mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,335 @@
|
|
|
1
|
+
from mteb.models.model_implementations.pylate_models import MultiVectorModel
|
|
2
|
+
from mteb.models.model_meta import (
|
|
3
|
+
ModelMeta,
|
|
4
|
+
ScoringFunction,
|
|
5
|
+
)
|
|
6
|
+
from mteb.models.sentence_transformer_wrapper import (
|
|
7
|
+
CrossEncoderWrapper,
|
|
8
|
+
sentence_transformers_loader,
|
|
9
|
+
)
|
|
10
|
+
|
|
11
|
+
mixedbread_training_data = {
|
|
12
|
+
# from correspondence:
|
|
13
|
+
# as mentioned in our blog post
|
|
14
|
+
# (https://www.mixedbread.com/blog/mxbai-embed-large-v1#built-for-rag-and-real-world-use-cases:~:text=During%20the%20whole,related%20use%20cases.)
|
|
15
|
+
# We do not train on any data (except the MSMarco training split) of MTEB. We have a strong filtering process to ensure the OOD setting. That's true
|
|
16
|
+
# for all of our models. Keep up the good work and let me know if you have any questions.
|
|
17
|
+
"MSMARCO",
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
mxbai_embed_large_v1 = ModelMeta(
|
|
21
|
+
loader=sentence_transformers_loader,
|
|
22
|
+
loader_kwargs=dict(
|
|
23
|
+
model_prompts={
|
|
24
|
+
"query": "Represent this sentence for searching relevant passages: "
|
|
25
|
+
},
|
|
26
|
+
),
|
|
27
|
+
name="mixedbread-ai/mxbai-embed-large-v1",
|
|
28
|
+
model_type=["dense"],
|
|
29
|
+
languages=["eng-Latn"],
|
|
30
|
+
open_weights=True,
|
|
31
|
+
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
32
|
+
release_date="2024-03-07", # initial commit of hf model.
|
|
33
|
+
n_parameters=335_000_000,
|
|
34
|
+
n_embedding_parameters=31_254_528,
|
|
35
|
+
memory_usage_mb=639,
|
|
36
|
+
max_tokens=512,
|
|
37
|
+
embed_dim=1024,
|
|
38
|
+
license="apache-2.0",
|
|
39
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1",
|
|
40
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
41
|
+
framework=[
|
|
42
|
+
"Sentence Transformers",
|
|
43
|
+
"PyTorch",
|
|
44
|
+
"ONNX",
|
|
45
|
+
"safetensors",
|
|
46
|
+
"GGUF",
|
|
47
|
+
"Transformers",
|
|
48
|
+
],
|
|
49
|
+
use_instructions=True,
|
|
50
|
+
citation="""
|
|
51
|
+
@online{emb2024mxbai,
|
|
52
|
+
title={Open Source Strikes Bread - New Fluffy Embeddings Model},
|
|
53
|
+
author={Sean Lee and Aamir Shakir and Darius Koenig and Julius Lipp},
|
|
54
|
+
year={2024},
|
|
55
|
+
url={https://www.mixedbread.ai/blog/mxbai-embed-large-v1},
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
@article{li2023angle,
|
|
59
|
+
title={AnglE-optimized Text Embeddings},
|
|
60
|
+
author={Li, Xianming and Li, Jing},
|
|
61
|
+
journal={arXiv preprint arXiv:2309.12871},
|
|
62
|
+
year={2023}
|
|
63
|
+
}
|
|
64
|
+
""",
|
|
65
|
+
public_training_code=None,
|
|
66
|
+
public_training_data=None,
|
|
67
|
+
training_datasets=mixedbread_training_data,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
mxbai_embed_2d_large_v1 = ModelMeta(
|
|
71
|
+
loader=sentence_transformers_loader,
|
|
72
|
+
name="mixedbread-ai/mxbai-embed-2d-large-v1",
|
|
73
|
+
model_type=["dense"],
|
|
74
|
+
languages=["eng-Latn"],
|
|
75
|
+
open_weights=True,
|
|
76
|
+
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
77
|
+
release_date="2024-03-04", # initial commit of hf model.
|
|
78
|
+
n_parameters=335_000_000,
|
|
79
|
+
n_embedding_parameters=31_254_528,
|
|
80
|
+
memory_usage_mb=None,
|
|
81
|
+
max_tokens=512,
|
|
82
|
+
embed_dim=768,
|
|
83
|
+
license="apache-2.0",
|
|
84
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-2d-large-v1",
|
|
85
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
86
|
+
framework=[
|
|
87
|
+
"Sentence Transformers",
|
|
88
|
+
"PyTorch",
|
|
89
|
+
"ONNX",
|
|
90
|
+
"safetensors",
|
|
91
|
+
"Transformers",
|
|
92
|
+
],
|
|
93
|
+
use_instructions=True,
|
|
94
|
+
adapted_from=None,
|
|
95
|
+
superseded_by=None,
|
|
96
|
+
public_training_code=None,
|
|
97
|
+
public_training_data=None,
|
|
98
|
+
training_datasets=None,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
mxbai_embed_xsmall_v1 = ModelMeta(
|
|
103
|
+
loader=sentence_transformers_loader,
|
|
104
|
+
name="mixedbread-ai/mxbai-embed-xsmall-v1",
|
|
105
|
+
model_type=["dense"],
|
|
106
|
+
languages=["eng-Latn"],
|
|
107
|
+
open_weights=True,
|
|
108
|
+
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
109
|
+
release_date="2024-08-13", # initial commit of hf model.
|
|
110
|
+
n_parameters=24_100_000,
|
|
111
|
+
n_embedding_parameters=11_720_448,
|
|
112
|
+
memory_usage_mb=None,
|
|
113
|
+
max_tokens=512,
|
|
114
|
+
embed_dim=384,
|
|
115
|
+
license="apache-2.0",
|
|
116
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1",
|
|
117
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
118
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
|
|
119
|
+
use_instructions=True,
|
|
120
|
+
adapted_from="sentence-transformers/all-MiniLM-L6-v2",
|
|
121
|
+
superseded_by=None,
|
|
122
|
+
public_training_code=None,
|
|
123
|
+
public_training_data=None,
|
|
124
|
+
training_datasets=mixedbread_training_data,
|
|
125
|
+
citation="""@online{xsmall2024mxbai,
|
|
126
|
+
title={Every Byte Matters: Introducing mxbai-embed-xsmall-v1},
|
|
127
|
+
author={Sean Lee and Julius Lipp and Rui Huang and Darius Koenig},
|
|
128
|
+
year={2024},
|
|
129
|
+
url={https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1},
|
|
130
|
+
}""",
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
mxbai_rerank_xsmall_v1 = ModelMeta(
|
|
134
|
+
loader=CrossEncoderWrapper,
|
|
135
|
+
name="mixedbread-ai/mxbai-rerank-xsmall-v1",
|
|
136
|
+
revision="b5c6e9da73abc3711f593f705371cdbe9e0fe422",
|
|
137
|
+
release_date="2024-02-29",
|
|
138
|
+
languages=["eng-Latn"],
|
|
139
|
+
n_parameters=70830337,
|
|
140
|
+
memory_usage_mb=135.0,
|
|
141
|
+
max_tokens=512,
|
|
142
|
+
embed_dim=None,
|
|
143
|
+
license="apache-2.0",
|
|
144
|
+
open_weights=True,
|
|
145
|
+
public_training_code=None,
|
|
146
|
+
public_training_data=None,
|
|
147
|
+
framework=[
|
|
148
|
+
"PyTorch",
|
|
149
|
+
"Sentence Transformers",
|
|
150
|
+
"Transformers",
|
|
151
|
+
"ONNX",
|
|
152
|
+
"safetensors",
|
|
153
|
+
],
|
|
154
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-xsmall-v1",
|
|
155
|
+
similarity_fn_name=None,
|
|
156
|
+
use_instructions=None,
|
|
157
|
+
training_datasets=None,
|
|
158
|
+
adapted_from=None,
|
|
159
|
+
superseded_by=None,
|
|
160
|
+
modalities=["text"],
|
|
161
|
+
model_type=["cross-encoder"],
|
|
162
|
+
citation="""@online{rerank2024mxbai,
|
|
163
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
164
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
165
|
+
year={2024},
|
|
166
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
167
|
+
}""",
|
|
168
|
+
contacts=None,
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
mxbai_rerank_base_v1 = ModelMeta(
|
|
172
|
+
loader=CrossEncoderWrapper,
|
|
173
|
+
name="mixedbread-ai/mxbai-rerank-base-v1",
|
|
174
|
+
revision="800f24c113213a187e65bde9db00c15a2bb12738",
|
|
175
|
+
release_date="2024-02-29",
|
|
176
|
+
languages=["eng-Latn"],
|
|
177
|
+
n_parameters=184422913,
|
|
178
|
+
memory_usage_mb=352.0,
|
|
179
|
+
max_tokens=512,
|
|
180
|
+
embed_dim=None,
|
|
181
|
+
license="apache-2.0",
|
|
182
|
+
open_weights=True,
|
|
183
|
+
public_training_code=None,
|
|
184
|
+
public_training_data=None,
|
|
185
|
+
framework=[
|
|
186
|
+
"PyTorch",
|
|
187
|
+
"Sentence Transformers",
|
|
188
|
+
"Transformers",
|
|
189
|
+
"ONNX",
|
|
190
|
+
"safetensors",
|
|
191
|
+
],
|
|
192
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-base-v1",
|
|
193
|
+
similarity_fn_name=None,
|
|
194
|
+
use_instructions=None,
|
|
195
|
+
training_datasets=None,
|
|
196
|
+
adapted_from=None,
|
|
197
|
+
superseded_by=None,
|
|
198
|
+
modalities=["text"],
|
|
199
|
+
model_type=["cross-encoder"],
|
|
200
|
+
citation="""@online{rerank2024mxbai,
|
|
201
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
202
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
203
|
+
year={2024},
|
|
204
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
205
|
+
}""",
|
|
206
|
+
contacts=None,
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
mxbai_rerank_large_v1 = ModelMeta(
|
|
210
|
+
loader=CrossEncoderWrapper,
|
|
211
|
+
name="mixedbread-ai/mxbai-rerank-large-v1",
|
|
212
|
+
revision="98f655841d5caf0b16eaff79c2b4ca109d920d17",
|
|
213
|
+
release_date="2024-02-29",
|
|
214
|
+
languages=["eng-Latn"],
|
|
215
|
+
n_parameters=435062785,
|
|
216
|
+
memory_usage_mb=830.0,
|
|
217
|
+
max_tokens=512,
|
|
218
|
+
embed_dim=None,
|
|
219
|
+
license="apache-2.0",
|
|
220
|
+
open_weights=True,
|
|
221
|
+
public_training_code=None,
|
|
222
|
+
public_training_data=None,
|
|
223
|
+
framework=[
|
|
224
|
+
"PyTorch",
|
|
225
|
+
"Sentence Transformers",
|
|
226
|
+
"Transformers",
|
|
227
|
+
"ONNX",
|
|
228
|
+
"safetensors",
|
|
229
|
+
],
|
|
230
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1",
|
|
231
|
+
similarity_fn_name=None,
|
|
232
|
+
use_instructions=None,
|
|
233
|
+
training_datasets=None,
|
|
234
|
+
adapted_from=None,
|
|
235
|
+
superseded_by=None,
|
|
236
|
+
modalities=["text"],
|
|
237
|
+
model_type=["cross-encoder"],
|
|
238
|
+
citation="""@online{rerank2024mxbai,
|
|
239
|
+
title={Boost Your Search With The Crispy Mixedbread Rerank Models},
|
|
240
|
+
author={Aamir Shakir and Darius Koenig and Julius Lipp and Sean Lee},
|
|
241
|
+
year={2024},
|
|
242
|
+
url={https://www.mixedbread.ai/blog/mxbai-rerank-v1},
|
|
243
|
+
}""",
|
|
244
|
+
contacts=None,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
mxbai_edge_colbert_v0_17m = ModelMeta(
|
|
248
|
+
loader=MultiVectorModel,
|
|
249
|
+
name="mixedbread-ai/mxbai-edge-colbert-v0-17m",
|
|
250
|
+
model_type=["late-interaction"],
|
|
251
|
+
languages=["eng-Latn"],
|
|
252
|
+
open_weights=True,
|
|
253
|
+
revision="23ae07f5bf028bc0d1f80c82e6e2dd2311f13a46",
|
|
254
|
+
public_training_code=None,
|
|
255
|
+
public_training_data=None,
|
|
256
|
+
release_date="2025-10-16",
|
|
257
|
+
n_parameters=int(17 * 1e6),
|
|
258
|
+
memory_usage_mb=64,
|
|
259
|
+
max_tokens=7999,
|
|
260
|
+
embed_dim=None,
|
|
261
|
+
license="apache-2.0",
|
|
262
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
263
|
+
framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
|
|
264
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-17m",
|
|
265
|
+
use_instructions=False,
|
|
266
|
+
adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-17m",
|
|
267
|
+
superseded_by=None,
|
|
268
|
+
training_datasets={
|
|
269
|
+
"CornStack",
|
|
270
|
+
"MSMARCO",
|
|
271
|
+
"NQ",
|
|
272
|
+
"HotpotQA",
|
|
273
|
+
"AmazonQA",
|
|
274
|
+
"LoTTE",
|
|
275
|
+
"MultiLongDocRetrieval",
|
|
276
|
+
# "FineWeb",
|
|
277
|
+
# "PubMedQA",
|
|
278
|
+
# "TriviaQA",
|
|
279
|
+
},
|
|
280
|
+
citation="""@misc{takehi2025fantasticsmallretrieverstrain,
|
|
281
|
+
title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
|
|
282
|
+
author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
|
|
283
|
+
year={2025},
|
|
284
|
+
eprint={2510.14880},
|
|
285
|
+
archivePrefix={arXiv},
|
|
286
|
+
primaryClass={cs.IR},
|
|
287
|
+
url={https://arxiv.org/abs/2510.14880},
|
|
288
|
+
}""",
|
|
289
|
+
contacts=None,
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
mxbai_edge_colbert_v0_32m = ModelMeta(
|
|
293
|
+
loader=MultiVectorModel,
|
|
294
|
+
name="mixedbread-ai/mxbai-edge-colbert-v0-32m",
|
|
295
|
+
model_type=["late-interaction"],
|
|
296
|
+
languages=["eng-Latn"],
|
|
297
|
+
open_weights=True,
|
|
298
|
+
revision="2f12870a85dae80680b9babc59992c9a2bc59e4a",
|
|
299
|
+
public_training_code=None,
|
|
300
|
+
public_training_data=None,
|
|
301
|
+
release_date="2025-10-16",
|
|
302
|
+
n_parameters=int(32 * 1e6),
|
|
303
|
+
memory_usage_mb=122,
|
|
304
|
+
max_tokens=511,
|
|
305
|
+
embed_dim=None,
|
|
306
|
+
license="apache-2.0",
|
|
307
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
308
|
+
framework=["PyLate", "ColBERT", "Transformers", "safetensors"],
|
|
309
|
+
reference="https://huggingface.co/mixedbread-ai/mxbai-edge-colbert-v0-32m",
|
|
310
|
+
use_instructions=False,
|
|
311
|
+
adapted_from="https://huggingface.co/jhu-clsp/ettin-encoder-32m",
|
|
312
|
+
superseded_by=None,
|
|
313
|
+
training_datasets={
|
|
314
|
+
"CornStack",
|
|
315
|
+
"MSMARCO",
|
|
316
|
+
"NQ",
|
|
317
|
+
"HotpotQA",
|
|
318
|
+
"AmazonQA",
|
|
319
|
+
"LoTTE",
|
|
320
|
+
"MultiLongDocRetrieval",
|
|
321
|
+
# "FineWeb",
|
|
322
|
+
# "PubMedQA",
|
|
323
|
+
# "TriviaQA",
|
|
324
|
+
},
|
|
325
|
+
citation="""@misc{takehi2025fantasticsmallretrieverstrain,
|
|
326
|
+
title={Fantastic (small) Retrievers and How to Train Them: mxbai-edge-colbert-v0 Tech Report},
|
|
327
|
+
author={Rikiya Takehi and Benjamin Clavié and Sean Lee and Aamir Shakir},
|
|
328
|
+
year={2025},
|
|
329
|
+
eprint={2510.14880},
|
|
330
|
+
archivePrefix={arXiv},
|
|
331
|
+
primaryClass={cs.IR},
|
|
332
|
+
url={https://arxiv.org/abs/2510.14880},
|
|
333
|
+
}""",
|
|
334
|
+
contacts=None,
|
|
335
|
+
)
|
|
@@ -16,7 +16,8 @@ mme5_mllama = ModelMeta(
|
|
|
16
16
|
revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
|
|
17
17
|
release_date="2025-02-12",
|
|
18
18
|
languages=["eng-Latn"],
|
|
19
|
-
n_parameters=10_600_000_000,
|
|
19
|
+
n_parameters=10_600_000_000,
|
|
20
|
+
n_embedding_parameters=None, # 10.6B
|
|
20
21
|
memory_usage_mb=20300,
|
|
21
22
|
max_tokens=128_000,
|
|
22
23
|
embed_dim=4096,
|
|
@@ -25,7 +26,7 @@ mme5_mllama = ModelMeta(
|
|
|
25
26
|
open_weights=True,
|
|
26
27
|
public_training_code=None,
|
|
27
28
|
public_training_data="https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic",
|
|
28
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
29
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
29
30
|
reference="https://huggingface.co/intfloat/mmE5-mllama-11b-instruct",
|
|
30
31
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
31
32
|
use_instructions=True,
|
|
@@ -1,14 +1,19 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_image_dependencies, requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
12
17
|
|
|
13
18
|
MOCOV3_CITATION = """@Article{chen2021mocov3,
|
|
14
19
|
author = {Xinlei Chen* and Saining Xie* and Kaiming He},
|
|
@@ -117,7 +122,7 @@ mocov3_training_datasets = set(
|
|
|
117
122
|
)
|
|
118
123
|
|
|
119
124
|
mocov3_vit_base = ModelMeta(
|
|
120
|
-
loader=mocov3_loader,
|
|
125
|
+
loader=mocov3_loader,
|
|
121
126
|
name="nyu-visionx/moco-v3-vit-b",
|
|
122
127
|
model_type=["dense"],
|
|
123
128
|
languages=["eng-Latn"],
|
|
@@ -125,6 +130,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
125
130
|
release_date="2024-06-03",
|
|
126
131
|
modalities=["image"],
|
|
127
132
|
n_parameters=86_600_000,
|
|
133
|
+
n_embedding_parameters=None,
|
|
128
134
|
memory_usage_mb=330,
|
|
129
135
|
max_tokens=None,
|
|
130
136
|
embed_dim=768,
|
|
@@ -132,7 +138,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
132
138
|
open_weights=True,
|
|
133
139
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
134
140
|
public_training_data=None,
|
|
135
|
-
framework=["PyTorch"],
|
|
141
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
136
142
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
137
143
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
138
144
|
use_instructions=False,
|
|
@@ -141,7 +147,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
141
147
|
)
|
|
142
148
|
|
|
143
149
|
mocov3_vit_large = ModelMeta(
|
|
144
|
-
loader=mocov3_loader,
|
|
150
|
+
loader=mocov3_loader,
|
|
145
151
|
name="nyu-visionx/moco-v3-vit-l",
|
|
146
152
|
model_type=["dense"],
|
|
147
153
|
languages=["eng-Latn"],
|
|
@@ -149,6 +155,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
149
155
|
release_date="2024-06-03",
|
|
150
156
|
modalities=["image"],
|
|
151
157
|
n_parameters=304_000_000,
|
|
158
|
+
n_embedding_parameters=None,
|
|
152
159
|
memory_usage_mb=1161,
|
|
153
160
|
max_tokens=None,
|
|
154
161
|
embed_dim=1024,
|
|
@@ -156,7 +163,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
156
163
|
open_weights=True,
|
|
157
164
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
158
165
|
public_training_data=None,
|
|
159
|
-
framework=["PyTorch"],
|
|
166
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
160
167
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
161
168
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
162
169
|
use_instructions=False,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
2
2
|
from mteb.models.model_meta import ModelMeta
|
|
3
|
-
from mteb.
|
|
3
|
+
from mteb.types import PromptType
|
|
4
4
|
|
|
5
5
|
|
|
6
6
|
def instruction_template(
|
|
@@ -175,13 +175,14 @@ MoD_Embedding = ModelMeta(
|
|
|
175
175
|
revision="acbb5b70fdab262226a6af2bc62001de8021b05c",
|
|
176
176
|
release_date="2025-12-14",
|
|
177
177
|
n_parameters=4021774336,
|
|
178
|
+
n_embedding_parameters=None,
|
|
178
179
|
memory_usage_mb=7671,
|
|
179
180
|
embed_dim=2560,
|
|
180
181
|
max_tokens=32768,
|
|
181
182
|
license="apache-2.0",
|
|
182
183
|
reference="https://huggingface.co/bflhc/MoD-Embedding",
|
|
183
184
|
similarity_fn_name="cosine",
|
|
184
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
185
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
185
186
|
use_instructions=True,
|
|
186
187
|
public_training_code=None,
|
|
187
188
|
public_training_data=None,
|
|
@@ -1,17 +1,23 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import numpy as np
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
8
|
from mteb._requires_package import requires_package
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
9
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
10
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
12
11
|
|
|
13
12
|
from .bge_models import bge_training_data
|
|
14
13
|
|
|
14
|
+
if TYPE_CHECKING:
|
|
15
|
+
from torch.utils.data import DataLoader
|
|
16
|
+
|
|
17
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
18
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
19
|
+
|
|
20
|
+
|
|
15
21
|
logger = logging.getLogger(__name__)
|
|
16
22
|
|
|
17
23
|
MODEL2VEC_CITATION = """@software{minishlab2024model2vec,
|
|
@@ -139,7 +145,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
139
145
|
**kwargs: Additional arguments to pass to the wrapper.
|
|
140
146
|
"""
|
|
141
147
|
requires_package(self, "model2vec", model_name, "pip install 'mteb[model2vec]'")
|
|
142
|
-
from model2vec import StaticModel
|
|
148
|
+
from model2vec import StaticModel
|
|
143
149
|
|
|
144
150
|
self.model_name = model_name
|
|
145
151
|
self.model = StaticModel.from_pretrained(self.model_name)
|
|
@@ -167,12 +173,13 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
167
173
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
168
174
|
release_date="2024-09-21",
|
|
169
175
|
n_parameters=int(103 * 1e6),
|
|
176
|
+
n_embedding_parameters=int(103 * 1e6),
|
|
170
177
|
memory_usage_mb=391,
|
|
171
178
|
max_tokens=np.inf, # Theoretically infinite
|
|
172
179
|
embed_dim=256,
|
|
173
180
|
license="mit",
|
|
174
181
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
175
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
182
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
176
183
|
reference="https://huggingface.co/minishlab/M2V_base_glove_subword",
|
|
177
184
|
use_instructions=False,
|
|
178
185
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -193,12 +200,13 @@ m2v_base_glove = ModelMeta(
|
|
|
193
200
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
194
201
|
release_date="2024-09-21",
|
|
195
202
|
n_parameters=int(102 * 1e6),
|
|
203
|
+
n_embedding_parameters=int(102 * 1e6),
|
|
196
204
|
memory_usage_mb=391,
|
|
197
205
|
max_tokens=np.inf,
|
|
198
206
|
embed_dim=256,
|
|
199
207
|
license="mit",
|
|
200
208
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
201
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
209
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
202
210
|
reference="https://huggingface.co/minishlab/M2V_base_glove",
|
|
203
211
|
use_instructions=False,
|
|
204
212
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -218,12 +226,13 @@ m2v_base_output = ModelMeta(
|
|
|
218
226
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
219
227
|
release_date="2024-09-21",
|
|
220
228
|
n_parameters=int(7.56 * 1e6),
|
|
229
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
221
230
|
memory_usage_mb=29,
|
|
222
231
|
max_tokens=np.inf,
|
|
223
232
|
embed_dim=256,
|
|
224
233
|
license="mit",
|
|
225
234
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
226
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
235
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
227
236
|
reference="https://huggingface.co/minishlab/M2V_base_output",
|
|
228
237
|
use_instructions=False,
|
|
229
238
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -243,12 +252,13 @@ m2v_multilingual_output = ModelMeta(
|
|
|
243
252
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
244
253
|
release_date="2024-09-21",
|
|
245
254
|
n_parameters=int(128 * 1e6),
|
|
255
|
+
n_embedding_parameters=int(128 * 1e6),
|
|
246
256
|
memory_usage_mb=489,
|
|
247
257
|
max_tokens=np.inf,
|
|
248
258
|
embed_dim=256,
|
|
249
259
|
license="mit",
|
|
250
260
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
251
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
261
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
252
262
|
reference="https://huggingface.co/minishlab/M2V_multilingual_output",
|
|
253
263
|
use_instructions=False,
|
|
254
264
|
adapted_from="sentence-transformers/LaBSE",
|
|
@@ -268,12 +278,13 @@ potion_base_2m = ModelMeta(
|
|
|
268
278
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
269
279
|
release_date="2024-10-29",
|
|
270
280
|
n_parameters=int(2 * 1e6),
|
|
281
|
+
n_embedding_parameters=int(2 * 1e6),
|
|
271
282
|
memory_usage_mb=7,
|
|
272
283
|
max_tokens=np.inf,
|
|
273
284
|
embed_dim=64,
|
|
274
285
|
license="mit",
|
|
275
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
276
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
287
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
277
288
|
reference="https://huggingface.co/minishlab/potion-base-2M",
|
|
278
289
|
use_instructions=False,
|
|
279
290
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -293,12 +304,13 @@ potion_base_4m = ModelMeta(
|
|
|
293
304
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
294
305
|
release_date="2024-10-29",
|
|
295
306
|
n_parameters=int(3.78 * 1e6),
|
|
307
|
+
n_embedding_parameters=int(3.78 * 1e6),
|
|
296
308
|
memory_usage_mb=14,
|
|
297
309
|
max_tokens=np.inf,
|
|
298
310
|
embed_dim=128,
|
|
299
311
|
license="mit",
|
|
300
312
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
301
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
313
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
302
314
|
reference="https://huggingface.co/minishlab/potion-base-4M",
|
|
303
315
|
use_instructions=False,
|
|
304
316
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -318,12 +330,13 @@ potion_base_8m = ModelMeta(
|
|
|
318
330
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
319
331
|
release_date="2024-10-29",
|
|
320
332
|
n_parameters=int(7.56 * 1e6),
|
|
333
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
321
334
|
memory_usage_mb=29,
|
|
322
335
|
max_tokens=np.inf,
|
|
323
336
|
embed_dim=256,
|
|
324
337
|
license="mit",
|
|
325
338
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
326
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
339
|
+
framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
|
|
327
340
|
reference="https://huggingface.co/minishlab/potion-base-8M",
|
|
328
341
|
use_instructions=False,
|
|
329
342
|
adapted_from="BAAI/bge-base-en-v1.5",
|
|
@@ -343,12 +356,13 @@ potion_multilingual_128m = ModelMeta(
|
|
|
343
356
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
344
357
|
release_date="2025-05-23",
|
|
345
358
|
n_parameters=128 * 1e6,
|
|
359
|
+
n_embedding_parameters=128 * 1e6,
|
|
346
360
|
memory_usage_mb=489,
|
|
347
361
|
max_tokens=np.inf,
|
|
348
362
|
embed_dim=256,
|
|
349
363
|
license="mit",
|
|
350
364
|
similarity_fn_name="cosine",
|
|
351
|
-
framework=["NumPy"],
|
|
365
|
+
framework=["NumPy", "ONNX", "safetensors", "Sentence Transformers"],
|
|
352
366
|
reference="https://huggingface.co/minishlab/potion-multilingual-128M",
|
|
353
367
|
use_instructions=False,
|
|
354
368
|
adapted_from="BAAI/bge-m3",
|
|
@@ -368,12 +382,13 @@ pubmed_bert_100k = ModelMeta(
|
|
|
368
382
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
369
383
|
release_date="2025-01-03",
|
|
370
384
|
n_parameters=1 * 1e5,
|
|
385
|
+
n_embedding_parameters=1 * 1e5,
|
|
371
386
|
memory_usage_mb=0,
|
|
372
387
|
max_tokens=np.inf,
|
|
373
388
|
embed_dim=64,
|
|
374
389
|
license="apache-2.0",
|
|
375
390
|
similarity_fn_name="cosine",
|
|
376
|
-
framework=["NumPy"],
|
|
391
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
377
392
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-100K",
|
|
378
393
|
use_instructions=False,
|
|
379
394
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -392,12 +407,13 @@ pubmed_bert_500k = ModelMeta(
|
|
|
392
407
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
393
408
|
release_date="2025-01-03",
|
|
394
409
|
n_parameters=5 * 1e5,
|
|
410
|
+
n_embedding_parameters=5 * 1e5,
|
|
395
411
|
memory_usage_mb=2,
|
|
396
412
|
max_tokens=np.inf,
|
|
397
413
|
embed_dim=64,
|
|
398
414
|
license="apache-2.0",
|
|
399
415
|
similarity_fn_name="cosine",
|
|
400
|
-
framework=["NumPy"],
|
|
416
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
401
417
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-500K",
|
|
402
418
|
use_instructions=False,
|
|
403
419
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -416,12 +432,13 @@ pubmed_bert_1m = ModelMeta(
|
|
|
416
432
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
417
433
|
release_date="2025-01-03",
|
|
418
434
|
n_parameters=1 * 1e6,
|
|
435
|
+
n_embedding_parameters=1 * 1e6,
|
|
419
436
|
memory_usage_mb=2,
|
|
420
437
|
max_tokens=np.inf,
|
|
421
438
|
embed_dim=64,
|
|
422
439
|
license="apache-2.0",
|
|
423
440
|
similarity_fn_name="cosine",
|
|
424
|
-
framework=["NumPy"],
|
|
441
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
425
442
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-1M",
|
|
426
443
|
use_instructions=False,
|
|
427
444
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -440,12 +457,13 @@ pubmed_bert_2m = ModelMeta(
|
|
|
440
457
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
441
458
|
release_date="2025-01-03",
|
|
442
459
|
n_parameters=1.95 * 1e6,
|
|
460
|
+
n_embedding_parameters=1.95 * 1e6,
|
|
443
461
|
memory_usage_mb=7,
|
|
444
462
|
max_tokens=np.inf,
|
|
445
463
|
embed_dim=64,
|
|
446
464
|
license="apache-2.0",
|
|
447
465
|
similarity_fn_name="cosine",
|
|
448
|
-
framework=["NumPy"],
|
|
466
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
449
467
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-2M",
|
|
450
468
|
use_instructions=False,
|
|
451
469
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|
|
@@ -464,12 +482,13 @@ pubmed_bert_8m = ModelMeta(
|
|
|
464
482
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
465
483
|
release_date="2025-01-03",
|
|
466
484
|
n_parameters=7.81 * 1e6,
|
|
485
|
+
n_embedding_parameters=7.81 * 1e6,
|
|
467
486
|
memory_usage_mb=30,
|
|
468
487
|
max_tokens=np.inf,
|
|
469
488
|
embed_dim=256,
|
|
470
489
|
license="apache-2.0",
|
|
471
490
|
similarity_fn_name="cosine",
|
|
472
|
-
framework=["NumPy"],
|
|
491
|
+
framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
|
|
473
492
|
reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-8M",
|
|
474
493
|
use_instructions=False,
|
|
475
494
|
adapted_from="NeuML/pubmedbert-base-embeddings",
|