mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 74457,
|
|
4
|
+
"number_of_characters": 76109543,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 75549698,
|
|
7
|
+
"min_text_length": 121,
|
|
8
|
+
"average_text_length": 1087.7189916063176,
|
|
9
|
+
"max_text_length": 25438,
|
|
10
|
+
"unique_texts": 69150
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 559845,
|
|
15
|
+
"min_text_length": 57,
|
|
16
|
+
"average_text_length": 111.969,
|
|
17
|
+
"max_text_length": 224,
|
|
18
|
+
"unique_texts": 5000
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 5000,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 5000
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 30300,
|
|
4
|
+
"number_of_characters": 17320243,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 17276572,
|
|
7
|
+
"min_text_length": 316,
|
|
8
|
+
"average_text_length": 575.8857333333333,
|
|
9
|
+
"max_text_length": 1008,
|
|
10
|
+
"unique_texts": 28361
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 43671,
|
|
15
|
+
"min_text_length": 67,
|
|
16
|
+
"average_text_length": 145.57,
|
|
17
|
+
"max_text_length": 345,
|
|
18
|
+
"unique_texts": 300
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 300,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0,
|
|
25
|
+
"max_relevant_docs_per_query": 1,
|
|
26
|
+
"unique_relevant_docs": 300
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null,
|
|
29
|
+
"hf_subset_descriptive_stats": {
|
|
30
|
+
"en": {
|
|
31
|
+
"num_samples": 10100,
|
|
32
|
+
"number_of_characters": 5517678,
|
|
33
|
+
"documents_text_statistics": {
|
|
34
|
+
"total_text_length": 5503635,
|
|
35
|
+
"min_text_length": 316,
|
|
36
|
+
"average_text_length": 550.3635,
|
|
37
|
+
"max_text_length": 726,
|
|
38
|
+
"unique_texts": 9422
|
|
39
|
+
},
|
|
40
|
+
"documents_image_statistics": null,
|
|
41
|
+
"queries_text_statistics": {
|
|
42
|
+
"total_text_length": 14043,
|
|
43
|
+
"min_text_length": 68,
|
|
44
|
+
"average_text_length": 140.43,
|
|
45
|
+
"max_text_length": 305,
|
|
46
|
+
"unique_texts": 100
|
|
47
|
+
},
|
|
48
|
+
"queries_image_statistics": null,
|
|
49
|
+
"relevant_docs_statistics": {
|
|
50
|
+
"num_relevant_docs": 100,
|
|
51
|
+
"min_relevant_docs_per_query": 1,
|
|
52
|
+
"average_relevant_docs_per_query": 1.0,
|
|
53
|
+
"max_relevant_docs_per_query": 1,
|
|
54
|
+
"unique_relevant_docs": 100
|
|
55
|
+
},
|
|
56
|
+
"top_ranked_statistics": null
|
|
57
|
+
},
|
|
58
|
+
"fi": {
|
|
59
|
+
"num_samples": 10100,
|
|
60
|
+
"number_of_characters": 5953462,
|
|
61
|
+
"documents_text_statistics": {
|
|
62
|
+
"total_text_length": 5938809,
|
|
63
|
+
"min_text_length": 326,
|
|
64
|
+
"average_text_length": 593.8809,
|
|
65
|
+
"max_text_length": 1008,
|
|
66
|
+
"unique_texts": 9422
|
|
67
|
+
},
|
|
68
|
+
"documents_image_statistics": null,
|
|
69
|
+
"queries_text_statistics": {
|
|
70
|
+
"total_text_length": 14653,
|
|
71
|
+
"min_text_length": 67,
|
|
72
|
+
"average_text_length": 146.53,
|
|
73
|
+
"max_text_length": 345,
|
|
74
|
+
"unique_texts": 100
|
|
75
|
+
},
|
|
76
|
+
"queries_image_statistics": null,
|
|
77
|
+
"relevant_docs_statistics": {
|
|
78
|
+
"num_relevant_docs": 100,
|
|
79
|
+
"min_relevant_docs_per_query": 1,
|
|
80
|
+
"average_relevant_docs_per_query": 1.0,
|
|
81
|
+
"max_relevant_docs_per_query": 1,
|
|
82
|
+
"unique_relevant_docs": 100
|
|
83
|
+
},
|
|
84
|
+
"top_ranked_statistics": null
|
|
85
|
+
},
|
|
86
|
+
"pt": {
|
|
87
|
+
"num_samples": 10100,
|
|
88
|
+
"number_of_characters": 5849103,
|
|
89
|
+
"documents_text_statistics": {
|
|
90
|
+
"total_text_length": 5834128,
|
|
91
|
+
"min_text_length": 325,
|
|
92
|
+
"average_text_length": 583.4128,
|
|
93
|
+
"max_text_length": 774,
|
|
94
|
+
"unique_texts": 9517
|
|
95
|
+
},
|
|
96
|
+
"documents_image_statistics": null,
|
|
97
|
+
"queries_text_statistics": {
|
|
98
|
+
"total_text_length": 14975,
|
|
99
|
+
"min_text_length": 69,
|
|
100
|
+
"average_text_length": 149.75,
|
|
101
|
+
"max_text_length": 320,
|
|
102
|
+
"unique_texts": 100
|
|
103
|
+
},
|
|
104
|
+
"queries_image_statistics": null,
|
|
105
|
+
"relevant_docs_statistics": {
|
|
106
|
+
"num_relevant_docs": 100,
|
|
107
|
+
"min_relevant_docs_per_query": 1,
|
|
108
|
+
"average_relevant_docs_per_query": 1.0,
|
|
109
|
+
"max_relevant_docs_per_query": 1,
|
|
110
|
+
"unique_relevant_docs": 100
|
|
111
|
+
},
|
|
112
|
+
"top_ranked_statistics": null
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
}
|
|
116
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 102198,
|
|
4
|
+
"number_of_characters": 47870352,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 47719757,
|
|
7
|
+
"min_text_length": 9,
|
|
8
|
+
"average_text_length": 472.01951591046225,
|
|
9
|
+
"max_text_length": 8686,
|
|
10
|
+
"unique_texts": 101097
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 150595,
|
|
15
|
+
"min_text_length": 30,
|
|
16
|
+
"average_text_length": 136.78019981834694,
|
|
17
|
+
"max_text_length": 404,
|
|
18
|
+
"unique_texts": 1099
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 3401,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 3.089009990917348,
|
|
25
|
+
"max_relevant_docs_per_query": 5,
|
|
26
|
+
"unique_relevant_docs": 1123
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 132137,
|
|
4
|
+
"number_of_characters": 43323279,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 43311486,
|
|
7
|
+
"min_text_length": 11,
|
|
8
|
+
"average_text_length": 328.5778249819823,
|
|
9
|
+
"max_text_length": 8576,
|
|
10
|
+
"unique_texts": 131814
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 11793,
|
|
15
|
+
"min_text_length": 6,
|
|
16
|
+
"average_text_length": 36.62422360248447,
|
|
17
|
+
"max_text_length": 100,
|
|
18
|
+
"unique_texts": 321
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 11620,
|
|
23
|
+
"min_relevant_docs_per_query": 31,
|
|
24
|
+
"average_relevant_docs_per_query": 36.08695652173913,
|
|
25
|
+
"max_relevant_docs_per_query": 1288,
|
|
26
|
+
"unique_relevant_docs": 32537
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 106558,
|
|
4
|
+
"number_of_characters": 48164581,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 47886101,
|
|
7
|
+
"min_text_length": 9,
|
|
8
|
+
"average_text_length": 472.6783768310499,
|
|
9
|
+
"max_text_length": 8689,
|
|
10
|
+
"unique_texts": 101308
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 278480,
|
|
15
|
+
"min_text_length": 11,
|
|
16
|
+
"average_text_length": 53.04380952380952,
|
|
17
|
+
"max_text_length": 196,
|
|
18
|
+
"unique_texts": 5124
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 6254,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.1912380952380952,
|
|
25
|
+
"max_relevant_docs_per_query": 15,
|
|
26
|
+
"unique_relevant_docs": 1324
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 117974,
|
|
4
|
+
"number_of_characters": 35927363,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 35335613,
|
|
7
|
+
"min_text_length": 22,
|
|
8
|
+
"average_text_length": 316.47705838625023,
|
|
9
|
+
"max_text_length": 4105,
|
|
10
|
+
"unique_texts": 111651
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 591750,
|
|
15
|
+
"min_text_length": 21,
|
|
16
|
+
"average_text_length": 93.61651637399146,
|
|
17
|
+
"max_text_length": 280,
|
|
18
|
+
"unique_texts": 6321
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 12642,
|
|
23
|
+
"min_relevant_docs_per_query": 2,
|
|
24
|
+
"average_relevant_docs_per_query": 2.0,
|
|
25
|
+
"max_relevant_docs_per_query": 2,
|
|
26
|
+
"unique_relevant_docs": 11874
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"dev": {
|
|
3
|
+
"num_samples": 107153,
|
|
4
|
+
"number_of_characters": 33316879,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 33200903,
|
|
7
|
+
"min_text_length": 2,
|
|
8
|
+
"average_text_length": 320.30199218561575,
|
|
9
|
+
"max_text_length": 1712,
|
|
10
|
+
"unique_texts": 103641
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 115976,
|
|
15
|
+
"min_text_length": 8,
|
|
16
|
+
"average_text_length": 33.15494568324757,
|
|
17
|
+
"max_text_length": 190,
|
|
18
|
+
"unique_texts": 3498
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 3700,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.0577472841623785,
|
|
25
|
+
"max_relevant_docs_per_query": 4,
|
|
26
|
+
"unique_relevant_docs": 3698
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 104095,
|
|
4
|
+
"number_of_characters": 52312680,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 52220289,
|
|
7
|
+
"min_text_length": 10,
|
|
8
|
+
"average_text_length": 510.98673124908265,
|
|
9
|
+
"max_text_length": 10245,
|
|
10
|
+
"unique_texts": 102181
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 92391,
|
|
15
|
+
"min_text_length": 22,
|
|
16
|
+
"average_text_length": 48.62684210526316,
|
|
17
|
+
"max_text_length": 113,
|
|
18
|
+
"unique_texts": 1900
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 2283,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.201578947368421,
|
|
25
|
+
"max_relevant_docs_per_query": 4,
|
|
26
|
+
"unique_relevant_docs": 2283
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
{
|
|
2
|
+
"test": {
|
|
3
|
+
"num_samples": 20561,
|
|
4
|
+
"number_of_characters": 10832770,
|
|
5
|
+
"documents_text_statistics": {
|
|
6
|
+
"total_text_length": 9929303,
|
|
7
|
+
"min_text_length": 9,
|
|
8
|
+
"average_text_length": 938.8524016641452,
|
|
9
|
+
"max_text_length": 6319,
|
|
10
|
+
"unique_texts": 10573
|
|
11
|
+
},
|
|
12
|
+
"documents_image_statistics": null,
|
|
13
|
+
"queries_text_statistics": {
|
|
14
|
+
"total_text_length": 903467,
|
|
15
|
+
"min_text_length": 13,
|
|
16
|
+
"average_text_length": 90.48242363545317,
|
|
17
|
+
"max_text_length": 228,
|
|
18
|
+
"unique_texts": 9985
|
|
19
|
+
},
|
|
20
|
+
"queries_image_statistics": null,
|
|
21
|
+
"relevant_docs_statistics": {
|
|
22
|
+
"num_relevant_docs": 11158,
|
|
23
|
+
"min_relevant_docs_per_query": 1,
|
|
24
|
+
"average_relevant_docs_per_query": 1.1174762143214823,
|
|
25
|
+
"max_relevant_docs_per_query": 8,
|
|
26
|
+
"unique_relevant_docs": 10576
|
|
27
|
+
},
|
|
28
|
+
"top_ranked_statistics": null
|
|
29
|
+
}
|
|
30
|
+
}
|
mteb/evaluate.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
import logging
|
|
4
|
-
|
|
4
|
+
import warnings
|
|
5
5
|
from pathlib import Path
|
|
6
6
|
from time import time
|
|
7
|
-
from typing import TYPE_CHECKING,
|
|
7
|
+
from typing import TYPE_CHECKING, cast
|
|
8
8
|
|
|
9
9
|
from datasets.exceptions import DatasetNotFoundError
|
|
10
10
|
from tqdm.auto import tqdm
|
|
@@ -13,25 +13,28 @@ from mteb._helpful_enum import HelpfulStrEnum
|
|
|
13
13
|
from mteb.abstasks import AbsTaskRetrieval
|
|
14
14
|
from mteb.abstasks.abstask import AbsTask
|
|
15
15
|
from mteb.abstasks.aggregated_task import AbsTaskAggregate
|
|
16
|
+
from mteb.benchmarks.benchmark import Benchmark
|
|
16
17
|
from mteb.cache import ResultCache
|
|
17
18
|
from mteb.models.model_meta import ModelMeta
|
|
18
|
-
from mteb.models.models_protocols import (
|
|
19
|
-
CrossEncoderProtocol,
|
|
20
|
-
EncoderProtocol,
|
|
21
|
-
MTEBModels,
|
|
22
|
-
)
|
|
23
19
|
from mteb.models.sentence_transformer_wrapper import (
|
|
24
20
|
CrossEncoderWrapper,
|
|
25
21
|
SentenceTransformerEncoderWrapper,
|
|
26
22
|
)
|
|
27
23
|
from mteb.results import ModelResult, TaskResult
|
|
28
24
|
from mteb.results.task_result import TaskError
|
|
29
|
-
from mteb.types import
|
|
30
|
-
from mteb.types._metadata import ModelName, Revision
|
|
25
|
+
from mteb.types import PromptType
|
|
31
26
|
|
|
32
27
|
if TYPE_CHECKING:
|
|
28
|
+
from collections.abc import Iterable
|
|
29
|
+
|
|
33
30
|
from sentence_transformers import CrossEncoder, SentenceTransformer
|
|
34
31
|
|
|
32
|
+
from mteb.models.models_protocols import (
|
|
33
|
+
MTEBModels,
|
|
34
|
+
)
|
|
35
|
+
from mteb.types import EncodeKwargs, HFSubset, SplitName
|
|
36
|
+
from mteb.types._metadata import ModelName, Revision
|
|
37
|
+
|
|
35
38
|
logger = logging.getLogger(__name__)
|
|
36
39
|
|
|
37
40
|
|
|
@@ -57,27 +60,26 @@ def _sanitize_model(
|
|
|
57
60
|
) -> tuple[MTEBModels | ModelMeta, ModelMeta, ModelName, Revision]:
|
|
58
61
|
from sentence_transformers import CrossEncoder, SentenceTransformer
|
|
59
62
|
|
|
63
|
+
wrapped_model: MTEBModels | ModelMeta
|
|
60
64
|
if isinstance(model, SentenceTransformer):
|
|
61
|
-
|
|
62
|
-
meta =
|
|
63
|
-
_mdl = cast(EncoderProtocol, _mdl)
|
|
64
|
-
model = _mdl
|
|
65
|
+
wrapped_model = SentenceTransformerEncoderWrapper(model)
|
|
66
|
+
meta = wrapped_model.mteb_model_meta
|
|
65
67
|
elif isinstance(model, CrossEncoder):
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
meta = _mdl.mteb_model_meta
|
|
69
|
-
model = _mdl
|
|
68
|
+
wrapped_model = CrossEncoderWrapper(model)
|
|
69
|
+
meta = wrapped_model.mteb_model_meta
|
|
70
70
|
elif hasattr(model, "mteb_model_meta"):
|
|
71
|
-
meta = model
|
|
71
|
+
meta = getattr(model, "mteb_model_meta")
|
|
72
72
|
if not isinstance(meta, ModelMeta):
|
|
73
|
-
meta = ModelMeta.
|
|
73
|
+
meta = ModelMeta._from_hub(None)
|
|
74
|
+
wrapped_model = cast("MTEBModels | ModelMeta", model)
|
|
74
75
|
else:
|
|
75
|
-
meta = ModelMeta.
|
|
76
|
+
meta = ModelMeta._from_hub(None) if not isinstance(model, ModelMeta) else model
|
|
77
|
+
wrapped_model = meta
|
|
76
78
|
|
|
77
|
-
model_name = cast(str, meta.name)
|
|
78
|
-
model_revision = cast(str, meta.revision)
|
|
79
|
+
model_name = cast("str", meta.name)
|
|
80
|
+
model_revision = cast("str", meta.revision)
|
|
79
81
|
|
|
80
|
-
return
|
|
82
|
+
return wrapped_model, meta, model_name, model_revision
|
|
81
83
|
|
|
82
84
|
|
|
83
85
|
def _evaluate_task(
|
|
@@ -86,9 +88,10 @@ def _evaluate_task(
|
|
|
86
88
|
*,
|
|
87
89
|
splits: dict[SplitName, list[HFSubset]],
|
|
88
90
|
co2_tracker: bool | None,
|
|
89
|
-
encode_kwargs:
|
|
91
|
+
encode_kwargs: EncodeKwargs,
|
|
90
92
|
prediction_folder: Path | None,
|
|
91
93
|
public_only: bool | None,
|
|
94
|
+
num_proc: int = 1,
|
|
92
95
|
) -> TaskResult | TaskError:
|
|
93
96
|
"""The core logic to run a model on a given task. See `evaluate` for more details.
|
|
94
97
|
|
|
@@ -122,24 +125,28 @@ def _evaluate_task(
|
|
|
122
125
|
co2_tracker=False,
|
|
123
126
|
prediction_folder=prediction_folder,
|
|
124
127
|
public_only=public_only,
|
|
128
|
+
num_proc=num_proc,
|
|
125
129
|
)
|
|
126
|
-
result
|
|
130
|
+
if isinstance(result, TaskResult):
|
|
131
|
+
result.kg_co2_emissions = tracker.final_emissions
|
|
127
132
|
return result
|
|
128
133
|
|
|
129
134
|
task_results = {}
|
|
130
135
|
|
|
131
136
|
task.check_if_dataset_is_superseded()
|
|
132
137
|
|
|
133
|
-
|
|
134
|
-
if not
|
|
138
|
+
data_preloaded = task.data_loaded
|
|
139
|
+
if not data_preloaded:
|
|
135
140
|
try:
|
|
136
|
-
task.load_data()
|
|
141
|
+
task.load_data(num_proc=num_proc)
|
|
137
142
|
except DatasetNotFoundError as e:
|
|
138
143
|
if not task.metadata.is_public and public_only is None:
|
|
139
|
-
|
|
144
|
+
msg = (
|
|
140
145
|
f"Dataset for private task '{task.metadata.name}' not found. "
|
|
141
146
|
"Make sure you have access to the dataset and that you have set up the authentication correctly. To disable this warning set `public_only=False`"
|
|
142
147
|
)
|
|
148
|
+
logger.warning(msg)
|
|
149
|
+
warnings.warn(msg)
|
|
143
150
|
return TaskError(
|
|
144
151
|
task_name=task.metadata.name,
|
|
145
152
|
exception=str(e),
|
|
@@ -147,7 +154,7 @@ def _evaluate_task(
|
|
|
147
154
|
if public_only is False:
|
|
148
155
|
raise e
|
|
149
156
|
|
|
150
|
-
evaluation_time = 0
|
|
157
|
+
evaluation_time = 0.0
|
|
151
158
|
|
|
152
159
|
for split, hf_subsets in splits.items():
|
|
153
160
|
tick = time()
|
|
@@ -157,6 +164,7 @@ def _evaluate_task(
|
|
|
157
164
|
subsets_to_run=hf_subsets,
|
|
158
165
|
encode_kwargs=encode_kwargs,
|
|
159
166
|
prediction_folder=prediction_folder,
|
|
167
|
+
num_proc=num_proc,
|
|
160
168
|
)
|
|
161
169
|
tock = time()
|
|
162
170
|
|
|
@@ -172,7 +180,7 @@ def _evaluate_task(
|
|
|
172
180
|
kg_co2_emissions=None,
|
|
173
181
|
)
|
|
174
182
|
|
|
175
|
-
if
|
|
183
|
+
if not data_preloaded: # only unload if we loaded the data
|
|
176
184
|
task.unload_data()
|
|
177
185
|
|
|
178
186
|
return result
|
|
@@ -194,12 +202,18 @@ def _check_model_modalities(
|
|
|
194
202
|
return
|
|
195
203
|
|
|
196
204
|
model_modalities = set(model.modalities)
|
|
205
|
+
check_tasks: Iterable[AbsTask] = []
|
|
197
206
|
if isinstance(tasks, AbsTask):
|
|
198
|
-
|
|
207
|
+
check_tasks = [tasks]
|
|
208
|
+
elif isinstance(tasks, Benchmark):
|
|
209
|
+
benchmark = cast("Benchmark", tasks)
|
|
210
|
+
check_tasks = benchmark.tasks
|
|
211
|
+
else:
|
|
212
|
+
check_tasks = cast("Iterable[AbsTask]", tasks)
|
|
199
213
|
|
|
200
214
|
warnings, errors = [], []
|
|
201
215
|
|
|
202
|
-
for task in
|
|
216
|
+
for task in check_tasks:
|
|
203
217
|
# only retrieval tasks have different modalities for query and document and can be run with partial overlaps
|
|
204
218
|
if isinstance(task, AbsTaskRetrieval):
|
|
205
219
|
query_mods = set(task.metadata.get_modalities(PromptType.query))
|
|
@@ -262,12 +276,13 @@ def evaluate(
|
|
|
262
276
|
*,
|
|
263
277
|
co2_tracker: bool | None = None,
|
|
264
278
|
raise_error: bool = True,
|
|
265
|
-
encode_kwargs:
|
|
279
|
+
encode_kwargs: EncodeKwargs | None = None,
|
|
266
280
|
cache: ResultCache | None = ResultCache(),
|
|
267
281
|
overwrite_strategy: str | OverwriteStrategy = "only-missing",
|
|
268
282
|
prediction_folder: Path | str | None = None,
|
|
269
283
|
show_progress_bar: bool = True,
|
|
270
284
|
public_only: bool | None = None,
|
|
285
|
+
num_proc: int = 1,
|
|
271
286
|
) -> ModelResult:
|
|
272
287
|
"""This function runs a model on a given task and returns the results.
|
|
273
288
|
|
|
@@ -276,7 +291,7 @@ def evaluate(
|
|
|
276
291
|
tasks: A task to run.
|
|
277
292
|
co2_tracker: If True, track the CO₂ emissions of the evaluation, required codecarbon to be installed, which can be installed using
|
|
278
293
|
`pip install mteb[codecarbon]`. If none is passed co2 tracking will only be run if codecarbon is installed.
|
|
279
|
-
encode_kwargs: Additional keyword arguments passed to the models `encode`
|
|
294
|
+
encode_kwargs: Additional keyword arguments passed to the models `encode` and `load_data` methods;
|
|
280
295
|
raise_error: If True, raise an error if the task fails. If False, return an empty list.
|
|
281
296
|
cache: The cache to use for loading the results. If None, then no cache will be used. The default cache saved the cache in the
|
|
282
297
|
`~/.cache/mteb` directory. It can be overridden by setting the `MTEB_CACHE` environment variable to a different directory or by directly
|
|
@@ -288,10 +303,11 @@ def evaluate(
|
|
|
288
303
|
changed.
|
|
289
304
|
- "only-cache": Only load the results from the cache folder and do not run the task. Useful if you just want to load the results from the
|
|
290
305
|
cache.
|
|
291
|
-
prediction_folder: Optional folder in which to save model predictions for the task. Predictions of the tasks will be
|
|
306
|
+
prediction_folder: Optional folder in which to save model predictions for the task. Predictions of the tasks will be saved in `prediction_folder/{task_name}_predictions.json`
|
|
292
307
|
show_progress_bar: Whether to show a progress bar when running the evaluation. Default is True. Setting this to False will also set the
|
|
293
308
|
`encode_kwargs['show_progress_bar']` to False if encode_kwargs is unspecified.
|
|
294
309
|
public_only: Run only public tasks. If None, it will attempt to run the private task.
|
|
310
|
+
num_proc: Number of processes to use during data loading and transformation. Defaults to 1.
|
|
295
311
|
|
|
296
312
|
Returns:
|
|
297
313
|
The results of the evaluation.
|
|
@@ -332,10 +348,10 @@ def evaluate(
|
|
|
332
348
|
|
|
333
349
|
# AbsTaskAggregate is a special case where we have to run multiple tasks and combine the results
|
|
334
350
|
if isinstance(tasks, AbsTaskAggregate):
|
|
335
|
-
|
|
351
|
+
aggregated_task = cast("AbsTaskAggregate", tasks)
|
|
336
352
|
results = evaluate(
|
|
337
353
|
model,
|
|
338
|
-
|
|
354
|
+
aggregated_task.metadata.tasks,
|
|
339
355
|
co2_tracker=co2_tracker,
|
|
340
356
|
raise_error=raise_error,
|
|
341
357
|
encode_kwargs=encode_kwargs,
|
|
@@ -344,18 +360,23 @@ def evaluate(
|
|
|
344
360
|
prediction_folder=prediction_folder,
|
|
345
361
|
show_progress_bar=show_progress_bar,
|
|
346
362
|
public_only=public_only,
|
|
363
|
+
num_proc=num_proc,
|
|
347
364
|
)
|
|
348
|
-
|
|
365
|
+
combined_results = aggregated_task.combine_task_results(results.task_results)
|
|
366
|
+
if cache:
|
|
367
|
+
cache.save_to_cache(combined_results, meta)
|
|
368
|
+
|
|
349
369
|
return ModelResult(
|
|
350
370
|
model_name=results.model_name,
|
|
351
371
|
model_revision=results.model_revision,
|
|
352
|
-
task_results=[
|
|
372
|
+
task_results=[combined_results],
|
|
353
373
|
)
|
|
354
374
|
|
|
355
375
|
if isinstance(tasks, AbsTask):
|
|
356
376
|
task = tasks
|
|
357
377
|
else:
|
|
358
|
-
|
|
378
|
+
tasks = cast("Iterable[AbsTask]", tasks)
|
|
379
|
+
evaluate_results = []
|
|
359
380
|
exceptions = []
|
|
360
381
|
tasks_tqdm = tqdm(
|
|
361
382
|
tasks,
|
|
@@ -375,24 +396,25 @@ def evaluate(
|
|
|
375
396
|
prediction_folder=prediction_folder,
|
|
376
397
|
show_progress_bar=False,
|
|
377
398
|
public_only=public_only,
|
|
399
|
+
num_proc=num_proc,
|
|
378
400
|
)
|
|
379
|
-
|
|
401
|
+
evaluate_results.extend(_res.task_results)
|
|
380
402
|
if _res.exceptions:
|
|
381
403
|
exceptions.extend(_res.exceptions)
|
|
382
404
|
return ModelResult(
|
|
383
405
|
model_name=_res.model_name,
|
|
384
406
|
model_revision=_res.model_revision,
|
|
385
|
-
task_results=
|
|
407
|
+
task_results=evaluate_results,
|
|
386
408
|
exceptions=exceptions,
|
|
387
409
|
)
|
|
388
410
|
|
|
389
411
|
overwrite_strategy = OverwriteStrategy.from_str(overwrite_strategy)
|
|
390
412
|
|
|
391
|
-
existing_results = None
|
|
413
|
+
existing_results: TaskResult | None = None
|
|
392
414
|
if cache and overwrite_strategy != OverwriteStrategy.ALWAYS:
|
|
393
|
-
|
|
394
|
-
if
|
|
395
|
-
existing_results =
|
|
415
|
+
cache_results = cache.load_task_result(task.metadata.name, meta)
|
|
416
|
+
if cache_results:
|
|
417
|
+
existing_results = cache_results
|
|
396
418
|
|
|
397
419
|
if (
|
|
398
420
|
existing_results
|
|
@@ -454,6 +476,7 @@ def evaluate(
|
|
|
454
476
|
encode_kwargs=encode_kwargs,
|
|
455
477
|
prediction_folder=prediction_folder,
|
|
456
478
|
public_only=public_only,
|
|
479
|
+
num_proc=num_proc,
|
|
457
480
|
)
|
|
458
481
|
except Exception as e:
|
|
459
482
|
logger.error(
|
|
@@ -469,6 +492,7 @@ def evaluate(
|
|
|
469
492
|
encode_kwargs=encode_kwargs,
|
|
470
493
|
prediction_folder=prediction_folder,
|
|
471
494
|
public_only=public_only,
|
|
495
|
+
num_proc=num_proc,
|
|
472
496
|
)
|
|
473
497
|
logger.info(f"✓ Finished evaluation for {task.metadata.name}")
|
|
474
498
|
|