mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -1,35 +1,55 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
7
|
import torch.nn.functional as F
|
|
6
8
|
from packaging.version import Version
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
9
|
from tqdm import tqdm
|
|
9
10
|
from transformers import AutoModel, AutoTokenizer
|
|
10
11
|
from transformers import __version__ as transformers_version
|
|
11
12
|
|
|
12
|
-
from mteb import TaskMetadata
|
|
13
13
|
from mteb._requires_package import requires_package
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.models import CrossEncoderWrapper
|
|
14
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
15
17
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
16
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
17
|
-
from mteb.types import
|
|
19
|
+
from mteb.types import PromptType
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
|
|
24
|
+
from torch.utils.data import DataLoader
|
|
25
|
+
|
|
26
|
+
from mteb import TaskMetadata
|
|
27
|
+
from mteb.types import Array, BatchedInput
|
|
18
28
|
|
|
19
29
|
logger = logging.getLogger(__name__)
|
|
20
30
|
|
|
21
|
-
NV_RETRIEVER_CITATION = """@misc{
|
|
22
|
-
title={NV-
|
|
23
|
-
author={
|
|
31
|
+
NV_RETRIEVER_CITATION = """@misc{lee2025nvembedimprovedtechniquestraining,
|
|
32
|
+
title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
|
|
33
|
+
author={Chankyu Lee and Rajarshi Roy and Mengyao Xu and Jonathan Raiman and Mohammad Shoeybi and Bryan Catanzaro and Wei Ping},
|
|
34
|
+
year={2025},
|
|
35
|
+
eprint={2405.17428},
|
|
36
|
+
archivePrefix={arXiv},
|
|
37
|
+
primaryClass={cs.CL},
|
|
38
|
+
url={https://arxiv.org/abs/2405.17428},
|
|
39
|
+
}"""
|
|
40
|
+
|
|
41
|
+
LlamaEmbedNemotron_CITATION = """@misc{babakhin2025llamaembednemotron8buniversaltextembedding,
|
|
42
|
+
title={Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks},
|
|
43
|
+
author={Yauhen Babakhin and Radek Osmulski and Ronay Ak and Gabriel Moreira and Mengyao Xu and Benedikt Schifferer and Bo Liu and Even Oldridge},
|
|
24
44
|
year={2025},
|
|
25
|
-
eprint={
|
|
45
|
+
eprint={2511.07025},
|
|
26
46
|
archivePrefix={arXiv},
|
|
27
|
-
primaryClass={cs.
|
|
28
|
-
url={https://arxiv.org/abs/
|
|
47
|
+
primaryClass={cs.CL},
|
|
48
|
+
url={https://arxiv.org/abs/2511.07025},
|
|
29
49
|
}"""
|
|
30
50
|
|
|
31
51
|
|
|
32
|
-
def
|
|
52
|
+
def _instruction_template(
|
|
33
53
|
instruction: str, prompt_type: PromptType | None = None
|
|
34
54
|
) -> str:
|
|
35
55
|
return f"Instruct: {instruction}\nQuery: " if instruction else ""
|
|
@@ -100,10 +120,77 @@ nvidia_training_datasets = {
|
|
|
100
120
|
"MrTidyRetrieval",
|
|
101
121
|
}
|
|
102
122
|
|
|
123
|
+
|
|
124
|
+
class _NVEmbedWrapper(InstructSentenceTransformerModel):
|
|
125
|
+
"""Inherited, because nvembed requires `sbert==2`, but it doesn't have tokenizers kwargs"""
|
|
126
|
+
|
|
127
|
+
def __init__(
|
|
128
|
+
self,
|
|
129
|
+
model_name: str,
|
|
130
|
+
revision: str,
|
|
131
|
+
instruction_template: str
|
|
132
|
+
| Callable[[str, PromptType | None], str]
|
|
133
|
+
| None = None,
|
|
134
|
+
max_seq_length: int | None = None,
|
|
135
|
+
apply_instruction_to_passages: bool = True,
|
|
136
|
+
padding_side: str | None = None,
|
|
137
|
+
add_eos_token: bool = False,
|
|
138
|
+
prompts_dict: dict[str, str] | None = None,
|
|
139
|
+
**kwargs: Any,
|
|
140
|
+
):
|
|
141
|
+
from sentence_transformers import __version__ as sbert_version
|
|
142
|
+
|
|
143
|
+
required_transformers_version = "4.42.4"
|
|
144
|
+
required_sbert_version = "2.7.0"
|
|
145
|
+
|
|
146
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
147
|
+
raise RuntimeError(
|
|
148
|
+
f"transformers version {transformers_version} is not match with required "
|
|
149
|
+
f"install version {required_transformers_version} to run `nvidia/NV-Embed-v2`"
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
if Version(sbert_version) != Version(required_sbert_version):
|
|
153
|
+
raise RuntimeError(
|
|
154
|
+
f"sbert version {sbert_version} is not match with required "
|
|
155
|
+
f"install version {required_sbert_version} to run `nvidia/NV-Embed-v2`"
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
requires_package(
|
|
159
|
+
self, "flash_attn", model_name, "pip install 'mteb[flash_attention]'"
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
from sentence_transformers import SentenceTransformer
|
|
163
|
+
|
|
164
|
+
if (
|
|
165
|
+
isinstance(instruction_template, str)
|
|
166
|
+
and "{instruction}" not in instruction_template
|
|
167
|
+
):
|
|
168
|
+
raise ValueError(
|
|
169
|
+
"Instruction template must contain the string '{instruction}'."
|
|
170
|
+
)
|
|
171
|
+
if instruction_template is None:
|
|
172
|
+
logger.warning(
|
|
173
|
+
"No instruction template provided. Instructions will be used as-is."
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
self.instruction_template = instruction_template
|
|
177
|
+
|
|
178
|
+
self.model_name = model_name
|
|
179
|
+
self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
|
|
180
|
+
self.model.tokenizer.padding_side = padding_side
|
|
181
|
+
self.model.tokenizer.add_eos_token = add_eos_token
|
|
182
|
+
|
|
183
|
+
if max_seq_length:
|
|
184
|
+
# https://github.com/huggingface/sentence-transformers/issues/3575
|
|
185
|
+
self.model.max_seq_length = max_seq_length
|
|
186
|
+
self.apply_instruction_to_passages = apply_instruction_to_passages
|
|
187
|
+
self.prompts_dict = prompts_dict
|
|
188
|
+
|
|
189
|
+
|
|
103
190
|
NV_embed_v2 = ModelMeta(
|
|
104
|
-
loader=
|
|
191
|
+
loader=_NVEmbedWrapper,
|
|
105
192
|
loader_kwargs=dict(
|
|
106
|
-
instruction_template=
|
|
193
|
+
instruction_template=_instruction_template,
|
|
107
194
|
trust_remote_code=True,
|
|
108
195
|
max_seq_length=32768,
|
|
109
196
|
padding_side="right",
|
|
@@ -117,13 +204,14 @@ NV_embed_v2 = ModelMeta(
|
|
|
117
204
|
revision="7604d305b621f14095a1aa23d351674c2859553a",
|
|
118
205
|
release_date="2024-09-09", # initial commit of hf model.
|
|
119
206
|
n_parameters=7_850_000_000,
|
|
207
|
+
n_embedding_parameters=None,
|
|
120
208
|
memory_usage_mb=14975,
|
|
121
209
|
embed_dim=4096,
|
|
122
210
|
license="cc-by-nc-4.0",
|
|
123
211
|
max_tokens=32768,
|
|
124
212
|
reference="https://huggingface.co/nvidia/NV-Embed-v2",
|
|
125
213
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
126
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
214
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
127
215
|
use_instructions=True,
|
|
128
216
|
training_datasets=nvidia_training_datasets,
|
|
129
217
|
public_training_code=None,
|
|
@@ -132,9 +220,9 @@ NV_embed_v2 = ModelMeta(
|
|
|
132
220
|
)
|
|
133
221
|
|
|
134
222
|
NV_embed_v1 = ModelMeta(
|
|
135
|
-
loader=
|
|
223
|
+
loader=_NVEmbedWrapper,
|
|
136
224
|
loader_kwargs=dict(
|
|
137
|
-
instruction_template=
|
|
225
|
+
instruction_template=_instruction_template,
|
|
138
226
|
trust_remote_code=True,
|
|
139
227
|
max_seq_length=32768,
|
|
140
228
|
padding_side="right",
|
|
@@ -148,13 +236,14 @@ NV_embed_v1 = ModelMeta(
|
|
|
148
236
|
revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c",
|
|
149
237
|
release_date="2024-09-13", # initial commit of hf model.
|
|
150
238
|
n_parameters=7_850_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
151
240
|
memory_usage_mb=14975,
|
|
152
241
|
embed_dim=4096,
|
|
153
242
|
license="cc-by-nc-4.0",
|
|
154
243
|
max_tokens=32768,
|
|
155
244
|
reference="https://huggingface.co/nvidia/NV-Embed-v1",
|
|
156
245
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
157
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
246
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
158
247
|
use_instructions=True,
|
|
159
248
|
training_datasets=nvidia_training_datasets,
|
|
160
249
|
public_training_code=None,
|
|
@@ -337,6 +426,7 @@ class LlamaEmbedNemotron(AbsEncoder):
|
|
|
337
426
|
self,
|
|
338
427
|
model_name: str,
|
|
339
428
|
revision: str,
|
|
429
|
+
device: str | None = None,
|
|
340
430
|
) -> None:
|
|
341
431
|
required_transformers_version = "4.51.0"
|
|
342
432
|
if Version(transformers_version) != Version(required_transformers_version):
|
|
@@ -355,7 +445,7 @@ class LlamaEmbedNemotron(AbsEncoder):
|
|
|
355
445
|
self.attn_implementation = (
|
|
356
446
|
"flash_attention_2" if torch.cuda.is_available() else "eager"
|
|
357
447
|
)
|
|
358
|
-
self.device =
|
|
448
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
359
449
|
self.task_prompts = TASK_PROMPTS
|
|
360
450
|
self.instruction_template = self._instruction_template
|
|
361
451
|
|
|
@@ -536,17 +626,70 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
536
626
|
revision="84a375593d27d3528beb4e104822515659e093b4",
|
|
537
627
|
release_date="2025-10-23",
|
|
538
628
|
n_parameters=7_504_924_672,
|
|
629
|
+
n_embedding_parameters=None,
|
|
539
630
|
memory_usage_mb=28629,
|
|
540
631
|
embed_dim=4096,
|
|
541
632
|
license="https://huggingface.co/nvidia/llama-embed-nemotron-8b/blob/main/LICENSE",
|
|
542
633
|
max_tokens=32768,
|
|
543
634
|
reference="https://huggingface.co/nvidia/llama-embed-nemotron-8b",
|
|
544
635
|
similarity_fn_name="cosine",
|
|
545
|
-
framework=["PyTorch"],
|
|
636
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
546
637
|
use_instructions=True,
|
|
547
638
|
training_datasets=llama_embed_nemotron_training_datasets,
|
|
548
|
-
public_training_code=
|
|
549
|
-
public_training_data=
|
|
639
|
+
public_training_code="https://github.com/NVIDIA-NeMo/Automodel/tree/main/examples/biencoder/llama_embed_nemotron_8b",
|
|
640
|
+
public_training_data="https://huggingface.co/datasets/nvidia/embed-nemotron-dataset-v1",
|
|
550
641
|
contacts=["ybabakhin"],
|
|
551
|
-
citation=
|
|
642
|
+
citation=LlamaEmbedNemotron_CITATION,
|
|
643
|
+
)
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
def _nemotron_rerank_model(model: str, revision: str, **kwargs) -> CrossEncoderWrapper:
|
|
647
|
+
required_transformers_version = "4.47.1"
|
|
648
|
+
|
|
649
|
+
if Version(transformers_version) != Version(required_transformers_version):
|
|
650
|
+
raise RuntimeError(
|
|
651
|
+
f"transformers version {transformers_version} is not match with required "
|
|
652
|
+
f"install version {required_transformers_version} to run `nvidia/llama-nemotron-rerank-1b-v2`"
|
|
653
|
+
)
|
|
654
|
+
|
|
655
|
+
return CrossEncoderWrapper(
|
|
656
|
+
model=model,
|
|
657
|
+
revision=revision,
|
|
658
|
+
**kwargs,
|
|
659
|
+
)
|
|
660
|
+
|
|
661
|
+
|
|
662
|
+
nemotron_rerank_1b_v2 = ModelMeta(
|
|
663
|
+
loader=_nemotron_rerank_model,
|
|
664
|
+
loader_kwargs=dict(
|
|
665
|
+
trust_remote_code=True,
|
|
666
|
+
query_prefix="question:",
|
|
667
|
+
passage_prefix=" \n \n passage:",
|
|
668
|
+
model_kwargs={"torch_dtype": torch.float32},
|
|
669
|
+
),
|
|
670
|
+
name="nvidia/llama-nemotron-rerank-1b-v2",
|
|
671
|
+
revision="78efcfdc23b53a753f6c73f2d78b18132a34ac4d",
|
|
672
|
+
release_date="2025-10-16",
|
|
673
|
+
languages=["eng-Latn"],
|
|
674
|
+
n_parameters=1235816448,
|
|
675
|
+
memory_usage_mb=2357.0,
|
|
676
|
+
max_tokens=4096,
|
|
677
|
+
embed_dim=2048,
|
|
678
|
+
license="https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/",
|
|
679
|
+
open_weights=True,
|
|
680
|
+
public_training_code=None,
|
|
681
|
+
public_training_data=None,
|
|
682
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
683
|
+
reference="https://huggingface.co/nvidia/llama-nemotron-rerank-1b-v2",
|
|
684
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
685
|
+
use_instructions=None,
|
|
686
|
+
training_datasets=set(
|
|
687
|
+
# private
|
|
688
|
+
),
|
|
689
|
+
adapted_from="meta-llama/Llama-3.2-1B",
|
|
690
|
+
superseded_by=None,
|
|
691
|
+
modalities=["text"],
|
|
692
|
+
model_type=["cross-encoder"],
|
|
693
|
+
citation=None,
|
|
694
|
+
contacts=None,
|
|
552
695
|
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
2
|
from mteb.models.model_meta import ModelMeta
|
|
3
|
-
from mteb.
|
|
3
|
+
from mteb.types import PromptType
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def instruction_template(
|
|
@@ -163,6 +163,66 @@ _PREDEFINED_PROMPTS = {
|
|
|
163
163
|
"German1Retrieval": "Given a query, retrieve relevant passages",
|
|
164
164
|
}
|
|
165
165
|
|
|
166
|
+
Octen_Embedding_0B6 = ModelMeta(
|
|
167
|
+
loader=InstructSentenceTransformerModel,
|
|
168
|
+
loader_kwargs=dict(
|
|
169
|
+
instruction_template=instruction_template,
|
|
170
|
+
apply_instruction_to_passages=True,
|
|
171
|
+
prompts_dict=_PREDEFINED_PROMPTS,
|
|
172
|
+
max_seq_length=18480,
|
|
173
|
+
model_kwargs={"torch_dtype": "bfloat16"},
|
|
174
|
+
),
|
|
175
|
+
name="bflhc/Octen-Embedding-0.6B",
|
|
176
|
+
languages=multilingual_langs,
|
|
177
|
+
open_weights=True,
|
|
178
|
+
revision="1a00a4e837bd788f6f8d91bc43201a5e52cf8ef8",
|
|
179
|
+
release_date="2026-01-10",
|
|
180
|
+
n_parameters=595776512,
|
|
181
|
+
memory_usage_mb=1136,
|
|
182
|
+
embed_dim=1024,
|
|
183
|
+
max_tokens=32768,
|
|
184
|
+
license="apache-2.0",
|
|
185
|
+
reference="https://huggingface.co/bflhc/Octen-Embedding-0.6B",
|
|
186
|
+
similarity_fn_name="cosine",
|
|
187
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
188
|
+
use_instructions=True,
|
|
189
|
+
public_training_code=None,
|
|
190
|
+
public_training_data=None,
|
|
191
|
+
training_datasets=training_data,
|
|
192
|
+
citation=OCTEN_CITATION,
|
|
193
|
+
adapted_from="Qwen/Qwen3-Embedding-0.6B",
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
Octen_Embedding_4B = ModelMeta(
|
|
197
|
+
loader=InstructSentenceTransformerModel,
|
|
198
|
+
loader_kwargs=dict(
|
|
199
|
+
instruction_template=instruction_template,
|
|
200
|
+
apply_instruction_to_passages=True,
|
|
201
|
+
prompts_dict=_PREDEFINED_PROMPTS,
|
|
202
|
+
max_seq_length=18480,
|
|
203
|
+
model_kwargs={"torch_dtype": "bfloat16"},
|
|
204
|
+
),
|
|
205
|
+
name="bflhc/Octen-Embedding-4B",
|
|
206
|
+
languages=multilingual_langs,
|
|
207
|
+
open_weights=True,
|
|
208
|
+
revision="6e188e3b072c3e3678b235ad84e6e97bcbb71e8f",
|
|
209
|
+
release_date="2025-12-30",
|
|
210
|
+
n_parameters=4021774336,
|
|
211
|
+
n_embedding_parameters=None,
|
|
212
|
+
memory_usage_mb=7671,
|
|
213
|
+
embed_dim=2560,
|
|
214
|
+
max_tokens=32768,
|
|
215
|
+
license="apache-2.0",
|
|
216
|
+
reference="https://huggingface.co/bflhc/Octen-Embedding-4B",
|
|
217
|
+
similarity_fn_name="cosine",
|
|
218
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
219
|
+
use_instructions=True,
|
|
220
|
+
public_training_code=None,
|
|
221
|
+
public_training_data=None,
|
|
222
|
+
training_datasets=training_data,
|
|
223
|
+
citation=OCTEN_CITATION,
|
|
224
|
+
adapted_from="Qwen/Qwen3-Embedding-4B",
|
|
225
|
+
)
|
|
166
226
|
|
|
167
227
|
Octen_Embedding_8B = ModelMeta(
|
|
168
228
|
loader=InstructSentenceTransformerModel,
|
|
@@ -176,16 +236,17 @@ Octen_Embedding_8B = ModelMeta(
|
|
|
176
236
|
name="bflhc/Octen-Embedding-8B",
|
|
177
237
|
languages=multilingual_langs,
|
|
178
238
|
open_weights=True,
|
|
179
|
-
revision="
|
|
239
|
+
revision="f7db178d5a82fb841f606a6a67c423cead2fdbba",
|
|
180
240
|
release_date="2025-12-23",
|
|
181
241
|
n_parameters=7567295488,
|
|
242
|
+
n_embedding_parameters=None,
|
|
182
243
|
memory_usage_mb=14433,
|
|
183
244
|
embed_dim=4096,
|
|
184
245
|
max_tokens=32768,
|
|
185
246
|
license="apache-2.0",
|
|
186
247
|
reference="https://huggingface.co/bflhc/Octen-Embedding-8B",
|
|
187
248
|
similarity_fn_name="cosine",
|
|
188
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
249
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
189
250
|
use_instructions=True,
|
|
190
251
|
public_training_code=None,
|
|
191
252
|
public_training_data=None,
|
|
@@ -1,15 +1,20 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any, ClassVar
|
|
4
|
+
from typing import TYPE_CHECKING, Any, ClassVar
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
from tqdm.auto import tqdm
|
|
7
8
|
|
|
8
9
|
from mteb._requires_package import requires_package
|
|
9
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
10
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
12
|
-
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
13
18
|
|
|
14
19
|
logger = logging.getLogger(__name__)
|
|
15
20
|
|
|
@@ -180,6 +185,7 @@ text_embedding_3_small = ModelMeta(
|
|
|
180
185
|
embed_dim=1536,
|
|
181
186
|
open_weights=False,
|
|
182
187
|
n_parameters=None,
|
|
188
|
+
n_embedding_parameters=None,
|
|
183
189
|
memory_usage_mb=None,
|
|
184
190
|
license=None,
|
|
185
191
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -208,6 +214,7 @@ text_embedding_3_large = ModelMeta(
|
|
|
208
214
|
framework=["API"],
|
|
209
215
|
use_instructions=False,
|
|
210
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
211
218
|
memory_usage_mb=None,
|
|
212
219
|
public_training_code=None,
|
|
213
220
|
public_training_data=None, # assumed
|
|
@@ -233,6 +240,7 @@ text_embedding_ada_002 = ModelMeta(
|
|
|
233
240
|
framework=["API"],
|
|
234
241
|
use_instructions=False,
|
|
235
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
236
244
|
memory_usage_mb=None,
|
|
237
245
|
public_training_code=None,
|
|
238
246
|
public_training_data=None, # assumed
|
|
@@ -257,6 +265,7 @@ text_embedding_3_small_512 = ModelMeta(
|
|
|
257
265
|
embed_dim=512,
|
|
258
266
|
open_weights=False,
|
|
259
267
|
n_parameters=None,
|
|
268
|
+
n_embedding_parameters=None,
|
|
260
269
|
memory_usage_mb=None,
|
|
261
270
|
license=None,
|
|
262
271
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -287,6 +296,7 @@ text_embedding_3_large_512 = ModelMeta(
|
|
|
287
296
|
framework=["API"],
|
|
288
297
|
use_instructions=False,
|
|
289
298
|
n_parameters=None,
|
|
299
|
+
n_embedding_parameters=None,
|
|
290
300
|
memory_usage_mb=None,
|
|
291
301
|
public_training_code=None,
|
|
292
302
|
public_training_data=None, # assumed
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_image_dependencies, requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
OPENCLIP_CITATION = """@inproceedings{cherti2023reproducible,
|
|
14
19
|
title={Reproducible scaling laws for contrastive language-image learning},
|
|
@@ -120,7 +125,7 @@ def openclip_loader(model_name, **kwargs):
|
|
|
120
125
|
|
|
121
126
|
|
|
122
127
|
CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
123
|
-
loader=openclip_loader,
|
|
128
|
+
loader=openclip_loader,
|
|
124
129
|
name="laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K",
|
|
125
130
|
model_type=["dense"],
|
|
126
131
|
languages=["eng-Latn"],
|
|
@@ -128,6 +133,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
128
133
|
release_date="2023-04-26",
|
|
129
134
|
modalities=["image", "text"],
|
|
130
135
|
n_parameters=428_000_000,
|
|
136
|
+
n_embedding_parameters=None,
|
|
131
137
|
memory_usage_mb=1633,
|
|
132
138
|
max_tokens=77,
|
|
133
139
|
embed_dim=768,
|
|
@@ -146,7 +152,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
146
152
|
)
|
|
147
153
|
|
|
148
154
|
CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
149
|
-
loader=openclip_loader,
|
|
155
|
+
loader=openclip_loader,
|
|
150
156
|
name="laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K",
|
|
151
157
|
model_type=["dense"],
|
|
152
158
|
languages=["eng-Latn"],
|
|
@@ -154,6 +160,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
154
160
|
release_date="2023-04-26",
|
|
155
161
|
modalities=["image", "text"],
|
|
156
162
|
n_parameters=151_000_000,
|
|
163
|
+
n_embedding_parameters=None,
|
|
157
164
|
memory_usage_mb=576,
|
|
158
165
|
max_tokens=77,
|
|
159
166
|
embed_dim=512,
|
|
@@ -161,7 +168,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
161
168
|
open_weights=True,
|
|
162
169
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
163
170
|
public_training_data="https://huggingface.co/datasets/mlfoundations/datacomp_1b",
|
|
164
|
-
framework=["PyTorch"],
|
|
171
|
+
framework=["PyTorch", "safetensors"],
|
|
165
172
|
reference="https://huggingface.co/laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K",
|
|
166
173
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
167
174
|
use_instructions=False,
|
|
@@ -172,7 +179,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
172
179
|
)
|
|
173
180
|
|
|
174
181
|
CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
175
|
-
loader=openclip_loader,
|
|
182
|
+
loader=openclip_loader,
|
|
176
183
|
name="laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K",
|
|
177
184
|
model_type=["dense"],
|
|
178
185
|
languages=["eng-Latn"],
|
|
@@ -180,6 +187,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
180
187
|
release_date="2023-04-26",
|
|
181
188
|
modalities=["image", "text"],
|
|
182
189
|
n_parameters=150_000_000,
|
|
190
|
+
n_embedding_parameters=None,
|
|
183
191
|
memory_usage_mb=572,
|
|
184
192
|
max_tokens=77,
|
|
185
193
|
embed_dim=512,
|
|
@@ -198,7 +206,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
198
206
|
)
|
|
199
207
|
|
|
200
208
|
CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
201
|
-
loader=openclip_loader,
|
|
209
|
+
loader=openclip_loader,
|
|
202
210
|
name="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
203
211
|
model_type=["dense"],
|
|
204
212
|
languages=["eng-Latn"],
|
|
@@ -206,6 +214,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
206
214
|
release_date="2023-01-23",
|
|
207
215
|
modalities=["image", "text"],
|
|
208
216
|
n_parameters=2_540_000_000,
|
|
217
|
+
n_embedding_parameters=None,
|
|
209
218
|
memory_usage_mb=9689,
|
|
210
219
|
max_tokens=77,
|
|
211
220
|
embed_dim=1280,
|
|
@@ -213,7 +222,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
213
222
|
open_weights=True,
|
|
214
223
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
215
224
|
public_training_data="https://laion.ai/blog/laion-5b/",
|
|
216
|
-
framework=["PyTorch"],
|
|
225
|
+
framework=["PyTorch", "safetensors"],
|
|
217
226
|
reference="https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
|
218
227
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
219
228
|
use_instructions=False,
|
|
@@ -224,7 +233,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
224
233
|
)
|
|
225
234
|
|
|
226
235
|
CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
227
|
-
loader=openclip_loader,
|
|
236
|
+
loader=openclip_loader,
|
|
228
237
|
name="laion/CLIP-ViT-g-14-laion2B-s34B-b88K",
|
|
229
238
|
model_type=["dense"],
|
|
230
239
|
languages=["eng-Latn"],
|
|
@@ -232,6 +241,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
232
241
|
release_date="2023-03-06",
|
|
233
242
|
modalities=["image", "text"],
|
|
234
243
|
n_parameters=1_367_000_000,
|
|
244
|
+
n_embedding_parameters=None,
|
|
235
245
|
memory_usage_mb=5215,
|
|
236
246
|
max_tokens=77,
|
|
237
247
|
embed_dim=1024,
|
|
@@ -239,7 +249,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
239
249
|
open_weights=True,
|
|
240
250
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
241
251
|
public_training_data="https://laion.ai/blog/laion-5b/",
|
|
242
|
-
framework=["PyTorch"],
|
|
252
|
+
framework=["PyTorch", "safetensors"],
|
|
243
253
|
reference="https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s34B-b88K",
|
|
244
254
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
245
255
|
use_instructions=False,
|
|
@@ -250,7 +260,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
250
260
|
)
|
|
251
261
|
|
|
252
262
|
CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
253
|
-
loader=openclip_loader,
|
|
263
|
+
loader=openclip_loader,
|
|
254
264
|
name="laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
|
255
265
|
model_type=["dense"],
|
|
256
266
|
languages=["eng-Latn"],
|
|
@@ -258,6 +268,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
258
268
|
release_date="2022-09-15",
|
|
259
269
|
modalities=["image", "text"],
|
|
260
270
|
n_parameters=986_000_000,
|
|
271
|
+
n_embedding_parameters=None,
|
|
261
272
|
memory_usage_mb=3762,
|
|
262
273
|
max_tokens=77,
|
|
263
274
|
embed_dim=1024,
|
|
@@ -265,7 +276,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
265
276
|
open_weights=True,
|
|
266
277
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
267
278
|
public_training_data="https://laion.ai/blog/laion-5b/",
|
|
268
|
-
framework=["PyTorch"],
|
|
279
|
+
framework=["PyTorch", "safetensors"],
|
|
269
280
|
reference="https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
|
270
281
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
271
282
|
use_instructions=False,
|
|
@@ -276,7 +287,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
276
287
|
)
|
|
277
288
|
|
|
278
289
|
CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
279
|
-
loader=openclip_loader,
|
|
290
|
+
loader=openclip_loader,
|
|
280
291
|
name="laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
|
|
281
292
|
model_type=["dense"],
|
|
282
293
|
languages=["eng-Latn"],
|
|
@@ -284,6 +295,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
284
295
|
release_date="2022-09-15",
|
|
285
296
|
modalities=["image", "text"],
|
|
286
297
|
n_parameters=428_000_000,
|
|
298
|
+
n_embedding_parameters=None,
|
|
287
299
|
memory_usage_mb=1631,
|
|
288
300
|
max_tokens=77,
|
|
289
301
|
embed_dim=768,
|
|
@@ -291,7 +303,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
291
303
|
open_weights=True,
|
|
292
304
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
293
305
|
public_training_data="https://laion.ai/blog/laion-5b/",
|
|
294
|
-
framework=["PyTorch"],
|
|
306
|
+
framework=["PyTorch", "safetensors"],
|
|
295
307
|
reference="https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
|
|
296
308
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
297
309
|
use_instructions=False,
|
|
@@ -310,6 +322,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
310
322
|
release_date="2022-09-15",
|
|
311
323
|
modalities=["image", "text"],
|
|
312
324
|
n_parameters=151_000_000,
|
|
325
|
+
n_embedding_parameters=None,
|
|
313
326
|
memory_usage_mb=577,
|
|
314
327
|
max_tokens=77,
|
|
315
328
|
embed_dim=512,
|
|
@@ -317,7 +330,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
317
330
|
open_weights=True,
|
|
318
331
|
public_training_code="https://github.com/mlfoundations/open_clip",
|
|
319
332
|
public_training_data="https://laion.ai/blog/laion-5b/",
|
|
320
|
-
framework=["PyTorch"],
|
|
333
|
+
framework=["PyTorch", "safetensors"],
|
|
321
334
|
reference="https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K",
|
|
322
335
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
323
336
|
use_instructions=False,
|