mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -1,18 +1,22 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
3
5
|
|
|
4
6
|
from mteb._create_dataloaders import _create_text_queries_dataloader
|
|
5
7
|
from mteb._requires_package import requires_package
|
|
6
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
7
8
|
from mteb.models.model_meta import ModelMeta
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
9
|
+
|
|
10
|
+
if TYPE_CHECKING:
|
|
11
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
|
+
from mteb.models.models_protocols import SearchProtocol
|
|
13
|
+
from mteb.types import (
|
|
14
|
+
CorpusDatasetType,
|
|
15
|
+
EncodeKwargs,
|
|
16
|
+
QueryDatasetType,
|
|
17
|
+
RetrievalOutputType,
|
|
18
|
+
TopRankedDocumentsType,
|
|
19
|
+
)
|
|
16
20
|
|
|
17
21
|
logger = logging.getLogger(__name__)
|
|
18
22
|
|
|
@@ -49,7 +53,8 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
49
53
|
task_metadata: TaskMetadata,
|
|
50
54
|
hf_split: str,
|
|
51
55
|
hf_subset: str,
|
|
52
|
-
encode_kwargs:
|
|
56
|
+
encode_kwargs: EncodeKwargs,
|
|
57
|
+
num_proc: int = 1,
|
|
53
58
|
) -> None:
|
|
54
59
|
logger.info("Encoding Corpus...")
|
|
55
60
|
corpus_texts = [
|
|
@@ -74,9 +79,9 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
74
79
|
hf_split: str,
|
|
75
80
|
hf_subset: str,
|
|
76
81
|
top_k: int,
|
|
77
|
-
encode_kwargs:
|
|
78
|
-
instructions: InstructionDatasetType | None = None,
|
|
82
|
+
encode_kwargs: EncodeKwargs,
|
|
79
83
|
top_ranked: TopRankedDocumentsType | None = None,
|
|
84
|
+
num_proc: int = 1,
|
|
80
85
|
) -> RetrievalOutputType:
|
|
81
86
|
logger.info("Encoding Queries...")
|
|
82
87
|
query_ids = list(queries["id"])
|
|
@@ -98,13 +103,17 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
98
103
|
query_results = queries_results[qi]
|
|
99
104
|
scores = queries_scores[qi]
|
|
100
105
|
doc_id_to_score = {}
|
|
106
|
+
query_documents = (
|
|
107
|
+
top_ranked[qid] if top_ranked and qid in top_ranked else None
|
|
108
|
+
)
|
|
101
109
|
|
|
102
110
|
# Iterate over results
|
|
103
|
-
for
|
|
104
|
-
doc_idx = query_results[ri]
|
|
105
|
-
score = scores[ri]
|
|
111
|
+
for doc_idx, score in zip(query_results, scores):
|
|
106
112
|
doc_id = self.corpus_idx_to_id[doc_idx]
|
|
107
113
|
|
|
114
|
+
# handle reranking with a filtered set of documents
|
|
115
|
+
if query_documents is not None and doc_id not in query_documents:
|
|
116
|
+
continue
|
|
108
117
|
doc_id_to_score[doc_id] = float(score)
|
|
109
118
|
|
|
110
119
|
results[qid] = doc_id_to_score
|
|
@@ -113,7 +122,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
|
|
|
113
122
|
|
|
114
123
|
def encode(self, texts: list[str]):
|
|
115
124
|
"""Encode input text as term vectors"""
|
|
116
|
-
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
125
|
+
return bm25s.tokenize(texts, stopwords=self.stopwords, stemmer=self.stemmer)
|
|
117
126
|
|
|
118
127
|
return BM25Search(**kwargs)
|
|
119
128
|
|
|
@@ -127,6 +136,7 @@ bm25_s = ModelMeta(
|
|
|
127
136
|
revision="0_1_10",
|
|
128
137
|
release_date="2024-07-10", # release of version 0.1.10
|
|
129
138
|
n_parameters=None,
|
|
139
|
+
n_embedding_parameters=None,
|
|
130
140
|
memory_usage_mb=None,
|
|
131
141
|
embed_dim=None,
|
|
132
142
|
license=None,
|
|
@@ -1,5 +1,6 @@
|
|
|
1
|
-
from
|
|
2
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
3
4
|
|
|
4
5
|
import torch
|
|
5
6
|
from sentence_transformers import SentenceTransformer
|
|
@@ -9,6 +10,9 @@ from mteb.models import ModelMeta
|
|
|
9
10
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
10
11
|
from mteb.types import PromptType
|
|
11
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from collections.abc import Callable
|
|
15
|
+
|
|
12
16
|
|
|
13
17
|
def instruction_template(
|
|
14
18
|
instruction: str, prompt_type: PromptType | None = None
|
|
@@ -25,6 +29,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
25
29
|
self,
|
|
26
30
|
model_name: str,
|
|
27
31
|
revision: str,
|
|
32
|
+
device: str | None = None,
|
|
28
33
|
instruction_template: str
|
|
29
34
|
| Callable[[str, PromptType | None], str]
|
|
30
35
|
| None = None,
|
|
@@ -52,6 +57,7 @@ class BMRetrieverWrapper(InstructSentenceTransformerModel):
|
|
|
52
57
|
|
|
53
58
|
transformer = Transformer(
|
|
54
59
|
model_name,
|
|
60
|
+
device=device,
|
|
55
61
|
**kwargs,
|
|
56
62
|
)
|
|
57
63
|
pooling = Pooling(
|
|
@@ -97,12 +103,13 @@ BMRetriever_410M = ModelMeta(
|
|
|
97
103
|
release_date="2024-04-29",
|
|
98
104
|
embed_dim=1024,
|
|
99
105
|
n_parameters=353_822_720,
|
|
106
|
+
n_embedding_parameters=51_511_296,
|
|
100
107
|
memory_usage_mb=1349,
|
|
101
108
|
max_tokens=2048,
|
|
102
109
|
license="mit",
|
|
103
110
|
reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
|
|
104
111
|
similarity_fn_name="cosine",
|
|
105
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
112
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
106
113
|
use_instructions=True,
|
|
107
114
|
public_training_code=None,
|
|
108
115
|
public_training_data=None,
|
|
@@ -127,12 +134,13 @@ BMRetriever_1B = ModelMeta(
|
|
|
127
134
|
release_date="2024-04-29",
|
|
128
135
|
embed_dim=2048,
|
|
129
136
|
n_parameters=908_759_040,
|
|
137
|
+
n_embedding_parameters=103_022_592,
|
|
130
138
|
memory_usage_mb=3466,
|
|
131
139
|
max_tokens=2048,
|
|
132
140
|
license="mit",
|
|
133
141
|
reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
|
|
134
142
|
similarity_fn_name="cosine",
|
|
135
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
143
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
136
144
|
use_instructions=True,
|
|
137
145
|
public_training_code=None,
|
|
138
146
|
public_training_data=None,
|
|
@@ -157,12 +165,13 @@ BMRetriever_2B = ModelMeta(
|
|
|
157
165
|
release_date="2024-04-29",
|
|
158
166
|
embed_dim=2048,
|
|
159
167
|
n_parameters=2_506_172_416,
|
|
168
|
+
n_embedding_parameters=524_288_000,
|
|
160
169
|
memory_usage_mb=9560,
|
|
161
170
|
max_tokens=8192,
|
|
162
171
|
license="mit",
|
|
163
172
|
reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
|
|
164
173
|
similarity_fn_name="cosine",
|
|
165
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
174
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
166
175
|
use_instructions=True,
|
|
167
176
|
public_training_code=None,
|
|
168
177
|
public_training_data=None,
|
|
@@ -187,12 +196,13 @@ BMRetriever_7B = ModelMeta(
|
|
|
187
196
|
release_date="2024-04-29",
|
|
188
197
|
embed_dim=4096,
|
|
189
198
|
n_parameters=7_110_660_096,
|
|
199
|
+
n_embedding_parameters=131_072_000,
|
|
190
200
|
memory_usage_mb=27124,
|
|
191
201
|
max_tokens=32768,
|
|
192
202
|
license="mit",
|
|
193
203
|
reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
|
|
194
204
|
similarity_fn_name="cosine",
|
|
195
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
205
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
196
206
|
use_instructions=True,
|
|
197
207
|
public_training_code=None,
|
|
198
208
|
public_training_data=None,
|
|
@@ -41,13 +41,14 @@ cadet_embed = ModelMeta(
|
|
|
41
41
|
open_weights=True,
|
|
42
42
|
release_date="2025-05-11",
|
|
43
43
|
n_parameters=109_000_000,
|
|
44
|
+
n_embedding_parameters=23_440_896,
|
|
44
45
|
memory_usage_mb=418,
|
|
45
46
|
embed_dim=768,
|
|
46
47
|
license="apache-2.0",
|
|
47
48
|
max_tokens=512,
|
|
48
49
|
reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
|
|
49
50
|
similarity_fn_name="cosine",
|
|
50
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
51
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
51
52
|
use_instructions=True,
|
|
52
53
|
public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
53
54
|
# we provide the code to generate the training data
|
|
@@ -1,27 +1,31 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from collections.abc import Sequence
|
|
3
4
|
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import numpy as np
|
|
6
7
|
import torch
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
8
|
|
|
9
9
|
import mteb
|
|
10
10
|
from mteb._create_dataloaders import _corpus_to_dict
|
|
11
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
13
|
-
from mteb.models.models_protocols import PromptType
|
|
14
12
|
from mteb.models.sentence_transformer_wrapper import SentenceTransformerEncoderWrapper
|
|
15
|
-
from mteb.types import
|
|
13
|
+
from mteb.types import PromptType
|
|
16
14
|
|
|
17
15
|
from .bge_models import bge_full_data
|
|
18
16
|
|
|
19
17
|
if TYPE_CHECKING:
|
|
18
|
+
from collections.abc import Sequence
|
|
19
|
+
|
|
20
|
+
from torch.utils.data import DataLoader
|
|
21
|
+
|
|
20
22
|
from mteb.abstasks import (
|
|
21
23
|
AbsTaskClassification,
|
|
22
24
|
AbsTaskRetrieval,
|
|
23
25
|
AbsTaskSummarization,
|
|
24
26
|
)
|
|
27
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
28
|
+
from mteb.types import Array, BatchedInput
|
|
25
29
|
logger = logging.getLogger(__name__)
|
|
26
30
|
|
|
27
31
|
CDE_CITATION = """@misc{morris2024contextualdocumentembeddings,
|
|
@@ -49,10 +53,17 @@ class CDEWrapper(SentenceTransformerEncoderWrapper):
|
|
|
49
53
|
"InstructionReranking",
|
|
50
54
|
)
|
|
51
55
|
|
|
52
|
-
def __init__(
|
|
56
|
+
def __init__(
|
|
57
|
+
self,
|
|
58
|
+
model: str,
|
|
59
|
+
revision: str | None = None,
|
|
60
|
+
device: str | None = None,
|
|
61
|
+
*args,
|
|
62
|
+
**kwargs: Any,
|
|
63
|
+
) -> None:
|
|
53
64
|
from transformers import AutoConfig
|
|
54
65
|
|
|
55
|
-
super().__init__(model, *args, **kwargs)
|
|
66
|
+
super().__init__(model, revision=revision, device=device, *args, **kwargs)
|
|
56
67
|
model_config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
|
57
68
|
self.max_sentences = model_config.transductive_corpus_size
|
|
58
69
|
|
|
@@ -215,12 +226,13 @@ cde_small_v1 = ModelMeta(
|
|
|
215
226
|
revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
|
|
216
227
|
release_date="2024-09-24",
|
|
217
228
|
n_parameters=int(281 * 1e6),
|
|
229
|
+
n_embedding_parameters=None,
|
|
218
230
|
memory_usage_mb=1072, # Though the second-stage model is only 140M
|
|
219
231
|
max_tokens=512,
|
|
220
232
|
embed_dim=768,
|
|
221
233
|
license="mit",
|
|
222
234
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
223
|
-
framework=["Sentence Transformers"],
|
|
235
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
224
236
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
225
237
|
use_instructions=True,
|
|
226
238
|
adapted_from="nomic-ai/nomic-bert-2048",
|
|
@@ -244,12 +256,13 @@ cde_small_v2 = ModelMeta(
|
|
|
244
256
|
revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
|
|
245
257
|
release_date="2025-01-13",
|
|
246
258
|
n_parameters=int(306 * 1e6),
|
|
259
|
+
n_embedding_parameters=None,
|
|
247
260
|
memory_usage_mb=1166, # Though the second-stage model is only 140M
|
|
248
261
|
max_tokens=512,
|
|
249
262
|
embed_dim=768,
|
|
250
263
|
license="mit",
|
|
251
264
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
252
|
-
framework=["Sentence Transformers"],
|
|
265
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
253
266
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
254
267
|
use_instructions=True,
|
|
255
268
|
adapted_from="answerdotai/ModernBERT-base",
|
|
@@ -1,13 +1,18 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import torch
|
|
4
|
-
from torch.utils.data import DataLoader
|
|
5
6
|
from tqdm.auto import tqdm
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
9
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
10
|
-
|
|
10
|
+
|
|
11
|
+
if TYPE_CHECKING:
|
|
12
|
+
from torch.utils.data import DataLoader
|
|
13
|
+
|
|
14
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
15
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
11
16
|
|
|
12
17
|
|
|
13
18
|
class CLIPModel(AbsEncoder):
|
|
@@ -115,7 +120,7 @@ CLIP_CITATION = """
|
|
|
115
120
|
|
|
116
121
|
|
|
117
122
|
clip_vit_large_patch14 = ModelMeta(
|
|
118
|
-
loader=CLIPModel,
|
|
123
|
+
loader=CLIPModel,
|
|
119
124
|
name="openai/clip-vit-large-patch14",
|
|
120
125
|
model_type=["dense"],
|
|
121
126
|
languages=["eng-Latn"],
|
|
@@ -123,6 +128,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
123
128
|
release_date="2021-02-26",
|
|
124
129
|
modalities=["image", "text"],
|
|
125
130
|
n_parameters=428_000_000,
|
|
131
|
+
n_embedding_parameters=None,
|
|
126
132
|
memory_usage_mb=1631,
|
|
127
133
|
max_tokens=77,
|
|
128
134
|
embed_dim=768,
|
|
@@ -130,7 +136,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
130
136
|
open_weights=True,
|
|
131
137
|
public_training_code=None,
|
|
132
138
|
public_training_data=None,
|
|
133
|
-
framework=["PyTorch"],
|
|
139
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
134
140
|
reference="https://huggingface.co/openai/clip-vit-large-patch14",
|
|
135
141
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
136
142
|
use_instructions=False,
|
|
@@ -139,7 +145,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
139
145
|
)
|
|
140
146
|
|
|
141
147
|
clip_vit_base_patch32 = ModelMeta(
|
|
142
|
-
loader=CLIPModel,
|
|
148
|
+
loader=CLIPModel,
|
|
143
149
|
name="openai/clip-vit-base-patch32",
|
|
144
150
|
model_type=["dense"],
|
|
145
151
|
languages=["eng-Latn"],
|
|
@@ -147,6 +153,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
147
153
|
release_date="2021-02-26",
|
|
148
154
|
modalities=["image", "text"],
|
|
149
155
|
n_parameters=151_000_000,
|
|
156
|
+
n_embedding_parameters=None,
|
|
150
157
|
memory_usage_mb=576,
|
|
151
158
|
max_tokens=77,
|
|
152
159
|
embed_dim=512,
|
|
@@ -154,7 +161,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
154
161
|
open_weights=True,
|
|
155
162
|
public_training_code=None,
|
|
156
163
|
public_training_data=None,
|
|
157
|
-
framework=["PyTorch"],
|
|
164
|
+
framework=["PyTorch", "Transformers"],
|
|
158
165
|
reference="https://huggingface.co/openai/clip-vit-base-patch32",
|
|
159
166
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
160
167
|
use_instructions=False,
|
|
@@ -163,7 +170,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
163
170
|
)
|
|
164
171
|
|
|
165
172
|
clip_vit_base_patch16 = ModelMeta(
|
|
166
|
-
loader=CLIPModel,
|
|
173
|
+
loader=CLIPModel,
|
|
167
174
|
name="openai/clip-vit-base-patch16",
|
|
168
175
|
model_type=["dense"],
|
|
169
176
|
languages=["eng-Latn"],
|
|
@@ -171,6 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
171
178
|
release_date="2021-02-26",
|
|
172
179
|
modalities=["image", "text"],
|
|
173
180
|
n_parameters=151_000_000,
|
|
181
|
+
n_embedding_parameters=None,
|
|
174
182
|
memory_usage_mb=576,
|
|
175
183
|
max_tokens=77,
|
|
176
184
|
embed_dim=512,
|
|
@@ -178,7 +186,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
178
186
|
open_weights=True,
|
|
179
187
|
public_training_code=None,
|
|
180
188
|
public_training_data=None,
|
|
181
|
-
framework=["PyTorch"],
|
|
189
|
+
framework=["PyTorch", "Transformers"],
|
|
182
190
|
reference="https://huggingface.co/openai/clip-vit-base-patch16",
|
|
183
191
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
184
192
|
use_instructions=False,
|
|
@@ -30,13 +30,14 @@ e5_nl_small = ModelMeta(
|
|
|
30
30
|
revision="0243664a6c5e12eef854b091eb283e51833c3e9f",
|
|
31
31
|
release_date="2025-09-23",
|
|
32
32
|
n_parameters=40_800_000,
|
|
33
|
+
n_embedding_parameters=19_200_768,
|
|
33
34
|
memory_usage_mb=78,
|
|
34
35
|
embed_dim=384,
|
|
35
36
|
license="mit",
|
|
36
37
|
max_tokens=512,
|
|
37
38
|
reference="https://huggingface.co/clips/e5-small-trm-nl",
|
|
38
39
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
40
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
40
41
|
use_instructions=True,
|
|
41
42
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
42
43
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -57,13 +58,14 @@ e5_nl_base = ModelMeta(
|
|
|
57
58
|
revision="6bd5722f236da48b4b8bcb28cc1fc478f7089956",
|
|
58
59
|
release_date="2025-09-23",
|
|
59
60
|
n_parameters=124_400_000,
|
|
61
|
+
n_embedding_parameters=38_401_536,
|
|
60
62
|
memory_usage_mb=237,
|
|
61
63
|
embed_dim=768,
|
|
62
64
|
license="mit",
|
|
63
65
|
max_tokens=514,
|
|
64
66
|
reference="https://huggingface.co/clips/e5-base-trm-nl",
|
|
65
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
68
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
69
|
use_instructions=True,
|
|
68
70
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
69
71
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -84,13 +86,14 @@ e5_nl_large = ModelMeta(
|
|
|
84
86
|
revision="683333f86ed9eb3699b5567f0fdabeb958d412b0",
|
|
85
87
|
release_date="2025-09-23",
|
|
86
88
|
n_parameters=355_000_000,
|
|
89
|
+
n_embedding_parameters=51_202_048,
|
|
87
90
|
memory_usage_mb=1355,
|
|
88
91
|
embed_dim=1024,
|
|
89
92
|
license="mit",
|
|
90
93
|
max_tokens=514,
|
|
91
94
|
reference="https://huggingface.co/clips/e5-large-trm-nl",
|
|
92
95
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
96
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
94
97
|
use_instructions=True,
|
|
95
98
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
96
99
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -236,13 +236,14 @@ F2LLM_0B6 = ModelMeta(
|
|
|
236
236
|
revision="36416618b83d4bd84a8ca30c2ee01ed518f9f2e7",
|
|
237
237
|
release_date="2025-09-18",
|
|
238
238
|
n_parameters=595_776_512,
|
|
239
|
+
n_embedding_parameters=None,
|
|
239
240
|
memory_usage_mb=1137,
|
|
240
241
|
embed_dim=1024,
|
|
241
242
|
license="apache-2.0",
|
|
242
243
|
max_tokens=8192,
|
|
243
244
|
reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
|
|
244
245
|
similarity_fn_name="cosine",
|
|
245
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
246
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
246
247
|
use_instructions=True,
|
|
247
248
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
248
249
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -266,13 +267,14 @@ F2LLM_1B7 = ModelMeta(
|
|
|
266
267
|
revision="fdce0e09655f42cea26f7f66f5a70cd4507ea45c",
|
|
267
268
|
release_date="2025-09-18",
|
|
268
269
|
n_parameters=1_720_574_976,
|
|
270
|
+
n_embedding_parameters=None,
|
|
269
271
|
memory_usage_mb=3282,
|
|
270
272
|
embed_dim=2560,
|
|
271
273
|
license="apache-2.0",
|
|
272
274
|
max_tokens=8192,
|
|
273
275
|
reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
|
|
274
276
|
similarity_fn_name="cosine",
|
|
275
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
277
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
276
278
|
use_instructions=True,
|
|
277
279
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
278
280
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -296,13 +298,14 @@ F2LLM_4B = ModelMeta(
|
|
|
296
298
|
revision="9fe95901ed2b6b59dd7673d6e93c9d76766a1e25",
|
|
297
299
|
release_date="2025-09-18",
|
|
298
300
|
n_parameters=4_021_774_336,
|
|
301
|
+
n_embedding_parameters=None,
|
|
299
302
|
memory_usage_mb=7672,
|
|
300
303
|
embed_dim=2560,
|
|
301
304
|
license="apache-2.0",
|
|
302
305
|
max_tokens=8192,
|
|
303
306
|
reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
|
|
304
307
|
similarity_fn_name="cosine",
|
|
305
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
308
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
306
309
|
use_instructions=True,
|
|
307
310
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
308
311
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -318,6 +321,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
318
321
|
release_date="2025-12-22",
|
|
319
322
|
languages=c2llm_languages,
|
|
320
323
|
n_parameters=497252096,
|
|
324
|
+
n_embedding_parameters=None,
|
|
321
325
|
memory_usage_mb=948.0,
|
|
322
326
|
max_tokens=32768,
|
|
323
327
|
embed_dim=896,
|
|
@@ -325,7 +329,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
325
329
|
open_weights=True,
|
|
326
330
|
public_training_code=None,
|
|
327
331
|
public_training_data=None,
|
|
328
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
332
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
329
333
|
reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
|
|
330
334
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
331
335
|
use_instructions=True,
|
|
@@ -346,6 +350,7 @@ C2LLM_7B = ModelMeta(
|
|
|
346
350
|
release_date="2025-12-22",
|
|
347
351
|
languages=c2llm_languages,
|
|
348
352
|
n_parameters=7667028992,
|
|
353
|
+
n_embedding_parameters=None,
|
|
349
354
|
memory_usage_mb=14624.0,
|
|
350
355
|
max_tokens=32768,
|
|
351
356
|
embed_dim=3584,
|
|
@@ -353,7 +358,7 @@ C2LLM_7B = ModelMeta(
|
|
|
353
358
|
open_weights=True,
|
|
354
359
|
public_training_code=None,
|
|
355
360
|
public_training_data=None,
|
|
356
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
361
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
357
362
|
reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
|
|
358
363
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
359
364
|
use_instructions=True,
|
|
@@ -28,6 +28,7 @@ codesage_large = ModelMeta(
|
|
|
28
28
|
release_date="2024-02-03",
|
|
29
29
|
modalities=["text"],
|
|
30
30
|
n_parameters=1_300_000_000,
|
|
31
|
+
n_embedding_parameters=100_667_392,
|
|
31
32
|
memory_usage_mb=4959,
|
|
32
33
|
max_tokens=2048,
|
|
33
34
|
embed_dim=2048,
|
|
@@ -35,7 +36,7 @@ codesage_large = ModelMeta(
|
|
|
35
36
|
open_weights=True,
|
|
36
37
|
public_training_code=None,
|
|
37
38
|
public_training_data=None,
|
|
38
|
-
framework=["PyTorch"],
|
|
39
|
+
framework=["PyTorch", "Transformers"],
|
|
39
40
|
reference="https://huggingface.co/codesage/codesage-large-v2",
|
|
40
41
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
41
42
|
use_instructions=False,
|
|
@@ -55,6 +56,7 @@ codesage_base = ModelMeta(
|
|
|
55
56
|
release_date="2024-02-03",
|
|
56
57
|
modalities=["text"],
|
|
57
58
|
n_parameters=356_000_000,
|
|
59
|
+
n_embedding_parameters=50_333_696,
|
|
58
60
|
memory_usage_mb=1358,
|
|
59
61
|
max_tokens=2048,
|
|
60
62
|
embed_dim=1024,
|
|
@@ -62,7 +64,7 @@ codesage_base = ModelMeta(
|
|
|
62
64
|
open_weights=True,
|
|
63
65
|
public_training_code=None,
|
|
64
66
|
public_training_data=None,
|
|
65
|
-
framework=["PyTorch"],
|
|
67
|
+
framework=["PyTorch", "Transformers"],
|
|
66
68
|
reference="https://huggingface.co/codesage/codesage-base-v2",
|
|
67
69
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
68
70
|
use_instructions=False,
|
|
@@ -82,6 +84,7 @@ codesage_small = ModelMeta(
|
|
|
82
84
|
release_date="2024-02-03",
|
|
83
85
|
modalities=["text"],
|
|
84
86
|
n_parameters=130_000_000,
|
|
87
|
+
n_embedding_parameters=50_333_696,
|
|
85
88
|
memory_usage_mb=496,
|
|
86
89
|
max_tokens=2048,
|
|
87
90
|
embed_dim=1024,
|
|
@@ -89,7 +92,7 @@ codesage_small = ModelMeta(
|
|
|
89
92
|
open_weights=True,
|
|
90
93
|
public_training_code=None,
|
|
91
94
|
public_training_data=None,
|
|
92
|
-
framework=["PyTorch"],
|
|
95
|
+
framework=["PyTorch", "Transformers"],
|
|
93
96
|
reference="https://huggingface.co/codesage/codesage-small-v2",
|
|
94
97
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
95
98
|
use_instructions=False,
|
|
@@ -1,18 +1,24 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
4
|
import time
|
|
3
5
|
from functools import wraps
|
|
4
|
-
from typing import Any, Literal, get_args
|
|
6
|
+
from typing import TYPE_CHECKING, Any, Literal, get_args
|
|
5
7
|
|
|
6
8
|
import numpy as np
|
|
7
9
|
import torch
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
10
|
from tqdm.auto import tqdm
|
|
10
11
|
|
|
11
12
|
from mteb._requires_package import requires_package
|
|
12
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
13
13
|
from mteb.models.abs_encoder import AbsEncoder
|
|
14
14
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
15
|
-
from mteb.types import
|
|
15
|
+
from mteb.types import PromptType
|
|
16
|
+
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
from torch.utils.data import DataLoader
|
|
19
|
+
|
|
20
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
21
|
+
from mteb.types import Array, BatchedInput
|
|
16
22
|
|
|
17
23
|
logger = logging.getLogger(__name__)
|
|
18
24
|
|
|
@@ -222,7 +228,7 @@ class CohereTextEmbeddingModel(AbsEncoder):
|
|
|
222
228
|
) -> None:
|
|
223
229
|
requires_package(self, "cohere", model_name, "pip install 'mteb[cohere]'")
|
|
224
230
|
|
|
225
|
-
import cohere
|
|
231
|
+
import cohere
|
|
226
232
|
|
|
227
233
|
self.model_name = model_name.removeprefix("Cohere/Cohere-")
|
|
228
234
|
self.sep = sep
|
|
@@ -386,13 +392,14 @@ cohere_mult_3 = ModelMeta(
|
|
|
386
392
|
revision="1",
|
|
387
393
|
release_date="2023-11-02",
|
|
388
394
|
n_parameters=None,
|
|
395
|
+
n_embedding_parameters=None,
|
|
389
396
|
memory_usage_mb=None,
|
|
390
397
|
max_tokens=None,
|
|
391
398
|
embed_dim=512,
|
|
392
399
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
393
400
|
license=None,
|
|
394
401
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
395
|
-
framework=["API"],
|
|
402
|
+
framework=["API", "Transformers"],
|
|
396
403
|
use_instructions=True,
|
|
397
404
|
public_training_code=None,
|
|
398
405
|
public_training_data=None, # assumed
|
|
@@ -412,12 +419,13 @@ cohere_eng_3 = ModelMeta(
|
|
|
412
419
|
revision="1",
|
|
413
420
|
release_date="2023-11-02",
|
|
414
421
|
n_parameters=None,
|
|
422
|
+
n_embedding_parameters=None,
|
|
415
423
|
memory_usage_mb=None,
|
|
416
424
|
max_tokens=512,
|
|
417
425
|
embed_dim=1024,
|
|
418
426
|
license=None,
|
|
419
427
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
420
|
-
framework=["API"],
|
|
428
|
+
framework=["API", "Transformers"],
|
|
421
429
|
use_instructions=True,
|
|
422
430
|
public_training_code=None,
|
|
423
431
|
public_training_data=None, # assumed
|
|
@@ -437,12 +445,13 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
437
445
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
438
446
|
release_date="2023-11-02",
|
|
439
447
|
n_parameters=None,
|
|
448
|
+
n_embedding_parameters=None,
|
|
440
449
|
memory_usage_mb=None,
|
|
441
450
|
max_tokens=512,
|
|
442
451
|
embed_dim=384,
|
|
443
452
|
license=None,
|
|
444
453
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
445
|
-
framework=["API"],
|
|
454
|
+
framework=["API", "Transformers"],
|
|
446
455
|
use_instructions=True,
|
|
447
456
|
public_training_code=None,
|
|
448
457
|
public_training_data=None, # assumed
|
|
@@ -462,12 +471,13 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
462
471
|
revision="1",
|
|
463
472
|
release_date="2023-11-02",
|
|
464
473
|
n_parameters=None,
|
|
474
|
+
n_embedding_parameters=None,
|
|
465
475
|
memory_usage_mb=None,
|
|
466
476
|
max_tokens=512,
|
|
467
477
|
embed_dim=384,
|
|
468
478
|
license=None,
|
|
469
479
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
470
|
-
framework=["API"],
|
|
480
|
+
framework=["API", "Transformers"],
|
|
471
481
|
use_instructions=True,
|
|
472
482
|
public_training_code=None,
|
|
473
483
|
public_training_data=None, # assumed
|