passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,1264 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
"""
|
|
3
|
+
Affine `n`-space over a ring
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2006 William Stein <wstein@gmail.com>
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
#
|
|
11
|
+
# https://www.gnu.org/licenses/
|
|
12
|
+
# ****************************************************************************
|
|
13
|
+
from itertools import product
|
|
14
|
+
|
|
15
|
+
from sage.rings.integer import Integer
|
|
16
|
+
from sage.rings.integer_ring import ZZ
|
|
17
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
18
|
+
from sage.rings.rational_field import RationalField
|
|
19
|
+
from sage.rings.polynomial.polynomial_ring import PolynomialRing_generic
|
|
20
|
+
from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_base
|
|
21
|
+
from sage.rings.finite_rings.finite_field_base import FiniteField
|
|
22
|
+
from sage.categories.map import Map
|
|
23
|
+
from sage.categories.fields import Fields
|
|
24
|
+
from sage.categories.number_fields import NumberFields
|
|
25
|
+
from sage.misc.latex import latex
|
|
26
|
+
from sage.structure.category_object import normalize_names
|
|
27
|
+
from sage.schemes.generic.scheme import AffineScheme
|
|
28
|
+
from sage.schemes.generic.ambient_space import AmbientSpace
|
|
29
|
+
from sage.schemes.affine.affine_homset import (SchemeHomset_points_affine,
|
|
30
|
+
SchemeHomset_polynomial_affine_space)
|
|
31
|
+
from sage.schemes.affine.affine_morphism import (SchemeMorphism_polynomial_affine_space,
|
|
32
|
+
SchemeMorphism_polynomial_affine_space_field,
|
|
33
|
+
SchemeMorphism_polynomial_affine_space_finite_field)
|
|
34
|
+
from sage.schemes.affine.affine_point import (SchemeMorphism_point_affine,
|
|
35
|
+
SchemeMorphism_point_affine_field,
|
|
36
|
+
SchemeMorphism_point_affine_finite_field)
|
|
37
|
+
from sage.misc.persist import register_unpickle_override
|
|
38
|
+
|
|
39
|
+
_Fields = Fields()
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def is_AffineSpace(x) -> bool:
|
|
43
|
+
r"""
|
|
44
|
+
Return ``True`` if ``x`` is an affine space.
|
|
45
|
+
|
|
46
|
+
EXAMPLES::
|
|
47
|
+
|
|
48
|
+
sage: from sage.schemes.affine.affine_space import is_AffineSpace
|
|
49
|
+
sage: is_AffineSpace(AffineSpace(5, names='x'))
|
|
50
|
+
doctest:warning...
|
|
51
|
+
DeprecationWarning: The function is_AffineSpace is deprecated; use 'isinstance(..., AffineSpace_generic)' instead.
|
|
52
|
+
See https://github.com/sagemath/sage/issues/38022 for details.
|
|
53
|
+
True
|
|
54
|
+
sage: is_AffineSpace(AffineSpace(5, GF(9, 'alpha'), names='x')) # needs sage.rings.finite_rings
|
|
55
|
+
True
|
|
56
|
+
sage: is_AffineSpace(Spec(ZZ))
|
|
57
|
+
False
|
|
58
|
+
"""
|
|
59
|
+
from sage.misc.superseded import deprecation
|
|
60
|
+
deprecation(38022, "The function is_AffineSpace is deprecated; use 'isinstance(..., AffineSpace_generic)' instead.")
|
|
61
|
+
return isinstance(x, AffineSpace_generic)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def AffineSpace(n, R=None, names=None, ambient_projective_space=None,
|
|
65
|
+
default_embedding_index=None):
|
|
66
|
+
r"""
|
|
67
|
+
Return affine space of dimension ``n`` over the ring ``R``.
|
|
68
|
+
|
|
69
|
+
EXAMPLES:
|
|
70
|
+
|
|
71
|
+
The dimension and ring can be given in either order::
|
|
72
|
+
|
|
73
|
+
sage: AffineSpace(3, QQ, 'x')
|
|
74
|
+
Affine Space of dimension 3 over Rational Field
|
|
75
|
+
sage: AffineSpace(5, QQ, 'x')
|
|
76
|
+
Affine Space of dimension 5 over Rational Field
|
|
77
|
+
sage: A = AffineSpace(2, QQ, names='XY'); A
|
|
78
|
+
Affine Space of dimension 2 over Rational Field
|
|
79
|
+
sage: A.coordinate_ring()
|
|
80
|
+
Multivariate Polynomial Ring in X, Y over Rational Field
|
|
81
|
+
|
|
82
|
+
Use the divide operator for base extension::
|
|
83
|
+
|
|
84
|
+
sage: AffineSpace(5, names='x')/GF(17)
|
|
85
|
+
Affine Space of dimension 5 over Finite Field of size 17
|
|
86
|
+
|
|
87
|
+
The default base ring is `\ZZ`::
|
|
88
|
+
|
|
89
|
+
sage: AffineSpace(5, names='x')
|
|
90
|
+
Affine Space of dimension 5 over Integer Ring
|
|
91
|
+
|
|
92
|
+
There is also an affine space associated to each polynomial ring::
|
|
93
|
+
|
|
94
|
+
sage: R = GF(7)['x, y, z']
|
|
95
|
+
sage: A = AffineSpace(R); A
|
|
96
|
+
Affine Space of dimension 3 over Finite Field of size 7
|
|
97
|
+
sage: A.coordinate_ring() is R
|
|
98
|
+
True
|
|
99
|
+
|
|
100
|
+
TESTS::
|
|
101
|
+
|
|
102
|
+
sage: R.<w> = QQ[]
|
|
103
|
+
sage: A.<w> = AffineSpace(R)
|
|
104
|
+
sage: A.gens() == R.gens()
|
|
105
|
+
True
|
|
106
|
+
|
|
107
|
+
sage: R.<x> = QQ[]
|
|
108
|
+
sage: A.<z> = AffineSpace(R)
|
|
109
|
+
Traceback (most recent call last):
|
|
110
|
+
...
|
|
111
|
+
NameError: variable names passed to AffineSpace conflict with names in ring
|
|
112
|
+
"""
|
|
113
|
+
if isinstance(n, (MPolynomialRing_base, PolynomialRing_generic)) and R is None:
|
|
114
|
+
R = n
|
|
115
|
+
if names is not None:
|
|
116
|
+
# Check for the case that the user provided a variable name
|
|
117
|
+
# That does not match what we wanted to use from R
|
|
118
|
+
names = normalize_names(R.ngens(), names)
|
|
119
|
+
if n.variable_names() != names:
|
|
120
|
+
# The provided name doesn't match the name of R's variables
|
|
121
|
+
raise NameError("variable names passed to AffineSpace conflict with names in ring")
|
|
122
|
+
A = AffineSpace(R.ngens(), R.base_ring(), R.variable_names())
|
|
123
|
+
A._coordinate_ring = R
|
|
124
|
+
return A
|
|
125
|
+
if names is None:
|
|
126
|
+
if n == 0:
|
|
127
|
+
names = ''
|
|
128
|
+
else:
|
|
129
|
+
names = 'x'
|
|
130
|
+
if isinstance(R, (Integer, int)):
|
|
131
|
+
n, R = R, n
|
|
132
|
+
if R is None:
|
|
133
|
+
R = ZZ # default is the integers
|
|
134
|
+
names = normalize_names(n, names)
|
|
135
|
+
if default_embedding_index is not None and ambient_projective_space is None:
|
|
136
|
+
from sage.schemes.projective.projective_space import ProjectiveSpace
|
|
137
|
+
ambient_projective_space = ProjectiveSpace(n, R)
|
|
138
|
+
if R in _Fields:
|
|
139
|
+
if isinstance(R, FiniteField):
|
|
140
|
+
return AffineSpace_finite_field(n, R, names,
|
|
141
|
+
ambient_projective_space, default_embedding_index)
|
|
142
|
+
else:
|
|
143
|
+
return AffineSpace_field(n, R, names,
|
|
144
|
+
ambient_projective_space, default_embedding_index)
|
|
145
|
+
return AffineSpace_generic(n, R, names, ambient_projective_space, default_embedding_index)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
class AffineSpace_generic(AmbientSpace, AffineScheme):
|
|
149
|
+
"""
|
|
150
|
+
Affine space of dimension `n` over the ring `R`.
|
|
151
|
+
|
|
152
|
+
EXAMPLES::
|
|
153
|
+
|
|
154
|
+
sage: X.<x,y,z> = AffineSpace(3, QQ)
|
|
155
|
+
sage: X.base_scheme()
|
|
156
|
+
Spectrum of Rational Field
|
|
157
|
+
sage: X.base_ring()
|
|
158
|
+
Rational Field
|
|
159
|
+
sage: X.category()
|
|
160
|
+
Category of schemes over Rational Field
|
|
161
|
+
sage: X.structure_morphism()
|
|
162
|
+
Scheme morphism:
|
|
163
|
+
From: Affine Space of dimension 3 over Rational Field
|
|
164
|
+
To: Spectrum of Rational Field
|
|
165
|
+
Defn: Structure map
|
|
166
|
+
|
|
167
|
+
Loading and saving::
|
|
168
|
+
|
|
169
|
+
sage: loads(X.dumps()) == X
|
|
170
|
+
True
|
|
171
|
+
|
|
172
|
+
We create several other examples of affine spaces::
|
|
173
|
+
|
|
174
|
+
sage: AffineSpace(5, PolynomialRing(QQ, 'z'), 'Z')
|
|
175
|
+
Affine Space of dimension 5 over Univariate Polynomial Ring in z over Rational Field
|
|
176
|
+
|
|
177
|
+
sage: AffineSpace(RealField(), 3, 'Z') # needs sage.rings.real_mpfr
|
|
178
|
+
Affine Space of dimension 3 over Real Field with 53 bits of precision
|
|
179
|
+
|
|
180
|
+
sage: AffineSpace(Qp(7), 2, 'x') # needs sage.rings.padics
|
|
181
|
+
Affine Space of dimension 2 over 7-adic Field with capped relative precision 20
|
|
182
|
+
|
|
183
|
+
Even 0-dimensional affine spaces are supported::
|
|
184
|
+
|
|
185
|
+
sage: AffineSpace(0)
|
|
186
|
+
Affine Space of dimension 0 over Integer Ring
|
|
187
|
+
"""
|
|
188
|
+
def __init__(self, n, R, names, ambient_projective_space, default_embedding_index):
|
|
189
|
+
"""
|
|
190
|
+
EXAMPLES::
|
|
191
|
+
|
|
192
|
+
sage: AffineSpace(3, Zp(5), 'y') # needs sage.rings.padics
|
|
193
|
+
Affine Space of dimension 3 over 5-adic Ring with capped relative precision 20
|
|
194
|
+
"""
|
|
195
|
+
AmbientSpace.__init__(self, n, R)
|
|
196
|
+
self._assign_names(names)
|
|
197
|
+
AffineScheme.__init__(self, self.coordinate_ring(), R)
|
|
198
|
+
|
|
199
|
+
index = default_embedding_index
|
|
200
|
+
if index is not None:
|
|
201
|
+
index = int(index)
|
|
202
|
+
|
|
203
|
+
self._default_embedding_index = index
|
|
204
|
+
self._ambient_projective_space = ambient_projective_space
|
|
205
|
+
|
|
206
|
+
def __iter__(self):
|
|
207
|
+
"""
|
|
208
|
+
Return iterator over the elements of this affine space when defined over a finite field.
|
|
209
|
+
|
|
210
|
+
EXAMPLES::
|
|
211
|
+
|
|
212
|
+
sage: FF = FiniteField(3)
|
|
213
|
+
sage: AA = AffineSpace(FF, 0)
|
|
214
|
+
sage: [ x for x in AA ]
|
|
215
|
+
[()]
|
|
216
|
+
sage: AA = AffineSpace(FF, 1, 'Z')
|
|
217
|
+
sage: [ x for x in AA ]
|
|
218
|
+
[(0), (1), (2)]
|
|
219
|
+
sage: AA.<z,w> = AffineSpace(FF, 2)
|
|
220
|
+
sage: [ x for x in AA ]
|
|
221
|
+
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
|
|
222
|
+
|
|
223
|
+
AUTHOR:
|
|
224
|
+
|
|
225
|
+
- David Kohel
|
|
226
|
+
"""
|
|
227
|
+
n = self.dimension_relative()
|
|
228
|
+
R = self.base_ring()
|
|
229
|
+
AHom = self.point_homset()
|
|
230
|
+
C = AHom.codomain()
|
|
231
|
+
|
|
232
|
+
for v in product(*[R for _ in range(n)]):
|
|
233
|
+
yield C._point(AHom, v, check=False)
|
|
234
|
+
|
|
235
|
+
def ngens(self):
|
|
236
|
+
"""
|
|
237
|
+
Return the number of generators of ``self``, i.e. the number of
|
|
238
|
+
variables in the coordinate ring of ``self``.
|
|
239
|
+
|
|
240
|
+
EXAMPLES::
|
|
241
|
+
|
|
242
|
+
sage: AffineSpace(3, QQ).ngens()
|
|
243
|
+
3
|
|
244
|
+
sage: AffineSpace(7, ZZ).ngens()
|
|
245
|
+
7
|
|
246
|
+
"""
|
|
247
|
+
return self.dimension_relative()
|
|
248
|
+
|
|
249
|
+
def rational_points(self, F=None):
|
|
250
|
+
"""
|
|
251
|
+
Return the list of ``F``-rational points on the affine space ``self``,
|
|
252
|
+
where ``F`` is a given finite field, or the base ring of ``self``.
|
|
253
|
+
|
|
254
|
+
EXAMPLES::
|
|
255
|
+
|
|
256
|
+
sage: A = AffineSpace(1, GF(3))
|
|
257
|
+
sage: A.rational_points()
|
|
258
|
+
[(0), (1), (2)]
|
|
259
|
+
sage: A.rational_points(GF(3^2, 'b')) # needs sage.rings.finite_rings
|
|
260
|
+
[(0), (b), (b + 1), (2*b + 1), (2), (2*b), (2*b + 2), (b + 2), (1)]
|
|
261
|
+
|
|
262
|
+
sage: AffineSpace(2, ZZ).rational_points(GF(2))
|
|
263
|
+
[(0, 0), (0, 1), (1, 0), (1, 1)]
|
|
264
|
+
|
|
265
|
+
TESTS::
|
|
266
|
+
|
|
267
|
+
sage: AffineSpace(2, QQ).rational_points()
|
|
268
|
+
Traceback (most recent call last):
|
|
269
|
+
...
|
|
270
|
+
TypeError: base ring (= Rational Field) must be a finite field
|
|
271
|
+
sage: AffineSpace(1, GF(3)).rational_points(ZZ)
|
|
272
|
+
Traceback (most recent call last):
|
|
273
|
+
...
|
|
274
|
+
TypeError: second argument (= Integer Ring) must be a finite field
|
|
275
|
+
"""
|
|
276
|
+
if F is None:
|
|
277
|
+
if not isinstance(self.base_ring(), FiniteField):
|
|
278
|
+
raise TypeError("base ring (= %s) must be a finite field" % self.base_ring())
|
|
279
|
+
return list(self)
|
|
280
|
+
elif not isinstance(F, FiniteField):
|
|
281
|
+
raise TypeError("second argument (= %s) must be a finite field" % F)
|
|
282
|
+
return list(self.base_extend(F))
|
|
283
|
+
|
|
284
|
+
def __eq__(self, right):
|
|
285
|
+
"""
|
|
286
|
+
Compare the space with ``right``.
|
|
287
|
+
|
|
288
|
+
EXAMPLES::
|
|
289
|
+
|
|
290
|
+
sage: AffineSpace(QQ, 3, 'a') == AffineSpace(ZZ, 3, 'a')
|
|
291
|
+
False
|
|
292
|
+
sage: AffineSpace(ZZ, 1, 'a') == AffineSpace(ZZ, 0, 'a')
|
|
293
|
+
False
|
|
294
|
+
sage: A = AffineSpace(ZZ, 1, 'x')
|
|
295
|
+
sage: loads(A.dumps()) == A
|
|
296
|
+
True
|
|
297
|
+
"""
|
|
298
|
+
if not isinstance(right, AffineSpace_generic):
|
|
299
|
+
return False
|
|
300
|
+
return (self.dimension_relative() == right.dimension_relative() and
|
|
301
|
+
self.coordinate_ring() == right.coordinate_ring())
|
|
302
|
+
|
|
303
|
+
def __ne__(self, other):
|
|
304
|
+
"""
|
|
305
|
+
Check whether the space is not equal to ``other``.
|
|
306
|
+
|
|
307
|
+
EXAMPLES::
|
|
308
|
+
|
|
309
|
+
sage: AffineSpace(QQ, 3, 'a') != AffineSpace(ZZ, 3, 'a')
|
|
310
|
+
True
|
|
311
|
+
sage: AffineSpace(ZZ, 1, 'a') != AffineSpace(ZZ, 0, 'a')
|
|
312
|
+
True
|
|
313
|
+
"""
|
|
314
|
+
return not (self == other)
|
|
315
|
+
|
|
316
|
+
def __hash__(self):
|
|
317
|
+
"""
|
|
318
|
+
Return the hash of ``self``.
|
|
319
|
+
|
|
320
|
+
EXAMPLES::
|
|
321
|
+
|
|
322
|
+
sage: hash(AffineSpace(QQ, 3, 'a')) == hash(AffineSpace(ZZ, 3, 'a'))
|
|
323
|
+
False
|
|
324
|
+
sage: hash(AffineSpace(ZZ, 1, 'a')) == hash(AffineSpace(ZZ, 0, 'a'))
|
|
325
|
+
False
|
|
326
|
+
"""
|
|
327
|
+
return hash((self.dimension_relative(), self.coordinate_ring()))
|
|
328
|
+
|
|
329
|
+
def _latex_(self):
|
|
330
|
+
r"""
|
|
331
|
+
Return a LaTeX representation of this affine space.
|
|
332
|
+
|
|
333
|
+
EXAMPLES::
|
|
334
|
+
|
|
335
|
+
sage: print(latex(AffineSpace(1, ZZ, 'x')))
|
|
336
|
+
\mathbf{A}_{\Bold{Z}}^{1}
|
|
337
|
+
|
|
338
|
+
TESTS::
|
|
339
|
+
|
|
340
|
+
sage: AffineSpace(11, Zp(5), 'y')._latex_() # needs sage.rings.padics
|
|
341
|
+
'\\mathbf{A}_{\\Bold{Z}_{5}}^{11}'
|
|
342
|
+
"""
|
|
343
|
+
return "\\mathbf{A}_{%s}^{%s}" % (latex(self.base_ring()), self.dimension_relative())
|
|
344
|
+
|
|
345
|
+
def _morphism(self, *args, **kwds):
|
|
346
|
+
"""
|
|
347
|
+
Construct a morphism determined by action on points of this affine space.
|
|
348
|
+
|
|
349
|
+
INPUT:
|
|
350
|
+
|
|
351
|
+
Same as for
|
|
352
|
+
:class:`~sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space`.
|
|
353
|
+
|
|
354
|
+
OUTPUT:
|
|
355
|
+
|
|
356
|
+
A new instance of
|
|
357
|
+
:class:`~sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space`.
|
|
358
|
+
|
|
359
|
+
EXAMPLES::
|
|
360
|
+
|
|
361
|
+
sage: AA = AffineSpace(QQ, 3, 'a')
|
|
362
|
+
sage: AA.inject_variables()
|
|
363
|
+
Defining a0, a1, a2
|
|
364
|
+
sage: EndAA = AA.Hom(AA)
|
|
365
|
+
sage: AA._morphism(EndAA, [a0*a1, a1*a2, a0*a2])
|
|
366
|
+
Scheme endomorphism of Affine Space of dimension 3 over Rational Field
|
|
367
|
+
Defn: Defined on coordinates by sending (a0, a1, a2) to
|
|
368
|
+
(a0*a1, a1*a2, a0*a2)
|
|
369
|
+
"""
|
|
370
|
+
return SchemeMorphism_polynomial_affine_space(*args, **kwds)
|
|
371
|
+
|
|
372
|
+
def _homset(self, *args, **kwds):
|
|
373
|
+
"""
|
|
374
|
+
Construct the Hom-set.
|
|
375
|
+
|
|
376
|
+
EXAMPLES::
|
|
377
|
+
|
|
378
|
+
sage: A.<x,y> = AffineSpace(2, QQ)
|
|
379
|
+
sage: Hom(A, A)
|
|
380
|
+
Set of morphisms
|
|
381
|
+
From: Affine Space of dimension 2 over Rational Field
|
|
382
|
+
To: Affine Space of dimension 2 over Rational Field
|
|
383
|
+
"""
|
|
384
|
+
return SchemeHomset_polynomial_affine_space(*args, **kwds)
|
|
385
|
+
|
|
386
|
+
def _point_homset(self, *args, **kwds):
|
|
387
|
+
"""
|
|
388
|
+
Construct a Hom-set for this affine space.
|
|
389
|
+
|
|
390
|
+
INPUT:
|
|
391
|
+
|
|
392
|
+
Same as for
|
|
393
|
+
:class:`~sage.schemes.affine.affine_homset.SchemeHomset_points_affine`.
|
|
394
|
+
|
|
395
|
+
OUTPUT:
|
|
396
|
+
|
|
397
|
+
A new instance of
|
|
398
|
+
:class:`~sage.schemes.affine.affine_homset.SchemeHomset_points_affine`.
|
|
399
|
+
|
|
400
|
+
EXAMPLES::
|
|
401
|
+
|
|
402
|
+
sage: AA = AffineSpace(QQ, 3, 'a')
|
|
403
|
+
sage: AA._point_homset(Spec(QQ), AA)
|
|
404
|
+
Set of rational points of Affine Space of dimension 3 over Rational Field
|
|
405
|
+
"""
|
|
406
|
+
return SchemeHomset_points_affine(*args, **kwds)
|
|
407
|
+
|
|
408
|
+
def _point(self, *args, **kwds):
|
|
409
|
+
r"""
|
|
410
|
+
Construct a point of affine space.
|
|
411
|
+
|
|
412
|
+
INPUT:
|
|
413
|
+
|
|
414
|
+
Same as for
|
|
415
|
+
:class:`~sage.schemes.affine.affine_point.SchemeMorphism_point_affine`.
|
|
416
|
+
|
|
417
|
+
OUTPUT:
|
|
418
|
+
|
|
419
|
+
A new instance of
|
|
420
|
+
:class:`~sage.schemes.affine.affine_point.SchemeMorphism_point_affine`.
|
|
421
|
+
|
|
422
|
+
TESTS::
|
|
423
|
+
|
|
424
|
+
sage: AA = AffineSpace(QQ, 3, 'a')
|
|
425
|
+
sage: AA._point(AA.point_homset(), [0, 1, 2])
|
|
426
|
+
(0, 1, 2)
|
|
427
|
+
"""
|
|
428
|
+
return SchemeMorphism_point_affine(*args, **kwds)
|
|
429
|
+
|
|
430
|
+
def _repr_(self):
|
|
431
|
+
"""
|
|
432
|
+
Return a string representation of this affine space.
|
|
433
|
+
|
|
434
|
+
EXAMPLES::
|
|
435
|
+
|
|
436
|
+
sage: AffineSpace(1, ZZ, 'x')
|
|
437
|
+
Affine Space of dimension 1 over Integer Ring
|
|
438
|
+
|
|
439
|
+
TESTS::
|
|
440
|
+
|
|
441
|
+
sage: AffineSpace(3, Zp(5), 'y')._repr_() # needs sage.rings.padics
|
|
442
|
+
'Affine Space of dimension 3 over 5-adic Ring with capped relative precision 20'
|
|
443
|
+
"""
|
|
444
|
+
return "Affine Space of dimension %s over %s" % (self.dimension_relative(), self.base_ring())
|
|
445
|
+
|
|
446
|
+
def _repr_generic_point(self, polys=None):
|
|
447
|
+
"""
|
|
448
|
+
Return a string representation of the generic point
|
|
449
|
+
corresponding to the list of polys on this affine space.
|
|
450
|
+
|
|
451
|
+
If polys is None, the representation of the generic point of
|
|
452
|
+
the affine space is returned.
|
|
453
|
+
|
|
454
|
+
EXAMPLES::
|
|
455
|
+
|
|
456
|
+
sage: A.<x, y> = AffineSpace(2, ZZ)
|
|
457
|
+
sage: A._repr_generic_point([y - x^2])
|
|
458
|
+
'(-x^2 + y)'
|
|
459
|
+
sage: A._repr_generic_point()
|
|
460
|
+
'(x, y)'
|
|
461
|
+
"""
|
|
462
|
+
if polys is None:
|
|
463
|
+
polys = self.gens()
|
|
464
|
+
return '(%s)' % (", ".join(str(f) for f in polys))
|
|
465
|
+
|
|
466
|
+
def _latex_generic_point(self, v=None):
|
|
467
|
+
"""
|
|
468
|
+
Return a LaTeX representation of the generic point
|
|
469
|
+
corresponding to the list of polys ``v`` on this affine space.
|
|
470
|
+
|
|
471
|
+
If ``v`` is None, the representation of the generic point of
|
|
472
|
+
the affine space is returned.
|
|
473
|
+
|
|
474
|
+
EXAMPLES::
|
|
475
|
+
|
|
476
|
+
sage: A.<x, y> = AffineSpace(2, ZZ)
|
|
477
|
+
sage: A._latex_generic_point([y - x^2])
|
|
478
|
+
'\\left(-x^{2} + y\\right)'
|
|
479
|
+
sage: A._latex_generic_point()
|
|
480
|
+
'\\left(x, y\\right)'
|
|
481
|
+
"""
|
|
482
|
+
if v is None:
|
|
483
|
+
v = self.gens()
|
|
484
|
+
return '\\left(%s\\right)' % (", ".join(str(latex(f)) for f in v))
|
|
485
|
+
|
|
486
|
+
def _check_satisfies_equations(self, v):
|
|
487
|
+
"""
|
|
488
|
+
Return ``True`` if ``v`` defines a point on the scheme ``self``; raise a
|
|
489
|
+
:exc:`TypeError` otherwise.
|
|
490
|
+
|
|
491
|
+
EXAMPLES::
|
|
492
|
+
|
|
493
|
+
sage: A = AffineSpace(3, ZZ)
|
|
494
|
+
sage: A._check_satisfies_equations([1, 1, 0])
|
|
495
|
+
True
|
|
496
|
+
sage: A._check_satisfies_equations((0, 1, 0))
|
|
497
|
+
True
|
|
498
|
+
sage: A._check_satisfies_equations([0, 0, 0])
|
|
499
|
+
True
|
|
500
|
+
sage: A._check_satisfies_equations([1, 2, 3, 4, 5])
|
|
501
|
+
Traceback (most recent call last):
|
|
502
|
+
...
|
|
503
|
+
TypeError: the list v=[1, 2, 3, 4, 5] must have 3 components
|
|
504
|
+
sage: A._check_satisfies_equations([1/2, 1, 1])
|
|
505
|
+
Traceback (most recent call last):
|
|
506
|
+
...
|
|
507
|
+
TypeError: the components of v=[1/2, 1, 1] must be elements of Integer Ring
|
|
508
|
+
sage: A._check_satisfies_equations(5)
|
|
509
|
+
Traceback (most recent call last):
|
|
510
|
+
...
|
|
511
|
+
TypeError: the argument v=5 must be a list or tuple
|
|
512
|
+
"""
|
|
513
|
+
if not isinstance(v, (list, tuple)):
|
|
514
|
+
raise TypeError('the argument v=%s must be a list or tuple' % v)
|
|
515
|
+
n = self.ngens()
|
|
516
|
+
if not len(v) == n:
|
|
517
|
+
raise TypeError('the list v=%s must have %s components' % (v, n))
|
|
518
|
+
R = self.base_ring()
|
|
519
|
+
from sage.structure.sequence import Sequence
|
|
520
|
+
if not Sequence(v).universe() == R:
|
|
521
|
+
raise TypeError('the components of v=%s must be elements of %s' % (v, R))
|
|
522
|
+
return True
|
|
523
|
+
|
|
524
|
+
def __pow__(self, m):
|
|
525
|
+
"""
|
|
526
|
+
Return the Cartesian power of this space.
|
|
527
|
+
|
|
528
|
+
INPUT:
|
|
529
|
+
|
|
530
|
+
- ``m`` -- integer
|
|
531
|
+
|
|
532
|
+
OUTPUT: affine ambient space
|
|
533
|
+
|
|
534
|
+
EXAMPLES::
|
|
535
|
+
|
|
536
|
+
sage: A = AffineSpace(1, QQ, 'x')
|
|
537
|
+
sage: A5 = A^5; A5
|
|
538
|
+
Affine Space of dimension 5 over Rational Field
|
|
539
|
+
sage: A5.variable_names()
|
|
540
|
+
('x0', 'x1', 'x2', 'x3', 'x4')
|
|
541
|
+
sage: A2 = AffineSpace(2, QQ, "x, y")
|
|
542
|
+
sage: A4 = A2^2; A4
|
|
543
|
+
Affine Space of dimension 4 over Rational Field
|
|
544
|
+
sage: A4.variable_names()
|
|
545
|
+
('x0', 'x1', 'x2', 'x3')
|
|
546
|
+
|
|
547
|
+
As you see, custom variable names are not preserved by power operator,
|
|
548
|
+
since there is no natural way to make new ones in general.
|
|
549
|
+
"""
|
|
550
|
+
mm = int(m)
|
|
551
|
+
if mm != m:
|
|
552
|
+
raise ValueError("m must be an integer")
|
|
553
|
+
return AffineSpace(self.dimension_relative() * mm, self.base_ring())
|
|
554
|
+
|
|
555
|
+
def __mul__(self, right):
|
|
556
|
+
r"""
|
|
557
|
+
Create the product of affine spaces.
|
|
558
|
+
|
|
559
|
+
INPUT:
|
|
560
|
+
|
|
561
|
+
- ``right`` -- an affine space or subscheme
|
|
562
|
+
|
|
563
|
+
OUTPUT: an affine space.= or subscheme
|
|
564
|
+
|
|
565
|
+
EXAMPLES::
|
|
566
|
+
|
|
567
|
+
sage: A1 = AffineSpace(QQ, 1, 'x')
|
|
568
|
+
sage: A2 = AffineSpace(QQ, 2, 'y')
|
|
569
|
+
sage: A3 = A1*A2; A3
|
|
570
|
+
Affine Space of dimension 3 over Rational Field
|
|
571
|
+
sage: A3.variable_names()
|
|
572
|
+
('x', 'y0', 'y1')
|
|
573
|
+
|
|
574
|
+
::
|
|
575
|
+
|
|
576
|
+
sage: A2 = AffineSpace(ZZ, 2, 't')
|
|
577
|
+
sage: A3 = AffineSpace(ZZ, 3, 'x')
|
|
578
|
+
sage: A3.inject_variables()
|
|
579
|
+
Defining x0, x1, x2
|
|
580
|
+
sage: X = A3.subscheme([x0*x2 - x1])
|
|
581
|
+
sage: A2*X
|
|
582
|
+
Closed subscheme of Affine Space of dimension 5 over Integer Ring defined by:
|
|
583
|
+
x0*x2 - x1
|
|
584
|
+
|
|
585
|
+
::
|
|
586
|
+
|
|
587
|
+
sage: S = ProjectiveSpace(QQ, 3, 'x')
|
|
588
|
+
sage: T = AffineSpace(2, QQ, 'y')
|
|
589
|
+
sage: T*S
|
|
590
|
+
Traceback (most recent call last):
|
|
591
|
+
...
|
|
592
|
+
TypeError: Projective Space of dimension 3 over Rational Field
|
|
593
|
+
must be an affine space or affine subscheme
|
|
594
|
+
"""
|
|
595
|
+
if self.base_ring() != right.base_ring():
|
|
596
|
+
raise ValueError('Must have the same base ring')
|
|
597
|
+
|
|
598
|
+
from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme
|
|
599
|
+
|
|
600
|
+
if isinstance(right, AffineSpace_generic):
|
|
601
|
+
if self is right:
|
|
602
|
+
return self.__pow__(2)
|
|
603
|
+
return AffineSpace(self.dimension_relative() + right.dimension_relative(),
|
|
604
|
+
self.base_ring(), self.variable_names() + right.variable_names())
|
|
605
|
+
if isinstance(right, AlgebraicScheme_subscheme):
|
|
606
|
+
AS = self * right.ambient_space()
|
|
607
|
+
CR = AS.coordinate_ring()
|
|
608
|
+
n = self.ambient_space().coordinate_ring().ngens()
|
|
609
|
+
|
|
610
|
+
phi = self.ambient_space().coordinate_ring().hom(list(CR.gens()[:n]), CR)
|
|
611
|
+
psi = right.ambient_space().coordinate_ring().hom(list(CR.gens()[n:]), CR)
|
|
612
|
+
return AS.subscheme([phi(t) for t in self.defining_polynomials()] +
|
|
613
|
+
[psi(t) for t in right.defining_polynomials()])
|
|
614
|
+
|
|
615
|
+
raise TypeError('%s must be an affine space or affine subscheme' % right)
|
|
616
|
+
|
|
617
|
+
def change_ring(self, R):
|
|
618
|
+
r"""
|
|
619
|
+
Return an affine space over ring ``R`` and otherwise the same as this space.
|
|
620
|
+
|
|
621
|
+
INPUT:
|
|
622
|
+
|
|
623
|
+
- ``R`` -- commutative ring or morphism
|
|
624
|
+
|
|
625
|
+
OUTPUT: an affine space over ``R``
|
|
626
|
+
|
|
627
|
+
.. NOTE::
|
|
628
|
+
|
|
629
|
+
There is no need to have any relation between ``R`` and the base ring
|
|
630
|
+
of this space, if you want to have such a relation, use
|
|
631
|
+
``self.base_extend(R)`` instead.
|
|
632
|
+
|
|
633
|
+
EXAMPLES::
|
|
634
|
+
|
|
635
|
+
sage: A.<x,y,z> = AffineSpace(3, ZZ)
|
|
636
|
+
sage: AQ = A.change_ring(QQ); AQ
|
|
637
|
+
Affine Space of dimension 3 over Rational Field
|
|
638
|
+
sage: AQ.change_ring(GF(5))
|
|
639
|
+
Affine Space of dimension 3 over Finite Field of size 5
|
|
640
|
+
|
|
641
|
+
::
|
|
642
|
+
|
|
643
|
+
sage: K.<w> = QuadraticField(5) # needs sage.rings.number_field
|
|
644
|
+
sage: A = AffineSpace(K, 2, 't') # needs sage.rings.number_field
|
|
645
|
+
sage: A.change_ring(K.embeddings(CC)[1]) # needs sage.rings.number_field
|
|
646
|
+
Affine Space of dimension 2 over Complex Field with 53 bits of precision
|
|
647
|
+
"""
|
|
648
|
+
if isinstance(R, Map):
|
|
649
|
+
return AffineSpace(self.dimension_relative(), R.codomain(), self.variable_names())
|
|
650
|
+
else:
|
|
651
|
+
return AffineSpace(self.dimension_relative(), R, self.variable_names())
|
|
652
|
+
|
|
653
|
+
def coordinate_ring(self):
|
|
654
|
+
"""
|
|
655
|
+
Return the coordinate ring of this scheme, if defined.
|
|
656
|
+
|
|
657
|
+
EXAMPLES::
|
|
658
|
+
|
|
659
|
+
sage: R = AffineSpace(2, GF(9,'alpha'), 'z').coordinate_ring(); R # needs sage.rings.finite_rings
|
|
660
|
+
Multivariate Polynomial Ring in z0, z1 over Finite Field in alpha of size 3^2
|
|
661
|
+
sage: AffineSpace(3, R, 'x').coordinate_ring() # needs sage.rings.finite_rings
|
|
662
|
+
Multivariate Polynomial Ring in x0, x1, x2 over Multivariate Polynomial Ring
|
|
663
|
+
in z0, z1 over Finite Field in alpha of size 3^2
|
|
664
|
+
"""
|
|
665
|
+
try:
|
|
666
|
+
return self._coordinate_ring
|
|
667
|
+
except AttributeError:
|
|
668
|
+
pass
|
|
669
|
+
self._coordinate_ring = PolynomialRing(self.base_ring(),
|
|
670
|
+
self.dimension_relative(),
|
|
671
|
+
names=self.variable_names())
|
|
672
|
+
return self._coordinate_ring
|
|
673
|
+
|
|
674
|
+
def _validate(self, polynomials):
|
|
675
|
+
"""
|
|
676
|
+
If ``polynomials`` is a tuple of valid polynomial functions on the affine space,
|
|
677
|
+
return ``polynomials``, otherwise raise :exc:`TypeError`.
|
|
678
|
+
|
|
679
|
+
Since this is an affine space, all polynomials are valid.
|
|
680
|
+
|
|
681
|
+
INPUT:
|
|
682
|
+
|
|
683
|
+
- ``polynomials`` -- tuple of polynomials in the coordinate ring of
|
|
684
|
+
this space
|
|
685
|
+
|
|
686
|
+
OUTPUT: tuple of polynomials in the coordinate ring of this space
|
|
687
|
+
|
|
688
|
+
EXAMPLES::
|
|
689
|
+
|
|
690
|
+
sage: A.<x, y, z> = AffineSpace(3, ZZ)
|
|
691
|
+
sage: A._validate((x*y - z, 1))
|
|
692
|
+
(x*y - z, 1)
|
|
693
|
+
"""
|
|
694
|
+
return polynomials
|
|
695
|
+
|
|
696
|
+
def projective_embedding(self, i=None, PP=None):
|
|
697
|
+
"""
|
|
698
|
+
Return a morphism from this space into an ambient projective space
|
|
699
|
+
of the same dimension.
|
|
700
|
+
|
|
701
|
+
INPUT:
|
|
702
|
+
|
|
703
|
+
- ``i`` -- integer (default: dimension of self = last coordinate)
|
|
704
|
+
determines which projective embedding to compute. The embedding is
|
|
705
|
+
that which has a 1 in the `i`-th coordinate, numbered from 0.
|
|
706
|
+
|
|
707
|
+
- ``PP`` -- (default: ``None``) ambient projective space, i.e.,
|
|
708
|
+
codomain of morphism; this is constructed if it is not given.
|
|
709
|
+
|
|
710
|
+
EXAMPLES::
|
|
711
|
+
|
|
712
|
+
sage: AA = AffineSpace(2, QQ, 'x')
|
|
713
|
+
sage: pi = AA.projective_embedding(0); pi
|
|
714
|
+
Scheme morphism:
|
|
715
|
+
From: Affine Space of dimension 2 over Rational Field
|
|
716
|
+
To: Projective Space of dimension 2 over Rational Field
|
|
717
|
+
Defn: Defined on coordinates by sending (x0, x1) to (1 : x0 : x1)
|
|
718
|
+
sage: z = AA(3, 4)
|
|
719
|
+
sage: pi(z)
|
|
720
|
+
(1/4 : 3/4 : 1)
|
|
721
|
+
sage: pi(AA(0,2))
|
|
722
|
+
(1/2 : 0 : 1)
|
|
723
|
+
sage: pi = AA.projective_embedding(1); pi
|
|
724
|
+
Scheme morphism:
|
|
725
|
+
From: Affine Space of dimension 2 over Rational Field
|
|
726
|
+
To: Projective Space of dimension 2 over Rational Field
|
|
727
|
+
Defn: Defined on coordinates by sending (x0, x1) to (x0 : 1 : x1)
|
|
728
|
+
sage: pi(z)
|
|
729
|
+
(3/4 : 1/4 : 1)
|
|
730
|
+
sage: pi = AA.projective_embedding(2)
|
|
731
|
+
sage: pi(z)
|
|
732
|
+
(3 : 4 : 1)
|
|
733
|
+
|
|
734
|
+
::
|
|
735
|
+
|
|
736
|
+
sage: A.<x,y> = AffineSpace(ZZ, 2)
|
|
737
|
+
sage: A.projective_embedding(2).codomain().affine_patch(2) == A
|
|
738
|
+
True
|
|
739
|
+
|
|
740
|
+
TESTS:
|
|
741
|
+
|
|
742
|
+
Check that :issue:`25897` is fixed::
|
|
743
|
+
|
|
744
|
+
sage: A.<x,y> = AffineSpace(ZZ, 2)
|
|
745
|
+
sage: A.projective_embedding(4)
|
|
746
|
+
Traceback (most recent call last):
|
|
747
|
+
...
|
|
748
|
+
ValueError: argument i (=4) must be between 0 and 2, inclusive
|
|
749
|
+
"""
|
|
750
|
+
n = self.dimension_relative()
|
|
751
|
+
if i is None:
|
|
752
|
+
if self._default_embedding_index is not None:
|
|
753
|
+
i = self._default_embedding_index
|
|
754
|
+
else:
|
|
755
|
+
i = int(n)
|
|
756
|
+
else:
|
|
757
|
+
i = int(i)
|
|
758
|
+
|
|
759
|
+
try:
|
|
760
|
+
phi = self.__projective_embedding[i]
|
|
761
|
+
# assume that if you've passed in a new codomain you want to override
|
|
762
|
+
# the existing embedding
|
|
763
|
+
if PP is None or phi.codomain() == PP:
|
|
764
|
+
return phi
|
|
765
|
+
except AttributeError:
|
|
766
|
+
self.__projective_embedding = {}
|
|
767
|
+
except KeyError:
|
|
768
|
+
pass
|
|
769
|
+
|
|
770
|
+
# if no i-th embedding exists, we may still be here with PP==None
|
|
771
|
+
if PP is None:
|
|
772
|
+
if self._ambient_projective_space is not None:
|
|
773
|
+
PP = self._ambient_projective_space
|
|
774
|
+
else:
|
|
775
|
+
from sage.schemes.projective.projective_space import ProjectiveSpace
|
|
776
|
+
PP = ProjectiveSpace(n, self.base_ring())
|
|
777
|
+
elif PP.dimension_relative() != n:
|
|
778
|
+
raise ValueError("projective Space must be of dimension %s" % (n))
|
|
779
|
+
|
|
780
|
+
R = self.coordinate_ring()
|
|
781
|
+
v = list(R.gens())
|
|
782
|
+
if i < 0 or i > n:
|
|
783
|
+
raise ValueError("argument i (=%s) must be between 0 and %s, inclusive" % (i, n))
|
|
784
|
+
v.insert(i, R(1))
|
|
785
|
+
phi = self.hom(v, PP)
|
|
786
|
+
self.__projective_embedding[i] = phi
|
|
787
|
+
# make affine patch and projective embedding match
|
|
788
|
+
PP.affine_patch(i, self)
|
|
789
|
+
return phi
|
|
790
|
+
|
|
791
|
+
def subscheme(self, X, **kwds):
|
|
792
|
+
"""
|
|
793
|
+
Return the closed subscheme defined by ``X``.
|
|
794
|
+
|
|
795
|
+
INPUT:
|
|
796
|
+
|
|
797
|
+
- ``X`` -- list or tuple of equations
|
|
798
|
+
|
|
799
|
+
EXAMPLES::
|
|
800
|
+
|
|
801
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
802
|
+
sage: X = A.subscheme([x, y^2, x*y^2]); X
|
|
803
|
+
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
|
|
804
|
+
x,
|
|
805
|
+
y^2,
|
|
806
|
+
x*y^2
|
|
807
|
+
|
|
808
|
+
::
|
|
809
|
+
|
|
810
|
+
sage: # needs sage.libs.singular
|
|
811
|
+
sage: X.defining_polynomials ()
|
|
812
|
+
(x, y^2, x*y^2)
|
|
813
|
+
sage: I = X.defining_ideal(); I
|
|
814
|
+
Ideal (x, y^2, x*y^2) of Multivariate Polynomial Ring in x, y over Rational Field
|
|
815
|
+
sage: I.groebner_basis()
|
|
816
|
+
[y^2, x]
|
|
817
|
+
sage: X.dimension()
|
|
818
|
+
0
|
|
819
|
+
sage: X.base_ring()
|
|
820
|
+
Rational Field
|
|
821
|
+
sage: X.base_scheme()
|
|
822
|
+
Spectrum of Rational Field
|
|
823
|
+
sage: X.structure_morphism()
|
|
824
|
+
Scheme morphism:
|
|
825
|
+
From: Closed subscheme of Affine Space of dimension 2 over Rational Field
|
|
826
|
+
defined by: x, y^2, x*y^2
|
|
827
|
+
To: Spectrum of Rational Field
|
|
828
|
+
Defn: Structure map
|
|
829
|
+
sage: X.dimension()
|
|
830
|
+
0
|
|
831
|
+
"""
|
|
832
|
+
from sage.schemes.affine.affine_subscheme import (AlgebraicScheme_subscheme_affine,
|
|
833
|
+
AlgebraicScheme_subscheme_affine_field)
|
|
834
|
+
|
|
835
|
+
if self.base_ring().is_field():
|
|
836
|
+
return AlgebraicScheme_subscheme_affine_field(self, X, **kwds)
|
|
837
|
+
|
|
838
|
+
return AlgebraicScheme_subscheme_affine(self, X, **kwds)
|
|
839
|
+
|
|
840
|
+
def _an_element_(self):
|
|
841
|
+
r"""
|
|
842
|
+
Return an element of this affine space, used both for illustration and
|
|
843
|
+
testing purposes.
|
|
844
|
+
|
|
845
|
+
OUTPUT: a point in the affine space
|
|
846
|
+
|
|
847
|
+
EXAMPLES::
|
|
848
|
+
|
|
849
|
+
sage: AffineSpace(ZZ, 2, 'x').an_element()
|
|
850
|
+
(5, 4)
|
|
851
|
+
|
|
852
|
+
sage: AffineSpace(Qp(5), 2, 'x').an_element() # needs sage.rings.padics
|
|
853
|
+
(5^2 + O(5^22), 4*5 + O(5^21))
|
|
854
|
+
"""
|
|
855
|
+
n = self.dimension_relative()
|
|
856
|
+
R = self.base_ring()
|
|
857
|
+
return self([(5 - i) * R.an_element() for i in range(n)])
|
|
858
|
+
|
|
859
|
+
def chebyshev_polynomial(self, n, kind='first', monic=False):
|
|
860
|
+
"""
|
|
861
|
+
Generate an endomorphism of this affine line by a Chebyshev polynomial.
|
|
862
|
+
|
|
863
|
+
Chebyshev polynomials are a sequence of recursively defined orthogonal
|
|
864
|
+
polynomials. Chebyshev of the first kind are defined as `T_0(x) = 1`,
|
|
865
|
+
`T_1(x) = x`, and `T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)`. Chebyshev of
|
|
866
|
+
the second kind are defined as `U_0(x) = 1`,
|
|
867
|
+
`U_1(x) = 2x`, and `U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)`.
|
|
868
|
+
|
|
869
|
+
INPUT:
|
|
870
|
+
|
|
871
|
+
- ``n`` -- nonnegative integer
|
|
872
|
+
|
|
873
|
+
- ``kind`` -- ``'first'`` (default) or ``'second'`` specifying which
|
|
874
|
+
kind of Chebyshev the user would like to generate
|
|
875
|
+
|
|
876
|
+
- ``monic`` -- boolean (default: ``False``) specifying if the
|
|
877
|
+
polynomial defining the system should be monic or not
|
|
878
|
+
|
|
879
|
+
OUTPUT: :class:`DynamicalSystem_affine`
|
|
880
|
+
|
|
881
|
+
EXAMPLES::
|
|
882
|
+
|
|
883
|
+
sage: A.<x> = AffineSpace(QQ, 1)
|
|
884
|
+
sage: A.chebyshev_polynomial(5, 'first') # needs sage.schemes
|
|
885
|
+
Dynamical System of Affine Space of dimension 1 over Rational Field
|
|
886
|
+
Defn: Defined on coordinates by sending (x) to (16*x^5 - 20*x^3 + 5*x)
|
|
887
|
+
|
|
888
|
+
::
|
|
889
|
+
|
|
890
|
+
sage: A.<x> = AffineSpace(QQ, 1)
|
|
891
|
+
sage: A.chebyshev_polynomial(3, 'second') # needs sage.schemes
|
|
892
|
+
Dynamical System of Affine Space of dimension 1 over Rational Field
|
|
893
|
+
Defn: Defined on coordinates by sending (x) to (8*x^3 - 4*x)
|
|
894
|
+
|
|
895
|
+
::
|
|
896
|
+
|
|
897
|
+
sage: A.<x> = AffineSpace(QQ, 1)
|
|
898
|
+
sage: A.chebyshev_polynomial(3, 2) # needs sage.schemes
|
|
899
|
+
Traceback (most recent call last):
|
|
900
|
+
...
|
|
901
|
+
ValueError: keyword 'kind' must have a value of either 'first' or 'second'
|
|
902
|
+
|
|
903
|
+
::
|
|
904
|
+
|
|
905
|
+
sage: A.<x> = AffineSpace(QQ, 1)
|
|
906
|
+
sage: A.chebyshev_polynomial(-4, 'second')
|
|
907
|
+
Traceback (most recent call last):
|
|
908
|
+
...
|
|
909
|
+
ValueError: first parameter 'n' must be a nonnegative integer
|
|
910
|
+
|
|
911
|
+
::
|
|
912
|
+
|
|
913
|
+
sage: A = AffineSpace(QQ, 2, 'x')
|
|
914
|
+
sage: A.chebyshev_polynomial(2)
|
|
915
|
+
Traceback (most recent call last):
|
|
916
|
+
...
|
|
917
|
+
TypeError: affine space must be of dimension 1
|
|
918
|
+
|
|
919
|
+
::
|
|
920
|
+
|
|
921
|
+
sage: A.<x> = AffineSpace(QQ, 1)
|
|
922
|
+
sage: A.chebyshev_polynomial(7, monic=True) # needs sage.schemes
|
|
923
|
+
Dynamical System of Affine Space of dimension 1 over Rational Field
|
|
924
|
+
Defn: Defined on coordinates by sending (x) to (x^7 - 7*x^5 + 14*x^3 - 7*x)
|
|
925
|
+
|
|
926
|
+
::
|
|
927
|
+
|
|
928
|
+
sage: F.<t> = FunctionField(QQ)
|
|
929
|
+
sage: A.<x> = AffineSpace(F, 1)
|
|
930
|
+
sage: A.chebyshev_polynomial(4, monic=True) # needs sage.schemes
|
|
931
|
+
Dynamical System of Affine Space of dimension 1
|
|
932
|
+
over Rational function field in t over Rational Field
|
|
933
|
+
Defn: Defined on coordinates by sending (x) to (x^4 + (-4)*x^2 + 2)
|
|
934
|
+
"""
|
|
935
|
+
if self.dimension_relative() != 1:
|
|
936
|
+
raise TypeError("affine space must be of dimension 1")
|
|
937
|
+
n = ZZ(n)
|
|
938
|
+
if n < 0:
|
|
939
|
+
raise ValueError("first parameter 'n' must be a nonnegative integer")
|
|
940
|
+
|
|
941
|
+
from sage.dynamics.arithmetic_dynamics.affine_ds import DynamicalSystem_affine
|
|
942
|
+
from sage.functions.orthogonal_polys import chebyshev_T, chebyshev_U
|
|
943
|
+
from sage.matrix.constructor import matrix
|
|
944
|
+
|
|
945
|
+
if kind == 'first':
|
|
946
|
+
if monic and self.base().characteristic() != 2:
|
|
947
|
+
f = DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
|
|
948
|
+
f = f.homogenize(1)
|
|
949
|
+
f = f.conjugate(matrix([[~ZZ(2), 0], [0, 1]]))
|
|
950
|
+
f = f.dehomogenize(1)
|
|
951
|
+
return f
|
|
952
|
+
return DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
|
|
953
|
+
elif kind == 'second':
|
|
954
|
+
if monic and self.base().characteristic() != 2:
|
|
955
|
+
f = DynamicalSystem_affine([chebyshev_T(n, self.gen(0))], domain=self)
|
|
956
|
+
f = f.homogenize(1)
|
|
957
|
+
f = f.conjugate(matrix([[~ZZ(2), 0], [0, 1]]))
|
|
958
|
+
f = f.dehomogenize(1)
|
|
959
|
+
return f
|
|
960
|
+
return DynamicalSystem_affine([chebyshev_U(n, self.gen(0))], domain=self)
|
|
961
|
+
else:
|
|
962
|
+
raise ValueError("keyword 'kind' must have a value of either 'first' or 'second'")
|
|
963
|
+
|
|
964
|
+
def origin(self):
|
|
965
|
+
"""
|
|
966
|
+
Return the rational point at the origin of this affine space.
|
|
967
|
+
|
|
968
|
+
EXAMPLES::
|
|
969
|
+
|
|
970
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
971
|
+
sage: A.origin()
|
|
972
|
+
(0, 0, 0)
|
|
973
|
+
sage: _ == A(0,0,0)
|
|
974
|
+
True
|
|
975
|
+
"""
|
|
976
|
+
return self([0] * self.ngens())
|
|
977
|
+
|
|
978
|
+
|
|
979
|
+
class AffineSpace_field(AffineSpace_generic):
|
|
980
|
+
def _point(self, *args, **kwds):
|
|
981
|
+
"""
|
|
982
|
+
Construct a point.
|
|
983
|
+
|
|
984
|
+
For internal use only. See :mod:`morphism` for details.
|
|
985
|
+
|
|
986
|
+
TESTS::
|
|
987
|
+
|
|
988
|
+
sage: P2.<x,y,z> = AffineSpace(3, GF(3))
|
|
989
|
+
sage: point_homset = P2._point_homset(Spec(GF(3)), P2)
|
|
990
|
+
sage: P2._point(point_homset, [1, 2, 3])
|
|
991
|
+
(1, 2, 0)
|
|
992
|
+
"""
|
|
993
|
+
return SchemeMorphism_point_affine_field(*args, **kwds)
|
|
994
|
+
|
|
995
|
+
def _morphism(self, *args, **kwds):
|
|
996
|
+
"""
|
|
997
|
+
Construct a morphism.
|
|
998
|
+
|
|
999
|
+
For internal use only. See :mod:`morphism` for details.
|
|
1000
|
+
|
|
1001
|
+
TESTS::
|
|
1002
|
+
|
|
1003
|
+
sage: P2.<x,y,z> = AffineSpace(3, GF(3))
|
|
1004
|
+
sage: P2._morphism(P2.Hom(P2), [x, y, z])
|
|
1005
|
+
Scheme endomorphism of Affine Space of dimension 3 over Finite Field of size 3
|
|
1006
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
1007
|
+
(x, y, z)
|
|
1008
|
+
"""
|
|
1009
|
+
return SchemeMorphism_polynomial_affine_space_field(*args, **kwds)
|
|
1010
|
+
|
|
1011
|
+
def points_of_bounded_height(self, **kwds):
|
|
1012
|
+
r"""
|
|
1013
|
+
Return an iterator of the points in this affine space of
|
|
1014
|
+
absolute height of at most the given bound.
|
|
1015
|
+
|
|
1016
|
+
Bound check is strict for the rational field.
|
|
1017
|
+
Requires this space to be affine space over a number field. Uses the
|
|
1018
|
+
Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for
|
|
1019
|
+
computing algebraic numbers up to a given height [DK2013]_.
|
|
1020
|
+
|
|
1021
|
+
The algorithm requires floating point arithmetic, so the user is
|
|
1022
|
+
allowed to specify the precision for such calculations.
|
|
1023
|
+
Additionally, due to floating point issues, points
|
|
1024
|
+
slightly larger than the bound may be returned. This can be controlled
|
|
1025
|
+
by lowering the tolerance.
|
|
1026
|
+
|
|
1027
|
+
INPUT: keyword arguments:
|
|
1028
|
+
|
|
1029
|
+
- ``bound`` -- a real number
|
|
1030
|
+
|
|
1031
|
+
- ``tolerance`` -- a rational number in (0,1] used in Doyle-Krumm algorithm-4
|
|
1032
|
+
|
|
1033
|
+
- ``precision`` -- the precision to use for computing the elements of bounded height of number fields
|
|
1034
|
+
|
|
1035
|
+
OUTPUT: an iterator of points in self
|
|
1036
|
+
|
|
1037
|
+
EXAMPLES::
|
|
1038
|
+
|
|
1039
|
+
sage: A.<x,y> = AffineSpace(QQ, 2)
|
|
1040
|
+
sage: list(A.points_of_bounded_height(bound=3))
|
|
1041
|
+
[(0, 0), (1, 0), (-1, 0), (1/2, 0), (-1/2, 0), (2, 0), (-2, 0), (0, 1),
|
|
1042
|
+
(1, 1), (-1, 1), (1/2, 1), (-1/2, 1), (2, 1), (-2, 1), (0, -1), (1, -1),
|
|
1043
|
+
(-1, -1), (1/2, -1), (-1/2, -1), (2, -1), (-2, -1), (0, 1/2), (1, 1/2),
|
|
1044
|
+
(-1, 1/2), (1/2, 1/2), (-1/2, 1/2), (2, 1/2), (-2, 1/2), (0, -1/2), (1, -1/2),
|
|
1045
|
+
(-1, -1/2), (1/2, -1/2), (-1/2, -1/2), (2, -1/2), (-2, -1/2), (0, 2), (1, 2),
|
|
1046
|
+
(-1, 2), (1/2, 2), (-1/2, 2), (2, 2), (-2, 2), (0, -2), (1, -2), (-1, -2),
|
|
1047
|
+
(1/2, -2), (-1/2, -2), (2, -2), (-2, -2)]
|
|
1048
|
+
|
|
1049
|
+
::
|
|
1050
|
+
|
|
1051
|
+
sage: u = QQ['u'].0
|
|
1052
|
+
sage: A.<x,y> = AffineSpace(NumberField(u^2 - 2, 'v'), 2) # needs sage.rings.number_field
|
|
1053
|
+
sage: len(list(A.points_of_bounded_height(bound=2, tolerance=0.1))) # needs sage.geometry.polyhedron sage.rings.number_field
|
|
1054
|
+
529
|
|
1055
|
+
"""
|
|
1056
|
+
if isinstance(self.base_ring(), RationalField):
|
|
1057
|
+
ftype = False # stores whether field is a number field or the rational field
|
|
1058
|
+
elif self.base_ring() in NumberFields(): # true for rational field as well, so check is_RationalField first
|
|
1059
|
+
ftype = True
|
|
1060
|
+
else:
|
|
1061
|
+
raise NotImplementedError("self must be affine space over a number field.")
|
|
1062
|
+
bound = kwds.pop('bound')
|
|
1063
|
+
B = bound**self.base_ring().absolute_degree() # convert to relative height
|
|
1064
|
+
|
|
1065
|
+
n = self.dimension_relative()
|
|
1066
|
+
R = self.base_ring()
|
|
1067
|
+
zero = R.zero()
|
|
1068
|
+
P = [zero] * n
|
|
1069
|
+
yield self(P)
|
|
1070
|
+
if not ftype:
|
|
1071
|
+
iters = [R.range_by_height(B) for _ in range(n)]
|
|
1072
|
+
else:
|
|
1073
|
+
tol = kwds.pop('tolerance', 1e-2)
|
|
1074
|
+
prec = kwds.pop('precision', 53)
|
|
1075
|
+
iters = [R.elements_of_bounded_height(bound=B, tolerance=tol, precision=prec) for _ in range(n)]
|
|
1076
|
+
for x in iters:
|
|
1077
|
+
next(x) # put at zero
|
|
1078
|
+
i = 0
|
|
1079
|
+
while i < n:
|
|
1080
|
+
try:
|
|
1081
|
+
P[i] = next(iters[i])
|
|
1082
|
+
yield self(P)
|
|
1083
|
+
i = 0
|
|
1084
|
+
except StopIteration:
|
|
1085
|
+
if not ftype:
|
|
1086
|
+
iters[i] = R.range_by_height(B) # reset
|
|
1087
|
+
else:
|
|
1088
|
+
iters[i] = R.elements_of_bounded_height(bound=B, tolerance=tol, precision=prec)
|
|
1089
|
+
next(iters[i]) # put at zero
|
|
1090
|
+
P[i] = zero
|
|
1091
|
+
i += 1
|
|
1092
|
+
|
|
1093
|
+
def weil_restriction(self):
|
|
1094
|
+
r"""
|
|
1095
|
+
Compute the Weil restriction of this affine space over some extension
|
|
1096
|
+
field.
|
|
1097
|
+
|
|
1098
|
+
If the field is a finite field, then this computes
|
|
1099
|
+
the Weil restriction to the prime subfield.
|
|
1100
|
+
|
|
1101
|
+
OUTPUT: affine space of dimension ``d * self.dimension_relative()``
|
|
1102
|
+
over the base field of ``self.base_ring()``.
|
|
1103
|
+
|
|
1104
|
+
EXAMPLES::
|
|
1105
|
+
|
|
1106
|
+
sage: # needs sage.rings.number_field
|
|
1107
|
+
sage: R.<x> = QQ[]
|
|
1108
|
+
sage: K.<w> = NumberField(x^5 - 2)
|
|
1109
|
+
sage: AK.<x,y> = AffineSpace(K, 2)
|
|
1110
|
+
sage: AK.weil_restriction()
|
|
1111
|
+
Affine Space of dimension 10 over Rational Field
|
|
1112
|
+
sage: R.<x> = K[]
|
|
1113
|
+
sage: L.<v> = K.extension(x^2 + 1)
|
|
1114
|
+
sage: AL.<x,y> = AffineSpace(L, 2)
|
|
1115
|
+
sage: AL.weil_restriction()
|
|
1116
|
+
Affine Space of dimension 4 over Number Field in w
|
|
1117
|
+
with defining polynomial x^5 - 2
|
|
1118
|
+
"""
|
|
1119
|
+
try:
|
|
1120
|
+
X = self.__weil_restriction
|
|
1121
|
+
except AttributeError:
|
|
1122
|
+
L = self.base_ring()
|
|
1123
|
+
if L.is_finite():
|
|
1124
|
+
d = L.degree()
|
|
1125
|
+
K = L.prime_subfield()
|
|
1126
|
+
else:
|
|
1127
|
+
d = L.relative_degree()
|
|
1128
|
+
K = L.base_field()
|
|
1129
|
+
|
|
1130
|
+
if d == 1:
|
|
1131
|
+
X = self
|
|
1132
|
+
else:
|
|
1133
|
+
X = AffineSpace(K, d * self.dimension_relative(), 'z')
|
|
1134
|
+
self.__weil_restriction = X
|
|
1135
|
+
return X
|
|
1136
|
+
|
|
1137
|
+
def curve(self, F):
|
|
1138
|
+
r"""
|
|
1139
|
+
Return a curve defined by ``F`` in this affine space.
|
|
1140
|
+
|
|
1141
|
+
INPUT:
|
|
1142
|
+
|
|
1143
|
+
- ``F`` -- a polynomial, or a list or tuple of polynomials in
|
|
1144
|
+
the coordinate ring of this affine space
|
|
1145
|
+
|
|
1146
|
+
EXAMPLES::
|
|
1147
|
+
|
|
1148
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
1149
|
+
sage: A.curve([y - x^4, z - y^5]) # needs sage.schemes
|
|
1150
|
+
Affine Curve over Rational Field defined by -x^4 + y, -y^5 + z
|
|
1151
|
+
"""
|
|
1152
|
+
from sage.schemes.curves.constructor import Curve
|
|
1153
|
+
return Curve(F, self)
|
|
1154
|
+
|
|
1155
|
+
def line_through(self, p, q):
|
|
1156
|
+
"""
|
|
1157
|
+
Return the line through ``p`` and ``q``.
|
|
1158
|
+
|
|
1159
|
+
INPUT:
|
|
1160
|
+
|
|
1161
|
+
- ``p``, ``q`` -- distinct rational points of the affine space
|
|
1162
|
+
|
|
1163
|
+
EXAMPLES::
|
|
1164
|
+
|
|
1165
|
+
sage: # needs sage.libs.singular sage.schemes
|
|
1166
|
+
sage: A3.<x,y,z> = AffineSpace(3, QQ)
|
|
1167
|
+
sage: p1 = A3(1, 2, 3)
|
|
1168
|
+
sage: p2 = A3(4, 5, 6)
|
|
1169
|
+
sage: L = A3.line_through(p1, p2); L
|
|
1170
|
+
Affine Curve over Rational Field defined by -1/6*x + 1/6*y - 1/6,
|
|
1171
|
+
-1/6*x + 1/6*z - 1/3, -1/6*y + 1/6*z - 1/6, -1/6*x + 1/3*y - 1/6*z
|
|
1172
|
+
sage: L(p1)
|
|
1173
|
+
(1, 2, 3)
|
|
1174
|
+
sage: L(p2)
|
|
1175
|
+
(4, 5, 6)
|
|
1176
|
+
sage: A3.line_through(p1, p1)
|
|
1177
|
+
Traceback (most recent call last):
|
|
1178
|
+
...
|
|
1179
|
+
ValueError: not distinct points
|
|
1180
|
+
"""
|
|
1181
|
+
if p == q:
|
|
1182
|
+
raise ValueError("not distinct points")
|
|
1183
|
+
|
|
1184
|
+
proj = self.projective_embedding(0)
|
|
1185
|
+
P = proj.codomain()
|
|
1186
|
+
return P.line_through(proj(p), proj(q)).affine_patch(0, self)
|
|
1187
|
+
|
|
1188
|
+
def translation(self, p, q=None):
|
|
1189
|
+
"""
|
|
1190
|
+
Return the automorphism of the affine space translating ``p`` to the origin.
|
|
1191
|
+
|
|
1192
|
+
If ``q`` is given, the automorphism translates ``p`` to ``q``.
|
|
1193
|
+
|
|
1194
|
+
INPUT:
|
|
1195
|
+
|
|
1196
|
+
- ``p`` -- a rational point
|
|
1197
|
+
|
|
1198
|
+
- ``q`` -- (default: ``None``) a rational point
|
|
1199
|
+
|
|
1200
|
+
EXAMPLES::
|
|
1201
|
+
|
|
1202
|
+
sage: A.<x,y,z> = AffineSpace(QQ, 3)
|
|
1203
|
+
sage: p = A(1,2,3)
|
|
1204
|
+
sage: q = A(4,5,6)
|
|
1205
|
+
sage: A.translation(p, q)
|
|
1206
|
+
Scheme endomorphism of Affine Space of dimension 3 over Rational Field
|
|
1207
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
1208
|
+
(x + 3, y + 3, z + 3)
|
|
1209
|
+
sage: phi = A.translation(p)
|
|
1210
|
+
sage: psi = A.translation(A.origin(), q)
|
|
1211
|
+
sage: psi * phi
|
|
1212
|
+
Scheme endomorphism of Affine Space of dimension 3 over Rational Field
|
|
1213
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
1214
|
+
(x + 3, y + 3, z + 3)
|
|
1215
|
+
sage: psi * phi == A.translation(p, q)
|
|
1216
|
+
True
|
|
1217
|
+
"""
|
|
1218
|
+
gens = self.gens()
|
|
1219
|
+
|
|
1220
|
+
if q is not None:
|
|
1221
|
+
v = [cp - cq for cp, cq in zip(p, q)]
|
|
1222
|
+
else:
|
|
1223
|
+
v = list(p)
|
|
1224
|
+
|
|
1225
|
+
return self._morphism(self.Hom(self), [x - c for x, c in zip(gens, v)])
|
|
1226
|
+
|
|
1227
|
+
|
|
1228
|
+
class AffineSpace_finite_field(AffineSpace_field):
|
|
1229
|
+
def _point(self, *args, **kwds):
|
|
1230
|
+
"""
|
|
1231
|
+
Construct a point.
|
|
1232
|
+
|
|
1233
|
+
For internal use only. See :mod:`morphism` for details.
|
|
1234
|
+
|
|
1235
|
+
TESTS::
|
|
1236
|
+
|
|
1237
|
+
sage: P2.<x,y,z> = AffineSpace(3, GF(3))
|
|
1238
|
+
sage: point_homset = P2._point_homset(Spec(GF(3)), P2)
|
|
1239
|
+
sage: P2._point(point_homset, [1, 2, 3])
|
|
1240
|
+
(1, 2, 0)
|
|
1241
|
+
"""
|
|
1242
|
+
return SchemeMorphism_point_affine_finite_field(*args, **kwds)
|
|
1243
|
+
|
|
1244
|
+
def _morphism(self, *args, **kwds):
|
|
1245
|
+
"""
|
|
1246
|
+
Construct a morphism.
|
|
1247
|
+
|
|
1248
|
+
For internal use only. See :mod:`morphism` for details.
|
|
1249
|
+
|
|
1250
|
+
TESTS::
|
|
1251
|
+
|
|
1252
|
+
sage: P2.<x,y,z> = AffineSpace(3, GF(3))
|
|
1253
|
+
sage: P2._morphism(P2.Hom(P2), [x, y, z])
|
|
1254
|
+
Scheme endomorphism of Affine Space of dimension 3 over Finite Field of size 3
|
|
1255
|
+
Defn: Defined on coordinates by sending (x, y, z) to
|
|
1256
|
+
(x, y, z)
|
|
1257
|
+
"""
|
|
1258
|
+
return SchemeMorphism_polynomial_affine_space_finite_field(*args, **kwds)
|
|
1259
|
+
|
|
1260
|
+
|
|
1261
|
+
# fix the pickles from moving affine_space.py
|
|
1262
|
+
register_unpickle_override('sage.schemes.generic.affine_space',
|
|
1263
|
+
'AffineSpace_generic',
|
|
1264
|
+
AffineSpace_generic)
|