mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -6,7 +6,29 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
6
6
|
|
|
7
7
|
from .e5_instruct import E5_MISTRAL_TRAINING_DATA
|
|
8
8
|
|
|
9
|
-
model_prompts = {
|
|
9
|
+
model_prompts = {
|
|
10
|
+
"query": "Represent this sentence for searching relevant passages: ",
|
|
11
|
+
"BrightBiologyRetrieval-query": "Represent this biology post for searching relevant passages: ",
|
|
12
|
+
"BrightEarthScienceRetrieval-query": "Represent this earth_science post for searching relevant passages: ",
|
|
13
|
+
"BrightEconomicsRetrieval-query": "Represent this economics post for searching relevant passages: ",
|
|
14
|
+
"BrightPsychologyRetrieval-query": "Represent this psychology post for searching relevant passages: ",
|
|
15
|
+
"BrightRoboticsRetrieval-query": "Represent this robotics post for searching relevant passages: ",
|
|
16
|
+
"BrightStackoverflowRetrieval-query": "Represent this stackoverflow post for searching relevant passages: ",
|
|
17
|
+
"BrightSustainableLivingRetrieval-query": "Represent this sustainable_living post for searching relevant passages: ",
|
|
18
|
+
"BrightPonyRetrieval-query": "Represent this Pony question for searching relevant passages: ",
|
|
19
|
+
"BrightLeetcodeRetrieval-query": "Represent this Coding problem for searching relevant examples: ",
|
|
20
|
+
"BrightAopsRetrieval-query": "Represent this Math problem for searching relevant examples: ",
|
|
21
|
+
"BrightTheoremQATheoremsRetrieval-query": "Represent this Math problem for searching relevant theorems: ",
|
|
22
|
+
"BrightTheoremQAQuestionsRetrieval-query": "Represent this Math problem for searching relevant examples: ",
|
|
23
|
+
"BrightBiologyLongRetrieval-query": "Represent this biology post for searching relevant documents: ",
|
|
24
|
+
"BrightEarthScienceLongRetrieval-query": "Represent this earth_science post for searching relevant documents: ",
|
|
25
|
+
"BrightEconomicsLongRetrieval-query": "Represent this economics post for searching relevant documents: ",
|
|
26
|
+
"BrightPsychologyLongRetrieval-query": "Represent this psychology post for searching relevant documents: ",
|
|
27
|
+
"BrightRoboticsLongRetrieval-query": "Represent this robotics post for searching relevant document: ",
|
|
28
|
+
"BrightStackoverflowLongRetrieval-query": "Represent this stackoverflow post for searching relevant document: ",
|
|
29
|
+
"BrightSustainableLivingLongRetrieval-query": "Represent this sustainable_living post for searching relevant documents: ",
|
|
30
|
+
"BrightPonyLongRetrieval-query": "Represent this Pony question for searching relevant documents: ",
|
|
31
|
+
}
|
|
10
32
|
BGE_15_CITATION = """@misc{bge_embedding,
|
|
11
33
|
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
12
34
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
@@ -325,13 +347,20 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
325
347
|
revision="5c38ec7c405ec4b44b94cc5a9bb96e735b38267a",
|
|
326
348
|
release_date="2023-09-12", # initial commit of hf model.
|
|
327
349
|
n_parameters=33_400_000,
|
|
350
|
+
n_embedding_parameters=11_720_448,
|
|
328
351
|
memory_usage_mb=127,
|
|
329
352
|
embed_dim=512,
|
|
330
353
|
license="mit",
|
|
331
354
|
max_tokens=512,
|
|
332
355
|
reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
|
|
333
356
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
334
|
-
framework=[
|
|
357
|
+
framework=[
|
|
358
|
+
"Sentence Transformers",
|
|
359
|
+
"PyTorch",
|
|
360
|
+
"ONNX",
|
|
361
|
+
"safetensors",
|
|
362
|
+
"Transformers",
|
|
363
|
+
],
|
|
335
364
|
use_instructions=True,
|
|
336
365
|
public_training_code=None,
|
|
337
366
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -351,13 +380,20 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
351
380
|
revision="a5beb1e3e68b9ab74eb54cfd186867f64f240e1a",
|
|
352
381
|
release_date="2023-09-11", # initial commit of hf model.
|
|
353
382
|
n_parameters=109_000_000,
|
|
383
|
+
n_embedding_parameters=23_440_896,
|
|
354
384
|
memory_usage_mb=390,
|
|
355
385
|
embed_dim=768,
|
|
356
386
|
license="mit",
|
|
357
387
|
max_tokens=512,
|
|
358
388
|
reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
|
|
359
389
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
|
-
framework=[
|
|
390
|
+
framework=[
|
|
391
|
+
"Sentence Transformers",
|
|
392
|
+
"PyTorch",
|
|
393
|
+
"ONNX",
|
|
394
|
+
"safetensors",
|
|
395
|
+
"Transformers",
|
|
396
|
+
],
|
|
361
397
|
use_instructions=True,
|
|
362
398
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
363
399
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -377,13 +413,20 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
377
413
|
revision="d4aa6901d3a41ba39fb536a557fa166f842b0e09",
|
|
378
414
|
release_date="2023-09-12", # initial commit of hf model.
|
|
379
415
|
n_parameters=335_000_000,
|
|
416
|
+
n_embedding_parameters=31_254_528,
|
|
380
417
|
memory_usage_mb=1242,
|
|
381
418
|
embed_dim=1024,
|
|
382
419
|
license="mit",
|
|
383
420
|
max_tokens=512,
|
|
384
421
|
reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
|
|
385
422
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
386
|
-
framework=[
|
|
423
|
+
framework=[
|
|
424
|
+
"Sentence Transformers",
|
|
425
|
+
"PyTorch",
|
|
426
|
+
"ONNX",
|
|
427
|
+
"safetensors",
|
|
428
|
+
"Transformers",
|
|
429
|
+
],
|
|
387
430
|
use_instructions=True,
|
|
388
431
|
citation=BGE_15_CITATION,
|
|
389
432
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
@@ -403,13 +446,14 @@ bge_small_zh = ModelMeta(
|
|
|
403
446
|
revision="1d2363c5de6ce9ba9c890c8e23a4c72dce540ca8",
|
|
404
447
|
release_date="2023-08-05", # initial commit of hf model.
|
|
405
448
|
n_parameters=33_400_000,
|
|
449
|
+
n_embedding_parameters=10_817_536,
|
|
406
450
|
memory_usage_mb=127,
|
|
407
451
|
embed_dim=512,
|
|
408
452
|
license="mit",
|
|
409
453
|
max_tokens=512,
|
|
410
454
|
reference="https://huggingface.co/BAAI/bge-small-zh",
|
|
411
455
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
412
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
456
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
413
457
|
use_instructions=True,
|
|
414
458
|
public_training_code=None,
|
|
415
459
|
public_training_data=None,
|
|
@@ -430,13 +474,14 @@ bge_base_zh = ModelMeta(
|
|
|
430
474
|
revision="0e5f83d4895db7955e4cb9ed37ab73f7ded339b6",
|
|
431
475
|
release_date="2023-08-05", # initial commit of hf model.
|
|
432
476
|
n_parameters=109_000_000,
|
|
477
|
+
n_embedding_parameters=16_226_304,
|
|
433
478
|
memory_usage_mb=390,
|
|
434
479
|
embed_dim=768,
|
|
435
480
|
license="mit",
|
|
436
481
|
max_tokens=512,
|
|
437
482
|
reference="https://huggingface.co/BAAI/bge-base-zh",
|
|
438
483
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
439
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
484
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
440
485
|
use_instructions=True,
|
|
441
486
|
public_training_code=None,
|
|
442
487
|
public_training_data=None,
|
|
@@ -457,13 +502,14 @@ bge_large_zh = ModelMeta(
|
|
|
457
502
|
revision="b5d9f5c027e87b6f0b6fa4b614f8f9cdc45ce0e8",
|
|
458
503
|
release_date="2023-08-02", # initial commit of hf model.
|
|
459
504
|
n_parameters=335_000_000,
|
|
505
|
+
n_embedding_parameters=21_635_072,
|
|
460
506
|
memory_usage_mb=1242,
|
|
461
507
|
embed_dim=1024,
|
|
462
508
|
license="mit",
|
|
463
509
|
max_tokens=512,
|
|
464
510
|
reference="https://huggingface.co/BAAI/bge-large-zh",
|
|
465
511
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
466
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
512
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
467
513
|
use_instructions=True,
|
|
468
514
|
public_training_code=None,
|
|
469
515
|
public_training_data=None,
|
|
@@ -484,13 +530,14 @@ bge_small_en = ModelMeta(
|
|
|
484
530
|
revision="4778d71a06863076696b03fd2777eb118712cad8",
|
|
485
531
|
release_date="2023-08-05", # initial commit of hf model.
|
|
486
532
|
n_parameters=33_400_000,
|
|
533
|
+
n_embedding_parameters=11_720_448,
|
|
487
534
|
memory_usage_mb=127,
|
|
488
535
|
embed_dim=512,
|
|
489
536
|
license="mit",
|
|
490
537
|
max_tokens=512,
|
|
491
538
|
reference="https://huggingface.co/BAAI/bge-small-en",
|
|
492
539
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
493
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
540
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
494
541
|
use_instructions=True,
|
|
495
542
|
public_training_code=None,
|
|
496
543
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -511,13 +558,20 @@ bge_base_en = ModelMeta(
|
|
|
511
558
|
revision="b737bf5dcc6ee8bdc530531266b4804a5d77b5d8",
|
|
512
559
|
release_date="2023-08-05", # initial commit of hf model.
|
|
513
560
|
n_parameters=109_000_000,
|
|
561
|
+
n_embedding_parameters=23_440_896,
|
|
514
562
|
memory_usage_mb=390,
|
|
515
563
|
embed_dim=768,
|
|
516
564
|
license="mit",
|
|
517
565
|
max_tokens=512,
|
|
518
566
|
reference="https://huggingface.co/BAAI/bge-base-en",
|
|
519
567
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
520
|
-
framework=[
|
|
568
|
+
framework=[
|
|
569
|
+
"Sentence Transformers",
|
|
570
|
+
"PyTorch",
|
|
571
|
+
"Transformers",
|
|
572
|
+
"ONNX",
|
|
573
|
+
"safetensors",
|
|
574
|
+
],
|
|
521
575
|
use_instructions=True,
|
|
522
576
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
523
577
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -538,13 +592,14 @@ bge_large_en = ModelMeta(
|
|
|
538
592
|
revision="abe7d9d814b775ca171121fb03f394dc42974275",
|
|
539
593
|
release_date="2023-08-05", # initial commit of hf model.
|
|
540
594
|
n_parameters=335_000_000,
|
|
595
|
+
n_embedding_parameters=31_254_528,
|
|
541
596
|
memory_usage_mb=1242,
|
|
542
597
|
embed_dim=1024,
|
|
543
598
|
license="mit",
|
|
544
599
|
max_tokens=512,
|
|
545
600
|
reference="https://huggingface.co/BAAI/bge-large-en",
|
|
546
601
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
547
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
602
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
548
603
|
use_instructions=True,
|
|
549
604
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
550
605
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -566,13 +621,14 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
566
621
|
revision="7999e1d3359715c523056ef9478215996d62a620",
|
|
567
622
|
release_date="2023-09-12", # initial commit of hf model.
|
|
568
623
|
n_parameters=33_400_000,
|
|
624
|
+
n_embedding_parameters=10_817_536,
|
|
569
625
|
memory_usage_mb=91,
|
|
570
626
|
embed_dim=512,
|
|
571
627
|
license="mit",
|
|
572
628
|
max_tokens=512,
|
|
573
629
|
reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
574
630
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
575
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
631
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
576
632
|
use_instructions=True,
|
|
577
633
|
public_training_code=None,
|
|
578
634
|
public_training_data=None,
|
|
@@ -592,13 +648,14 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
592
648
|
revision="f03589ceff5aac7111bd60cfc7d497ca17ecac65",
|
|
593
649
|
release_date="2023-09-11", # initial commit of hf model.
|
|
594
650
|
n_parameters=109_000_000,
|
|
651
|
+
n_embedding_parameters=16_226_304,
|
|
595
652
|
memory_usage_mb=416,
|
|
596
653
|
embed_dim=768,
|
|
597
654
|
license="mit",
|
|
598
655
|
max_tokens=512,
|
|
599
656
|
reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
600
657
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
601
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
658
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
602
659
|
use_instructions=True,
|
|
603
660
|
public_training_code=None,
|
|
604
661
|
public_training_data=None,
|
|
@@ -618,13 +675,14 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
618
675
|
revision="79e7739b6ab944e86d6171e44d24c997fc1e0116",
|
|
619
676
|
release_date="2023-09-12", # initial commit of hf model.
|
|
620
677
|
n_parameters=335_000_000,
|
|
678
|
+
n_embedding_parameters=21_635_072,
|
|
621
679
|
memory_usage_mb=1278,
|
|
622
680
|
embed_dim=1024,
|
|
623
681
|
license="mit",
|
|
624
682
|
max_tokens=512,
|
|
625
683
|
reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
|
626
684
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
627
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
685
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
628
686
|
use_instructions=True,
|
|
629
687
|
public_training_code=None,
|
|
630
688
|
public_training_data=None,
|
|
@@ -641,19 +699,20 @@ bge_m3 = ModelMeta(
|
|
|
641
699
|
revision="5617a9f61b028005a4858fdac845db406aefb181",
|
|
642
700
|
release_date="2024-06-28",
|
|
643
701
|
n_parameters=568_000_000,
|
|
702
|
+
n_embedding_parameters=256_002_048,
|
|
644
703
|
memory_usage_mb=2167,
|
|
645
704
|
embed_dim=1024,
|
|
646
705
|
license="mit",
|
|
647
706
|
max_tokens=8194,
|
|
648
707
|
reference="https://huggingface.co/BAAI/bge-m3",
|
|
649
708
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
650
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
709
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX"],
|
|
651
710
|
use_instructions=False,
|
|
652
711
|
public_training_code=None,
|
|
653
712
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
654
713
|
training_datasets=bge_m3_training_data,
|
|
655
714
|
citation="""@misc{bge-m3,
|
|
656
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
715
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
657
716
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
658
717
|
year={2024},
|
|
659
718
|
eprint={2402.03216},
|
|
@@ -737,13 +796,14 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
737
796
|
revision="992e13d8984fde2c31ef8a3cb2c038aeec513b8a",
|
|
738
797
|
release_date="2024-07-25", # initial commit of hf model.
|
|
739
798
|
n_parameters=int(9.24 * 1e9),
|
|
799
|
+
n_embedding_parameters=917_511_168,
|
|
740
800
|
memory_usage_mb=35254,
|
|
741
801
|
embed_dim=3584, # from old C-MTEB leaderboard
|
|
742
802
|
license="https://ai.google.dev/gemma/terms",
|
|
743
803
|
max_tokens=8192, # from old C-MTEB leaderboard
|
|
744
804
|
reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
|
|
745
805
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
746
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
806
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
747
807
|
use_instructions=False,
|
|
748
808
|
public_training_code=None,
|
|
749
809
|
public_training_data=None,
|
|
@@ -754,7 +814,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
754
814
|
| bge_full_data
|
|
755
815
|
| bge_m3_training_data,
|
|
756
816
|
citation="""@misc{bge-m3,
|
|
757
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
817
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
758
818
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
759
819
|
year={2024},
|
|
760
820
|
eprint={2402.03216},
|
|
@@ -764,7 +824,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
764
824
|
|
|
765
825
|
|
|
766
826
|
@misc{bge_embedding,
|
|
767
|
-
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
827
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
768
828
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
769
829
|
year={2023},
|
|
770
830
|
eprint={2309.07597},
|
|
@@ -784,13 +844,14 @@ bge_en_icl = ModelMeta(
|
|
|
784
844
|
revision="971c7e1445cc86656ca0bd85ed770b8675a40bb5",
|
|
785
845
|
release_date="2024-07-25", # initial commit of hf model.
|
|
786
846
|
n_parameters=int(7.11 * 1e9),
|
|
847
|
+
n_embedding_parameters=131_084_288,
|
|
787
848
|
memory_usage_mb=27125,
|
|
788
849
|
embed_dim=4096,
|
|
789
850
|
license="apache-2.0",
|
|
790
851
|
max_tokens=32768,
|
|
791
852
|
reference="https://huggingface.co/BAAI/bge-en-icl",
|
|
792
853
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
793
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
854
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
794
855
|
use_instructions=False,
|
|
795
856
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
796
857
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -818,19 +879,20 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
818
879
|
revision="46f03bc86361cf88102b0b517b36c8259f2946b1",
|
|
819
880
|
release_date="2024-01-30", # January 30, 2024 - BGE-M3 release date
|
|
820
881
|
n_parameters=568_000_000,
|
|
882
|
+
n_embedding_parameters=256_002_048,
|
|
821
883
|
memory_usage_mb=2167,
|
|
822
884
|
embed_dim=1024,
|
|
823
885
|
license="mit",
|
|
824
886
|
max_tokens=8192,
|
|
825
887
|
reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
|
|
826
888
|
similarity_fn_name="cosine",
|
|
827
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
889
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
828
890
|
use_instructions=False,
|
|
829
891
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
830
892
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
831
893
|
training_datasets=bge_m3_training_data,
|
|
832
894
|
citation="""@misc{bge-m3,
|
|
833
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
895
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
834
896
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
835
897
|
year={2024},
|
|
836
898
|
eprint={2402.03216},
|
|
@@ -847,6 +909,7 @@ manu__bge_m3_custom_fr = ModelMeta(
|
|
|
847
909
|
languages=None,
|
|
848
910
|
loader=sentence_transformers_loader,
|
|
849
911
|
n_parameters=567754752,
|
|
912
|
+
n_embedding_parameters=256_002_048,
|
|
850
913
|
memory_usage_mb=2166,
|
|
851
914
|
max_tokens=8194.0,
|
|
852
915
|
embed_dim=1024,
|
|
@@ -854,7 +917,7 @@ manu__bge_m3_custom_fr = ModelMeta(
|
|
|
854
917
|
open_weights=True,
|
|
855
918
|
public_training_code=None,
|
|
856
919
|
public_training_data=None,
|
|
857
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
920
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
858
921
|
reference="https://huggingface.co/manu/bge-m3-custom-fr",
|
|
859
922
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
860
923
|
use_instructions=None,
|
|
@@ -9,26 +9,27 @@ bica_base = ModelMeta(
|
|
|
9
9
|
revision="31237a836e5ae908c308a256573e5f0986498574",
|
|
10
10
|
release_date="2025-11-14",
|
|
11
11
|
n_parameters=110_000_000,
|
|
12
|
+
n_embedding_parameters=23_440_896,
|
|
12
13
|
memory_usage_mb=418,
|
|
13
14
|
embed_dim=768,
|
|
14
15
|
license="mit",
|
|
15
16
|
max_tokens=512,
|
|
16
17
|
reference="https://huggingface.co/bisectgroup/BiCA-base",
|
|
17
18
|
similarity_fn_name="cosine",
|
|
18
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
19
20
|
use_instructions=False,
|
|
20
21
|
public_training_code="https://github.com/NiravBhattLab/BiCA",
|
|
21
22
|
public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
|
|
22
23
|
adapted_from="thenlper/gte-base",
|
|
23
24
|
citation="""
|
|
24
25
|
@misc{sinha2025bicaeffectivebiomedicaldense,
|
|
25
|
-
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
|
+
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
27
|
author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
|
|
27
28
|
year={2025},
|
|
28
29
|
eprint={2511.08029},
|
|
29
30
|
archivePrefix={arXiv},
|
|
30
31
|
primaryClass={cs.IR},
|
|
31
|
-
url={https://arxiv.org/abs/2511.08029},
|
|
32
|
+
url={https://arxiv.org/abs/2511.08029},
|
|
32
33
|
}
|
|
33
34
|
""",
|
|
34
35
|
training_datasets=set(),
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
BLIP2_CITATION = """@inproceedings{li2023blip2,
|
|
14
19
|
title={{BLIP-2:} Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models},
|
|
@@ -172,6 +177,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
172
177
|
release_date="2024-03-22",
|
|
173
178
|
modalities=["image", "text"],
|
|
174
179
|
n_parameters=3_740_000_000,
|
|
180
|
+
n_embedding_parameters=None,
|
|
175
181
|
memory_usage_mb=14285,
|
|
176
182
|
max_tokens=None,
|
|
177
183
|
embed_dim=768,
|
|
@@ -179,7 +185,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
179
185
|
open_weights=True,
|
|
180
186
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
181
187
|
public_training_data=None,
|
|
182
|
-
framework=["PyTorch"],
|
|
188
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
189
|
reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
|
184
190
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
185
191
|
use_instructions=False,
|
|
@@ -196,6 +202,7 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
196
202
|
release_date="2024-03-31",
|
|
197
203
|
modalities=["image", "text"],
|
|
198
204
|
n_parameters=7_750_000_000,
|
|
205
|
+
n_embedding_parameters=None,
|
|
199
206
|
memory_usage_mb=29577,
|
|
200
207
|
max_tokens=None,
|
|
201
208
|
embed_dim=768,
|
|
@@ -203,7 +210,7 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
203
210
|
open_weights=True,
|
|
204
211
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
205
212
|
public_training_data=None,
|
|
206
|
-
framework=["PyTorch"],
|
|
213
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
207
214
|
reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
|
|
208
215
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
209
216
|
use_instructions=False,
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
6
|
from torch.nn.functional import normalize
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
from tqdm.auto import tqdm
|
|
7
8
|
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
BLIP_CITATION = """@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
|
14
19
|
doi = {10.48550/ARXIV.2201.12086},
|
|
@@ -128,7 +133,7 @@ class BLIPModel(AbsEncoder):
|
|
|
128
133
|
|
|
129
134
|
# in descending order of usage (downloads from huggingface)
|
|
130
135
|
blip_image_captioning_large = ModelMeta(
|
|
131
|
-
loader=BLIPModel,
|
|
136
|
+
loader=BLIPModel,
|
|
132
137
|
name="Salesforce/blip-image-captioning-large",
|
|
133
138
|
model_type=["dense"],
|
|
134
139
|
languages=["eng-Latn"],
|
|
@@ -136,6 +141,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
136
141
|
release_date="2023-12-07",
|
|
137
142
|
modalities=["image", "text"],
|
|
138
143
|
n_parameters=470_000_000,
|
|
144
|
+
n_embedding_parameters=23_442_432,
|
|
139
145
|
memory_usage_mb=1792,
|
|
140
146
|
max_tokens=512,
|
|
141
147
|
embed_dim=768,
|
|
@@ -143,7 +149,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
143
149
|
open_weights=True,
|
|
144
150
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
145
151
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
146
|
-
framework=["PyTorch"],
|
|
152
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
147
153
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
|
|
148
154
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
149
155
|
use_instructions=False,
|
|
@@ -156,7 +162,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
156
162
|
)
|
|
157
163
|
|
|
158
164
|
blip_image_captioning_base = ModelMeta(
|
|
159
|
-
loader=BLIPModel,
|
|
165
|
+
loader=BLIPModel,
|
|
160
166
|
name="Salesforce/blip-image-captioning-base",
|
|
161
167
|
model_type=["dense"],
|
|
162
168
|
languages=["eng-Latn"],
|
|
@@ -164,6 +170,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
164
170
|
release_date="2023-08-01",
|
|
165
171
|
modalities=["image", "text"],
|
|
166
172
|
n_parameters=247_000_000,
|
|
173
|
+
n_embedding_parameters=23_442_432,
|
|
167
174
|
memory_usage_mb=942,
|
|
168
175
|
max_tokens=512,
|
|
169
176
|
embed_dim=768,
|
|
@@ -171,7 +178,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
171
178
|
open_weights=True,
|
|
172
179
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
173
180
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
174
|
-
framework=["PyTorch"],
|
|
181
|
+
framework=["PyTorch", "Transformers"],
|
|
175
182
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
|
|
176
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
177
184
|
use_instructions=False,
|
|
@@ -185,7 +192,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
185
192
|
|
|
186
193
|
|
|
187
194
|
blip_vqa_base = ModelMeta(
|
|
188
|
-
loader=BLIPModel,
|
|
195
|
+
loader=BLIPModel,
|
|
189
196
|
name="Salesforce/blip-vqa-base",
|
|
190
197
|
model_type=["dense"],
|
|
191
198
|
languages=["eng-Latn"],
|
|
@@ -193,6 +200,7 @@ blip_vqa_base = ModelMeta(
|
|
|
193
200
|
release_date="2023-12-07",
|
|
194
201
|
modalities=["image", "text"],
|
|
195
202
|
n_parameters=247_000_000,
|
|
203
|
+
n_embedding_parameters=23_442_432,
|
|
196
204
|
memory_usage_mb=1467,
|
|
197
205
|
max_tokens=512,
|
|
198
206
|
embed_dim=768,
|
|
@@ -200,7 +208,7 @@ blip_vqa_base = ModelMeta(
|
|
|
200
208
|
open_weights=True,
|
|
201
209
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
202
210
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
203
|
-
framework=["PyTorch"],
|
|
211
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
204
212
|
reference="https://huggingface.co/Salesforce/blip-vqa-base",
|
|
205
213
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
206
214
|
use_instructions=False,
|
|
@@ -212,7 +220,7 @@ blip_vqa_base = ModelMeta(
|
|
|
212
220
|
)
|
|
213
221
|
|
|
214
222
|
blip_vqa_capfilt_large = ModelMeta(
|
|
215
|
-
loader=BLIPModel,
|
|
223
|
+
loader=BLIPModel,
|
|
216
224
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
225
|
model_type=["dense"],
|
|
218
226
|
languages=["eng-Latn"],
|
|
@@ -220,6 +228,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
220
228
|
release_date="2023-01-22",
|
|
221
229
|
modalities=["image", "text"],
|
|
222
230
|
n_parameters=247_000_000,
|
|
231
|
+
n_embedding_parameters=23_442_432,
|
|
223
232
|
memory_usage_mb=942,
|
|
224
233
|
max_tokens=512,
|
|
225
234
|
embed_dim=768,
|
|
@@ -227,7 +236,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
227
236
|
open_weights=True,
|
|
228
237
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
229
238
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
230
|
-
framework=["PyTorch"],
|
|
239
|
+
framework=["PyTorch", "Transformers"],
|
|
231
240
|
reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
|
|
232
241
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
233
242
|
use_instructions=False,
|
|
@@ -239,7 +248,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
239
248
|
)
|
|
240
249
|
|
|
241
250
|
blip_itm_base_coco = ModelMeta(
|
|
242
|
-
loader=BLIPModel,
|
|
251
|
+
loader=BLIPModel,
|
|
243
252
|
name="Salesforce/blip-itm-base-coco",
|
|
244
253
|
model_type=["dense"],
|
|
245
254
|
languages=["eng-Latn"],
|
|
@@ -247,6 +256,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
247
256
|
release_date="2023-08-01",
|
|
248
257
|
modalities=["image", "text"],
|
|
249
258
|
n_parameters=247_000_000,
|
|
259
|
+
n_embedding_parameters=23_442_432,
|
|
250
260
|
memory_usage_mb=942,
|
|
251
261
|
max_tokens=512,
|
|
252
262
|
embed_dim=768,
|
|
@@ -254,7 +264,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
254
264
|
open_weights=True,
|
|
255
265
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
256
266
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
257
|
-
framework=["PyTorch"],
|
|
267
|
+
framework=["PyTorch", "Transformers"],
|
|
258
268
|
reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
|
|
259
269
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
260
270
|
use_instructions=False,
|
|
@@ -266,7 +276,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
266
276
|
)
|
|
267
277
|
|
|
268
278
|
blip_itm_large_coco = ModelMeta(
|
|
269
|
-
loader=BLIPModel,
|
|
279
|
+
loader=BLIPModel,
|
|
270
280
|
name="Salesforce/blip-itm-large-coco",
|
|
271
281
|
model_type=["dense"],
|
|
272
282
|
languages=["eng-Latn"],
|
|
@@ -274,6 +284,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
274
284
|
release_date="2023-08-01",
|
|
275
285
|
modalities=["image", "text"],
|
|
276
286
|
n_parameters=470_000_000,
|
|
287
|
+
n_embedding_parameters=23_442_432,
|
|
277
288
|
memory_usage_mb=1793,
|
|
278
289
|
max_tokens=512,
|
|
279
290
|
embed_dim=768,
|
|
@@ -281,7 +292,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
281
292
|
open_weights=True,
|
|
282
293
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
283
294
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
284
|
-
framework=["PyTorch"],
|
|
295
|
+
framework=["PyTorch", "Transformers"],
|
|
285
296
|
reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
|
|
286
297
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
287
298
|
use_instructions=False,
|
|
@@ -294,7 +305,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
294
305
|
)
|
|
295
306
|
|
|
296
307
|
blip_itm_base_flickr = ModelMeta(
|
|
297
|
-
loader=BLIPModel,
|
|
308
|
+
loader=BLIPModel,
|
|
298
309
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
310
|
model_type=["dense"],
|
|
300
311
|
languages=["eng-Latn"],
|
|
@@ -302,6 +313,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
302
313
|
release_date="2023-08-01",
|
|
303
314
|
modalities=["image", "text"],
|
|
304
315
|
n_parameters=247_000_000,
|
|
316
|
+
n_embedding_parameters=23_442_432,
|
|
305
317
|
memory_usage_mb=942,
|
|
306
318
|
max_tokens=512,
|
|
307
319
|
embed_dim=768,
|
|
@@ -309,7 +321,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
309
321
|
open_weights=True,
|
|
310
322
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
311
323
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
312
|
-
framework=["PyTorch"],
|
|
324
|
+
framework=["PyTorch", "Transformers"],
|
|
313
325
|
reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
|
|
314
326
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
315
327
|
use_instructions=False,
|
|
@@ -322,7 +334,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
322
334
|
)
|
|
323
335
|
|
|
324
336
|
blip_itm_large_flickr = ModelMeta(
|
|
325
|
-
loader=BLIPModel,
|
|
337
|
+
loader=BLIPModel,
|
|
326
338
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
339
|
model_type=["dense"],
|
|
328
340
|
languages=["eng-Latn"],
|
|
@@ -330,6 +342,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
330
342
|
release_date="2023-08-01",
|
|
331
343
|
modalities=["image", "text"],
|
|
332
344
|
n_parameters=470_000_000,
|
|
345
|
+
n_embedding_parameters=23_442_432,
|
|
333
346
|
memory_usage_mb=1793,
|
|
334
347
|
max_tokens=512,
|
|
335
348
|
embed_dim=768,
|
|
@@ -337,7 +350,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
337
350
|
open_weights=True,
|
|
338
351
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
339
352
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
340
|
-
framework=["PyTorch"],
|
|
353
|
+
framework=["PyTorch", "Transformers"],
|
|
341
354
|
reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
|
|
342
355
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
343
356
|
use_instructions=False,
|