
|
+
sage: B = crystals.Tableaux(['A', 2], shape=[2,1])
|
|
972
|
+
sage: H = Hom(B, B)
|
|
973
|
+
sage: B = crystals.infinity.Tableaux(['B',2])
|
|
974
|
+
sage: H = Hom(B, B)
|
|
975
|
+
"""
|
|
976
|
+
if category is None:
|
|
977
|
+
category = HighestWeightCrystals()
|
|
978
|
+
CrystalHomset.__init__(self, X, Y, category)
|
|
979
|
+
|
|
980
|
+
Element = HighestWeightCrystalMorphism
|