mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -64,13 +64,14 @@ QZhou_Embedding = ModelMeta(
|
|
|
64
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
65
65
|
release_date="2025-08-24",
|
|
66
66
|
n_parameters=7_070_619_136,
|
|
67
|
+
n_embedding_parameters=None,
|
|
67
68
|
memory_usage_mb=14436,
|
|
68
69
|
embed_dim=3584,
|
|
69
70
|
license="apache-2.0",
|
|
70
71
|
max_tokens=8192,
|
|
71
72
|
reference="https://huggingface.co/Kingsoft-LLM/QZhou-Embedding",
|
|
72
73
|
similarity_fn_name="cosine",
|
|
73
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
74
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
74
75
|
use_instructions=True,
|
|
75
76
|
public_training_code=None,
|
|
76
77
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -98,13 +99,14 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
98
99
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
99
100
|
release_date="2025-09-28",
|
|
100
101
|
n_parameters=7_575_747_328,
|
|
102
|
+
n_embedding_parameters=None,
|
|
101
103
|
memory_usage_mb=29431,
|
|
102
104
|
embed_dim=1792,
|
|
103
105
|
license="apache-2.0",
|
|
104
106
|
max_tokens=8192,
|
|
105
107
|
reference="http://huggingface.co/Kingsoft-LLM/QZhou-Embedding-Zh",
|
|
106
108
|
similarity_fn_name="cosine",
|
|
107
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
109
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
108
110
|
use_instructions=True,
|
|
109
111
|
public_training_code=None,
|
|
110
112
|
public_training_data=None,
|
|
@@ -5,18 +5,19 @@ from typing import TYPE_CHECKING, Any, Literal
|
|
|
5
5
|
|
|
6
6
|
import numpy as np
|
|
7
7
|
import torch
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
8
|
|
|
10
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
11
9
|
from mteb.models.model_meta import ModelMeta
|
|
12
10
|
from mteb.similarity_functions import (
|
|
13
11
|
select_pairwise_similarity,
|
|
14
12
|
select_similarity,
|
|
15
13
|
)
|
|
16
|
-
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
17
14
|
|
|
18
15
|
if TYPE_CHECKING:
|
|
19
16
|
from PIL import Image
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types._encoder_io import Array, BatchedInput, PromptType
|
|
20
21
|
|
|
21
22
|
|
|
22
23
|
def _string_to_vector(text: str | None, size: int) -> np.ndarray:
|
|
@@ -68,7 +69,7 @@ _common_mock_metadata = dict(
|
|
|
68
69
|
license="mit",
|
|
69
70
|
max_tokens=np.inf,
|
|
70
71
|
reference=None,
|
|
71
|
-
similarity_fn_name="cosine",
|
|
72
|
+
similarity_fn_name="cosine",
|
|
72
73
|
framework=[],
|
|
73
74
|
use_instructions=False,
|
|
74
75
|
public_training_code=None, # No training code, as this is a random baseline
|
|
@@ -187,7 +188,7 @@ class RandomEncoderBaseline:
|
|
|
187
188
|
|
|
188
189
|
|
|
189
190
|
random_encoder_baseline = ModelMeta(
|
|
190
|
-
loader=RandomEncoderBaseline,
|
|
191
|
+
loader=RandomEncoderBaseline,
|
|
191
192
|
name="baseline/random-encoder-baseline",
|
|
192
193
|
model_type=["dense"],
|
|
193
194
|
modalities=["text", "image"],
|
|
@@ -232,7 +233,7 @@ class RandomCrossEncoderBaseline:
|
|
|
232
233
|
|
|
233
234
|
|
|
234
235
|
random_cross_encoder_baseline = ModelMeta(
|
|
235
|
-
loader=RandomCrossEncoderBaseline,
|
|
236
|
+
loader=RandomCrossEncoderBaseline,
|
|
236
237
|
name="baseline/random-cross-encoder-baseline",
|
|
237
238
|
model_type=["cross-encoder"],
|
|
238
239
|
modalities=["text", "image"],
|
|
@@ -4,7 +4,7 @@ from mteb.models.model_implementations.model2vec_models import Model2VecModel
|
|
|
4
4
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
5
5
|
|
|
6
6
|
potion_base_8m = ModelMeta(
|
|
7
|
-
loader=Model2VecModel,
|
|
7
|
+
loader=Model2VecModel,
|
|
8
8
|
name="rasgaard/m2v-dfm-large",
|
|
9
9
|
model_type=["dense"],
|
|
10
10
|
languages=["dan-Latn"],
|
|
@@ -12,12 +12,13 @@ potion_base_8m = ModelMeta(
|
|
|
12
12
|
revision="387897cfb09992e6d45ea9cd7b28b9fcf119e23a",
|
|
13
13
|
release_date="2025-10-08",
|
|
14
14
|
n_parameters=22893312,
|
|
15
|
+
n_embedding_parameters=22893312,
|
|
15
16
|
memory_usage_mb=87,
|
|
16
17
|
max_tokens=np.inf,
|
|
17
18
|
embed_dim=256,
|
|
18
19
|
license="mit",
|
|
19
20
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
20
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
21
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
21
22
|
reference="https://huggingface.co/rasgaard/m2v-dfm-large",
|
|
22
23
|
use_instructions=False,
|
|
23
24
|
adapted_from="KennethEnevoldsen/dfm-sentence-encoder-large",
|
|
@@ -36,12 +36,76 @@ REASONIR_TRAINING_DATA = {
|
|
|
36
36
|
"DuRetrieval",
|
|
37
37
|
"QuoraRetrieval",
|
|
38
38
|
}
|
|
39
|
+
_prompts_dict = {
|
|
40
|
+
"BrightBiologyRetrieval": {
|
|
41
|
+
"query": "Given a Biology post, retrieve relevant passages that help answer the post"
|
|
42
|
+
},
|
|
43
|
+
"BrightEarthScienceRetrieval": {
|
|
44
|
+
"query": "Given a Earth Science post, retrieve relevant passages that help answer the post"
|
|
45
|
+
},
|
|
46
|
+
"BrightEconomicsRetrieval": {
|
|
47
|
+
"query": "Given a Economics post, retrieve relevant passages that help answer the post"
|
|
48
|
+
},
|
|
49
|
+
"BrightPsychologyRetrieval": {
|
|
50
|
+
"query": "Given a Psychology post, retrieve relevant passages that help answer the post"
|
|
51
|
+
},
|
|
52
|
+
"BrightRoboticsRetrieval": {
|
|
53
|
+
"query": "Given a Robotics post, retrieve relevant passages that help answer the post"
|
|
54
|
+
},
|
|
55
|
+
"BrightStackoverflowRetrieval": {
|
|
56
|
+
"query": "Given a Stackoverflow post, retrieve relevant passages that help answer the post"
|
|
57
|
+
},
|
|
58
|
+
"BrightSustainableLivingRetrieval": {
|
|
59
|
+
"query": "Given a Sustainable Living post, retrieve relevant passages that help answer the post"
|
|
60
|
+
},
|
|
61
|
+
"BrightPonyRetrieval": {
|
|
62
|
+
"query": "Given a Pony question, retrieve relevant passages that help answer the question"
|
|
63
|
+
},
|
|
64
|
+
"BrightLeetcodeRetrieval": {
|
|
65
|
+
"query": "Given a coding problem, retrieve relevant examples that help answer the problem",
|
|
66
|
+
},
|
|
67
|
+
"BrightAopsRetrieval": {
|
|
68
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem"
|
|
69
|
+
},
|
|
70
|
+
"BrightTheoremQATheoremsRetrieval": {
|
|
71
|
+
"query": "Given a Math problem, retrieve relevant theorems that help answer the problem",
|
|
72
|
+
},
|
|
73
|
+
"BrightTheoremQAQuestionsRetrieval": {
|
|
74
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem",
|
|
75
|
+
},
|
|
76
|
+
"BrightBiologyLongRetrieval": {
|
|
77
|
+
"query": "Given a Biology post, retrieve relevant documents that help answer the post"
|
|
78
|
+
},
|
|
79
|
+
"BrightEarthScienceLongRetrieval": {
|
|
80
|
+
"query": "Given a Earth Science post, retrieve relevant documents that help answer the post"
|
|
81
|
+
},
|
|
82
|
+
"BrightEconomicsLongRetrieval": {
|
|
83
|
+
"query": "Given a Economics post, retrieve relevant documents that help answer the post"
|
|
84
|
+
},
|
|
85
|
+
"BrightPsychologyLongRetrieval": {
|
|
86
|
+
"query": "Given a Psychology post, retrieve relevant documents that help answer the post"
|
|
87
|
+
},
|
|
88
|
+
"BrightRoboticsLongRetrieval": {
|
|
89
|
+
"query": "Given a Robotics post, retrieve relevant documents that help answer the post"
|
|
90
|
+
},
|
|
91
|
+
"BrightStackoverflowLongRetrieval": {
|
|
92
|
+
"query": "Given a Stackoverflow post, retrieve relevant documents that help answer the post"
|
|
93
|
+
},
|
|
94
|
+
"BrightSustainableLivingLongRetrieval": {
|
|
95
|
+
"query": "Given a Sustainable Living post, retrieve relevant documents that help answer the post"
|
|
96
|
+
},
|
|
97
|
+
"BrightPonyLongRetrieval": {
|
|
98
|
+
"query": "Given a Pony question, retrieve relevant documents that help answer the question"
|
|
99
|
+
},
|
|
100
|
+
}
|
|
101
|
+
|
|
39
102
|
|
|
40
103
|
ReasonIR_8B = ModelMeta(
|
|
41
104
|
loader=InstructSentenceTransformerModel,
|
|
42
105
|
loader_kwargs=dict(
|
|
43
106
|
instruction_template=instruction_template,
|
|
44
107
|
trust_remote_code=True,
|
|
108
|
+
prompts_dict=_prompts_dict,
|
|
45
109
|
),
|
|
46
110
|
name="ReasonIR/ReasonIR-8B",
|
|
47
111
|
model_type=["dense"],
|
|
@@ -50,13 +114,14 @@ ReasonIR_8B = ModelMeta(
|
|
|
50
114
|
revision="c3d0690370ff4a8c3d3882d8dfa85c43650034fa",
|
|
51
115
|
release_date="2025-04-29",
|
|
52
116
|
n_parameters=7_500_000_000,
|
|
117
|
+
n_embedding_parameters=None,
|
|
53
118
|
memory_usage_mb=None,
|
|
54
119
|
embed_dim=4096,
|
|
55
120
|
license="cc-by-nc-4.0",
|
|
56
121
|
max_tokens=131072,
|
|
57
122
|
reference="https://huggingface.co/ReasonIR/ReasonIR-8B",
|
|
58
123
|
similarity_fn_name="cosine",
|
|
59
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
124
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
60
125
|
use_instructions=True,
|
|
61
126
|
training_datasets=REASONIR_TRAINING_DATA,
|
|
62
127
|
public_training_code="https://github.com/facebookresearch/ReasonIR/tree/main/training",
|
|
@@ -1,22 +1,29 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
import torch
|
|
7
8
|
import torch.nn.functional as F
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
9
|
from tqdm.auto import tqdm
|
|
10
10
|
|
|
11
11
|
from mteb._requires_package import requires_package
|
|
12
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
12
|
from mteb.models.abs_encoder import AbsEncoder
|
|
14
13
|
from mteb.models.model_meta import (
|
|
15
14
|
ModelMeta,
|
|
16
15
|
ScoringFunction,
|
|
17
16
|
)
|
|
18
|
-
from mteb.
|
|
19
|
-
|
|
17
|
+
from mteb.types import PromptType
|
|
18
|
+
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from collections.abc import Callable
|
|
21
|
+
|
|
22
|
+
from torch.utils.data import DataLoader
|
|
23
|
+
|
|
24
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
25
|
+
from mteb.models.models_protocols import EncoderProtocol
|
|
26
|
+
from mteb.types import Array, BatchedInput
|
|
20
27
|
|
|
21
28
|
logger = logging.getLogger(__name__)
|
|
22
29
|
|
|
@@ -154,7 +161,7 @@ REPLLAMA_CITATION = """
|
|
|
154
161
|
"""
|
|
155
162
|
|
|
156
163
|
repllama_llama2_original = ModelMeta(
|
|
157
|
-
loader=RepLLaMAModel,
|
|
164
|
+
loader=RepLLaMAModel,
|
|
158
165
|
loader_kwargs=dict(
|
|
159
166
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
160
167
|
device_map="auto",
|
|
@@ -172,6 +179,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
172
179
|
"mMARCO-NL", # translation not trained on
|
|
173
180
|
},
|
|
174
181
|
n_parameters=7_000_000,
|
|
182
|
+
n_embedding_parameters=131_072_000,
|
|
175
183
|
memory_usage_mb=27,
|
|
176
184
|
max_tokens=4096,
|
|
177
185
|
embed_dim=4096,
|
|
@@ -187,7 +195,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
187
195
|
|
|
188
196
|
|
|
189
197
|
repllama_llama2_reproduced = ModelMeta(
|
|
190
|
-
loader=RepLLaMAModel,
|
|
198
|
+
loader=RepLLaMAModel,
|
|
191
199
|
loader_kwargs=dict(
|
|
192
200
|
base_model_name_or_path="meta-llama/Llama-2-7b-hf",
|
|
193
201
|
device_map="auto",
|
|
@@ -201,13 +209,14 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
201
209
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision
|
|
202
210
|
release_date="2024-09-15",
|
|
203
211
|
n_parameters=7_000_000,
|
|
212
|
+
n_embedding_parameters=None,
|
|
204
213
|
memory_usage_mb=27,
|
|
205
214
|
max_tokens=4096,
|
|
206
215
|
embed_dim=4096,
|
|
207
216
|
license="apache-2.0",
|
|
208
217
|
reference="https://huggingface.co/samaya-ai/RepLLaMA-reproduced",
|
|
209
218
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
210
|
-
framework=["PyTorch", "Tevatron"],
|
|
219
|
+
framework=["PyTorch", "Tevatron", "safetensors"],
|
|
211
220
|
use_instructions=True,
|
|
212
221
|
citation=REPLLAMA_CITATION,
|
|
213
222
|
public_training_code=None,
|
|
@@ -1,16 +1,22 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.model_meta import ModelMeta
|
|
10
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
11
10
|
|
|
12
11
|
from .bge_models import bge_m3_training_data
|
|
13
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
18
|
+
|
|
19
|
+
|
|
14
20
|
logger = logging.getLogger(__name__)
|
|
15
21
|
|
|
16
22
|
|
|
@@ -214,7 +220,7 @@ class JinaReranker(RerankerWrapper):
|
|
|
214
220
|
|
|
215
221
|
|
|
216
222
|
monobert_large = ModelMeta(
|
|
217
|
-
loader=MonoBERTReranker,
|
|
223
|
+
loader=MonoBERTReranker,
|
|
218
224
|
loader_kwargs=dict(
|
|
219
225
|
fp_options="float16",
|
|
220
226
|
),
|
|
@@ -225,6 +231,7 @@ monobert_large = ModelMeta(
|
|
|
225
231
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
226
232
|
release_date="2020-05-28",
|
|
227
233
|
n_parameters=None,
|
|
234
|
+
n_embedding_parameters=31_254_528,
|
|
228
235
|
memory_usage_mb=None,
|
|
229
236
|
max_tokens=None,
|
|
230
237
|
embed_dim=None,
|
|
@@ -234,12 +241,12 @@ monobert_large = ModelMeta(
|
|
|
234
241
|
similarity_fn_name=None,
|
|
235
242
|
use_instructions=None,
|
|
236
243
|
training_datasets=None,
|
|
237
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
244
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
238
245
|
)
|
|
239
246
|
|
|
240
247
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
241
248
|
jina_reranker_multilingual = ModelMeta(
|
|
242
|
-
loader=JinaReranker,
|
|
249
|
+
loader=JinaReranker,
|
|
243
250
|
loader_kwargs=dict(
|
|
244
251
|
fp_options="float16",
|
|
245
252
|
),
|
|
@@ -250,6 +257,7 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
250
257
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
251
258
|
release_date="2024-09-26",
|
|
252
259
|
n_parameters=None,
|
|
260
|
+
n_embedding_parameters=None,
|
|
253
261
|
memory_usage_mb=531,
|
|
254
262
|
max_tokens=None,
|
|
255
263
|
embed_dim=None,
|
|
@@ -259,11 +267,17 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
259
267
|
similarity_fn_name=None,
|
|
260
268
|
use_instructions=None,
|
|
261
269
|
training_datasets=None,
|
|
262
|
-
framework=[
|
|
270
|
+
framework=[
|
|
271
|
+
"Sentence Transformers",
|
|
272
|
+
"PyTorch",
|
|
273
|
+
"Transformers",
|
|
274
|
+
"ONNX",
|
|
275
|
+
"safetensors",
|
|
276
|
+
],
|
|
263
277
|
)
|
|
264
278
|
|
|
265
279
|
bge_reranker_v2_m3 = ModelMeta(
|
|
266
|
-
loader=BGEReranker,
|
|
280
|
+
loader=BGEReranker,
|
|
267
281
|
loader_kwargs=dict(
|
|
268
282
|
fp_options="float16",
|
|
269
283
|
),
|
|
@@ -307,6 +321,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
307
321
|
revision="953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e",
|
|
308
322
|
release_date="2024-06-24",
|
|
309
323
|
n_parameters=None,
|
|
324
|
+
n_embedding_parameters=256_002_048,
|
|
310
325
|
memory_usage_mb=2166,
|
|
311
326
|
max_tokens=None,
|
|
312
327
|
embed_dim=None,
|
|
@@ -316,7 +331,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
316
331
|
similarity_fn_name=None,
|
|
317
332
|
use_instructions=None,
|
|
318
333
|
training_datasets=bge_m3_training_data,
|
|
319
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
334
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
320
335
|
citation="""
|
|
321
336
|
@misc{li2023making,
|
|
322
337
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
|
@@ -1,15 +1,21 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.model_meta import ModelMeta
|
|
9
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
10
9
|
|
|
11
10
|
from .rerankers_custom import RerankerWrapper
|
|
12
11
|
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
17
|
+
|
|
18
|
+
|
|
13
19
|
logger = logging.getLogger(__name__)
|
|
14
20
|
|
|
15
21
|
|
|
@@ -321,6 +327,7 @@ monot5_small = ModelMeta(
|
|
|
321
327
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
322
328
|
release_date="2022-03-28",
|
|
323
329
|
n_parameters=None,
|
|
330
|
+
n_embedding_parameters=16_449_536,
|
|
324
331
|
memory_usage_mb=None,
|
|
325
332
|
max_tokens=None,
|
|
326
333
|
embed_dim=None,
|
|
@@ -330,7 +337,7 @@ monot5_small = ModelMeta(
|
|
|
330
337
|
similarity_fn_name=None,
|
|
331
338
|
use_instructions=None,
|
|
332
339
|
training_datasets=None,
|
|
333
|
-
framework=["PyTorch"],
|
|
340
|
+
framework=["PyTorch", "Transformers"],
|
|
334
341
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
335
342
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
336
343
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -343,7 +350,7 @@ monot5_small = ModelMeta(
|
|
|
343
350
|
)
|
|
344
351
|
|
|
345
352
|
monot5_base = ModelMeta(
|
|
346
|
-
loader=MonoT5Reranker,
|
|
353
|
+
loader=MonoT5Reranker,
|
|
347
354
|
loader_kwargs=dict(
|
|
348
355
|
fp_options="float16",
|
|
349
356
|
),
|
|
@@ -363,6 +370,7 @@ monot5_base = ModelMeta(
|
|
|
363
370
|
url={https://arxiv.org/abs/2206.02873},
|
|
364
371
|
}""",
|
|
365
372
|
n_parameters=None,
|
|
373
|
+
n_embedding_parameters=24_674_304,
|
|
366
374
|
memory_usage_mb=None,
|
|
367
375
|
max_tokens=None,
|
|
368
376
|
embed_dim=None,
|
|
@@ -372,7 +380,7 @@ monot5_base = ModelMeta(
|
|
|
372
380
|
similarity_fn_name=None,
|
|
373
381
|
use_instructions=None,
|
|
374
382
|
training_datasets=None,
|
|
375
|
-
framework=["PyTorch"],
|
|
383
|
+
framework=["PyTorch", "Transformers"],
|
|
376
384
|
)
|
|
377
385
|
|
|
378
386
|
monot5_large = ModelMeta(
|
|
@@ -387,6 +395,7 @@ monot5_large = ModelMeta(
|
|
|
387
395
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
388
396
|
release_date="2022-03-28",
|
|
389
397
|
n_parameters=None,
|
|
398
|
+
n_embedding_parameters=32_899_072,
|
|
390
399
|
memory_usage_mb=None,
|
|
391
400
|
max_tokens=None,
|
|
392
401
|
embed_dim=None,
|
|
@@ -396,7 +405,7 @@ monot5_large = ModelMeta(
|
|
|
396
405
|
similarity_fn_name=None,
|
|
397
406
|
use_instructions=None,
|
|
398
407
|
training_datasets=None,
|
|
399
|
-
framework=["PyTorch"],
|
|
408
|
+
framework=["PyTorch", "Transformers"],
|
|
400
409
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
401
410
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
402
411
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -420,6 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
420
429
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
421
430
|
release_date="2022-03-28",
|
|
422
431
|
n_parameters=None,
|
|
432
|
+
n_embedding_parameters=32_899_072,
|
|
423
433
|
memory_usage_mb=None,
|
|
424
434
|
max_tokens=None,
|
|
425
435
|
embed_dim=None,
|
|
@@ -429,7 +439,7 @@ monot5_3b = ModelMeta(
|
|
|
429
439
|
similarity_fn_name=None,
|
|
430
440
|
use_instructions=None,
|
|
431
441
|
training_datasets=None,
|
|
432
|
-
framework=["PyTorch"],
|
|
442
|
+
framework=["PyTorch", "Transformers"],
|
|
433
443
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
434
444
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
435
445
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -442,7 +452,7 @@ monot5_3b = ModelMeta(
|
|
|
442
452
|
)
|
|
443
453
|
|
|
444
454
|
flant5_base = ModelMeta(
|
|
445
|
-
loader=FLANT5Reranker,
|
|
455
|
+
loader=FLANT5Reranker,
|
|
446
456
|
loader_kwargs=dict(
|
|
447
457
|
fp_options="float16",
|
|
448
458
|
),
|
|
@@ -476,6 +486,7 @@ flant5_base = ModelMeta(
|
|
|
476
486
|
# "qed": ["train"],
|
|
477
487
|
),
|
|
478
488
|
n_parameters=None,
|
|
489
|
+
n_embedding_parameters=24_674_304,
|
|
479
490
|
memory_usage_mb=944,
|
|
480
491
|
max_tokens=None,
|
|
481
492
|
embed_dim=None,
|
|
@@ -484,7 +495,7 @@ flant5_base = ModelMeta(
|
|
|
484
495
|
public_training_data=None,
|
|
485
496
|
similarity_fn_name=None,
|
|
486
497
|
use_instructions=None,
|
|
487
|
-
framework=["PyTorch"],
|
|
498
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
488
499
|
)
|
|
489
500
|
|
|
490
501
|
flant5_large = ModelMeta(
|
|
@@ -522,6 +533,7 @@ flant5_large = ModelMeta(
|
|
|
522
533
|
# "qed": ["train"],
|
|
523
534
|
),
|
|
524
535
|
n_parameters=None,
|
|
536
|
+
n_embedding_parameters=32_899_072,
|
|
525
537
|
memory_usage_mb=2987,
|
|
526
538
|
max_tokens=None,
|
|
527
539
|
embed_dim=None,
|
|
@@ -530,7 +542,7 @@ flant5_large = ModelMeta(
|
|
|
530
542
|
public_training_data=None,
|
|
531
543
|
similarity_fn_name=None,
|
|
532
544
|
use_instructions=None,
|
|
533
|
-
framework=["PyTorch"],
|
|
545
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
534
546
|
)
|
|
535
547
|
|
|
536
548
|
flant5_xl = ModelMeta(
|
|
@@ -568,6 +580,7 @@ flant5_xl = ModelMeta(
|
|
|
568
580
|
# "qed": ["train"],
|
|
569
581
|
),
|
|
570
582
|
n_parameters=None,
|
|
583
|
+
n_embedding_parameters=65_798_144,
|
|
571
584
|
memory_usage_mb=10871,
|
|
572
585
|
max_tokens=None,
|
|
573
586
|
embed_dim=None,
|
|
@@ -576,7 +589,7 @@ flant5_xl = ModelMeta(
|
|
|
576
589
|
public_training_data=None,
|
|
577
590
|
similarity_fn_name=None,
|
|
578
591
|
use_instructions=None,
|
|
579
|
-
framework=["PyTorch"],
|
|
592
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
580
593
|
)
|
|
581
594
|
|
|
582
595
|
flant5_xxl = ModelMeta(
|
|
@@ -614,6 +627,7 @@ flant5_xxl = ModelMeta(
|
|
|
614
627
|
# "qed": ["train"],
|
|
615
628
|
),
|
|
616
629
|
n_parameters=None,
|
|
630
|
+
n_embedding_parameters=131_596_288,
|
|
617
631
|
memory_usage_mb=42980,
|
|
618
632
|
max_tokens=None,
|
|
619
633
|
embed_dim=None,
|
|
@@ -622,7 +636,7 @@ flant5_xxl = ModelMeta(
|
|
|
622
636
|
public_training_data=None,
|
|
623
637
|
similarity_fn_name=None,
|
|
624
638
|
use_instructions=None,
|
|
625
|
-
framework=["PyTorch"],
|
|
639
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
626
640
|
)
|
|
627
641
|
|
|
628
642
|
|
|
@@ -638,6 +652,7 @@ llama2_7b = ModelMeta(
|
|
|
638
652
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
639
653
|
release_date="2023-07-18",
|
|
640
654
|
n_parameters=None,
|
|
655
|
+
n_embedding_parameters=131_072_000,
|
|
641
656
|
memory_usage_mb=None,
|
|
642
657
|
max_tokens=None,
|
|
643
658
|
embed_dim=None,
|
|
@@ -647,7 +662,7 @@ llama2_7b = ModelMeta(
|
|
|
647
662
|
similarity_fn_name=None,
|
|
648
663
|
use_instructions=None,
|
|
649
664
|
training_datasets=None,
|
|
650
|
-
framework=["PyTorch"],
|
|
665
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
651
666
|
citation="""@misc{touvron2023llama2openfoundation,
|
|
652
667
|
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
|
|
653
668
|
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
|
|
@@ -680,6 +695,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
680
695
|
url={https://arxiv.org/abs/2307.09288},
|
|
681
696
|
}""",
|
|
682
697
|
n_parameters=None,
|
|
698
|
+
n_embedding_parameters=131_072_000,
|
|
683
699
|
memory_usage_mb=None,
|
|
684
700
|
max_tokens=None,
|
|
685
701
|
embed_dim=None,
|
|
@@ -689,7 +705,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
689
705
|
similarity_fn_name=None,
|
|
690
706
|
use_instructions=None,
|
|
691
707
|
training_datasets=None,
|
|
692
|
-
framework=["PyTorch"],
|
|
708
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
693
709
|
)
|
|
694
710
|
|
|
695
711
|
mistral_7b = ModelMeta(
|
|
@@ -704,6 +720,7 @@ mistral_7b = ModelMeta(
|
|
|
704
720
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
705
721
|
release_date="2023-12-11",
|
|
706
722
|
n_parameters=None,
|
|
723
|
+
n_embedding_parameters=None,
|
|
707
724
|
memory_usage_mb=None,
|
|
708
725
|
max_tokens=None,
|
|
709
726
|
embed_dim=None,
|
|
@@ -713,7 +730,7 @@ mistral_7b = ModelMeta(
|
|
|
713
730
|
similarity_fn_name=None,
|
|
714
731
|
use_instructions=None,
|
|
715
732
|
training_datasets=None,
|
|
716
|
-
framework=["PyTorch"],
|
|
733
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
717
734
|
citation="""@misc{jiang2023mistral7b,
|
|
718
735
|
title={Mistral 7B},
|
|
719
736
|
author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
|
|
@@ -740,6 +757,7 @@ followir_7b = ModelMeta(
|
|
|
740
757
|
# "jhu-clsp/FollowIR-train"
|
|
741
758
|
),
|
|
742
759
|
n_parameters=None,
|
|
760
|
+
n_embedding_parameters=None,
|
|
743
761
|
memory_usage_mb=13813,
|
|
744
762
|
max_tokens=None,
|
|
745
763
|
embed_dim=None,
|
|
@@ -748,7 +766,7 @@ followir_7b = ModelMeta(
|
|
|
748
766
|
public_training_data=None,
|
|
749
767
|
similarity_fn_name=None,
|
|
750
768
|
use_instructions=None,
|
|
751
|
-
framework=["PyTorch"],
|
|
769
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
752
770
|
citation="""
|
|
753
771
|
@misc{weller2024followir,
|
|
754
772
|
title={FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions},
|
|
@@ -890,6 +908,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
890
908
|
""",
|
|
891
909
|
training_datasets={"MSMARCO"},
|
|
892
910
|
n_parameters=None,
|
|
911
|
+
n_embedding_parameters=192_086_016,
|
|
893
912
|
memory_usage_mb=None,
|
|
894
913
|
max_tokens=None,
|
|
895
914
|
embed_dim=None,
|
|
@@ -898,11 +917,11 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
898
917
|
public_training_data=None,
|
|
899
918
|
similarity_fn_name=None,
|
|
900
919
|
use_instructions=None,
|
|
901
|
-
framework=["PyTorch"],
|
|
920
|
+
framework=["PyTorch", "Transformers"],
|
|
902
921
|
)
|
|
903
922
|
|
|
904
923
|
mt5_13b_mmarco_100k = ModelMeta(
|
|
905
|
-
loader=MonoT5Reranker,
|
|
924
|
+
loader=MonoT5Reranker,
|
|
906
925
|
loader_kwargs=dict(
|
|
907
926
|
fp_options="float16",
|
|
908
927
|
),
|
|
@@ -913,6 +932,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
913
932
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
914
933
|
release_date="2022-11-04",
|
|
915
934
|
n_parameters=None,
|
|
935
|
+
n_embedding_parameters=1_024_458_752,
|
|
916
936
|
memory_usage_mb=None,
|
|
917
937
|
max_tokens=None,
|
|
918
938
|
embed_dim=None,
|
|
@@ -922,5 +942,5 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
922
942
|
similarity_fn_name=None,
|
|
923
943
|
use_instructions=None,
|
|
924
944
|
training_datasets=None,
|
|
925
|
-
framework=["PyTorch"],
|
|
945
|
+
framework=["PyTorch", "Transformers"],
|
|
926
946
|
)
|
|
@@ -15,13 +15,14 @@ ritrieve_zh_v1 = ModelMeta(
|
|
|
15
15
|
revision="f8d5a707656c55705027678e311f9202c8ced12c",
|
|
16
16
|
release_date="2025-03-25",
|
|
17
17
|
n_parameters=int(326 * 1e6),
|
|
18
|
+
n_embedding_parameters=21_635_072,
|
|
18
19
|
memory_usage_mb=1242,
|
|
19
20
|
embed_dim=1792,
|
|
20
21
|
license="mit",
|
|
21
22
|
max_tokens=512,
|
|
22
23
|
reference="https://huggingface.co/richinfoai/ritrieve_zh_v1",
|
|
23
24
|
similarity_fn_name="cosine",
|
|
24
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
25
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
25
26
|
use_instructions=False,
|
|
26
27
|
superseded_by=None,
|
|
27
28
|
adapted_from=None,
|