passagemath-categories 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_categories-10.6.32.dist-info/METADATA +156 -0
- passagemath_categories-10.6.32.dist-info/RECORD +719 -0
- passagemath_categories-10.6.32.dist-info/WHEEL +5 -0
- passagemath_categories-10.6.32.dist-info/top_level.txt +2 -0
- passagemath_categories.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_categories.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_categories.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_categories.py +28 -0
- sage/arith/all.py +38 -0
- sage/arith/constants.pxd +27 -0
- sage/arith/functions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/functions.pxd +4 -0
- sage/arith/functions.pyx +221 -0
- sage/arith/misc.py +6552 -0
- sage/arith/multi_modular.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/multi_modular.pxd +39 -0
- sage/arith/multi_modular.pyx +994 -0
- sage/arith/rational_reconstruction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/rational_reconstruction.pxd +4 -0
- sage/arith/rational_reconstruction.pyx +115 -0
- sage/arith/srange.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/arith/srange.pyx +571 -0
- sage/calculus/all__sagemath_categories.py +2 -0
- sage/calculus/functional.py +481 -0
- sage/calculus/functions.py +151 -0
- sage/categories/additive_groups.py +73 -0
- sage/categories/additive_magmas.py +1044 -0
- sage/categories/additive_monoids.py +114 -0
- sage/categories/additive_semigroups.py +184 -0
- sage/categories/affine_weyl_groups.py +238 -0
- sage/categories/algebra_ideals.py +95 -0
- sage/categories/algebra_modules.py +96 -0
- sage/categories/algebras.py +349 -0
- sage/categories/algebras_with_basis.py +377 -0
- sage/categories/all.py +160 -0
- sage/categories/aperiodic_semigroups.py +29 -0
- sage/categories/associative_algebras.py +47 -0
- sage/categories/bialgebras.py +101 -0
- sage/categories/bialgebras_with_basis.py +414 -0
- sage/categories/bimodules.py +206 -0
- sage/categories/chain_complexes.py +268 -0
- sage/categories/classical_crystals.py +480 -0
- sage/categories/coalgebras.py +405 -0
- sage/categories/coalgebras_with_basis.py +232 -0
- sage/categories/coercion_methods.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/coercion_methods.pyx +52 -0
- sage/categories/commutative_additive_groups.py +104 -0
- sage/categories/commutative_additive_monoids.py +45 -0
- sage/categories/commutative_additive_semigroups.py +48 -0
- sage/categories/commutative_algebra_ideals.py +87 -0
- sage/categories/commutative_algebras.py +94 -0
- sage/categories/commutative_ring_ideals.py +58 -0
- sage/categories/commutative_rings.py +736 -0
- sage/categories/complete_discrete_valuation.py +293 -0
- sage/categories/complex_reflection_groups.py +145 -0
- sage/categories/complex_reflection_or_generalized_coxeter_groups.py +1249 -0
- sage/categories/coxeter_group_algebras.py +186 -0
- sage/categories/coxeter_groups.py +3402 -0
- sage/categories/crystals.py +2628 -0
- sage/categories/cw_complexes.py +216 -0
- sage/categories/dedekind_domains.py +137 -0
- sage/categories/discrete_valuation.py +325 -0
- sage/categories/distributive_magmas_and_additive_magmas.py +100 -0
- sage/categories/division_rings.py +114 -0
- sage/categories/domains.py +95 -0
- sage/categories/drinfeld_modules.py +789 -0
- sage/categories/dual.py +42 -0
- sage/categories/enumerated_sets.py +1146 -0
- sage/categories/euclidean_domains.py +271 -0
- sage/categories/examples/algebras_with_basis.py +102 -0
- sage/categories/examples/all.py +1 -0
- sage/categories/examples/commutative_additive_monoids.py +130 -0
- sage/categories/examples/commutative_additive_semigroups.py +199 -0
- sage/categories/examples/coxeter_groups.py +8 -0
- sage/categories/examples/crystals.py +236 -0
- sage/categories/examples/cw_complexes.py +163 -0
- sage/categories/examples/facade_sets.py +187 -0
- sage/categories/examples/filtered_algebras_with_basis.py +204 -0
- sage/categories/examples/filtered_modules_with_basis.py +154 -0
- sage/categories/examples/finite_coxeter_groups.py +252 -0
- sage/categories/examples/finite_dimensional_algebras_with_basis.py +148 -0
- sage/categories/examples/finite_dimensional_lie_algebras_with_basis.py +495 -0
- sage/categories/examples/finite_enumerated_sets.py +208 -0
- sage/categories/examples/finite_monoids.py +150 -0
- sage/categories/examples/finite_semigroups.py +190 -0
- sage/categories/examples/finite_weyl_groups.py +191 -0
- sage/categories/examples/graded_connected_hopf_algebras_with_basis.py +152 -0
- sage/categories/examples/graded_modules_with_basis.py +168 -0
- sage/categories/examples/graphs.py +122 -0
- sage/categories/examples/hopf_algebras_with_basis.py +145 -0
- sage/categories/examples/infinite_enumerated_sets.py +190 -0
- sage/categories/examples/lie_algebras.py +352 -0
- sage/categories/examples/lie_algebras_with_basis.py +196 -0
- sage/categories/examples/magmas.py +162 -0
- sage/categories/examples/manifolds.py +94 -0
- sage/categories/examples/monoids.py +144 -0
- sage/categories/examples/posets.py +178 -0
- sage/categories/examples/semigroups.py +580 -0
- sage/categories/examples/semigroups_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/categories/examples/semigroups_cython.pyx +221 -0
- sage/categories/examples/semirings.py +249 -0
- sage/categories/examples/sets_cat.py +706 -0
- sage/categories/examples/sets_with_grading.py +101 -0
- sage/categories/examples/with_realizations.py +542 -0
- sage/categories/fields.py +991 -0
- sage/categories/filtered_algebras.py +63 -0
- sage/categories/filtered_algebras_with_basis.py +548 -0
- sage/categories/filtered_hopf_algebras_with_basis.py +138 -0
- sage/categories/filtered_modules.py +210 -0
- sage/categories/filtered_modules_with_basis.py +1209 -0
- sage/categories/finite_complex_reflection_groups.py +1506 -0
- sage/categories/finite_coxeter_groups.py +1138 -0
- sage/categories/finite_crystals.py +103 -0
- sage/categories/finite_dimensional_algebras_with_basis.py +1860 -0
- sage/categories/finite_dimensional_bialgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_coalgebras_with_basis.py +33 -0
- sage/categories/finite_dimensional_graded_lie_algebras_with_basis.py +231 -0
- sage/categories/finite_dimensional_hopf_algebras_with_basis.py +38 -0
- sage/categories/finite_dimensional_lie_algebras_with_basis.py +2774 -0
- sage/categories/finite_dimensional_modules_with_basis.py +1407 -0
- sage/categories/finite_dimensional_nilpotent_lie_algebras_with_basis.py +167 -0
- sage/categories/finite_dimensional_semisimple_algebras_with_basis.py +270 -0
- sage/categories/finite_enumerated_sets.py +769 -0
- sage/categories/finite_fields.py +252 -0
- sage/categories/finite_groups.py +256 -0
- sage/categories/finite_lattice_posets.py +242 -0
- sage/categories/finite_monoids.py +316 -0
- sage/categories/finite_permutation_groups.py +339 -0
- sage/categories/finite_posets.py +1994 -0
- sage/categories/finite_semigroups.py +136 -0
- sage/categories/finite_sets.py +93 -0
- sage/categories/finite_weyl_groups.py +39 -0
- sage/categories/finitely_generated_lambda_bracket_algebras.py +112 -0
- sage/categories/finitely_generated_lie_conformal_algebras.py +114 -0
- sage/categories/finitely_generated_magmas.py +57 -0
- sage/categories/finitely_generated_semigroups.py +214 -0
- sage/categories/function_fields.py +76 -0
- sage/categories/g_sets.py +77 -0
- sage/categories/gcd_domains.py +65 -0
- sage/categories/generalized_coxeter_groups.py +94 -0
- sage/categories/graded_algebras.py +85 -0
- sage/categories/graded_algebras_with_basis.py +258 -0
- sage/categories/graded_bialgebras.py +32 -0
- sage/categories/graded_bialgebras_with_basis.py +32 -0
- sage/categories/graded_coalgebras.py +65 -0
- sage/categories/graded_coalgebras_with_basis.py +51 -0
- sage/categories/graded_hopf_algebras.py +41 -0
- sage/categories/graded_hopf_algebras_with_basis.py +169 -0
- sage/categories/graded_lie_algebras.py +91 -0
- sage/categories/graded_lie_algebras_with_basis.py +44 -0
- sage/categories/graded_lie_conformal_algebras.py +74 -0
- sage/categories/graded_modules.py +133 -0
- sage/categories/graded_modules_with_basis.py +329 -0
- sage/categories/graphs.py +138 -0
- sage/categories/group_algebras.py +430 -0
- sage/categories/groupoid.py +94 -0
- sage/categories/groups.py +667 -0
- sage/categories/h_trivial_semigroups.py +64 -0
- sage/categories/hecke_modules.py +185 -0
- sage/categories/highest_weight_crystals.py +980 -0
- sage/categories/hopf_algebras.py +219 -0
- sage/categories/hopf_algebras_with_basis.py +309 -0
- sage/categories/infinite_enumerated_sets.py +115 -0
- sage/categories/integral_domains.py +203 -0
- sage/categories/j_trivial_semigroups.py +29 -0
- sage/categories/kac_moody_algebras.py +82 -0
- sage/categories/kahler_algebras.py +203 -0
- sage/categories/l_trivial_semigroups.py +63 -0
- sage/categories/lambda_bracket_algebras.py +280 -0
- sage/categories/lambda_bracket_algebras_with_basis.py +107 -0
- sage/categories/lattice_posets.py +89 -0
- sage/categories/left_modules.py +49 -0
- sage/categories/lie_algebras.py +1070 -0
- sage/categories/lie_algebras_with_basis.py +261 -0
- sage/categories/lie_conformal_algebras.py +350 -0
- sage/categories/lie_conformal_algebras_with_basis.py +147 -0
- sage/categories/lie_groups.py +73 -0
- sage/categories/loop_crystals.py +1290 -0
- sage/categories/magmas.py +1189 -0
- sage/categories/magmas_and_additive_magmas.py +149 -0
- sage/categories/magmatic_algebras.py +365 -0
- sage/categories/manifolds.py +352 -0
- sage/categories/matrix_algebras.py +40 -0
- sage/categories/metric_spaces.py +387 -0
- sage/categories/modular_abelian_varieties.py +78 -0
- sage/categories/modules.py +989 -0
- sage/categories/modules_with_basis.py +2794 -0
- sage/categories/monoid_algebras.py +38 -0
- sage/categories/monoids.py +739 -0
- sage/categories/noetherian_rings.py +87 -0
- sage/categories/number_fields.py +242 -0
- sage/categories/ore_modules.py +189 -0
- sage/categories/partially_ordered_monoids.py +49 -0
- sage/categories/permutation_groups.py +63 -0
- sage/categories/pointed_sets.py +42 -0
- sage/categories/polyhedra.py +74 -0
- sage/categories/poor_man_map.py +270 -0
- sage/categories/posets.py +722 -0
- sage/categories/principal_ideal_domains.py +270 -0
- sage/categories/quantum_group_representations.py +543 -0
- sage/categories/quotient_fields.py +728 -0
- sage/categories/r_trivial_semigroups.py +45 -0
- sage/categories/regular_crystals.py +898 -0
- sage/categories/regular_supercrystals.py +170 -0
- sage/categories/right_modules.py +49 -0
- sage/categories/ring_ideals.py +74 -0
- sage/categories/rings.py +1904 -0
- sage/categories/rngs.py +175 -0
- sage/categories/schemes.py +393 -0
- sage/categories/semigroups.py +1060 -0
- sage/categories/semirings.py +71 -0
- sage/categories/semisimple_algebras.py +114 -0
- sage/categories/sets_with_grading.py +235 -0
- sage/categories/shephard_groups.py +43 -0
- sage/categories/signed_tensor.py +120 -0
- sage/categories/simplicial_complexes.py +134 -0
- sage/categories/simplicial_sets.py +1206 -0
- sage/categories/super_algebras.py +149 -0
- sage/categories/super_algebras_with_basis.py +144 -0
- sage/categories/super_hopf_algebras_with_basis.py +126 -0
- sage/categories/super_lie_conformal_algebras.py +193 -0
- sage/categories/super_modules.py +229 -0
- sage/categories/super_modules_with_basis.py +193 -0
- sage/categories/supercommutative_algebras.py +99 -0
- sage/categories/supercrystals.py +406 -0
- sage/categories/tensor.py +110 -0
- sage/categories/topological_spaces.py +170 -0
- sage/categories/triangular_kac_moody_algebras.py +439 -0
- sage/categories/tutorial.py +58 -0
- sage/categories/unique_factorization_domains.py +318 -0
- sage/categories/unital_algebras.py +426 -0
- sage/categories/vector_bundles.py +159 -0
- sage/categories/vector_spaces.py +357 -0
- sage/categories/weyl_groups.py +853 -0
- sage/combinat/all__sagemath_categories.py +34 -0
- sage/combinat/backtrack.py +180 -0
- sage/combinat/combinat.py +2269 -0
- sage/combinat/combinat_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/combinat_cython.pxd +6 -0
- sage/combinat/combinat_cython.pyx +390 -0
- sage/combinat/combination.py +796 -0
- sage/combinat/combinatorial_map.py +416 -0
- sage/combinat/composition.py +2192 -0
- sage/combinat/dlx.py +510 -0
- sage/combinat/integer_lists/__init__.py +7 -0
- sage/combinat/integer_lists/base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/base.pxd +16 -0
- sage/combinat/integer_lists/base.pyx +713 -0
- sage/combinat/integer_lists/invlex.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/integer_lists/invlex.pxd +4 -0
- sage/combinat/integer_lists/invlex.pyx +1650 -0
- sage/combinat/integer_lists/lists.py +328 -0
- sage/combinat/integer_lists/nn.py +48 -0
- sage/combinat/integer_vector.py +1818 -0
- sage/combinat/integer_vector_weighted.py +413 -0
- sage/combinat/matrices/all__sagemath_categories.py +5 -0
- sage/combinat/matrices/dancing_links.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/matrices/dancing_links.pyx +1159 -0
- sage/combinat/matrices/dancing_links_c.h +380 -0
- sage/combinat/matrices/dlxcpp.py +136 -0
- sage/combinat/partition.py +10070 -0
- sage/combinat/partitions.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/partitions.pyx +743 -0
- sage/combinat/permutation.py +10168 -0
- sage/combinat/permutation_cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/combinat/permutation_cython.pxd +11 -0
- sage/combinat/permutation_cython.pyx +407 -0
- sage/combinat/q_analogues.py +1090 -0
- sage/combinat/ranker.py +268 -0
- sage/combinat/subset.py +1561 -0
- sage/combinat/subsets_hereditary.py +202 -0
- sage/combinat/subsets_pairwise.py +184 -0
- sage/combinat/tools.py +63 -0
- sage/combinat/tuple.py +348 -0
- sage/data_structures/all.py +2 -0
- sage/data_structures/all__sagemath_categories.py +2 -0
- sage/data_structures/binary_matrix.pxd +138 -0
- sage/data_structures/binary_search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/binary_search.pxd +3 -0
- sage/data_structures/binary_search.pyx +66 -0
- sage/data_structures/bitset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset.pxd +40 -0
- sage/data_structures/bitset.pyx +2385 -0
- sage/data_structures/bitset_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/bitset_base.pxd +926 -0
- sage/data_structures/bitset_base.pyx +117 -0
- sage/data_structures/bitset_intrinsics.h +487 -0
- sage/data_structures/blas_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/blas_dict.pxd +12 -0
- sage/data_structures/blas_dict.pyx +469 -0
- sage/data_structures/list_of_pairs.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/list_of_pairs.pxd +16 -0
- sage/data_structures/list_of_pairs.pyx +122 -0
- sage/data_structures/mutable_poset.py +3312 -0
- sage/data_structures/pairing_heap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/data_structures/pairing_heap.h +346 -0
- sage/data_structures/pairing_heap.pxd +88 -0
- sage/data_structures/pairing_heap.pyx +1464 -0
- sage/data_structures/sparse_bitset.pxd +62 -0
- sage/data_structures/stream.py +5070 -0
- sage/databases/all__sagemath_categories.py +7 -0
- sage/databases/sql_db.py +2236 -0
- sage/ext/all__sagemath_categories.py +3 -0
- sage/ext/fast_callable.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_callable.pxd +4 -0
- sage/ext/fast_callable.pyx +2746 -0
- sage/ext/fast_eval.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/fast_eval.pxd +1 -0
- sage/ext/fast_eval.pyx +102 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_categories.py +2 -0
- sage/ext/interpreters/wrapper_el.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_el.pxd +18 -0
- sage/ext/interpreters/wrapper_el.pyx +148 -0
- sage/ext/interpreters/wrapper_py.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_py.pxd +17 -0
- sage/ext/interpreters/wrapper_py.pyx +133 -0
- sage/functions/airy.py +937 -0
- sage/functions/all.py +97 -0
- sage/functions/bessel.py +2102 -0
- sage/functions/error.py +784 -0
- sage/functions/exp_integral.py +1529 -0
- sage/functions/gamma.py +1087 -0
- sage/functions/generalized.py +672 -0
- sage/functions/hyperbolic.py +747 -0
- sage/functions/hypergeometric.py +1156 -0
- sage/functions/jacobi.py +1705 -0
- sage/functions/log.py +1402 -0
- sage/functions/min_max.py +338 -0
- sage/functions/orthogonal_polys.py +3106 -0
- sage/functions/other.py +2303 -0
- sage/functions/piecewise.py +1505 -0
- sage/functions/prime_pi.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/functions/prime_pi.pyx +262 -0
- sage/functions/special.py +1212 -0
- sage/functions/spike_function.py +278 -0
- sage/functions/transcendental.py +690 -0
- sage/functions/trig.py +1062 -0
- sage/functions/wigner.py +726 -0
- sage/geometry/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/geometry/abc.pyx +82 -0
- sage/geometry/all__sagemath_categories.py +1 -0
- sage/groups/all__sagemath_categories.py +11 -0
- sage/groups/generic.py +1733 -0
- sage/groups/groups_catalog.py +113 -0
- sage/groups/perm_gps/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/all.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_categories.py +1 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pxd +52 -0
- sage/groups/perm_gps/partn_ref/automorphism_group_canonical_label.pyx +906 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pxd +85 -0
- sage/groups/perm_gps/partn_ref/canonical_augmentation.pyx +534 -0
- sage/groups/perm_gps/partn_ref/data_structures.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/data_structures.pxd +576 -0
- sage/groups/perm_gps/partn_ref/data_structures.pyx +1792 -0
- sage/groups/perm_gps/partn_ref/double_coset.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/double_coset.pxd +45 -0
- sage/groups/perm_gps/partn_ref/double_coset.pyx +739 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pxd +18 -0
- sage/groups/perm_gps/partn_ref/refinement_lists.pyx +82 -0
- sage/groups/perm_gps/partn_ref/refinement_python.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pxd +16 -0
- sage/groups/perm_gps/partn_ref/refinement_python.pyx +564 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pxd +60 -0
- sage/groups/perm_gps/partn_ref/refinement_sets.pyx +858 -0
- sage/interfaces/abc.py +140 -0
- sage/interfaces/all.py +58 -0
- sage/interfaces/all__sagemath_categories.py +1 -0
- sage/interfaces/expect.py +1643 -0
- sage/interfaces/interface.py +1682 -0
- sage/interfaces/process.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/process.pxd +5 -0
- sage/interfaces/process.pyx +288 -0
- sage/interfaces/quit.py +167 -0
- sage/interfaces/sage0.py +604 -0
- sage/interfaces/sagespawn.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/interfaces/sagespawn.pyx +308 -0
- sage/interfaces/tab_completion.py +101 -0
- sage/misc/all__sagemath_categories.py +78 -0
- sage/misc/allocator.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/allocator.pxd +6 -0
- sage/misc/allocator.pyx +47 -0
- sage/misc/binary_tree.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/binary_tree.pxd +29 -0
- sage/misc/binary_tree.pyx +537 -0
- sage/misc/callable_dict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/callable_dict.pyx +89 -0
- sage/misc/citation.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/citation.pyx +159 -0
- sage/misc/converting_dict.py +293 -0
- sage/misc/defaults.py +129 -0
- sage/misc/derivative.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/derivative.pyx +223 -0
- sage/misc/functional.py +2005 -0
- sage/misc/html.py +589 -0
- sage/misc/latex.py +2673 -0
- sage/misc/latex_macros.py +236 -0
- sage/misc/latex_standalone.py +1833 -0
- sage/misc/map_threaded.py +38 -0
- sage/misc/mathml.py +76 -0
- sage/misc/method_decorator.py +88 -0
- sage/misc/mrange.py +755 -0
- sage/misc/multireplace.py +41 -0
- sage/misc/object_multiplexer.py +92 -0
- sage/misc/parser.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/parser.pyx +1107 -0
- sage/misc/random_testing.py +264 -0
- sage/misc/rest_index_of_methods.py +377 -0
- sage/misc/search.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/search.pxd +2 -0
- sage/misc/search.pyx +68 -0
- sage/misc/stopgap.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/misc/stopgap.pyx +95 -0
- sage/misc/table.py +853 -0
- sage/monoids/all__sagemath_categories.py +1 -0
- sage/monoids/indexed_free_monoid.py +1071 -0
- sage/monoids/monoid.py +82 -0
- sage/numerical/all__sagemath_categories.py +1 -0
- sage/numerical/backends/all__sagemath_categories.py +1 -0
- sage/numerical/backends/generic_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_backend.pxd +61 -0
- sage/numerical/backends/generic_backend.pyx +1893 -0
- sage/numerical/backends/generic_sdp_backend.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/numerical/backends/generic_sdp_backend.pxd +38 -0
- sage/numerical/backends/generic_sdp_backend.pyx +755 -0
- sage/parallel/all.py +6 -0
- sage/parallel/decorate.py +575 -0
- sage/parallel/map_reduce.py +1997 -0
- sage/parallel/multiprocessing_sage.py +76 -0
- sage/parallel/ncpus.py +35 -0
- sage/parallel/parallelism.py +364 -0
- sage/parallel/reference.py +47 -0
- sage/parallel/use_fork.py +333 -0
- sage/rings/abc.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/abc.pxd +31 -0
- sage/rings/abc.pyx +526 -0
- sage/rings/algebraic_closure_finite_field.py +1154 -0
- sage/rings/all__sagemath_categories.py +91 -0
- sage/rings/big_oh.py +227 -0
- sage/rings/continued_fraction.py +2754 -0
- sage/rings/continued_fraction_gosper.py +220 -0
- sage/rings/factorint.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/factorint.pyx +295 -0
- sage/rings/fast_arith.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fast_arith.pxd +21 -0
- sage/rings/fast_arith.pyx +535 -0
- sage/rings/finite_rings/all__sagemath_categories.py +9 -0
- sage/rings/finite_rings/conway_polynomials.py +542 -0
- sage/rings/finite_rings/element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/element_base.pxd +12 -0
- sage/rings/finite_rings/element_base.pyx +1176 -0
- sage/rings/finite_rings/finite_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/finite_field_base.pxd +7 -0
- sage/rings/finite_rings/finite_field_base.pyx +2171 -0
- sage/rings/finite_rings/finite_field_constructor.py +827 -0
- sage/rings/finite_rings/finite_field_prime_modn.py +372 -0
- sage/rings/finite_rings/galois_group.py +154 -0
- sage/rings/finite_rings/hom_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_finite_field.pxd +23 -0
- sage/rings/finite_rings/hom_finite_field.pyx +856 -0
- sage/rings/finite_rings/hom_prime_finite_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/hom_prime_finite_field.pxd +15 -0
- sage/rings/finite_rings/hom_prime_finite_field.pyx +164 -0
- sage/rings/finite_rings/homset.py +357 -0
- sage/rings/finite_rings/integer_mod.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/integer_mod.pxd +56 -0
- sage/rings/finite_rings/integer_mod.pyx +4586 -0
- sage/rings/finite_rings/integer_mod_limits.h +11 -0
- sage/rings/finite_rings/integer_mod_ring.py +2044 -0
- sage/rings/finite_rings/residue_field.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/finite_rings/residue_field.pxd +30 -0
- sage/rings/finite_rings/residue_field.pyx +1811 -0
- sage/rings/finite_rings/stdint.pxd +19 -0
- sage/rings/fraction_field.py +1452 -0
- sage/rings/fraction_field_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/fraction_field_element.pyx +1357 -0
- sage/rings/function_field/all.py +7 -0
- sage/rings/function_field/all__sagemath_categories.py +2 -0
- sage/rings/function_field/constructor.py +218 -0
- sage/rings/function_field/element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element.pxd +11 -0
- sage/rings/function_field/element.pyx +1008 -0
- sage/rings/function_field/element_rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/element_rational.pyx +513 -0
- sage/rings/function_field/extensions.py +230 -0
- sage/rings/function_field/function_field.py +1468 -0
- sage/rings/function_field/function_field_rational.py +1005 -0
- sage/rings/function_field/ideal.py +1155 -0
- sage/rings/function_field/ideal_rational.py +629 -0
- sage/rings/function_field/jacobian_base.py +826 -0
- sage/rings/function_field/jacobian_hess.py +1053 -0
- sage/rings/function_field/jacobian_khuri_makdisi.py +1027 -0
- sage/rings/function_field/maps.py +1039 -0
- sage/rings/function_field/order.py +281 -0
- sage/rings/function_field/order_basis.py +586 -0
- sage/rings/function_field/order_rational.py +576 -0
- sage/rings/function_field/place.py +426 -0
- sage/rings/function_field/place_rational.py +181 -0
- sage/rings/generic.py +320 -0
- sage/rings/homset.py +332 -0
- sage/rings/ideal.py +1885 -0
- sage/rings/ideal_monoid.py +215 -0
- sage/rings/infinity.py +1890 -0
- sage/rings/integer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer.pxd +45 -0
- sage/rings/integer.pyx +7874 -0
- sage/rings/integer_ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/integer_ring.pxd +8 -0
- sage/rings/integer_ring.pyx +1693 -0
- sage/rings/laurent_series_ring.py +931 -0
- sage/rings/laurent_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/laurent_series_ring_element.pxd +11 -0
- sage/rings/laurent_series_ring_element.pyx +1927 -0
- sage/rings/lazy_series.py +7815 -0
- sage/rings/lazy_series_ring.py +4356 -0
- sage/rings/localization.py +1043 -0
- sage/rings/morphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/morphism.pxd +39 -0
- sage/rings/morphism.pyx +3299 -0
- sage/rings/multi_power_series_ring.py +1145 -0
- sage/rings/multi_power_series_ring_element.py +2184 -0
- sage/rings/noncommutative_ideals.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/noncommutative_ideals.pyx +423 -0
- sage/rings/number_field/all__sagemath_categories.py +1 -0
- sage/rings/number_field/number_field_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_base.pxd +8 -0
- sage/rings/number_field/number_field_base.pyx +507 -0
- sage/rings/number_field/number_field_element_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/number_field/number_field_element_base.pxd +6 -0
- sage/rings/number_field/number_field_element_base.pyx +36 -0
- sage/rings/number_field/number_field_ideal.py +3550 -0
- sage/rings/padics/all__sagemath_categories.py +4 -0
- sage/rings/padics/local_generic.py +1670 -0
- sage/rings/padics/local_generic_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/local_generic_element.pxd +5 -0
- sage/rings/padics/local_generic_element.pyx +1017 -0
- sage/rings/padics/misc.py +256 -0
- sage/rings/padics/padic_generic.py +1911 -0
- sage/rings/padics/pow_computer.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/padics/pow_computer.pxd +38 -0
- sage/rings/padics/pow_computer.pyx +671 -0
- sage/rings/padics/precision_error.py +24 -0
- sage/rings/polynomial/all__sagemath_categories.py +25 -0
- sage/rings/polynomial/commutative_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/commutative_polynomial.pxd +6 -0
- sage/rings/polynomial/commutative_polynomial.pyx +24 -0
- sage/rings/polynomial/cyclotomic.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/cyclotomic.pyx +404 -0
- sage/rings/polynomial/flatten.py +711 -0
- sage/rings/polynomial/ideal.py +102 -0
- sage/rings/polynomial/infinite_polynomial_element.py +1768 -0
- sage/rings/polynomial/infinite_polynomial_ring.py +1653 -0
- sage/rings/polynomial/laurent_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial.pxd +18 -0
- sage/rings/polynomial/laurent_polynomial.pyx +2190 -0
- sage/rings/polynomial/laurent_polynomial_ideal.py +590 -0
- sage/rings/polynomial/laurent_polynomial_ring.py +832 -0
- sage/rings/polynomial/laurent_polynomial_ring_base.py +708 -0
- sage/rings/polynomial/multi_polynomial.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial.pxd +12 -0
- sage/rings/polynomial/multi_polynomial.pyx +3082 -0
- sage/rings/polynomial/multi_polynomial_element.py +2570 -0
- sage/rings/polynomial/multi_polynomial_ideal.py +5771 -0
- sage/rings/polynomial/multi_polynomial_ring.py +947 -0
- sage/rings/polynomial/multi_polynomial_ring_base.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pxd +15 -0
- sage/rings/polynomial/multi_polynomial_ring_base.pyx +1855 -0
- sage/rings/polynomial/multi_polynomial_sequence.py +2204 -0
- sage/rings/polynomial/polydict.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polydict.pxd +45 -0
- sage/rings/polynomial/polydict.pyx +2701 -0
- sage/rings/polynomial/polynomial_compiled.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_compiled.pxd +59 -0
- sage/rings/polynomial/polynomial_compiled.pyx +509 -0
- sage/rings/polynomial/polynomial_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_element.pxd +64 -0
- sage/rings/polynomial/polynomial_element.pyx +13255 -0
- sage/rings/polynomial/polynomial_element_generic.py +1637 -0
- sage/rings/polynomial/polynomial_fateman.py +97 -0
- sage/rings/polynomial/polynomial_quotient_ring.py +2465 -0
- sage/rings/polynomial/polynomial_quotient_ring_element.py +779 -0
- sage/rings/polynomial/polynomial_ring.py +3784 -0
- sage/rings/polynomial/polynomial_ring_constructor.py +1051 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pxd +5 -0
- sage/rings/polynomial/polynomial_ring_homomorphism.pyx +121 -0
- sage/rings/polynomial/polynomial_singular_interface.py +549 -0
- sage/rings/polynomial/symmetric_ideal.py +989 -0
- sage/rings/polynomial/symmetric_reduction.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/symmetric_reduction.pxd +8 -0
- sage/rings/polynomial/symmetric_reduction.pyx +669 -0
- sage/rings/polynomial/term_order.py +2279 -0
- sage/rings/polynomial/toy_buchberger.py +449 -0
- sage/rings/polynomial/toy_d_basis.py +387 -0
- sage/rings/polynomial/toy_variety.py +362 -0
- sage/rings/power_series_mpoly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_mpoly.pxd +9 -0
- sage/rings/power_series_mpoly.pyx +161 -0
- sage/rings/power_series_poly.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_poly.pxd +10 -0
- sage/rings/power_series_poly.pyx +1317 -0
- sage/rings/power_series_ring.py +1441 -0
- sage/rings/power_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/power_series_ring_element.pxd +12 -0
- sage/rings/power_series_ring_element.pyx +3028 -0
- sage/rings/puiseux_series_ring.py +487 -0
- sage/rings/puiseux_series_ring_element.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/puiseux_series_ring_element.pxd +7 -0
- sage/rings/puiseux_series_ring_element.pyx +1055 -0
- sage/rings/qqbar_decorators.py +167 -0
- sage/rings/quotient_ring.py +1598 -0
- sage/rings/quotient_ring_element.py +979 -0
- sage/rings/rational.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/rational.pxd +20 -0
- sage/rings/rational.pyx +4284 -0
- sage/rings/rational_field.py +1730 -0
- sage/rings/real_double.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_double.pxd +16 -0
- sage/rings/real_double.pyx +2218 -0
- sage/rings/real_lazy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/real_lazy.pxd +30 -0
- sage/rings/real_lazy.pyx +1773 -0
- sage/rings/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/ring.pxd +30 -0
- sage/rings/ring.pyx +850 -0
- sage/rings/semirings/all.py +3 -0
- sage/rings/semirings/non_negative_integer_semiring.py +107 -0
- sage/rings/semirings/tropical_mpolynomial.py +972 -0
- sage/rings/semirings/tropical_polynomial.py +997 -0
- sage/rings/semirings/tropical_semiring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/semirings/tropical_semiring.pyx +676 -0
- sage/rings/semirings/tropical_variety.py +1701 -0
- sage/rings/sum_of_squares.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/rings/sum_of_squares.pxd +3 -0
- sage/rings/sum_of_squares.pyx +336 -0
- sage/rings/tests.py +504 -0
- sage/schemes/affine/affine_homset.py +508 -0
- sage/schemes/affine/affine_morphism.py +1574 -0
- sage/schemes/affine/affine_point.py +460 -0
- sage/schemes/affine/affine_rational_point.py +308 -0
- sage/schemes/affine/affine_space.py +1264 -0
- sage/schemes/affine/affine_subscheme.py +592 -0
- sage/schemes/affine/all.py +25 -0
- sage/schemes/all__sagemath_categories.py +5 -0
- sage/schemes/generic/algebraic_scheme.py +2092 -0
- sage/schemes/generic/all.py +5 -0
- sage/schemes/generic/ambient_space.py +400 -0
- sage/schemes/generic/divisor.py +465 -0
- sage/schemes/generic/divisor_group.py +313 -0
- sage/schemes/generic/glue.py +84 -0
- sage/schemes/generic/homset.py +820 -0
- sage/schemes/generic/hypersurface.py +234 -0
- sage/schemes/generic/morphism.py +2107 -0
- sage/schemes/generic/point.py +237 -0
- sage/schemes/generic/scheme.py +1190 -0
- sage/schemes/generic/spec.py +199 -0
- sage/schemes/product_projective/all.py +6 -0
- sage/schemes/product_projective/homset.py +236 -0
- sage/schemes/product_projective/morphism.py +517 -0
- sage/schemes/product_projective/point.py +568 -0
- sage/schemes/product_projective/rational_point.py +550 -0
- sage/schemes/product_projective/space.py +1301 -0
- sage/schemes/product_projective/subscheme.py +466 -0
- sage/schemes/projective/all.py +24 -0
- sage/schemes/projective/proj_bdd_height.py +453 -0
- sage/schemes/projective/projective_homset.py +718 -0
- sage/schemes/projective/projective_morphism.py +2792 -0
- sage/schemes/projective/projective_point.py +1484 -0
- sage/schemes/projective/projective_rational_point.py +569 -0
- sage/schemes/projective/projective_space.py +2571 -0
- sage/schemes/projective/projective_subscheme.py +1574 -0
- sage/sets/all.py +17 -0
- sage/sets/cartesian_product.py +376 -0
- sage/sets/condition_set.py +525 -0
- sage/sets/disjoint_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/disjoint_set.pxd +36 -0
- sage/sets/disjoint_set.pyx +998 -0
- sage/sets/disjoint_union_enumerated_sets.py +625 -0
- sage/sets/family.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/family.pxd +12 -0
- sage/sets/family.pyx +1556 -0
- sage/sets/finite_enumerated_set.py +406 -0
- sage/sets/finite_set_map_cy.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/finite_set_map_cy.pxd +34 -0
- sage/sets/finite_set_map_cy.pyx +708 -0
- sage/sets/finite_set_maps.py +591 -0
- sage/sets/image_set.py +448 -0
- sage/sets/integer_range.py +829 -0
- sage/sets/non_negative_integers.py +241 -0
- sage/sets/positive_integers.py +93 -0
- sage/sets/primes.py +188 -0
- sage/sets/real_set.py +2760 -0
- sage/sets/recursively_enumerated_set.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/sets/recursively_enumerated_set.pxd +31 -0
- sage/sets/recursively_enumerated_set.pyx +2082 -0
- sage/sets/set.py +2083 -0
- sage/sets/set_from_iterator.py +1021 -0
- sage/sets/totally_ordered_finite_set.py +329 -0
- sage/symbolic/all__sagemath_categories.py +1 -0
- sage/symbolic/function.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/function.pxd +29 -0
- sage/symbolic/function.pyx +1488 -0
- sage/symbolic/symbols.py +56 -0
- sage/tests/all__sagemath_categories.py +1 -0
- sage/tests/cython.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/cython.pyx +37 -0
- sage/tests/stl_vector.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/tests/stl_vector.pyx +171 -0
- sage/typeset/all.py +6 -0
- sage/typeset/ascii_art.py +295 -0
- sage/typeset/character_art.py +789 -0
- sage/typeset/character_art_factory.py +572 -0
- sage/typeset/symbols.py +334 -0
- sage/typeset/unicode_art.py +183 -0
- sage/typeset/unicode_characters.py +101 -0
|
@@ -0,0 +1,722 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-categories
|
|
2
|
+
# sage.doctest: needs sage.graphs, sage.combinat
|
|
3
|
+
r"""
|
|
4
|
+
Posets
|
|
5
|
+
"""
|
|
6
|
+
# ****************************************************************************
|
|
7
|
+
# Copyright (C) 2011 Nicolas M. Thiery <nthiery at users.sf.net>
|
|
8
|
+
#
|
|
9
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
10
|
+
# https://www.gnu.org/licenses/
|
|
11
|
+
# *****************************************************************************
|
|
12
|
+
from sage.misc.cachefunc import cached_method
|
|
13
|
+
from sage.misc.abstract_method import abstract_method
|
|
14
|
+
from sage.misc.lazy_import import LazyImport
|
|
15
|
+
from sage.categories.category import Category
|
|
16
|
+
from sage.categories.sets_cat import Sets
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class Posets(Category):
|
|
20
|
+
r"""
|
|
21
|
+
The category of posets i.e. sets with a partial order structure.
|
|
22
|
+
|
|
23
|
+
EXAMPLES::
|
|
24
|
+
|
|
25
|
+
sage: Posets()
|
|
26
|
+
Category of posets
|
|
27
|
+
sage: Posets().super_categories()
|
|
28
|
+
[Category of sets]
|
|
29
|
+
sage: P = Posets().example(); P
|
|
30
|
+
An example of a poset: sets ordered by inclusion
|
|
31
|
+
|
|
32
|
+
The partial order is implemented by the mandatory method
|
|
33
|
+
:meth:`~Posets.ParentMethods.le`::
|
|
34
|
+
|
|
35
|
+
sage: x = P(Set([1,3])); y = P(Set([1,2,3]))
|
|
36
|
+
sage: x, y
|
|
37
|
+
({1, 3}, {1, 2, 3})
|
|
38
|
+
sage: P.le(x, y)
|
|
39
|
+
True
|
|
40
|
+
sage: P.le(x, x)
|
|
41
|
+
True
|
|
42
|
+
sage: P.le(y, x)
|
|
43
|
+
False
|
|
44
|
+
|
|
45
|
+
The other comparison methods are called
|
|
46
|
+
:meth:`~Posets.ParentMethods.lt`, :meth:`~Posets.ParentMethods.ge`,
|
|
47
|
+
:meth:`~Posets.ParentMethods.gt`, following Python's naming
|
|
48
|
+
convention in :mod:`operator`. Default implementations are
|
|
49
|
+
provided::
|
|
50
|
+
|
|
51
|
+
sage: P.lt(x, x)
|
|
52
|
+
False
|
|
53
|
+
sage: P.ge(y, x)
|
|
54
|
+
True
|
|
55
|
+
|
|
56
|
+
Unless the poset is a facade (see :class:`Sets.Facade`), one can
|
|
57
|
+
compare directly its elements using the usual Python operators::
|
|
58
|
+
|
|
59
|
+
sage: D = Poset((divisors(30), attrcall("divides")), facade = False)
|
|
60
|
+
sage: D(3) <= D(6)
|
|
61
|
+
True
|
|
62
|
+
sage: D(3) <= D(3)
|
|
63
|
+
True
|
|
64
|
+
sage: D(3) <= D(5)
|
|
65
|
+
False
|
|
66
|
+
sage: D(3) < D(3)
|
|
67
|
+
False
|
|
68
|
+
sage: D(10) >= D(5)
|
|
69
|
+
True
|
|
70
|
+
|
|
71
|
+
At this point, this has to be implemented by hand. Once
|
|
72
|
+
:issue:`10130` will be resolved, this will be automatically
|
|
73
|
+
provided by this category::
|
|
74
|
+
|
|
75
|
+
sage: # not implemented
|
|
76
|
+
sage: x < y
|
|
77
|
+
True
|
|
78
|
+
sage: x < x
|
|
79
|
+
False
|
|
80
|
+
sage: x <= x
|
|
81
|
+
True
|
|
82
|
+
sage: y >= x
|
|
83
|
+
True
|
|
84
|
+
|
|
85
|
+
.. SEEALSO:: :func:`Poset`, :class:`FinitePosets`, :class:`LatticePosets`
|
|
86
|
+
|
|
87
|
+
TESTS::
|
|
88
|
+
|
|
89
|
+
sage: C = Posets()
|
|
90
|
+
sage: TestSuite(C).run()
|
|
91
|
+
"""
|
|
92
|
+
@cached_method
|
|
93
|
+
def super_categories(self):
|
|
94
|
+
r"""
|
|
95
|
+
Return a list of the (immediate) super categories of
|
|
96
|
+
``self``, as per :meth:`Category.super_categories`.
|
|
97
|
+
|
|
98
|
+
EXAMPLES::
|
|
99
|
+
|
|
100
|
+
sage: Posets().super_categories()
|
|
101
|
+
[Category of sets]
|
|
102
|
+
"""
|
|
103
|
+
return [Sets()]
|
|
104
|
+
|
|
105
|
+
def example(self, choice=None):
|
|
106
|
+
r"""
|
|
107
|
+
Return examples of objects of ``Posets()``, as per
|
|
108
|
+
:meth:`Category.example()
|
|
109
|
+
<sage.categories.category.Category.example>`.
|
|
110
|
+
|
|
111
|
+
EXAMPLES::
|
|
112
|
+
|
|
113
|
+
sage: Posets().example()
|
|
114
|
+
An example of a poset: sets ordered by inclusion
|
|
115
|
+
|
|
116
|
+
sage: Posets().example("facade")
|
|
117
|
+
An example of a facade poset:
|
|
118
|
+
the positive integers ordered by divisibility
|
|
119
|
+
"""
|
|
120
|
+
from sage.categories.examples.posets import FiniteSetsOrderedByInclusion, PositiveIntegersOrderedByDivisibilityFacade
|
|
121
|
+
if choice == "facade":
|
|
122
|
+
return PositiveIntegersOrderedByDivisibilityFacade()
|
|
123
|
+
else:
|
|
124
|
+
return FiniteSetsOrderedByInclusion()
|
|
125
|
+
|
|
126
|
+
def __iter__(self):
|
|
127
|
+
r"""
|
|
128
|
+
Iterator over representatives of the isomorphism classes of
|
|
129
|
+
posets with finitely many vertices.
|
|
130
|
+
|
|
131
|
+
.. warning:: this feature may become deprecated, since it does
|
|
132
|
+
of course not iterate through all posets.
|
|
133
|
+
|
|
134
|
+
EXAMPLES::
|
|
135
|
+
|
|
136
|
+
sage: P = Posets()
|
|
137
|
+
sage: it = iter(P)
|
|
138
|
+
sage: for _ in range(10): print(next(it)) # needs nauty
|
|
139
|
+
Finite poset containing 0 elements
|
|
140
|
+
Finite poset containing 1 elements
|
|
141
|
+
Finite poset containing 2 elements
|
|
142
|
+
Finite poset containing 2 elements
|
|
143
|
+
Finite poset containing 3 elements
|
|
144
|
+
Finite poset containing 3 elements
|
|
145
|
+
Finite poset containing 3 elements
|
|
146
|
+
Finite poset containing 3 elements
|
|
147
|
+
Finite poset containing 3 elements
|
|
148
|
+
Finite poset containing 4 elements
|
|
149
|
+
"""
|
|
150
|
+
from sage.combinat.posets.posets import FinitePosets_n
|
|
151
|
+
n = 0
|
|
152
|
+
while True:
|
|
153
|
+
yield from FinitePosets_n(n)
|
|
154
|
+
n += 1
|
|
155
|
+
|
|
156
|
+
Finite = LazyImport('sage.categories.finite_posets', 'FinitePosets')
|
|
157
|
+
|
|
158
|
+
class ParentMethods:
|
|
159
|
+
|
|
160
|
+
@abstract_method
|
|
161
|
+
def le(self, x, y):
|
|
162
|
+
r"""
|
|
163
|
+
Return whether `x \le y` in the poset ``self``.
|
|
164
|
+
|
|
165
|
+
INPUT:
|
|
166
|
+
|
|
167
|
+
- ``x``, ``y`` -- elements of ``self``
|
|
168
|
+
|
|
169
|
+
EXAMPLES::
|
|
170
|
+
|
|
171
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
172
|
+
sage: D.le( 3, 6 )
|
|
173
|
+
True
|
|
174
|
+
sage: D.le( 3, 3 )
|
|
175
|
+
True
|
|
176
|
+
sage: D.le( 3, 5 )
|
|
177
|
+
False
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
def lt(self, x, y):
|
|
181
|
+
r"""
|
|
182
|
+
Return whether `x < y` in the poset ``self``.
|
|
183
|
+
|
|
184
|
+
INPUT:
|
|
185
|
+
|
|
186
|
+
- ``x``, ``y`` -- elements of ``self``
|
|
187
|
+
|
|
188
|
+
This default implementation delegates the work to :meth:`le`.
|
|
189
|
+
|
|
190
|
+
EXAMPLES::
|
|
191
|
+
|
|
192
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
193
|
+
sage: D.lt( 3, 6 )
|
|
194
|
+
True
|
|
195
|
+
sage: D.lt( 3, 3 )
|
|
196
|
+
False
|
|
197
|
+
sage: D.lt( 3, 5 )
|
|
198
|
+
False
|
|
199
|
+
"""
|
|
200
|
+
return self.le(x,y) and x != y
|
|
201
|
+
|
|
202
|
+
def ge(self, x, y):
|
|
203
|
+
r"""
|
|
204
|
+
Return whether `x \ge y` in the poset ``self``.
|
|
205
|
+
|
|
206
|
+
INPUT:
|
|
207
|
+
|
|
208
|
+
- ``x``, ``y`` -- elements of ``self``
|
|
209
|
+
|
|
210
|
+
This default implementation delegates the work to :meth:`le`.
|
|
211
|
+
|
|
212
|
+
EXAMPLES::
|
|
213
|
+
|
|
214
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
215
|
+
sage: D.ge( 6, 3 )
|
|
216
|
+
True
|
|
217
|
+
sage: D.ge( 3, 3 )
|
|
218
|
+
True
|
|
219
|
+
sage: D.ge( 3, 5 )
|
|
220
|
+
False
|
|
221
|
+
"""
|
|
222
|
+
return self.le(y,x)
|
|
223
|
+
|
|
224
|
+
def gt(self, x, y):
|
|
225
|
+
r"""
|
|
226
|
+
Return whether `x > y` in the poset ``self``.
|
|
227
|
+
|
|
228
|
+
INPUT:
|
|
229
|
+
|
|
230
|
+
- ``x``, ``y`` -- elements of ``self``
|
|
231
|
+
|
|
232
|
+
This default implementation delegates the work to :meth:`lt`.
|
|
233
|
+
|
|
234
|
+
EXAMPLES::
|
|
235
|
+
|
|
236
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
237
|
+
sage: D.gt( 3, 6 )
|
|
238
|
+
False
|
|
239
|
+
sage: D.gt( 3, 3 )
|
|
240
|
+
False
|
|
241
|
+
sage: D.gt( 3, 5 )
|
|
242
|
+
False
|
|
243
|
+
"""
|
|
244
|
+
return self.lt(y,x)
|
|
245
|
+
|
|
246
|
+
@abstract_method(optional=True)
|
|
247
|
+
def upper_covers(self, x):
|
|
248
|
+
r"""
|
|
249
|
+
Return the upper covers of `x`, that is, the elements `y`
|
|
250
|
+
such that `x<y` and there exists no `z` such that `x<z<y`.
|
|
251
|
+
|
|
252
|
+
EXAMPLES::
|
|
253
|
+
|
|
254
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
255
|
+
sage: D.upper_covers(3)
|
|
256
|
+
[6, 15]
|
|
257
|
+
"""
|
|
258
|
+
|
|
259
|
+
@abstract_method(optional=True)
|
|
260
|
+
def lower_covers(self, x):
|
|
261
|
+
r"""
|
|
262
|
+
Return the lower covers of `x`, that is, the elements `y`
|
|
263
|
+
such that `y<x` and there exists no `z` such that `y<z<x`.
|
|
264
|
+
|
|
265
|
+
EXAMPLES::
|
|
266
|
+
|
|
267
|
+
sage: D = Poset((divisors(30), attrcall("divides")))
|
|
268
|
+
sage: D.lower_covers(15)
|
|
269
|
+
[3, 5]
|
|
270
|
+
"""
|
|
271
|
+
|
|
272
|
+
@abstract_method(optional=True)
|
|
273
|
+
def order_ideal(self, elements):
|
|
274
|
+
r"""
|
|
275
|
+
Return the order ideal in ``self`` generated by the elements
|
|
276
|
+
of an iterable ``elements``.
|
|
277
|
+
|
|
278
|
+
A subset `I` of a poset is said to be an order ideal if, for
|
|
279
|
+
any `x` in `I` and `y` such that `y \le x`, then `y` is in `I`.
|
|
280
|
+
|
|
281
|
+
This is also called the lower set generated by these elements.
|
|
282
|
+
|
|
283
|
+
EXAMPLES::
|
|
284
|
+
|
|
285
|
+
sage: B = posets.BooleanLattice(4)
|
|
286
|
+
sage: B.order_ideal([7,10])
|
|
287
|
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]
|
|
288
|
+
"""
|
|
289
|
+
|
|
290
|
+
@abstract_method(optional=True)
|
|
291
|
+
def order_filter(self, elements):
|
|
292
|
+
r"""
|
|
293
|
+
Return the order filter generated by a list of elements.
|
|
294
|
+
|
|
295
|
+
A subset `I` of a poset is said to be an order filter if, for
|
|
296
|
+
any `x` in `I` and `y` such that `y \ge x`, then `y` is in `I`.
|
|
297
|
+
|
|
298
|
+
This is also called the upper set generated by these elements.
|
|
299
|
+
|
|
300
|
+
EXAMPLES::
|
|
301
|
+
|
|
302
|
+
sage: B = posets.BooleanLattice(4)
|
|
303
|
+
sage: B.order_filter([3,8])
|
|
304
|
+
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
|
|
305
|
+
"""
|
|
306
|
+
|
|
307
|
+
def directed_subset(self, elements, direction):
|
|
308
|
+
r"""
|
|
309
|
+
Return the order filter or the order ideal generated by a
|
|
310
|
+
list of elements.
|
|
311
|
+
|
|
312
|
+
If ``direction`` is ``'up'``, the order filter (upper set) is
|
|
313
|
+
being returned.
|
|
314
|
+
|
|
315
|
+
If ``direction`` is ``'down'``, the order ideal (lower set) is
|
|
316
|
+
being returned.
|
|
317
|
+
|
|
318
|
+
INPUT:
|
|
319
|
+
|
|
320
|
+
- ``elements`` -- list of elements
|
|
321
|
+
|
|
322
|
+
- ``direction`` -- ``'up'`` or ``'down'``
|
|
323
|
+
|
|
324
|
+
EXAMPLES::
|
|
325
|
+
|
|
326
|
+
sage: B = posets.BooleanLattice(4)
|
|
327
|
+
sage: B.directed_subset([3, 8], 'up')
|
|
328
|
+
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
|
|
329
|
+
sage: B.directed_subset([7, 10], 'down')
|
|
330
|
+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]
|
|
331
|
+
|
|
332
|
+
TESTS::
|
|
333
|
+
|
|
334
|
+
sage: B = posets.BooleanLattice(3)
|
|
335
|
+
sage: B.directed_subset([3, 1], 'banana')
|
|
336
|
+
Traceback (most recent call last):
|
|
337
|
+
...
|
|
338
|
+
ValueError: direction must be either 'up' or 'down'
|
|
339
|
+
"""
|
|
340
|
+
if direction == 'up':
|
|
341
|
+
return self.order_filter(elements)
|
|
342
|
+
if direction == 'down':
|
|
343
|
+
return self.order_ideal(elements)
|
|
344
|
+
raise ValueError("direction must be either 'up' or 'down'")
|
|
345
|
+
|
|
346
|
+
def principal_order_ideal(self, x):
|
|
347
|
+
r"""
|
|
348
|
+
Return the order ideal generated by an element ``x``.
|
|
349
|
+
|
|
350
|
+
This is also called the lower set generated by this element.
|
|
351
|
+
|
|
352
|
+
EXAMPLES::
|
|
353
|
+
|
|
354
|
+
sage: B = posets.BooleanLattice(4)
|
|
355
|
+
sage: B.principal_order_ideal(6)
|
|
356
|
+
[0, 2, 4, 6]
|
|
357
|
+
"""
|
|
358
|
+
return self.order_ideal([x])
|
|
359
|
+
|
|
360
|
+
principal_lower_set = principal_order_ideal
|
|
361
|
+
|
|
362
|
+
def principal_order_filter(self, x):
|
|
363
|
+
r"""
|
|
364
|
+
Return the order filter generated by an element ``x``.
|
|
365
|
+
|
|
366
|
+
This is also called the upper set generated by this element.
|
|
367
|
+
|
|
368
|
+
EXAMPLES::
|
|
369
|
+
|
|
370
|
+
sage: B = posets.BooleanLattice(4)
|
|
371
|
+
sage: B.principal_order_filter(2)
|
|
372
|
+
[2, 3, 6, 7, 10, 11, 14, 15]
|
|
373
|
+
"""
|
|
374
|
+
return self.order_filter([x])
|
|
375
|
+
|
|
376
|
+
principal_upper_set = principal_order_filter
|
|
377
|
+
|
|
378
|
+
def order_ideal_toggle(self, I, v):
|
|
379
|
+
r"""
|
|
380
|
+
Return the result of toggling the element ``v`` in the
|
|
381
|
+
order ideal ``I``.
|
|
382
|
+
|
|
383
|
+
If `v` is an element of a poset `P`, then toggling the
|
|
384
|
+
element `v` is an automorphism of the set `J(P)` of all
|
|
385
|
+
order ideals of `P`. It is defined as follows: If `I`
|
|
386
|
+
is an order ideal of `P`, then the image of `I` under
|
|
387
|
+
toggling the element `v` is
|
|
388
|
+
|
|
389
|
+
- the set `I \cup \{ v \}`, if `v \not\in I` but
|
|
390
|
+
every element of `P` smaller than `v` is in `I`;
|
|
391
|
+
|
|
392
|
+
- the set `I \setminus \{ v \}`, if `v \in I` but
|
|
393
|
+
no element of `P` greater than `v` is in `I`;
|
|
394
|
+
|
|
395
|
+
- `I` otherwise.
|
|
396
|
+
|
|
397
|
+
This image always is an order ideal of `P`.
|
|
398
|
+
|
|
399
|
+
EXAMPLES::
|
|
400
|
+
|
|
401
|
+
sage: P = Poset({1: [2,3], 2: [4], 3: []})
|
|
402
|
+
sage: I = Set({1, 2})
|
|
403
|
+
sage: I in P.order_ideals_lattice() # needs sage.modules
|
|
404
|
+
True
|
|
405
|
+
sage: P.order_ideal_toggle(I, 1)
|
|
406
|
+
{1, 2}
|
|
407
|
+
sage: P.order_ideal_toggle(I, 2)
|
|
408
|
+
{1}
|
|
409
|
+
sage: P.order_ideal_toggle(I, 3)
|
|
410
|
+
{1, 2, 3}
|
|
411
|
+
sage: P.order_ideal_toggle(I, 4)
|
|
412
|
+
{1, 2, 4}
|
|
413
|
+
sage: P4 = Posets(4)
|
|
414
|
+
sage: all(all(all(P.order_ideal_toggle(P.order_ideal_toggle(I, i), i) == I # needs nauty sage.modules
|
|
415
|
+
....: for i in range(4))
|
|
416
|
+
....: for I in P.order_ideals_lattice(facade=True))
|
|
417
|
+
....: for P in P4)
|
|
418
|
+
True
|
|
419
|
+
"""
|
|
420
|
+
if v not in I:
|
|
421
|
+
if all(u in I for u in self.lower_covers(v)):
|
|
422
|
+
from sage.sets.set import Set
|
|
423
|
+
return I.union(Set({v}))
|
|
424
|
+
else:
|
|
425
|
+
if all(u not in I for u in self.upper_covers(v)):
|
|
426
|
+
from sage.sets.set import Set
|
|
427
|
+
return I.difference(Set({v}))
|
|
428
|
+
return I
|
|
429
|
+
|
|
430
|
+
def order_ideal_toggles(self, I, vs):
|
|
431
|
+
r"""
|
|
432
|
+
Return the result of toggling the elements of the list (or
|
|
433
|
+
iterable) ``vs`` (one by one, from left to right) in the order
|
|
434
|
+
ideal ``I``.
|
|
435
|
+
|
|
436
|
+
See :meth:`order_ideal_toggle` for a definition of toggling.
|
|
437
|
+
|
|
438
|
+
EXAMPLES::
|
|
439
|
+
|
|
440
|
+
sage: P = Poset({1: [2,3], 2: [4], 3: []})
|
|
441
|
+
sage: I = Set({1, 2})
|
|
442
|
+
sage: P.order_ideal_toggles(I, [1,2,3,4])
|
|
443
|
+
{1, 3}
|
|
444
|
+
sage: P.order_ideal_toggles(I, (1,2,3,4))
|
|
445
|
+
{1, 3}
|
|
446
|
+
"""
|
|
447
|
+
for v in vs:
|
|
448
|
+
I = self.order_ideal_toggle(I, v)
|
|
449
|
+
return I
|
|
450
|
+
|
|
451
|
+
def is_order_ideal(self, o):
|
|
452
|
+
"""
|
|
453
|
+
Return whether ``o`` is an order ideal of ``self``, assuming ``self``
|
|
454
|
+
has no infinite descending path.
|
|
455
|
+
|
|
456
|
+
INPUT:
|
|
457
|
+
|
|
458
|
+
- ``o`` -- list (or set, or tuple) containing some elements of ``self``
|
|
459
|
+
|
|
460
|
+
EXAMPLES::
|
|
461
|
+
|
|
462
|
+
sage: P = Poset((divisors(12), attrcall("divides")),
|
|
463
|
+
....: facade=True, linear_extension=True)
|
|
464
|
+
sage: sorted(P.list())
|
|
465
|
+
[1, 2, 3, 4, 6, 12]
|
|
466
|
+
sage: P.is_order_ideal([1, 3])
|
|
467
|
+
True
|
|
468
|
+
sage: P.is_order_ideal([])
|
|
469
|
+
True
|
|
470
|
+
sage: P.is_order_ideal({1, 3})
|
|
471
|
+
True
|
|
472
|
+
sage: P.is_order_ideal([1, 3, 4])
|
|
473
|
+
False
|
|
474
|
+
"""
|
|
475
|
+
return all((u in self and all(x in o for x in self.lower_covers(u))) for u in o)
|
|
476
|
+
|
|
477
|
+
def is_order_filter(self, o):
|
|
478
|
+
"""
|
|
479
|
+
Return whether ``o`` is an order filter of ``self``, assuming ``self``
|
|
480
|
+
has no infinite ascending path.
|
|
481
|
+
|
|
482
|
+
INPUT:
|
|
483
|
+
|
|
484
|
+
- ``o`` -- list (or set, or tuple) containing some elements of ``self``
|
|
485
|
+
|
|
486
|
+
EXAMPLES::
|
|
487
|
+
|
|
488
|
+
sage: P = Poset((divisors(12), attrcall("divides")),
|
|
489
|
+
....: facade=True, linear_extension=True)
|
|
490
|
+
sage: sorted(P.list())
|
|
491
|
+
[1, 2, 3, 4, 6, 12]
|
|
492
|
+
sage: P.is_order_filter([4, 12])
|
|
493
|
+
True
|
|
494
|
+
sage: P.is_order_filter([])
|
|
495
|
+
True
|
|
496
|
+
sage: P.is_order_filter({3, 4, 12})
|
|
497
|
+
False
|
|
498
|
+
sage: P.is_order_filter({3, 6, 12})
|
|
499
|
+
True
|
|
500
|
+
"""
|
|
501
|
+
return all((u in self and all(x in o for x in self.upper_covers(u))) for u in o)
|
|
502
|
+
|
|
503
|
+
def is_chain_of_poset(self, o, ordered=False):
|
|
504
|
+
"""
|
|
505
|
+
Return whether an iterable ``o`` is a chain of ``self``,
|
|
506
|
+
including a check for ``o`` being ordered from smallest
|
|
507
|
+
to largest element if the keyword ``ordered`` is set to
|
|
508
|
+
``True``.
|
|
509
|
+
|
|
510
|
+
INPUT:
|
|
511
|
+
|
|
512
|
+
- ``o`` -- an iterable (e. g., list, set, or tuple)
|
|
513
|
+
containing some elements of ``self``
|
|
514
|
+
|
|
515
|
+
- ``ordered`` -- a Boolean (default: ``False``); decides
|
|
516
|
+
whether the notion of a chain includes being ordered
|
|
517
|
+
|
|
518
|
+
OUTPUT:
|
|
519
|
+
|
|
520
|
+
If ``ordered`` is set to ``False``, the truth value of
|
|
521
|
+
the following assertion is returned: The subset of ``self``
|
|
522
|
+
formed by the elements of ``o`` is a chain in ``self``.
|
|
523
|
+
|
|
524
|
+
If ``ordered`` is set to ``True``, the truth value of
|
|
525
|
+
the following assertion is returned: Every element of the
|
|
526
|
+
list ``o`` is (strictly!) smaller than its successor in
|
|
527
|
+
``self``. (This makes no sense if ``ordered`` is a set.)
|
|
528
|
+
|
|
529
|
+
EXAMPLES::
|
|
530
|
+
|
|
531
|
+
sage: P = Poset((divisors(12), attrcall("divides")),
|
|
532
|
+
....: facade=True, linear_extension=True)
|
|
533
|
+
sage: sorted(P.list())
|
|
534
|
+
[1, 2, 3, 4, 6, 12]
|
|
535
|
+
sage: P.is_chain_of_poset([1, 3])
|
|
536
|
+
True
|
|
537
|
+
sage: P.is_chain_of_poset([3, 1])
|
|
538
|
+
True
|
|
539
|
+
sage: P.is_chain_of_poset([1, 3], ordered=True)
|
|
540
|
+
True
|
|
541
|
+
sage: P.is_chain_of_poset([3, 1], ordered=True)
|
|
542
|
+
False
|
|
543
|
+
sage: P.is_chain_of_poset([])
|
|
544
|
+
True
|
|
545
|
+
sage: P.is_chain_of_poset([], ordered=True)
|
|
546
|
+
True
|
|
547
|
+
sage: P.is_chain_of_poset((2, 12, 6))
|
|
548
|
+
True
|
|
549
|
+
sage: P.is_chain_of_poset((2, 6, 12), ordered=True)
|
|
550
|
+
True
|
|
551
|
+
sage: P.is_chain_of_poset((2, 12, 6), ordered=True)
|
|
552
|
+
False
|
|
553
|
+
sage: P.is_chain_of_poset((2, 12, 6, 3))
|
|
554
|
+
False
|
|
555
|
+
sage: P.is_chain_of_poset((2, 3))
|
|
556
|
+
False
|
|
557
|
+
|
|
558
|
+
sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
|
|
559
|
+
sage: Q.is_chain_of_poset([1, 2], ordered=True)
|
|
560
|
+
False
|
|
561
|
+
sage: Q.is_chain_of_poset([1, 2])
|
|
562
|
+
True
|
|
563
|
+
sage: Q.is_chain_of_poset([2, 1], ordered=True)
|
|
564
|
+
True
|
|
565
|
+
sage: Q.is_chain_of_poset([2, 1, 1], ordered=True)
|
|
566
|
+
False
|
|
567
|
+
sage: Q.is_chain_of_poset([3])
|
|
568
|
+
True
|
|
569
|
+
sage: Q.is_chain_of_poset([4, 2, 3])
|
|
570
|
+
True
|
|
571
|
+
sage: Q.is_chain_of_poset([4, 2, 3], ordered=True)
|
|
572
|
+
False
|
|
573
|
+
sage: Q.is_chain_of_poset([2, 3, 4], ordered=True)
|
|
574
|
+
True
|
|
575
|
+
|
|
576
|
+
Examples with infinite posets::
|
|
577
|
+
|
|
578
|
+
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
|
|
579
|
+
sage: R = FiniteSetsOrderedByInclusion()
|
|
580
|
+
sage: R.is_chain_of_poset([R(set([3, 1, 2])),
|
|
581
|
+
....: R(set([1, 4])),
|
|
582
|
+
....: R(set([4, 5]))])
|
|
583
|
+
False
|
|
584
|
+
sage: R.is_chain_of_poset([R(set([3, 1, 2])),
|
|
585
|
+
....: R(set([1, 2])),
|
|
586
|
+
....: R(set([1]))], ordered=True)
|
|
587
|
+
False
|
|
588
|
+
sage: R.is_chain_of_poset([R(set([3, 1, 2])),
|
|
589
|
+
....: R(set([1, 2])), R(set([1]))])
|
|
590
|
+
True
|
|
591
|
+
|
|
592
|
+
sage: from sage.categories.examples.posets import PositiveIntegersOrderedByDivisibilityFacade
|
|
593
|
+
sage: T = PositiveIntegersOrderedByDivisibilityFacade()
|
|
594
|
+
sage: T.is_chain_of_poset((T(3), T(4), T(7)))
|
|
595
|
+
False
|
|
596
|
+
sage: T.is_chain_of_poset((T(3), T(6), T(3)))
|
|
597
|
+
True
|
|
598
|
+
sage: T.is_chain_of_poset((T(3), T(6), T(3)), ordered=True)
|
|
599
|
+
False
|
|
600
|
+
sage: T.is_chain_of_poset((T(3), T(3), T(6)))
|
|
601
|
+
True
|
|
602
|
+
sage: T.is_chain_of_poset((T(3), T(3), T(6)), ordered=True)
|
|
603
|
+
False
|
|
604
|
+
sage: T.is_chain_of_poset((T(3), T(6)), ordered=True)
|
|
605
|
+
True
|
|
606
|
+
sage: T.is_chain_of_poset((), ordered=True)
|
|
607
|
+
True
|
|
608
|
+
sage: T.is_chain_of_poset((T(3),), ordered=True)
|
|
609
|
+
True
|
|
610
|
+
sage: T.is_chain_of_poset((T(q) for q in divisors(27)))
|
|
611
|
+
True
|
|
612
|
+
sage: T.is_chain_of_poset((T(q) for q in divisors(18)))
|
|
613
|
+
False
|
|
614
|
+
"""
|
|
615
|
+
list_o = list(o)
|
|
616
|
+
if ordered:
|
|
617
|
+
return all(self.lt(a, b) for a, b in zip(list_o, list_o[1:]))
|
|
618
|
+
else:
|
|
619
|
+
for (i, x) in enumerate(list_o):
|
|
620
|
+
for y in list_o[:i]:
|
|
621
|
+
if (not self.le(x, y)) and (not self.gt(x, y)):
|
|
622
|
+
return False
|
|
623
|
+
return True
|
|
624
|
+
|
|
625
|
+
def is_antichain_of_poset(self, o):
|
|
626
|
+
"""
|
|
627
|
+
Return whether an iterable ``o`` is an antichain of
|
|
628
|
+
``self``.
|
|
629
|
+
|
|
630
|
+
INPUT:
|
|
631
|
+
|
|
632
|
+
- ``o`` -- an iterable (e. g., list, set, or tuple)
|
|
633
|
+
containing some elements of ``self``
|
|
634
|
+
|
|
635
|
+
OUTPUT:
|
|
636
|
+
|
|
637
|
+
``True`` if the subset of ``self`` consisting of the entries
|
|
638
|
+
of ``o`` is an antichain of ``self``, and ``False`` otherwise.
|
|
639
|
+
|
|
640
|
+
EXAMPLES::
|
|
641
|
+
|
|
642
|
+
sage: P = Poset((divisors(12), attrcall("divides")),
|
|
643
|
+
....: facade=True, linear_extension=True)
|
|
644
|
+
sage: sorted(P.list())
|
|
645
|
+
[1, 2, 3, 4, 6, 12]
|
|
646
|
+
sage: P.is_antichain_of_poset([1, 3])
|
|
647
|
+
False
|
|
648
|
+
sage: P.is_antichain_of_poset([3, 1])
|
|
649
|
+
False
|
|
650
|
+
sage: P.is_antichain_of_poset([1, 1, 3])
|
|
651
|
+
False
|
|
652
|
+
sage: P.is_antichain_of_poset([])
|
|
653
|
+
True
|
|
654
|
+
sage: P.is_antichain_of_poset([1])
|
|
655
|
+
True
|
|
656
|
+
sage: P.is_antichain_of_poset([1, 1])
|
|
657
|
+
True
|
|
658
|
+
sage: P.is_antichain_of_poset([3, 4])
|
|
659
|
+
True
|
|
660
|
+
sage: P.is_antichain_of_poset([3, 4, 12])
|
|
661
|
+
False
|
|
662
|
+
sage: P.is_antichain_of_poset([6, 4])
|
|
663
|
+
True
|
|
664
|
+
sage: P.is_antichain_of_poset(i for i in divisors(12)
|
|
665
|
+
....: if (2 < i and i < 6))
|
|
666
|
+
True
|
|
667
|
+
sage: P.is_antichain_of_poset(i for i in divisors(12)
|
|
668
|
+
....: if (2 <= i and i < 6))
|
|
669
|
+
False
|
|
670
|
+
|
|
671
|
+
sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
|
|
672
|
+
sage: Q.is_antichain_of_poset((1, 2))
|
|
673
|
+
False
|
|
674
|
+
sage: Q.is_antichain_of_poset((2, 4))
|
|
675
|
+
False
|
|
676
|
+
sage: Q.is_antichain_of_poset((4, 2))
|
|
677
|
+
False
|
|
678
|
+
sage: Q.is_antichain_of_poset((2, 2))
|
|
679
|
+
True
|
|
680
|
+
sage: Q.is_antichain_of_poset((3, 4))
|
|
681
|
+
False
|
|
682
|
+
sage: Q.is_antichain_of_poset((3, 1))
|
|
683
|
+
True
|
|
684
|
+
sage: Q.is_antichain_of_poset((1, ))
|
|
685
|
+
True
|
|
686
|
+
sage: Q.is_antichain_of_poset(())
|
|
687
|
+
True
|
|
688
|
+
|
|
689
|
+
An infinite poset::
|
|
690
|
+
|
|
691
|
+
sage: from sage.categories.examples.posets import FiniteSetsOrderedByInclusion
|
|
692
|
+
sage: R = FiniteSetsOrderedByInclusion()
|
|
693
|
+
sage: R.is_antichain_of_poset([R(set([3, 1, 2])),
|
|
694
|
+
....: R(set([1, 4])), R(set([4, 5]))])
|
|
695
|
+
True
|
|
696
|
+
sage: R.is_antichain_of_poset([R(set([3, 1, 2, 4])),
|
|
697
|
+
....: R(set([1, 4])), R(set([4, 5]))])
|
|
698
|
+
False
|
|
699
|
+
"""
|
|
700
|
+
return all(not self.lt(x,y) for x in o for y in o)
|
|
701
|
+
|
|
702
|
+
CartesianProduct = LazyImport(
|
|
703
|
+
'sage.combinat.posets.cartesian_product', 'CartesianProductPoset')
|
|
704
|
+
|
|
705
|
+
class ElementMethods:
|
|
706
|
+
pass
|
|
707
|
+
# TODO: implement x<y, x<=y, x>y, x>=y appropriately once #10130 is resolved
|
|
708
|
+
#
|
|
709
|
+
# def __le__(self, other):
|
|
710
|
+
# r"""
|
|
711
|
+
# Return whether ``self`` is smaller or equal to ``other``
|
|
712
|
+
# in the poset.
|
|
713
|
+
#
|
|
714
|
+
# EXAMPLES::
|
|
715
|
+
#
|
|
716
|
+
# sage: P = Posets().example(); P
|
|
717
|
+
# An example of poset: sets ordered by inclusion
|
|
718
|
+
# sage: x = P(Set([1,3])); y = P(Set([1,2,3]))
|
|
719
|
+
# sage: x.__le__(y)
|
|
720
|
+
# sage: x <= y
|
|
721
|
+
# """
|
|
722
|
+
# return self.parent().le(self, other)
|