mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (529) hide show
  1. mteb/__init__.py +2 -0
  2. mteb/_create_dataloaders.py +78 -30
  3. mteb/_evaluators/any_sts_evaluator.py +13 -6
  4. mteb/_evaluators/clustering_evaluator.py +13 -5
  5. mteb/_evaluators/evaluator.py +12 -4
  6. mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
  7. mteb/_evaluators/pair_classification_evaluator.py +17 -7
  8. mteb/_evaluators/retrieval_evaluator.py +23 -14
  9. mteb/_evaluators/retrieval_metrics.py +26 -19
  10. mteb/_evaluators/sklearn_evaluator.py +27 -17
  11. mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
  12. mteb/_evaluators/text/summarization_evaluator.py +31 -20
  13. mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
  14. mteb/_helpful_enum.py +5 -1
  15. mteb/abstasks/_data_filter/filters.py +9 -3
  16. mteb/abstasks/_data_filter/task_pipelines.py +10 -2
  17. mteb/abstasks/_statistics_calculation.py +21 -11
  18. mteb/abstasks/_stratification.py +18 -18
  19. mteb/abstasks/abstask.py +78 -44
  20. mteb/abstasks/aggregate_task_metadata.py +21 -18
  21. mteb/abstasks/aggregated_task.py +23 -35
  22. mteb/abstasks/classification.py +39 -18
  23. mteb/abstasks/clustering.py +37 -20
  24. mteb/abstasks/clustering_legacy.py +30 -16
  25. mteb/abstasks/image/image_text_pair_classification.py +26 -9
  26. mteb/abstasks/multilabel_classification.py +33 -21
  27. mteb/abstasks/pair_classification.py +44 -19
  28. mteb/abstasks/regression.py +18 -10
  29. mteb/abstasks/retrieval.py +82 -52
  30. mteb/abstasks/retrieval_dataset_loaders.py +50 -39
  31. mteb/abstasks/sts.py +34 -15
  32. mteb/abstasks/task_metadata.py +44 -37
  33. mteb/abstasks/text/bitext_mining.py +57 -35
  34. mteb/abstasks/text/reranking.py +10 -8
  35. mteb/abstasks/text/summarization.py +26 -10
  36. mteb/abstasks/zeroshot_classification.py +27 -9
  37. mteb/benchmarks/_create_table.py +13 -7
  38. mteb/benchmarks/benchmark.py +15 -3
  39. mteb/benchmarks/benchmarks/__init__.py +6 -0
  40. mteb/benchmarks/benchmarks/benchmarks.py +153 -13
  41. mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
  42. mteb/benchmarks/get_benchmark.py +14 -55
  43. mteb/cache.py +189 -31
  44. mteb/cli/_display_tasks.py +10 -4
  45. mteb/cli/build_cli.py +112 -13
  46. mteb/cli/generate_model_card.py +50 -23
  47. mteb/deprecated_evaluator.py +72 -54
  48. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
  49. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
  50. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
  51. mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
  52. mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
  53. mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
  54. mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
  55. mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
  56. mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
  57. mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
  58. mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
  59. mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
  60. mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
  61. mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
  62. mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
  63. mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
  64. mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
  65. mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
  66. mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
  67. mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
  68. mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
  69. mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
  70. mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
  71. mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
  72. mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
  73. mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
  74. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  75. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  76. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  77. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  78. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  79. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  80. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  81. mteb/evaluate.py +71 -47
  82. mteb/filter_tasks.py +36 -32
  83. mteb/get_tasks.py +37 -33
  84. mteb/languages/language_scripts.py +11 -4
  85. mteb/leaderboard/app.py +172 -37
  86. mteb/leaderboard/table.py +7 -2
  87. mteb/load_results.py +20 -14
  88. mteb/models/abs_encoder.py +30 -16
  89. mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
  90. mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
  91. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
  92. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
  93. mteb/models/cache_wrappers/cache_wrapper.py +16 -11
  94. mteb/models/get_model_meta.py +53 -9
  95. mteb/models/instruct_wrapper.py +41 -13
  96. mteb/models/model_implementations/align_models.py +11 -5
  97. mteb/models/model_implementations/amazon_models.py +1 -0
  98. mteb/models/model_implementations/andersborges.py +6 -4
  99. mteb/models/model_implementations/ara_models.py +2 -1
  100. mteb/models/model_implementations/arctic_models.py +16 -8
  101. mteb/models/model_implementations/b1ade_models.py +2 -1
  102. mteb/models/model_implementations/bedrock_models.py +20 -6
  103. mteb/models/model_implementations/bge_models.py +85 -22
  104. mteb/models/model_implementations/bica_model.py +4 -3
  105. mteb/models/model_implementations/blip2_models.py +13 -6
  106. mteb/models/model_implementations/blip_models.py +33 -20
  107. mteb/models/model_implementations/bm25.py +27 -17
  108. mteb/models/model_implementations/bmretriever_models.py +16 -6
  109. mteb/models/model_implementations/cadet_models.py +2 -1
  110. mteb/models/model_implementations/cde_models.py +22 -9
  111. mteb/models/model_implementations/clip_models.py +18 -10
  112. mteb/models/model_implementations/clips_models.py +6 -3
  113. mteb/models/model_implementations/codefuse_models.py +10 -5
  114. mteb/models/model_implementations/codesage_models.py +6 -3
  115. mteb/models/model_implementations/cohere_models.py +19 -9
  116. mteb/models/model_implementations/cohere_v.py +16 -6
  117. mteb/models/model_implementations/colpali_models.py +10 -6
  118. mteb/models/model_implementations/colqwen_models.py +24 -38
  119. mteb/models/model_implementations/colsmol_models.py +5 -3
  120. mteb/models/model_implementations/conan_models.py +12 -5
  121. mteb/models/model_implementations/dino_models.py +70 -46
  122. mteb/models/model_implementations/e5_instruct.py +27 -4
  123. mteb/models/model_implementations/e5_models.py +18 -9
  124. mteb/models/model_implementations/e5_v.py +16 -10
  125. mteb/models/model_implementations/eagerworks_models.py +12 -5
  126. mteb/models/model_implementations/emillykkejensen_models.py +9 -6
  127. mteb/models/model_implementations/en_code_retriever.py +2 -1
  128. mteb/models/model_implementations/euler_models.py +3 -2
  129. mteb/models/model_implementations/evaclip_models.py +13 -4
  130. mteb/models/model_implementations/fa_models.py +18 -9
  131. mteb/models/model_implementations/facebookai.py +16 -2
  132. mteb/models/model_implementations/geogpt_models.py +2 -1
  133. mteb/models/model_implementations/gme_v_models.py +13 -8
  134. mteb/models/model_implementations/google_models.py +16 -5
  135. mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
  136. mteb/models/model_implementations/gritlm_models.py +5 -2
  137. mteb/models/model_implementations/gte_models.py +34 -13
  138. mteb/models/model_implementations/hinvec_models.py +7 -2
  139. mteb/models/model_implementations/human.py +1 -0
  140. mteb/models/model_implementations/ibm_granite_models.py +36 -6
  141. mteb/models/model_implementations/inf_models.py +4 -2
  142. mteb/models/model_implementations/jasper_models.py +16 -7
  143. mteb/models/model_implementations/jina_clip.py +58 -14
  144. mteb/models/model_implementations/jina_models.py +35 -16
  145. mteb/models/model_implementations/kalm_models.py +24 -12
  146. mteb/models/model_implementations/kblab.py +13 -6
  147. mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
  148. mteb/models/model_implementations/kfst.py +2 -1
  149. mteb/models/model_implementations/kowshik24_models.py +2 -1
  150. mteb/models/model_implementations/lens_models.py +2 -0
  151. mteb/models/model_implementations/lgai_embedding_models.py +2 -1
  152. mteb/models/model_implementations/linq_models.py +8 -2
  153. mteb/models/model_implementations/listconranker.py +11 -5
  154. mteb/models/model_implementations/llm2clip_models.py +18 -10
  155. mteb/models/model_implementations/llm2vec_models.py +28 -14
  156. mteb/models/model_implementations/mcinext_models.py +12 -3
  157. mteb/models/model_implementations/mdbr_models.py +19 -3
  158. mteb/models/model_implementations/misc_models.py +131 -68
  159. mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
  160. mteb/models/model_implementations/mme5_models.py +3 -2
  161. mteb/models/model_implementations/moco_models.py +15 -8
  162. mteb/models/model_implementations/mod_models.py +3 -2
  163. mteb/models/model_implementations/model2vec_models.py +37 -18
  164. mteb/models/model_implementations/moka_models.py +4 -1
  165. mteb/models/model_implementations/nbailab.py +6 -3
  166. mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
  167. mteb/models/model_implementations/nomic_models.py +47 -19
  168. mteb/models/model_implementations/nomic_models_vision.py +6 -4
  169. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
  170. mteb/models/model_implementations/nvidia_models.py +165 -22
  171. mteb/models/model_implementations/octen_models.py +64 -3
  172. mteb/models/model_implementations/openai_models.py +14 -4
  173. mteb/models/model_implementations/openclip_models.py +30 -17
  174. mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
  175. mteb/models/model_implementations/ops_moa_models.py +10 -3
  176. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
  177. mteb/models/model_implementations/pawan_models.py +2 -1
  178. mteb/models/model_implementations/piccolo_models.py +3 -1
  179. mteb/models/model_implementations/pixie_models.py +56 -0
  180. mteb/models/model_implementations/promptriever_models.py +20 -10
  181. mteb/models/model_implementations/pylate_models.py +41 -21
  182. mteb/models/model_implementations/qodo_models.py +4 -2
  183. mteb/models/model_implementations/qtack_models.py +2 -1
  184. mteb/models/model_implementations/qwen3_models.py +14 -4
  185. mteb/models/model_implementations/qzhou_models.py +4 -2
  186. mteb/models/model_implementations/random_baseline.py +7 -6
  187. mteb/models/model_implementations/rasgaard_models.py +3 -2
  188. mteb/models/model_implementations/reasonir_model.py +66 -1
  189. mteb/models/model_implementations/repllama_models.py +18 -9
  190. mteb/models/model_implementations/rerankers_custom.py +25 -10
  191. mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
  192. mteb/models/model_implementations/richinfoai_models.py +2 -1
  193. mteb/models/model_implementations/ru_sentence_models.py +40 -20
  194. mteb/models/model_implementations/ruri_models.py +20 -10
  195. mteb/models/model_implementations/salesforce_models.py +13 -4
  196. mteb/models/model_implementations/samilpwc_models.py +2 -1
  197. mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
  198. mteb/models/model_implementations/searchmap_models.py +2 -1
  199. mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
  200. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
  201. mteb/models/model_implementations/seed_models.py +2 -1
  202. mteb/models/model_implementations/sentence_transformers_models.py +142 -22
  203. mteb/models/model_implementations/shuu_model.py +2 -1
  204. mteb/models/model_implementations/siglip_models.py +39 -24
  205. mteb/models/model_implementations/slm_models.py +419 -0
  206. mteb/models/model_implementations/sonar_models.py +2 -1
  207. mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
  208. mteb/models/model_implementations/stella_models.py +23 -4
  209. mteb/models/model_implementations/tarka_models.py +4 -2
  210. mteb/models/model_implementations/text2vec_models.py +12 -3
  211. mteb/models/model_implementations/ua_sentence_models.py +2 -1
  212. mteb/models/model_implementations/uae_models.py +17 -5
  213. mteb/models/model_implementations/vdr_models.py +9 -2
  214. mteb/models/model_implementations/vi_vn_models.py +12 -6
  215. mteb/models/model_implementations/vista_models.py +11 -4
  216. mteb/models/model_implementations/vlm2vec_models.py +14 -7
  217. mteb/models/model_implementations/voyage_models.py +136 -4
  218. mteb/models/model_implementations/voyage_v.py +17 -10
  219. mteb/models/model_implementations/xyz_models.py +1 -0
  220. mteb/models/model_implementations/youtu_models.py +2 -1
  221. mteb/models/model_implementations/yuan_models.py +2 -1
  222. mteb/models/model_implementations/yuan_models_en.py +3 -2
  223. mteb/models/model_meta.py +127 -40
  224. mteb/models/models_protocols.py +43 -22
  225. mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
  226. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
  227. mteb/models/search_wrappers.py +63 -29
  228. mteb/models/sentence_transformer_wrapper.py +52 -26
  229. mteb/models/vllm_wrapper.py +329 -0
  230. mteb/py.typed +0 -0
  231. mteb/results/benchmark_results.py +48 -35
  232. mteb/results/model_result.py +68 -32
  233. mteb/results/task_result.py +110 -72
  234. mteb/similarity_functions.py +19 -9
  235. mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
  236. mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
  237. mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
  238. mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
  239. mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
  240. mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
  241. mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
  242. mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
  243. mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
  244. mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
  245. mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
  246. mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
  247. mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
  248. mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
  249. mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
  250. mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
  251. mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
  252. mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
  253. mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
  254. mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
  255. mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
  256. mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
  257. mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
  258. mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
  259. mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
  260. mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
  261. mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
  262. mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
  263. mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
  264. mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
  265. mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
  266. mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
  267. mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
  268. mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
  269. mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
  270. mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
  271. mteb/tasks/classification/est/estonian_valence.py +2 -2
  272. mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
  273. mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
  274. mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
  275. mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
  276. mteb/tasks/classification/fra/french_book_reviews.py +2 -2
  277. mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
  278. mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
  279. mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
  280. mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
  281. mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
  282. mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
  283. mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
  284. mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
  285. mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
  286. mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
  287. mteb/tasks/classification/jpn/wrime_classification.py +1 -1
  288. mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
  289. mteb/tasks/classification/kor/klue_tc.py +2 -2
  290. mteb/tasks/classification/kor/kor_fin.py +1 -1
  291. mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
  292. mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
  293. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  294. mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
  295. mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
  296. mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
  297. mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
  298. mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
  299. mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
  300. mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
  301. mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
  302. mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
  303. mteb/tasks/classification/multilingual/scala_classification.py +2 -2
  304. mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
  305. mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
  306. mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
  307. mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
  308. mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
  309. mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
  310. mteb/tasks/classification/ory/odia_news_classification.py +2 -2
  311. mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
  312. mteb/tasks/classification/ron/moroco.py +1 -1
  313. mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
  314. mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
  315. mteb/tasks/classification/rus/georeview_classification.py +1 -1
  316. mteb/tasks/classification/rus/headline_classification.py +2 -2
  317. mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
  318. mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
  319. mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
  320. mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
  321. mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
  322. mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
  323. mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
  324. mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
  325. mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
  326. mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
  327. mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
  328. mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
  329. mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
  330. mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
  331. mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
  332. mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
  333. mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
  334. mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
  335. mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
  336. mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
  337. mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
  338. mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
  339. mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
  340. mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
  341. mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
  342. mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
  343. mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
  344. mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
  345. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  346. mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
  347. mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
  348. mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
  349. mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
  350. mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
  351. mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
  352. mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
  353. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  354. mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
  355. mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
  356. mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
  357. mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
  358. mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
  359. mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
  360. mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
  361. mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
  362. mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
  363. mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
  364. mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
  365. mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
  366. mteb/tasks/clustering/nob/snl_clustering.py +8 -3
  367. mteb/tasks/clustering/nob/vg_clustering.py +8 -3
  368. mteb/tasks/clustering/pol/polish_clustering.py +3 -3
  369. mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
  370. mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
  371. mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
  372. mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
  373. mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
  374. mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
  375. mteb/tasks/multichoice/eng/cv_bench.py +4 -4
  376. mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
  377. mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
  378. mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
  379. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
  380. mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
  381. mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
  382. mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
  383. mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
  384. mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
  385. mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
  386. mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
  387. mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
  388. mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
  389. mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
  390. mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
  391. mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
  392. mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
  393. mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
  394. mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
  395. mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
  396. mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
  397. mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
  398. mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
  399. mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
  400. mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
  401. mteb/tasks/pair_classification/rus/terra.py +2 -2
  402. mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
  403. mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
  404. mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
  405. mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
  406. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  407. mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
  408. mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
  409. mteb/tasks/retrieval/code/code_rag.py +16 -16
  410. mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
  411. mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
  412. mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
  413. mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
  414. mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
  415. mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
  416. mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
  417. mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
  418. mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
  419. mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
  420. mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
  421. mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
  422. mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
  423. mteb/tasks/retrieval/eng/__init__.py +44 -0
  424. mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
  425. mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
  426. mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
  427. mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
  428. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  429. mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
  430. mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
  431. mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
  432. mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
  433. mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
  434. mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
  435. mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
  436. mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
  437. mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
  438. mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
  439. mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
  440. mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
  441. mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
  442. mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
  443. mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
  444. mteb/tasks/retrieval/eng/ml_questions.py +1 -1
  445. mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
  446. mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
  447. mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
  448. mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
  449. mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
  450. mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
  451. mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
  452. mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
  453. mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
  454. mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
  455. mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
  456. mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
  457. mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
  458. mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
  459. mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
  460. mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
  461. mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
  462. mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
  463. mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
  464. mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
  465. mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
  466. mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
  467. mteb/tasks/retrieval/kor/__init__.py +15 -1
  468. mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
  469. mteb/tasks/retrieval/multilingual/__init__.py +2 -0
  470. mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
  471. mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
  472. mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
  473. mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
  474. mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
  475. mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
  476. mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
  477. mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
  478. mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
  479. mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
  480. mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
  481. mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
  482. mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
  483. mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
  484. mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
  485. mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
  486. mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
  487. mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
  488. mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
  489. mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
  490. mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
  491. mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
  492. mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
  493. mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
  494. mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
  495. mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
  496. mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
  497. mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
  498. mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
  499. mteb/tasks/retrieval/nob/norquad.py +3 -3
  500. mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
  501. mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
  502. mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
  503. mteb/tasks/retrieval/vie/__init__.py +14 -6
  504. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  505. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  506. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  507. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  508. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  509. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  510. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  511. mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
  512. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  513. mteb/tasks/sts/fao/faroese_sts.py +1 -1
  514. mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
  515. mteb/tasks/sts/kor/klue_sts.py +1 -1
  516. mteb/tasks/sts/por/sick_br_sts.py +1 -1
  517. mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
  518. mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
  519. mteb/types/__init__.py +2 -0
  520. mteb/types/_encoder_io.py +13 -1
  521. mteb/types/_result.py +2 -1
  522. mteb/types/statistics.py +18 -5
  523. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
  524. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
  525. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
  526. mteb/models/model_implementations/mxbai_models.py +0 -111
  527. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
  528. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
  529. {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
@@ -36,3 +36,42 @@ class ClimateFEVERVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["ClimateFEVER"],
38
38
  )
39
+
40
+
41
+ class NanoClimateFEVERVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoClimateFEVER-VN",
44
+ description="NanoClimateFEVERVN is a small version of A translated dataset from CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
45
+ reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
46
+ dataset={
47
+ "path": "GreenNode/nano-climate-fever-vn",
48
+ "revision": "1852e852f07403d4529a8520d52b91ff6d57869b",
49
+ },
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Encyclopaedic", "Written"],
61
+ task_subtypes=["Claim verification"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a claim about climate change, retrieve documents that support or refute the claim"
75
+ },
76
+ adapted_from=["ClimateFEVER-VN"],
77
+ )
@@ -36,3 +36,42 @@ class DBPediaVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["DBPedia"],
38
38
  )
39
+
40
+
41
+ class NanoDBPediaVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoDBPedia-VN",
44
+ description="NanoDBPediaVN is a small version of A translated dataset from DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
45
+ reference="https://github.com/iai-group/DBpedia-Entity/",
46
+ dataset={
47
+ "path": "GreenNode/nano-dbpedia-vn",
48
+ "revision": "bbc3259bc63bf1e250d7034024092cc3230d5850",
49
+ },
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Written", "Encyclopaedic"],
61
+ task_subtypes=[],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a query, retrieve relevant entity descriptions from DBPedia"
75
+ },
76
+ adapted_from=["DBPedia-VN"],
77
+ )
@@ -36,3 +36,42 @@ class FEVERVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["FEVER"],
38
38
  )
39
+
40
+
41
+ class NanoFEVERVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoFEVER-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-fever-vn",
46
+ "revision": "457ca6b058ed19b28f2359e2d816d7527af6bef8",
47
+ },
48
+ description="NanoFEVERVN is a small version of A translated dataset from FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://fever.ai/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Encyclopaedic", "Written"],
61
+ task_subtypes=["Claim verification"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a claim, retrieve documents that support or refute the claim"
75
+ },
76
+ adapted_from=["FEVER-VN"],
77
+ )
@@ -36,3 +36,42 @@ class HotpotQAVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["HotpotQA"],
38
38
  )
39
+
40
+
41
+ class NanoHotpotQAVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoHotpotQA-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-hotpotqa-vn",
46
+ "revision": "f4de19a2fae1a582de114e5bcd178bb262183113",
47
+ },
48
+ description="NanoHotpotQAVN is a small version of A translated dataset from HotpotQA is a question answering dataset featuring natural, multi-hop questions, with strong supervision for supporting facts to enable more explainable question answering systems. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://hotpotqa.github.io/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Web", "Written"],
61
+ task_subtypes=["Question answering"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a multi-hop question, retrieve documents that can help answer the question"
75
+ },
76
+ adapted_from=["HotpotQA-VN"],
77
+ )
@@ -47,3 +47,51 @@ class MSMARCOVN(AbsTaskRetrieval):
47
47
  """,
48
48
  adapted_from=["MSMARCO"],
49
49
  )
50
+
51
+
52
+ class NanoMSMARCOVN(AbsTaskRetrieval):
53
+ metadata = TaskMetadata(
54
+ name="NanoMSMARCO-VN",
55
+ dataset={
56
+ "path": "GreenNode/nano-msmarco-vn",
57
+ "revision": "f149369c82ec228b05b0f6677699ab4bfbab73f6",
58
+ },
59
+ description="NanoMSMARCOVN is a small version of A translated dataset from MS MARCO is a collection of datasets focused on deep learning in search The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
60
+ reference="https://microsoft.github.io/msmarco/",
61
+ type="Retrieval",
62
+ category="t2t",
63
+ eval_splits=["dev"],
64
+ eval_langs=["vie-Latn"],
65
+ main_score="ndcg_at_10",
66
+ date=("2025-07-29", "2025-07-30"),
67
+ license="cc-by-sa-4.0",
68
+ annotations_creators="derived",
69
+ dialect=[],
70
+ sample_creation="machine-translated and LM verified",
71
+ domains=[
72
+ "Encyclopaedic",
73
+ "Academic",
74
+ "Blog",
75
+ "News",
76
+ "Medical",
77
+ "Government",
78
+ "Reviews",
79
+ "Non-fiction",
80
+ "Social",
81
+ "Web",
82
+ ],
83
+ task_subtypes=["Question answering"],
84
+ bibtex_citation=r"""
85
+ @misc{pham2025vnmtebvietnamesemassivetext,
86
+ archiveprefix = {arXiv},
87
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
88
+ eprint = {2507.21500},
89
+ primaryclass = {cs.CL},
90
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
91
+ url = {https://arxiv.org/abs/2507.21500},
92
+ year = {2025},
93
+ }
94
+ """,
95
+ prompt={"query": "Given a query, retrieve relevant documents from MS MARCO-VN"},
96
+ adapted_from=["MSMARCO-VN"],
97
+ )
@@ -36,3 +36,42 @@ class NQVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["NQ"],
38
38
  )
39
+
40
+
41
+ class NanoNQVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoNQ-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-nq-vn",
46
+ "revision": "1ad4d6556fe0e5314994839089ce070fb0db8b19",
47
+ },
48
+ description="NanoNQVN is a small version of A translated dataset from NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://ai.google.com/research/NaturalQuestions/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Written", "Encyclopaedic"],
61
+ task_subtypes=["Question answering"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a question, retrieve Wikipedia passages that answer the question"
75
+ },
76
+ adapted_from=["NQ-VN"],
77
+ )
@@ -0,0 +1,42 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+ TEST_SAMPLES = 2048
5
+
6
+
7
+ class TVPLRetrieval(AbsTaskRetrieval):
8
+ metadata = TaskMetadata(
9
+ name="TVPLRetrieval",
10
+ description="A Vietnamese dataset for evaluating legal text retrieval. From Thu vien phap luat (TVPL) dataset: Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models.",
11
+ reference="https://aclanthology.org/2020.coling-main.233.pdf",
12
+ dataset={
13
+ "path": "GreenNode/TVPL-Retrieval-VN",
14
+ "revision": "6661dba4dfedff606537732d9f35f2c3738b081a",
15
+ },
16
+ type="Retrieval",
17
+ category="t2t",
18
+ modalities=["text"],
19
+ eval_splits=["test"],
20
+ eval_langs=["vie-Latn"],
21
+ main_score="ndcg_at_10",
22
+ date=("2025-07-29", "2025-07-30"),
23
+ license="cc-by-sa-4.0",
24
+ dialect=[],
25
+ annotations_creators="human-annotated",
26
+ domains=["Legal"],
27
+ task_subtypes=["Question answering"],
28
+ sample_creation="found",
29
+ bibtex_citation=r"""
30
+ @article{10.1145/3732938,
31
+ address = {New York, NY, USA},
32
+ author = {Le, Huong and Luu, Ngoc and Nguyen, Thanh and Dao, Tuan and Dinh, Sang},
33
+ doi = {10.1145/3732938},
34
+ issn = {2375-4699},
35
+ journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
36
+ publisher = {Association for Computing Machinery},
37
+ title = {Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models},
38
+ url = {https://doi.org/10.1145/3732938},
39
+ year = {2025},
40
+ }
41
+ """,
42
+ )
@@ -52,7 +52,7 @@ Zong, Chengqing},
52
52
  """,
53
53
  )
54
54
 
55
- def load_data(self) -> None:
55
+ def load_data(self, num_proc: int = 1, **kwargs) -> None:
56
56
  if self.data_loaded:
57
57
  return
58
58
 
@@ -24,5 +24,19 @@ class ZacLegalTextRetrieval(AbsTaskRetrieval):
24
24
  annotations_creators="human-annotated",
25
25
  dialect=[],
26
26
  sample_creation="found",
27
- bibtex_citation="", # TODO: Add bibtex citation when the paper is published
27
+ bibtex_citation=r"""
28
+ @inproceedings{10.1007/978-981-95-1746-6_17,
29
+ address = {Singapore},
30
+ author = {Pham, Bao Loc
31
+ and Hoang, Quoc Viet
32
+ and Luu, Quy Tung
33
+ and Vo, Trong Thu},
34
+ booktitle = {Proceedings of the Fifth International Conference on Intelligent Systems and Networks},
35
+ isbn = {978-981-95-1746-6},
36
+ pages = {153--163},
37
+ publisher = {Springer Nature Singapore},
38
+ title = {GN-TRVN: A Benchmark for Vietnamese Table Markdown Retrieval Task},
39
+ year = {2026},
40
+ }
41
+ """,
28
42
  )
@@ -43,5 +43,5 @@ Vulić, Ivan},
43
43
  min_score = 0
44
44
  max_score = 5
45
45
 
46
- def dataset_transform(self):
46
+ def dataset_transform(self, num_proc: int = 1):
47
47
  self.dataset = self.dataset.rename_column("label", "score")
@@ -30,7 +30,7 @@ class SickFrSTS(AbsTaskSTS):
30
30
  min_score = 0
31
31
  max_score = 5
32
32
 
33
- def dataset_transform(self):
33
+ def dataset_transform(self, num_proc: int = 1):
34
34
  self.dataset = self.dataset.rename_columns(
35
35
  {
36
36
  "sentence_A": "sentence1",
@@ -40,7 +40,7 @@ class KlueSTS(AbsTaskSTS):
40
40
  min_score = 0
41
41
  max_score = 5
42
42
 
43
- def dataset_transform(self):
43
+ def dataset_transform(self, num_proc: int = 1):
44
44
  # In the case of KLUE STS, score value is nested within the `labels` field.
45
45
  # We need to extract the `score` and move it outside of the `labels` field for access.
46
46
  for split in self.dataset:
@@ -52,7 +52,7 @@ and de Paiva, Valeria},
52
52
  min_score = 1
53
53
  max_score = 5
54
54
 
55
- def dataset_transform(self):
55
+ def dataset_transform(self, num_proc: int = 1):
56
56
  self.dataset = self.stratified_subsampling(
57
57
  self.dataset,
58
58
  seed=42,
@@ -54,7 +54,7 @@ Filippskikh, Elizaveta},
54
54
  min_score = -1
55
55
  max_score = 1
56
56
 
57
- def dataset_transform(self):
57
+ def dataset_transform(self, num_proc: int = 1):
58
58
  self.dataset = self.dataset.rename_columns(
59
59
  {
60
60
  "text_1": "sentence1",
@@ -41,7 +41,7 @@ class SciMMIR(AbsTaskZeroShotClassification):
41
41
 
42
42
  label_column_name: str = "class"
43
43
 
44
- def dataset_transform(self):
44
+ def dataset_transform(self, num_proc: int = 1):
45
45
  class_code = {
46
46
  "fig_result": 0,
47
47
  "fig_illustration": 1,
mteb/types/__init__.py CHANGED
@@ -4,6 +4,7 @@ from ._encoder_io import (
4
4
  Conversation,
5
5
  ConversationTurn,
6
6
  CorpusDatasetType,
7
+ EncodeKwargs,
7
8
  InstructionDatasetType,
8
9
  PromptType,
9
10
  QueryDatasetType,
@@ -30,6 +31,7 @@ __all__ = [
30
31
  "Conversation",
31
32
  "ConversationTurn",
32
33
  "CorpusDatasetType",
34
+ "EncodeKwargs",
33
35
  "HFSubset",
34
36
  "ISOLanguage",
35
37
  "ISOLanguageScript",
mteb/types/_encoder_io.py CHANGED
@@ -7,10 +7,22 @@ from typing import TYPE_CHECKING, TypedDict
7
7
  import numpy as np
8
8
  import torch
9
9
  from datasets import Dataset
10
- from typing_extensions import NotRequired
11
10
 
12
11
  if TYPE_CHECKING:
13
12
  from PIL import Image
13
+ from typing_extensions import NotRequired
14
+
15
+
16
+ class EncodeKwargs(TypedDict):
17
+ """Keyword arguments for encoding methods.
18
+
19
+ Attributes:
20
+ batch_size: The batch size to use for encoding.
21
+ show_progress_bar: Whether to show a progress bar during encoding.
22
+ """
23
+
24
+ batch_size: NotRequired[int]
25
+ show_progress_bar: NotRequired[bool]
14
26
 
15
27
 
16
28
  # --- Output types ---
mteb/types/_result.py CHANGED
@@ -1,3 +1,4 @@
1
+ from collections.abc import Mapping
1
2
  from typing import Any, NamedTuple
2
3
 
3
4
  HFSubset = str
@@ -8,7 +9,7 @@ SplitName = str
8
9
  Score = Any
9
10
  """A score value, could e.g. be accuracy. Normally it is a float or int, but it can take on any value. Should be json serializable."""
10
11
 
11
- ScoresDict = dict[str, Score]
12
+ ScoresDict = Mapping[str, Score]
12
13
  """A dictionary of scores, typically also include metadata, e.g {'main_score': 0.5, 'accuracy': 0.5, 'f1': 0.6, 'hf_subset': 'en-de', 'languages': ['eng-Latn', 'deu-Latn']}"""
13
14
 
14
15
 
mteb/types/statistics.py CHANGED
@@ -1,6 +1,13 @@
1
- from typing_extensions import NotRequired, TypedDict
1
+ from __future__ import annotations
2
2
 
3
- from mteb.types import HFSubset
3
+ from typing import TYPE_CHECKING
4
+
5
+ from typing_extensions import TypedDict
6
+
7
+ if TYPE_CHECKING:
8
+ from typing_extensions import NotRequired
9
+
10
+ from mteb.types import HFSubset
4
11
 
5
12
 
6
13
  class SplitDescriptiveStatistics(TypedDict):
@@ -10,8 +17,14 @@ class SplitDescriptiveStatistics(TypedDict):
10
17
 
11
18
 
12
19
  class DescriptiveStatistics(TypedDict, SplitDescriptiveStatistics):
13
- """Class for descriptive statistics for the full task."""
20
+ """Class for descriptive statistics for the full task.
21
+
22
+ Attributes:
23
+ num_samples: Total number of samples
24
+ hf_subset_descriptive_stats: HFSubset descriptive statistics (only for multilingual datasets)
25
+ """
14
26
 
27
+ num_samples: int
15
28
  hf_subset_descriptive_stats: NotRequired[dict[HFSubset, SplitDescriptiveStatistics]]
16
29
 
17
30
 
@@ -88,9 +101,9 @@ class ScoreStatistics(TypedDict):
88
101
  max_score: Maximum score
89
102
  """
90
103
 
91
- min_score: int
104
+ min_score: int | float
92
105
  avg_score: float
93
- max_score: int
106
+ max_score: int | float
94
107
 
95
108
 
96
109
  class TopRankedStatistics(TypedDict):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.5.2
3
+ Version: 2.7.9
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -32,6 +32,8 @@ Requires-Dist: rich>=0.0.0
32
32
  Requires-Dist: pytrec-eval-terrier>=0.5.6
33
33
  Requires-Dist: pydantic>=2.0.0
34
34
  Requires-Dist: polars>=0.20.22
35
+ Requires-Dist: torch; python_full_version < "3.14"
36
+ Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
35
37
  Provides-Extra: image
36
38
  Requires-Dist: torchvision>0.2.1; extra == "image"
37
39
  Requires-Dist: transformers[torch-vision,vision]; extra == "image"
@@ -60,7 +62,7 @@ Requires-Dist: tiktoken>=0.8.0; extra == "openai"
60
62
  Provides-Extra: model2vec
61
63
  Requires-Dist: model2vec>=0.3.0; extra == "model2vec"
62
64
  Provides-Extra: pylate
63
- Requires-Dist: pylate>=1.3.1; python_version < "3.13" and extra == "pylate"
65
+ Requires-Dist: pylate>=1.3.1; python_full_version < "3.13" and extra == "pylate"
64
66
  Provides-Extra: bm25s
65
67
  Requires-Dist: bm25s>=0.2.6; extra == "bm25s"
66
68
  Requires-Dist: PyStemmer>=2.2.0.3; extra == "bm25s"
@@ -91,10 +93,12 @@ Provides-Extra: ark
91
93
  Requires-Dist: volcengine-python-sdk[ark]==3.0.2; extra == "ark"
92
94
  Requires-Dist: tiktoken>=0.8.0; extra == "ark"
93
95
  Provides-Extra: colpali-engine
94
- Requires-Dist: colpali_engine>=0.3.12; extra == "colpali-engine"
96
+ Requires-Dist: colpali_engine>=0.3.12; python_full_version < "3.14" and extra == "colpali-engine"
95
97
  Provides-Extra: colqwen3
96
98
  Requires-Dist: transformers>=4.57; extra == "colqwen3"
97
99
  Requires-Dist: torchvision>=0.22.1; extra == "colqwen3"
100
+ Provides-Extra: sauerkrautlm-colpali
101
+ Requires-Dist: sauerkrautlm-colpali>=0.1.0; python_full_version < "3.14" and extra == "sauerkrautlm-colpali"
98
102
  Provides-Extra: xet
99
103
  Requires-Dist: huggingface_hub>=0.32.0; extra == "xet"
100
104
  Provides-Extra: youtu
@@ -106,6 +110,8 @@ Provides-Extra: faiss-cpu
106
110
  Requires-Dist: faiss-cpu>=1.12.0; extra == "faiss-cpu"
107
111
  Provides-Extra: eager-embed
108
112
  Requires-Dist: qwen_vl_utils>=0.0.14; extra == "eager-embed"
113
+ Provides-Extra: vllm
114
+ Requires-Dist: vllm>=0.11.1; extra == "vllm"
109
115
  Dynamic: license-file
110
116
 
111
117
  <h1 align="center">
@@ -144,12 +150,17 @@ Dynamic: license-file
144
150
 
145
151
  ## Installation
146
152
 
147
- You can install mteb simply using pip. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
153
+ You can install mteb simply using pip or uv. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
148
154
 
149
155
  ```bash
150
156
  pip install mteb
151
157
  ```
152
158
 
159
+ For faster installation, you can also use [uv](https://docs.astral.sh/uv/):
160
+ ```bash
161
+ uv add mteb
162
+ ```
163
+
153
164
 
154
165
  ## Example Usage
155
166