mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -36,3 +36,42 @@ class ClimateFEVERVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["ClimateFEVER"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoClimateFEVERVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoClimateFEVER-VN",
|
|
44
|
+
description="NanoClimateFEVERVN is a small version of A translated dataset from CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
45
|
+
reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
|
|
46
|
+
dataset={
|
|
47
|
+
"path": "GreenNode/nano-climate-fever-vn",
|
|
48
|
+
"revision": "1852e852f07403d4529a8520d52b91ff6d57869b",
|
|
49
|
+
},
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Encyclopaedic", "Written"],
|
|
61
|
+
task_subtypes=["Claim verification"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a claim about climate change, retrieve documents that support or refute the claim"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["ClimateFEVER-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class DBPediaVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["DBPedia"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoDBPediaVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoDBPedia-VN",
|
|
44
|
+
description="NanoDBPediaVN is a small version of A translated dataset from DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
45
|
+
reference="https://github.com/iai-group/DBpedia-Entity/",
|
|
46
|
+
dataset={
|
|
47
|
+
"path": "GreenNode/nano-dbpedia-vn",
|
|
48
|
+
"revision": "bbc3259bc63bf1e250d7034024092cc3230d5850",
|
|
49
|
+
},
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Written", "Encyclopaedic"],
|
|
61
|
+
task_subtypes=[],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a query, retrieve relevant entity descriptions from DBPedia"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["DBPedia-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class FEVERVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["FEVER"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoFEVERVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoFEVER-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-fever-vn",
|
|
46
|
+
"revision": "457ca6b058ed19b28f2359e2d816d7527af6bef8",
|
|
47
|
+
},
|
|
48
|
+
description="NanoFEVERVN is a small version of A translated dataset from FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://fever.ai/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Encyclopaedic", "Written"],
|
|
61
|
+
task_subtypes=["Claim verification"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a claim, retrieve documents that support or refute the claim"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["FEVER-VN"],
|
|
77
|
+
)
|
|
@@ -36,3 +36,42 @@ class HotpotQAVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["HotpotQA"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoHotpotQAVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoHotpotQA-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-hotpotqa-vn",
|
|
46
|
+
"revision": "f4de19a2fae1a582de114e5bcd178bb262183113",
|
|
47
|
+
},
|
|
48
|
+
description="NanoHotpotQAVN is a small version of A translated dataset from HotpotQA is a question answering dataset featuring natural, multi-hop questions, with strong supervision for supporting facts to enable more explainable question answering systems. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://hotpotqa.github.io/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Web", "Written"],
|
|
61
|
+
task_subtypes=["Question answering"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a multi-hop question, retrieve documents that can help answer the question"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["HotpotQA-VN"],
|
|
77
|
+
)
|
|
@@ -47,3 +47,51 @@ class MSMARCOVN(AbsTaskRetrieval):
|
|
|
47
47
|
""",
|
|
48
48
|
adapted_from=["MSMARCO"],
|
|
49
49
|
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class NanoMSMARCOVN(AbsTaskRetrieval):
|
|
53
|
+
metadata = TaskMetadata(
|
|
54
|
+
name="NanoMSMARCO-VN",
|
|
55
|
+
dataset={
|
|
56
|
+
"path": "GreenNode/nano-msmarco-vn",
|
|
57
|
+
"revision": "f149369c82ec228b05b0f6677699ab4bfbab73f6",
|
|
58
|
+
},
|
|
59
|
+
description="NanoMSMARCOVN is a small version of A translated dataset from MS MARCO is a collection of datasets focused on deep learning in search The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
60
|
+
reference="https://microsoft.github.io/msmarco/",
|
|
61
|
+
type="Retrieval",
|
|
62
|
+
category="t2t",
|
|
63
|
+
eval_splits=["dev"],
|
|
64
|
+
eval_langs=["vie-Latn"],
|
|
65
|
+
main_score="ndcg_at_10",
|
|
66
|
+
date=("2025-07-29", "2025-07-30"),
|
|
67
|
+
license="cc-by-sa-4.0",
|
|
68
|
+
annotations_creators="derived",
|
|
69
|
+
dialect=[],
|
|
70
|
+
sample_creation="machine-translated and LM verified",
|
|
71
|
+
domains=[
|
|
72
|
+
"Encyclopaedic",
|
|
73
|
+
"Academic",
|
|
74
|
+
"Blog",
|
|
75
|
+
"News",
|
|
76
|
+
"Medical",
|
|
77
|
+
"Government",
|
|
78
|
+
"Reviews",
|
|
79
|
+
"Non-fiction",
|
|
80
|
+
"Social",
|
|
81
|
+
"Web",
|
|
82
|
+
],
|
|
83
|
+
task_subtypes=["Question answering"],
|
|
84
|
+
bibtex_citation=r"""
|
|
85
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
86
|
+
archiveprefix = {arXiv},
|
|
87
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
88
|
+
eprint = {2507.21500},
|
|
89
|
+
primaryclass = {cs.CL},
|
|
90
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
91
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
92
|
+
year = {2025},
|
|
93
|
+
}
|
|
94
|
+
""",
|
|
95
|
+
prompt={"query": "Given a query, retrieve relevant documents from MS MARCO-VN"},
|
|
96
|
+
adapted_from=["MSMARCO-VN"],
|
|
97
|
+
)
|
|
@@ -36,3 +36,42 @@ class NQVN(AbsTaskRetrieval):
|
|
|
36
36
|
""",
|
|
37
37
|
adapted_from=["NQ"],
|
|
38
38
|
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NanoNQVN(AbsTaskRetrieval):
|
|
42
|
+
metadata = TaskMetadata(
|
|
43
|
+
name="NanoNQ-VN",
|
|
44
|
+
dataset={
|
|
45
|
+
"path": "GreenNode/nano-nq-vn",
|
|
46
|
+
"revision": "1ad4d6556fe0e5314994839089ce070fb0db8b19",
|
|
47
|
+
},
|
|
48
|
+
description="NanoNQVN is a small version of A translated dataset from NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
|
|
49
|
+
reference="https://ai.google.com/research/NaturalQuestions/",
|
|
50
|
+
type="Retrieval",
|
|
51
|
+
category="t2t",
|
|
52
|
+
eval_splits=["test"],
|
|
53
|
+
eval_langs=["vie-Latn"],
|
|
54
|
+
main_score="ndcg_at_10",
|
|
55
|
+
date=("2025-07-29", "2025-07-30"),
|
|
56
|
+
license="cc-by-sa-4.0",
|
|
57
|
+
annotations_creators="derived",
|
|
58
|
+
dialect=[],
|
|
59
|
+
sample_creation="machine-translated and LM verified",
|
|
60
|
+
domains=["Written", "Encyclopaedic"],
|
|
61
|
+
task_subtypes=["Question answering"],
|
|
62
|
+
bibtex_citation=r"""
|
|
63
|
+
@misc{pham2025vnmtebvietnamesemassivetext,
|
|
64
|
+
archiveprefix = {arXiv},
|
|
65
|
+
author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
|
|
66
|
+
eprint = {2507.21500},
|
|
67
|
+
primaryclass = {cs.CL},
|
|
68
|
+
title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
|
|
69
|
+
url = {https://arxiv.org/abs/2507.21500},
|
|
70
|
+
year = {2025},
|
|
71
|
+
}
|
|
72
|
+
""",
|
|
73
|
+
prompt={
|
|
74
|
+
"query": "Given a question, retrieve Wikipedia passages that answer the question"
|
|
75
|
+
},
|
|
76
|
+
adapted_from=["NQ-VN"],
|
|
77
|
+
)
|
|
@@ -0,0 +1,42 @@
|
|
|
1
|
+
from mteb.abstasks.retrieval import AbsTaskRetrieval
|
|
2
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
3
|
+
|
|
4
|
+
TEST_SAMPLES = 2048
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class TVPLRetrieval(AbsTaskRetrieval):
|
|
8
|
+
metadata = TaskMetadata(
|
|
9
|
+
name="TVPLRetrieval",
|
|
10
|
+
description="A Vietnamese dataset for evaluating legal text retrieval. From Thu vien phap luat (TVPL) dataset: Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models.",
|
|
11
|
+
reference="https://aclanthology.org/2020.coling-main.233.pdf",
|
|
12
|
+
dataset={
|
|
13
|
+
"path": "GreenNode/TVPL-Retrieval-VN",
|
|
14
|
+
"revision": "6661dba4dfedff606537732d9f35f2c3738b081a",
|
|
15
|
+
},
|
|
16
|
+
type="Retrieval",
|
|
17
|
+
category="t2t",
|
|
18
|
+
modalities=["text"],
|
|
19
|
+
eval_splits=["test"],
|
|
20
|
+
eval_langs=["vie-Latn"],
|
|
21
|
+
main_score="ndcg_at_10",
|
|
22
|
+
date=("2025-07-29", "2025-07-30"),
|
|
23
|
+
license="cc-by-sa-4.0",
|
|
24
|
+
dialect=[],
|
|
25
|
+
annotations_creators="human-annotated",
|
|
26
|
+
domains=["Legal"],
|
|
27
|
+
task_subtypes=["Question answering"],
|
|
28
|
+
sample_creation="found",
|
|
29
|
+
bibtex_citation=r"""
|
|
30
|
+
@article{10.1145/3732938,
|
|
31
|
+
address = {New York, NY, USA},
|
|
32
|
+
author = {Le, Huong and Luu, Ngoc and Nguyen, Thanh and Dao, Tuan and Dinh, Sang},
|
|
33
|
+
doi = {10.1145/3732938},
|
|
34
|
+
issn = {2375-4699},
|
|
35
|
+
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
|
|
36
|
+
publisher = {Association for Computing Machinery},
|
|
37
|
+
title = {Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models},
|
|
38
|
+
url = {https://doi.org/10.1145/3732938},
|
|
39
|
+
year = {2025},
|
|
40
|
+
}
|
|
41
|
+
""",
|
|
42
|
+
)
|
|
@@ -24,5 +24,19 @@ class ZacLegalTextRetrieval(AbsTaskRetrieval):
|
|
|
24
24
|
annotations_creators="human-annotated",
|
|
25
25
|
dialect=[],
|
|
26
26
|
sample_creation="found",
|
|
27
|
-
bibtex_citation=""
|
|
27
|
+
bibtex_citation=r"""
|
|
28
|
+
@inproceedings{10.1007/978-981-95-1746-6_17,
|
|
29
|
+
address = {Singapore},
|
|
30
|
+
author = {Pham, Bao Loc
|
|
31
|
+
and Hoang, Quoc Viet
|
|
32
|
+
and Luu, Quy Tung
|
|
33
|
+
and Vo, Trong Thu},
|
|
34
|
+
booktitle = {Proceedings of the Fifth International Conference on Intelligent Systems and Networks},
|
|
35
|
+
isbn = {978-981-95-1746-6},
|
|
36
|
+
pages = {153--163},
|
|
37
|
+
publisher = {Springer Nature Singapore},
|
|
38
|
+
title = {GN-TRVN: A Benchmark for Vietnamese Table Markdown Retrieval Task},
|
|
39
|
+
year = {2026},
|
|
40
|
+
}
|
|
41
|
+
""",
|
|
28
42
|
)
|
mteb/tasks/sts/kor/klue_sts.py
CHANGED
|
@@ -40,7 +40,7 @@ class KlueSTS(AbsTaskSTS):
|
|
|
40
40
|
min_score = 0
|
|
41
41
|
max_score = 5
|
|
42
42
|
|
|
43
|
-
def dataset_transform(self):
|
|
43
|
+
def dataset_transform(self, num_proc: int = 1):
|
|
44
44
|
# In the case of KLUE STS, score value is nested within the `labels` field.
|
|
45
45
|
# We need to extract the `score` and move it outside of the `labels` field for access.
|
|
46
46
|
for split in self.dataset:
|
mteb/types/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from ._encoder_io import (
|
|
|
4
4
|
Conversation,
|
|
5
5
|
ConversationTurn,
|
|
6
6
|
CorpusDatasetType,
|
|
7
|
+
EncodeKwargs,
|
|
7
8
|
InstructionDatasetType,
|
|
8
9
|
PromptType,
|
|
9
10
|
QueryDatasetType,
|
|
@@ -30,6 +31,7 @@ __all__ = [
|
|
|
30
31
|
"Conversation",
|
|
31
32
|
"ConversationTurn",
|
|
32
33
|
"CorpusDatasetType",
|
|
34
|
+
"EncodeKwargs",
|
|
33
35
|
"HFSubset",
|
|
34
36
|
"ISOLanguage",
|
|
35
37
|
"ISOLanguageScript",
|
mteb/types/_encoder_io.py
CHANGED
|
@@ -7,10 +7,22 @@ from typing import TYPE_CHECKING, TypedDict
|
|
|
7
7
|
import numpy as np
|
|
8
8
|
import torch
|
|
9
9
|
from datasets import Dataset
|
|
10
|
-
from typing_extensions import NotRequired
|
|
11
10
|
|
|
12
11
|
if TYPE_CHECKING:
|
|
13
12
|
from PIL import Image
|
|
13
|
+
from typing_extensions import NotRequired
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class EncodeKwargs(TypedDict):
|
|
17
|
+
"""Keyword arguments for encoding methods.
|
|
18
|
+
|
|
19
|
+
Attributes:
|
|
20
|
+
batch_size: The batch size to use for encoding.
|
|
21
|
+
show_progress_bar: Whether to show a progress bar during encoding.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
batch_size: NotRequired[int]
|
|
25
|
+
show_progress_bar: NotRequired[bool]
|
|
14
26
|
|
|
15
27
|
|
|
16
28
|
# --- Output types ---
|
mteb/types/_result.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from collections.abc import Mapping
|
|
1
2
|
from typing import Any, NamedTuple
|
|
2
3
|
|
|
3
4
|
HFSubset = str
|
|
@@ -8,7 +9,7 @@ SplitName = str
|
|
|
8
9
|
Score = Any
|
|
9
10
|
"""A score value, could e.g. be accuracy. Normally it is a float or int, but it can take on any value. Should be json serializable."""
|
|
10
11
|
|
|
11
|
-
ScoresDict =
|
|
12
|
+
ScoresDict = Mapping[str, Score]
|
|
12
13
|
"""A dictionary of scores, typically also include metadata, e.g {'main_score': 0.5, 'accuracy': 0.5, 'f1': 0.6, 'hf_subset': 'en-de', 'languages': ['eng-Latn', 'deu-Latn']}"""
|
|
13
14
|
|
|
14
15
|
|
mteb/types/statistics.py
CHANGED
|
@@ -1,6 +1,13 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
from
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
5
|
+
from typing_extensions import TypedDict
|
|
6
|
+
|
|
7
|
+
if TYPE_CHECKING:
|
|
8
|
+
from typing_extensions import NotRequired
|
|
9
|
+
|
|
10
|
+
from mteb.types import HFSubset
|
|
4
11
|
|
|
5
12
|
|
|
6
13
|
class SplitDescriptiveStatistics(TypedDict):
|
|
@@ -10,8 +17,14 @@ class SplitDescriptiveStatistics(TypedDict):
|
|
|
10
17
|
|
|
11
18
|
|
|
12
19
|
class DescriptiveStatistics(TypedDict, SplitDescriptiveStatistics):
|
|
13
|
-
"""Class for descriptive statistics for the full task.
|
|
20
|
+
"""Class for descriptive statistics for the full task.
|
|
21
|
+
|
|
22
|
+
Attributes:
|
|
23
|
+
num_samples: Total number of samples
|
|
24
|
+
hf_subset_descriptive_stats: HFSubset descriptive statistics (only for multilingual datasets)
|
|
25
|
+
"""
|
|
14
26
|
|
|
27
|
+
num_samples: int
|
|
15
28
|
hf_subset_descriptive_stats: NotRequired[dict[HFSubset, SplitDescriptiveStatistics]]
|
|
16
29
|
|
|
17
30
|
|
|
@@ -88,9 +101,9 @@ class ScoreStatistics(TypedDict):
|
|
|
88
101
|
max_score: Maximum score
|
|
89
102
|
"""
|
|
90
103
|
|
|
91
|
-
min_score: int
|
|
104
|
+
min_score: int | float
|
|
92
105
|
avg_score: float
|
|
93
|
-
max_score: int
|
|
106
|
+
max_score: int | float
|
|
94
107
|
|
|
95
108
|
|
|
96
109
|
class TopRankedStatistics(TypedDict):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.7.9
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -32,6 +32,8 @@ Requires-Dist: rich>=0.0.0
|
|
|
32
32
|
Requires-Dist: pytrec-eval-terrier>=0.5.6
|
|
33
33
|
Requires-Dist: pydantic>=2.0.0
|
|
34
34
|
Requires-Dist: polars>=0.20.22
|
|
35
|
+
Requires-Dist: torch; python_full_version < "3.14"
|
|
36
|
+
Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
|
|
35
37
|
Provides-Extra: image
|
|
36
38
|
Requires-Dist: torchvision>0.2.1; extra == "image"
|
|
37
39
|
Requires-Dist: transformers[torch-vision,vision]; extra == "image"
|
|
@@ -60,7 +62,7 @@ Requires-Dist: tiktoken>=0.8.0; extra == "openai"
|
|
|
60
62
|
Provides-Extra: model2vec
|
|
61
63
|
Requires-Dist: model2vec>=0.3.0; extra == "model2vec"
|
|
62
64
|
Provides-Extra: pylate
|
|
63
|
-
Requires-Dist: pylate>=1.3.1;
|
|
65
|
+
Requires-Dist: pylate>=1.3.1; python_full_version < "3.13" and extra == "pylate"
|
|
64
66
|
Provides-Extra: bm25s
|
|
65
67
|
Requires-Dist: bm25s>=0.2.6; extra == "bm25s"
|
|
66
68
|
Requires-Dist: PyStemmer>=2.2.0.3; extra == "bm25s"
|
|
@@ -91,10 +93,12 @@ Provides-Extra: ark
|
|
|
91
93
|
Requires-Dist: volcengine-python-sdk[ark]==3.0.2; extra == "ark"
|
|
92
94
|
Requires-Dist: tiktoken>=0.8.0; extra == "ark"
|
|
93
95
|
Provides-Extra: colpali-engine
|
|
94
|
-
Requires-Dist: colpali_engine>=0.3.12; extra == "colpali-engine"
|
|
96
|
+
Requires-Dist: colpali_engine>=0.3.12; python_full_version < "3.14" and extra == "colpali-engine"
|
|
95
97
|
Provides-Extra: colqwen3
|
|
96
98
|
Requires-Dist: transformers>=4.57; extra == "colqwen3"
|
|
97
99
|
Requires-Dist: torchvision>=0.22.1; extra == "colqwen3"
|
|
100
|
+
Provides-Extra: sauerkrautlm-colpali
|
|
101
|
+
Requires-Dist: sauerkrautlm-colpali>=0.1.0; python_full_version < "3.14" and extra == "sauerkrautlm-colpali"
|
|
98
102
|
Provides-Extra: xet
|
|
99
103
|
Requires-Dist: huggingface_hub>=0.32.0; extra == "xet"
|
|
100
104
|
Provides-Extra: youtu
|
|
@@ -106,6 +110,8 @@ Provides-Extra: faiss-cpu
|
|
|
106
110
|
Requires-Dist: faiss-cpu>=1.12.0; extra == "faiss-cpu"
|
|
107
111
|
Provides-Extra: eager-embed
|
|
108
112
|
Requires-Dist: qwen_vl_utils>=0.0.14; extra == "eager-embed"
|
|
113
|
+
Provides-Extra: vllm
|
|
114
|
+
Requires-Dist: vllm>=0.11.1; extra == "vllm"
|
|
109
115
|
Dynamic: license-file
|
|
110
116
|
|
|
111
117
|
<h1 align="center">
|
|
@@ -144,12 +150,17 @@ Dynamic: license-file
|
|
|
144
150
|
|
|
145
151
|
## Installation
|
|
146
152
|
|
|
147
|
-
You can install mteb simply using pip. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
|
|
153
|
+
You can install mteb simply using pip or uv. For more on installation please see the [documentation](https://embeddings-benchmark.github.io/mteb/installation/).
|
|
148
154
|
|
|
149
155
|
```bash
|
|
150
156
|
pip install mteb
|
|
151
157
|
```
|
|
152
158
|
|
|
159
|
+
For faster installation, you can also use [uv](https://docs.astral.sh/uv/):
|
|
160
|
+
```bash
|
|
161
|
+
uv add mteb
|
|
162
|
+
```
|
|
163
|
+
|
|
153
164
|
|
|
154
165
|
## Example Usage
|
|
155
166
|
|