mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -1,13 +1,18 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any, Literal
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
9
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
10
|
-
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
11
16
|
|
|
12
17
|
|
|
13
18
|
class DINOModel(AbsEncoder):
|
|
@@ -104,7 +109,7 @@ dinov2_training_datasets = set(
|
|
|
104
109
|
|
|
105
110
|
|
|
106
111
|
dinov2_small = ModelMeta(
|
|
107
|
-
loader=DINOModel,
|
|
112
|
+
loader=DINOModel,
|
|
108
113
|
name="facebook/dinov2-small",
|
|
109
114
|
model_type=["dense"],
|
|
110
115
|
languages=["eng-Latn"],
|
|
@@ -112,6 +117,7 @@ dinov2_small = ModelMeta(
|
|
|
112
117
|
release_date="2023-07-18",
|
|
113
118
|
modalities=["image"],
|
|
114
119
|
n_parameters=22_100_000,
|
|
120
|
+
n_embedding_parameters=None,
|
|
115
121
|
memory_usage_mb=84,
|
|
116
122
|
max_tokens=None,
|
|
117
123
|
embed_dim=384,
|
|
@@ -119,13 +125,13 @@ dinov2_small = ModelMeta(
|
|
|
119
125
|
open_weights=True,
|
|
120
126
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
121
127
|
public_training_data=None,
|
|
122
|
-
framework=["PyTorch"],
|
|
128
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
123
129
|
reference="https://huggingface.co/facebook/dinov2-small",
|
|
124
130
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
125
131
|
use_instructions=False,
|
|
126
132
|
training_datasets=dinov2_training_datasets,
|
|
127
133
|
citation="""@misc{oquab2023dinov2,
|
|
128
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
134
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
129
135
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
130
136
|
year={2023},
|
|
131
137
|
eprint={2304.07193},
|
|
@@ -135,7 +141,7 @@ dinov2_small = ModelMeta(
|
|
|
135
141
|
)
|
|
136
142
|
|
|
137
143
|
dinov2_base = ModelMeta(
|
|
138
|
-
loader=DINOModel,
|
|
144
|
+
loader=DINOModel,
|
|
139
145
|
name="facebook/dinov2-base",
|
|
140
146
|
model_type=["dense"],
|
|
141
147
|
languages=["eng-Latn"],
|
|
@@ -143,6 +149,7 @@ dinov2_base = ModelMeta(
|
|
|
143
149
|
release_date="2023-07-18",
|
|
144
150
|
modalities=["image"],
|
|
145
151
|
n_parameters=86_600_000,
|
|
152
|
+
n_embedding_parameters=None,
|
|
146
153
|
memory_usage_mb=330,
|
|
147
154
|
max_tokens=None,
|
|
148
155
|
embed_dim=768,
|
|
@@ -150,13 +157,13 @@ dinov2_base = ModelMeta(
|
|
|
150
157
|
open_weights=True,
|
|
151
158
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
152
159
|
public_training_data=None,
|
|
153
|
-
framework=["PyTorch"],
|
|
160
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
154
161
|
reference="https://huggingface.co/facebook/dinov2-base",
|
|
155
162
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
156
163
|
use_instructions=False,
|
|
157
164
|
training_datasets=dinov2_training_datasets,
|
|
158
165
|
citation="""@misc{oquab2023dinov2,
|
|
159
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
166
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
160
167
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
161
168
|
year={2023},
|
|
162
169
|
eprint={2304.07193},
|
|
@@ -166,7 +173,7 @@ dinov2_base = ModelMeta(
|
|
|
166
173
|
)
|
|
167
174
|
|
|
168
175
|
dinov2_large = ModelMeta(
|
|
169
|
-
loader=DINOModel,
|
|
176
|
+
loader=DINOModel,
|
|
170
177
|
name="facebook/dinov2-large",
|
|
171
178
|
model_type=["dense"],
|
|
172
179
|
languages=["eng-Latn"],
|
|
@@ -174,6 +181,7 @@ dinov2_large = ModelMeta(
|
|
|
174
181
|
release_date="2023-07-18",
|
|
175
182
|
modalities=["image"],
|
|
176
183
|
n_parameters=304_000_000,
|
|
184
|
+
n_embedding_parameters=None,
|
|
177
185
|
memory_usage_mb=1161,
|
|
178
186
|
max_tokens=None,
|
|
179
187
|
embed_dim=1024,
|
|
@@ -181,13 +189,13 @@ dinov2_large = ModelMeta(
|
|
|
181
189
|
open_weights=True,
|
|
182
190
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
183
191
|
public_training_data=None,
|
|
184
|
-
framework=["PyTorch"],
|
|
192
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
185
193
|
reference="https://huggingface.co/facebook/dinov2-large",
|
|
186
194
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
187
195
|
use_instructions=False,
|
|
188
196
|
training_datasets=dinov2_training_datasets,
|
|
189
197
|
citation="""@misc{oquab2023dinov2,
|
|
190
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
198
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
191
199
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
192
200
|
year={2023},
|
|
193
201
|
eprint={2304.07193},
|
|
@@ -197,7 +205,7 @@ dinov2_large = ModelMeta(
|
|
|
197
205
|
)
|
|
198
206
|
|
|
199
207
|
dinov2_giant = ModelMeta(
|
|
200
|
-
loader=DINOModel,
|
|
208
|
+
loader=DINOModel,
|
|
201
209
|
name="facebook/dinov2-giant",
|
|
202
210
|
model_type=["dense"],
|
|
203
211
|
languages=["eng-Latn"],
|
|
@@ -205,6 +213,7 @@ dinov2_giant = ModelMeta(
|
|
|
205
213
|
release_date="2023-07-18",
|
|
206
214
|
modalities=["image"],
|
|
207
215
|
n_parameters=1_140_000_000,
|
|
216
|
+
n_embedding_parameters=None,
|
|
208
217
|
memory_usage_mb=4335,
|
|
209
218
|
max_tokens=None,
|
|
210
219
|
embed_dim=1536,
|
|
@@ -212,13 +221,13 @@ dinov2_giant = ModelMeta(
|
|
|
212
221
|
open_weights=True,
|
|
213
222
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
214
223
|
public_training_data=None,
|
|
215
|
-
framework=["PyTorch"],
|
|
224
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
216
225
|
reference="https://huggingface.co/facebook/dinov2-giant",
|
|
217
226
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
218
227
|
use_instructions=False,
|
|
219
228
|
training_datasets=dinov2_training_datasets,
|
|
220
229
|
citation="""@misc{oquab2023dinov2,
|
|
221
|
-
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
230
|
+
title={DINOv2: Learning Robust Visual Features without Supervision},
|
|
222
231
|
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
|
223
232
|
year={2023},
|
|
224
233
|
eprint={2304.07193},
|
|
@@ -240,6 +249,7 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
240
249
|
release_date="2025-04-24",
|
|
241
250
|
modalities=["image"],
|
|
242
251
|
n_parameters=304_000_000,
|
|
252
|
+
n_embedding_parameters=None,
|
|
243
253
|
memory_usage_mb=1158,
|
|
244
254
|
max_tokens=None,
|
|
245
255
|
embed_dim=1024,
|
|
@@ -247,13 +257,13 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
247
257
|
open_weights=True,
|
|
248
258
|
public_training_code="",
|
|
249
259
|
public_training_data=None,
|
|
250
|
-
framework=["PyTorch"],
|
|
260
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
251
261
|
reference="https://huggingface.co/facebook/webssl-dino300m-full2b-224",
|
|
252
262
|
similarity_fn_name=None,
|
|
253
263
|
use_instructions=False,
|
|
254
264
|
training_datasets=webssl_dino_training_datasets,
|
|
255
265
|
citation="""@article{fan2025scaling,
|
|
256
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
266
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
257
267
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
258
268
|
year={2025},
|
|
259
269
|
eprint={2504.01017},
|
|
@@ -271,6 +281,7 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
271
281
|
release_date="2025-04-24",
|
|
272
282
|
modalities=["image"],
|
|
273
283
|
n_parameters=1_130_000_000,
|
|
284
|
+
n_embedding_parameters=None,
|
|
274
285
|
memory_usage_mb=4329,
|
|
275
286
|
max_tokens=None,
|
|
276
287
|
embed_dim=1536,
|
|
@@ -278,13 +289,13 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
278
289
|
open_weights=True,
|
|
279
290
|
public_training_code="",
|
|
280
291
|
public_training_data=None,
|
|
281
|
-
framework=["PyTorch"],
|
|
292
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
282
293
|
reference="https://huggingface.co/facebook/webssl-dino1b-full2b-224",
|
|
283
294
|
similarity_fn_name=None,
|
|
284
295
|
use_instructions=False,
|
|
285
296
|
training_datasets=webssl_dino_training_datasets,
|
|
286
297
|
citation="""@article{fan2025scaling,
|
|
287
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
298
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
288
299
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
289
300
|
year={2025},
|
|
290
301
|
eprint={2504.01017},
|
|
@@ -302,6 +313,7 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
302
313
|
release_date="2025-04-24",
|
|
303
314
|
modalities=["image"],
|
|
304
315
|
n_parameters=2_080_000_000,
|
|
316
|
+
n_embedding_parameters=None,
|
|
305
317
|
memory_usage_mb=7951,
|
|
306
318
|
max_tokens=None,
|
|
307
319
|
embed_dim=2688,
|
|
@@ -309,13 +321,13 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
309
321
|
open_weights=True,
|
|
310
322
|
public_training_code="",
|
|
311
323
|
public_training_data=None,
|
|
312
|
-
framework=["PyTorch"],
|
|
324
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
313
325
|
reference="https://huggingface.co/facebook/webssl-dino2b-full2b-224",
|
|
314
326
|
similarity_fn_name=None,
|
|
315
327
|
use_instructions=False,
|
|
316
328
|
training_datasets=webssl_dino_training_datasets,
|
|
317
329
|
citation="""@article{fan2025scaling,
|
|
318
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
330
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
319
331
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
320
332
|
year={2025},
|
|
321
333
|
eprint={2504.01017},
|
|
@@ -333,6 +345,7 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
333
345
|
release_date="2025-04-24",
|
|
334
346
|
modalities=["image"],
|
|
335
347
|
n_parameters=3_000_000_000,
|
|
348
|
+
n_embedding_parameters=None,
|
|
336
349
|
memory_usage_mb=11247,
|
|
337
350
|
max_tokens=None,
|
|
338
351
|
embed_dim=3072,
|
|
@@ -340,13 +353,13 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
340
353
|
open_weights=True,
|
|
341
354
|
public_training_code="",
|
|
342
355
|
public_training_data=None,
|
|
343
|
-
framework=["PyTorch"],
|
|
356
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
344
357
|
reference="https://huggingface.co/facebook/webssl-dino3b-full2b-224",
|
|
345
358
|
similarity_fn_name=None,
|
|
346
359
|
use_instructions=False,
|
|
347
360
|
training_datasets=webssl_dino_training_datasets,
|
|
348
361
|
citation="""@article{fan2025scaling,
|
|
349
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
362
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
350
363
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
351
364
|
year={2025},
|
|
352
365
|
eprint={2504.01017},
|
|
@@ -364,6 +377,7 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
364
377
|
release_date="2025-04-24",
|
|
365
378
|
modalities=["image"],
|
|
366
379
|
n_parameters=5_000_000_000,
|
|
380
|
+
n_embedding_parameters=None,
|
|
367
381
|
memory_usage_mb=18838,
|
|
368
382
|
max_tokens=None,
|
|
369
383
|
embed_dim=3584,
|
|
@@ -371,13 +385,13 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
371
385
|
open_weights=True,
|
|
372
386
|
public_training_code="",
|
|
373
387
|
public_training_data=None,
|
|
374
|
-
framework=["PyTorch"],
|
|
388
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
375
389
|
reference="https://huggingface.co/facebook/webssl-dino5b-full2b-224",
|
|
376
390
|
similarity_fn_name=None,
|
|
377
391
|
use_instructions=False,
|
|
378
392
|
training_datasets=webssl_dino_training_datasets,
|
|
379
393
|
citation="""@article{fan2025scaling,
|
|
380
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
394
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
381
395
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
382
396
|
year={2025},
|
|
383
397
|
eprint={2504.01017},
|
|
@@ -395,6 +409,7 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
395
409
|
release_date="2025-04-24",
|
|
396
410
|
modalities=["image"],
|
|
397
411
|
n_parameters=7_000_000_000,
|
|
412
|
+
n_embedding_parameters=None,
|
|
398
413
|
memory_usage_mb=24605,
|
|
399
414
|
max_tokens=None,
|
|
400
415
|
embed_dim=4096,
|
|
@@ -402,13 +417,13 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
402
417
|
open_weights=True,
|
|
403
418
|
public_training_code="",
|
|
404
419
|
public_training_data=None,
|
|
405
|
-
framework=["PyTorch"],
|
|
420
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
406
421
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-224",
|
|
407
422
|
similarity_fn_name=None,
|
|
408
423
|
use_instructions=False,
|
|
409
424
|
training_datasets=webssl_dino_training_datasets,
|
|
410
425
|
citation="""@article{fan2025scaling,
|
|
411
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
426
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
412
427
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
413
428
|
year={2025},
|
|
414
429
|
eprint={2504.01017},
|
|
@@ -426,6 +441,7 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
426
441
|
release_date="2025-04-24",
|
|
427
442
|
modalities=["image"],
|
|
428
443
|
n_parameters=7_000_000_000,
|
|
444
|
+
n_embedding_parameters=None,
|
|
429
445
|
memory_usage_mb=24613,
|
|
430
446
|
max_tokens=None,
|
|
431
447
|
embed_dim=4096,
|
|
@@ -433,13 +449,13 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
433
449
|
open_weights=True,
|
|
434
450
|
public_training_code="",
|
|
435
451
|
public_training_data=None,
|
|
436
|
-
framework=["PyTorch"],
|
|
452
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
437
453
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-378",
|
|
438
454
|
similarity_fn_name=None,
|
|
439
455
|
use_instructions=False,
|
|
440
456
|
training_datasets=webssl_dino_training_datasets,
|
|
441
457
|
citation="""@article{fan2025scaling,
|
|
442
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
458
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
443
459
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
444
460
|
year={2025},
|
|
445
461
|
eprint={2504.01017},
|
|
@@ -457,6 +473,7 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
457
473
|
release_date="2025-04-24",
|
|
458
474
|
modalities=["image"],
|
|
459
475
|
n_parameters=7_000_000_000,
|
|
476
|
+
n_embedding_parameters=None,
|
|
460
477
|
memory_usage_mb=24623,
|
|
461
478
|
max_tokens=None,
|
|
462
479
|
embed_dim=4096,
|
|
@@ -464,13 +481,13 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
464
481
|
open_weights=True,
|
|
465
482
|
public_training_code="",
|
|
466
483
|
public_training_data=None,
|
|
467
|
-
framework=["PyTorch"],
|
|
484
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
468
485
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-518",
|
|
469
486
|
similarity_fn_name=None,
|
|
470
487
|
use_instructions=False,
|
|
471
488
|
training_datasets=webssl_dino_training_datasets,
|
|
472
489
|
citation="""@article{fan2025scaling,
|
|
473
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
490
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
474
491
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
475
492
|
year={2025},
|
|
476
493
|
eprint={2504.01017},
|
|
@@ -489,6 +506,7 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
489
506
|
release_date="2025-04-24",
|
|
490
507
|
modalities=["image"],
|
|
491
508
|
n_parameters=2_000_000_000,
|
|
509
|
+
n_embedding_parameters=None,
|
|
492
510
|
memory_usage_mb=7951,
|
|
493
511
|
max_tokens=None,
|
|
494
512
|
embed_dim=2688,
|
|
@@ -496,13 +514,13 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
496
514
|
open_weights=True,
|
|
497
515
|
public_training_code="",
|
|
498
516
|
public_training_data=None,
|
|
499
|
-
framework=["PyTorch"],
|
|
517
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
500
518
|
reference="https://huggingface.co/facebook/webssl-dino2b-light2b-224",
|
|
501
519
|
similarity_fn_name=None,
|
|
502
520
|
use_instructions=False,
|
|
503
521
|
training_datasets=webssl_dino_training_datasets,
|
|
504
522
|
citation="""@article{fan2025scaling,
|
|
505
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
523
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
506
524
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
507
525
|
year={2025},
|
|
508
526
|
eprint={2504.01017},
|
|
@@ -520,6 +538,7 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
520
538
|
release_date="2025-04-24",
|
|
521
539
|
modalities=["image"],
|
|
522
540
|
n_parameters=2_000_000_000,
|
|
541
|
+
n_embedding_parameters=None,
|
|
523
542
|
memory_usage_mb=7951,
|
|
524
543
|
max_tokens=None,
|
|
525
544
|
embed_dim=2688,
|
|
@@ -527,13 +546,13 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
527
546
|
open_weights=True,
|
|
528
547
|
public_training_code="",
|
|
529
548
|
public_training_data=None,
|
|
530
|
-
framework=["PyTorch"],
|
|
549
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
531
550
|
reference="https://huggingface.co/facebook/webssl-dino2b-heavy2b-224",
|
|
532
551
|
similarity_fn_name=None,
|
|
533
552
|
use_instructions=False,
|
|
534
553
|
training_datasets=webssl_dino_training_datasets,
|
|
535
554
|
citation="""@article{fan2025scaling,
|
|
536
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
555
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
537
556
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
538
557
|
year={2025},
|
|
539
558
|
eprint={2504.01017},
|
|
@@ -551,6 +570,7 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
551
570
|
release_date="2025-04-24",
|
|
552
571
|
modalities=["image"],
|
|
553
572
|
n_parameters=3_000_000_000,
|
|
573
|
+
n_embedding_parameters=None,
|
|
554
574
|
memory_usage_mb=11247,
|
|
555
575
|
max_tokens=None,
|
|
556
576
|
embed_dim=3072,
|
|
@@ -558,13 +578,13 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
558
578
|
open_weights=True,
|
|
559
579
|
public_training_code="",
|
|
560
580
|
public_training_data=None,
|
|
561
|
-
framework=["PyTorch"],
|
|
581
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
562
582
|
reference="https://huggingface.co/facebook/webssl-dino3b-light2b-224",
|
|
563
583
|
similarity_fn_name=None,
|
|
564
584
|
use_instructions=False,
|
|
565
585
|
training_datasets=webssl_dino_training_datasets,
|
|
566
586
|
citation="""@article{fan2025scaling,
|
|
567
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
587
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
568
588
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
569
589
|
year={2025},
|
|
570
590
|
eprint={2504.01017},
|
|
@@ -582,6 +602,7 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
582
602
|
release_date="2025-04-24",
|
|
583
603
|
modalities=["image"],
|
|
584
604
|
n_parameters=3_000_000_000,
|
|
605
|
+
n_embedding_parameters=None,
|
|
585
606
|
memory_usage_mb=11247,
|
|
586
607
|
max_tokens=None,
|
|
587
608
|
embed_dim=3072,
|
|
@@ -589,13 +610,13 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
589
610
|
open_weights=True,
|
|
590
611
|
public_training_code="",
|
|
591
612
|
public_training_data=None,
|
|
592
|
-
framework=["PyTorch"],
|
|
613
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
593
614
|
reference="https://huggingface.co/facebook/webssl-dino3b-heavy2b-224",
|
|
594
615
|
similarity_fn_name=None,
|
|
595
616
|
use_instructions=False,
|
|
596
617
|
training_datasets=webssl_dino_training_datasets,
|
|
597
618
|
citation="""@article{fan2025scaling,
|
|
598
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
619
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
599
620
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
600
621
|
year={2025},
|
|
601
622
|
eprint={2504.01017},
|
|
@@ -613,6 +634,7 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
613
634
|
release_date="2025-04-24",
|
|
614
635
|
modalities=["image"],
|
|
615
636
|
n_parameters=304_000_000,
|
|
637
|
+
n_embedding_parameters=None,
|
|
616
638
|
memory_usage_mb=1161,
|
|
617
639
|
max_tokens=None,
|
|
618
640
|
embed_dim=1024,
|
|
@@ -620,13 +642,13 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
620
642
|
open_weights=True,
|
|
621
643
|
public_training_code="",
|
|
622
644
|
public_training_data=None,
|
|
623
|
-
framework=["PyTorch"],
|
|
645
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
624
646
|
reference="https://huggingface.co/facebook/webssl-mae300m-full2b-224",
|
|
625
647
|
similarity_fn_name=None,
|
|
626
648
|
use_instructions=False,
|
|
627
649
|
training_datasets=webssl_dino_training_datasets,
|
|
628
650
|
citation="""@article{fan2025scaling,
|
|
629
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
651
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
630
652
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
631
653
|
year={2025},
|
|
632
654
|
eprint={2504.01017},
|
|
@@ -644,6 +666,7 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
644
666
|
release_date="2025-04-24",
|
|
645
667
|
modalities=["image"],
|
|
646
668
|
n_parameters=700_000_000,
|
|
669
|
+
n_embedding_parameters=None,
|
|
647
670
|
memory_usage_mb=2412,
|
|
648
671
|
max_tokens=None,
|
|
649
672
|
embed_dim=1280,
|
|
@@ -651,13 +674,13 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
651
674
|
open_weights=True,
|
|
652
675
|
public_training_code="",
|
|
653
676
|
public_training_data=None,
|
|
654
|
-
framework=["PyTorch"],
|
|
677
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
655
678
|
reference="https://huggingface.co/facebook/webssl-mae700m-full2b-224",
|
|
656
679
|
similarity_fn_name=None,
|
|
657
680
|
use_instructions=False,
|
|
658
681
|
training_datasets=webssl_dino_training_datasets,
|
|
659
682
|
citation="""@article{fan2025scaling,
|
|
660
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
683
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
661
684
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
662
685
|
year={2025},
|
|
663
686
|
eprint={2504.01017},
|
|
@@ -675,6 +698,7 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
675
698
|
release_date="2025-04-24",
|
|
676
699
|
modalities=["image"],
|
|
677
700
|
n_parameters=1_000_000_000,
|
|
701
|
+
n_embedding_parameters=None,
|
|
678
702
|
memory_usage_mb=4337,
|
|
679
703
|
max_tokens=None,
|
|
680
704
|
embed_dim=1536,
|
|
@@ -682,13 +706,13 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
682
706
|
open_weights=True,
|
|
683
707
|
public_training_code="",
|
|
684
708
|
public_training_data=None,
|
|
685
|
-
framework=["PyTorch"],
|
|
709
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
686
710
|
reference="https://huggingface.co/facebook/webssl-mae1b-full2b-224",
|
|
687
711
|
similarity_fn_name=None,
|
|
688
712
|
use_instructions=False,
|
|
689
713
|
training_datasets=webssl_dino_training_datasets,
|
|
690
714
|
citation="""@article{fan2025scaling,
|
|
691
|
-
title={Scaling Language-Free Visual Representation Learning},
|
|
715
|
+
title={Scaling Language-Free Visual Representation Learning},
|
|
692
716
|
author={David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie},
|
|
693
717
|
year={2025},
|
|
694
718
|
eprint={2504.01017},
|
|
@@ -45,11 +45,19 @@ e5_instruct = ModelMeta(
|
|
|
45
45
|
open_weights=True,
|
|
46
46
|
revision="baa7be480a7de1539afce709c8f13f833a510e0a",
|
|
47
47
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
48
|
-
framework=[
|
|
48
|
+
framework=[
|
|
49
|
+
"GritLM",
|
|
50
|
+
"PyTorch",
|
|
51
|
+
"Sentence Transformers",
|
|
52
|
+
"ONNX",
|
|
53
|
+
"safetensors",
|
|
54
|
+
"Transformers",
|
|
55
|
+
],
|
|
49
56
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
50
57
|
use_instructions=True,
|
|
51
58
|
reference="https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
|
52
59
|
n_parameters=560_000_000,
|
|
60
|
+
n_embedding_parameters=256_002_048,
|
|
53
61
|
memory_usage_mb=1068,
|
|
54
62
|
embed_dim=1024,
|
|
55
63
|
license="mit",
|
|
@@ -84,11 +92,18 @@ e5_mistral = ModelMeta(
|
|
|
84
92
|
open_weights=True,
|
|
85
93
|
revision="07163b72af1488142a360786df853f237b1a3ca1",
|
|
86
94
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
87
|
-
framework=[
|
|
95
|
+
framework=[
|
|
96
|
+
"GritLM",
|
|
97
|
+
"PyTorch",
|
|
98
|
+
"Sentence Transformers",
|
|
99
|
+
"safetensors",
|
|
100
|
+
"Transformers",
|
|
101
|
+
],
|
|
88
102
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
89
103
|
use_instructions=True,
|
|
90
104
|
reference="https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
|
91
105
|
n_parameters=7_111_000_000,
|
|
106
|
+
n_embedding_parameters=131_072_000,
|
|
92
107
|
memory_usage_mb=13563,
|
|
93
108
|
embed_dim=4096,
|
|
94
109
|
license="mit",
|
|
@@ -132,6 +147,7 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
132
147
|
release_date="2024-08-30",
|
|
133
148
|
languages=["eng-Latn"],
|
|
134
149
|
n_parameters=7110660096,
|
|
150
|
+
n_embedding_parameters=None,
|
|
135
151
|
memory_usage_mb=13563,
|
|
136
152
|
max_tokens=32768.0,
|
|
137
153
|
embed_dim=4096,
|
|
@@ -139,7 +155,13 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
139
155
|
open_weights=True,
|
|
140
156
|
public_training_data=None,
|
|
141
157
|
public_training_code=None,
|
|
142
|
-
framework=[
|
|
158
|
+
framework=[
|
|
159
|
+
"PyTorch",
|
|
160
|
+
"Sentence Transformers",
|
|
161
|
+
"GritLM",
|
|
162
|
+
"safetensors",
|
|
163
|
+
"Transformers",
|
|
164
|
+
],
|
|
143
165
|
reference="https://huggingface.co/zeta-alpha-ai/Zeta-Alpha-E5-Mistral",
|
|
144
166
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
145
167
|
use_instructions=True,
|
|
@@ -209,6 +231,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
209
231
|
release_date="2024-06-28",
|
|
210
232
|
languages=["eng-Latn"],
|
|
211
233
|
n_parameters=7241732096,
|
|
234
|
+
n_embedding_parameters=131_072_000,
|
|
212
235
|
memory_usage_mb=27625,
|
|
213
236
|
max_tokens=32768.0,
|
|
214
237
|
embed_dim=4096,
|
|
@@ -216,7 +239,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
216
239
|
open_weights=True,
|
|
217
240
|
public_training_code="https://github.com/LeeSureman/E5-Retrieval-Reproduction",
|
|
218
241
|
public_training_data="https://huggingface.co/datasets/BeastyZ/E5-R",
|
|
219
|
-
framework=["PyTorch"],
|
|
242
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
220
243
|
reference="https://huggingface.co/BeastyZ/e5-R-mistral-7b",
|
|
221
244
|
similarity_fn_name="cosine",
|
|
222
245
|
use_instructions=True,
|