mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -244,13 +244,14 @@ rubert_tiny = ModelMeta(
|
|
|
244
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
245
245
|
release_date="2021-05-24",
|
|
246
246
|
n_parameters=11_900_000,
|
|
247
|
+
n_embedding_parameters=9_223_968,
|
|
247
248
|
memory_usage_mb=45,
|
|
248
249
|
embed_dim=312,
|
|
249
250
|
license="mit",
|
|
250
251
|
max_tokens=512,
|
|
251
252
|
reference="https://huggingface.co/cointegrated/rubert-tiny",
|
|
252
253
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
253
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
254
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
254
255
|
use_instructions=False,
|
|
255
256
|
public_training_code="https://gist.github.com/avidale/7bc6350f26196918bf339c01261f5c60",
|
|
256
257
|
training_datasets={
|
|
@@ -270,13 +271,14 @@ rubert_tiny2 = ModelMeta(
|
|
|
270
271
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
271
272
|
release_date="2021-10-28",
|
|
272
273
|
n_parameters=29_400_000,
|
|
274
|
+
n_embedding_parameters=26_154_336,
|
|
273
275
|
memory_usage_mb=112,
|
|
274
276
|
embed_dim=312,
|
|
275
277
|
license="mit",
|
|
276
278
|
max_tokens=2048,
|
|
277
279
|
reference="https://huggingface.co/cointegrated/rubert-tiny2",
|
|
278
280
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
279
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
281
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
280
282
|
use_instructions=False,
|
|
281
283
|
public_training_code="https://colab.research.google.com/drive/1mSWfIQ6PIlteLVZ9DKKpcorycgLIKZLf?usp=sharing",
|
|
282
284
|
training_datasets=set(
|
|
@@ -297,13 +299,14 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
297
299
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
298
300
|
release_date="2020-11-20",
|
|
299
301
|
n_parameters=427_000_000,
|
|
302
|
+
n_embedding_parameters=123_021_312,
|
|
300
303
|
memory_usage_mb=1629,
|
|
301
304
|
embed_dim=1024,
|
|
302
305
|
license="mit",
|
|
303
306
|
max_tokens=512, # best guess
|
|
304
307
|
reference="https://huggingface.co/ai-forever/sbert_large_nlu_ru",
|
|
305
308
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
306
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
309
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
307
310
|
use_instructions=False,
|
|
308
311
|
public_training_code=None,
|
|
309
312
|
public_training_data=None,
|
|
@@ -323,13 +326,14 @@ sbert_large_mt_nlu_ru = ModelMeta(
|
|
|
323
326
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
324
327
|
release_date="2021-05-18",
|
|
325
328
|
n_parameters=427_000_000,
|
|
329
|
+
n_embedding_parameters=123_021_312,
|
|
326
330
|
memory_usage_mb=1629,
|
|
327
331
|
embed_dim=1024,
|
|
328
332
|
license="not specified",
|
|
329
333
|
max_tokens=512, # best guess
|
|
330
334
|
reference="https://huggingface.co/ai-forever/sbert_large_mt_nlu_ru",
|
|
331
335
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
332
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
336
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
333
337
|
use_instructions=False,
|
|
334
338
|
public_training_code=None,
|
|
335
339
|
public_training_data=None,
|
|
@@ -351,13 +355,14 @@ user_base_ru = ModelMeta(
|
|
|
351
355
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
352
356
|
release_date="2024-06-10",
|
|
353
357
|
n_parameters=427_000_000,
|
|
358
|
+
n_embedding_parameters=38_603_520,
|
|
354
359
|
memory_usage_mb=473,
|
|
355
360
|
embed_dim=768,
|
|
356
361
|
license="apache-2.0",
|
|
357
362
|
max_tokens=512,
|
|
358
363
|
reference="https://huggingface.co/deepvk/USER-base",
|
|
359
364
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
365
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
361
366
|
adapted_from="https://huggingface.co/deepvk/deberta-v1-base",
|
|
362
367
|
use_instructions=True,
|
|
363
368
|
citation="""@misc{deepvk2024user,
|
|
@@ -412,13 +417,14 @@ user_bge_m3 = ModelMeta(
|
|
|
412
417
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
413
418
|
release_date="2024-07-05",
|
|
414
419
|
n_parameters=359_026_688,
|
|
420
|
+
n_embedding_parameters=47_273_984,
|
|
415
421
|
memory_usage_mb=1370,
|
|
416
422
|
embed_dim=1024,
|
|
417
423
|
license="apache-2.0",
|
|
418
424
|
max_tokens=8194,
|
|
419
425
|
reference="https://huggingface.co/deepvk/USER-base",
|
|
420
426
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
421
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
427
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
422
428
|
adapted_from="BAAI/bge-m3",
|
|
423
429
|
use_instructions=False,
|
|
424
430
|
training_datasets={
|
|
@@ -463,13 +469,14 @@ deberta_v1_ru = ModelMeta(
|
|
|
463
469
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
464
470
|
release_date="2023-02-07",
|
|
465
471
|
n_parameters=124_000_000,
|
|
472
|
+
n_embedding_parameters=38_603_520,
|
|
466
473
|
memory_usage_mb=473,
|
|
467
474
|
embed_dim=768,
|
|
468
475
|
license="apache-2.0",
|
|
469
476
|
max_tokens=512,
|
|
470
477
|
reference="https://huggingface.co/deepvk/deberta-v1-base",
|
|
471
478
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
472
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
479
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
473
480
|
use_instructions=False,
|
|
474
481
|
# Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus
|
|
475
482
|
public_training_code=None,
|
|
@@ -494,13 +501,14 @@ rubert_base_cased = ModelMeta(
|
|
|
494
501
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
495
502
|
release_date="2020-03-04",
|
|
496
503
|
n_parameters=1280_000_000,
|
|
504
|
+
n_embedding_parameters=91_812_096,
|
|
497
505
|
memory_usage_mb=4883,
|
|
498
506
|
embed_dim=768,
|
|
499
507
|
license="not specified",
|
|
500
508
|
max_tokens=512,
|
|
501
509
|
reference="https://huggingface.co/DeepPavlov/rubert-base-cased",
|
|
502
510
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
503
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
511
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
504
512
|
use_instructions=False,
|
|
505
513
|
public_training_code=None,
|
|
506
514
|
public_training_data=None,
|
|
@@ -530,13 +538,14 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
530
538
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
531
539
|
release_date="2022-06-28",
|
|
532
540
|
n_parameters=107_000_000,
|
|
541
|
+
n_embedding_parameters=91_812_096,
|
|
533
542
|
memory_usage_mb=408,
|
|
534
543
|
embed_dim=768,
|
|
535
544
|
license="not specified",
|
|
536
545
|
max_tokens=512,
|
|
537
546
|
reference="https://huggingface.co/DeepPavlov/distilrubert-small-cased-conversational",
|
|
538
547
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
539
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
548
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
540
549
|
use_instructions=False,
|
|
541
550
|
public_training_code=None,
|
|
542
551
|
public_training_data=None,
|
|
@@ -565,13 +574,14 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
565
574
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
566
575
|
release_date="2020-03-04",
|
|
567
576
|
n_parameters=107_000_000,
|
|
577
|
+
n_embedding_parameters=91_812_096,
|
|
568
578
|
memory_usage_mb=408,
|
|
569
579
|
embed_dim=768,
|
|
570
580
|
license="not specified",
|
|
571
581
|
max_tokens=512,
|
|
572
582
|
reference="https://huggingface.co/DeepPavlov/rubert-base-cased-sentence",
|
|
573
583
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
574
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
584
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
575
585
|
use_instructions=False,
|
|
576
586
|
public_training_code=None,
|
|
577
587
|
public_training_data=None,
|
|
@@ -590,13 +600,14 @@ labse_en_ru = ModelMeta(
|
|
|
590
600
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
591
601
|
release_date="2021-06-10",
|
|
592
602
|
n_parameters=129_000_000,
|
|
603
|
+
n_embedding_parameters=42_303_744,
|
|
593
604
|
memory_usage_mb=492,
|
|
594
605
|
embed_dim=768,
|
|
595
606
|
license="not specified",
|
|
596
607
|
max_tokens=512,
|
|
597
608
|
reference="https://huggingface.co/cointegrated/LaBSE-en-ru",
|
|
598
609
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
599
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
610
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
600
611
|
use_instructions=False,
|
|
601
612
|
public_training_code="https://colab.research.google.com/drive/1dnPRn0-ugj3vZgSpyCC9sgslM2SuSfHy?usp=sharing",
|
|
602
613
|
public_training_data=None,
|
|
@@ -618,13 +629,14 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
618
629
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
619
630
|
release_date="2024-06-21",
|
|
620
631
|
n_parameters=29_200_000,
|
|
632
|
+
n_embedding_parameters=26_154_336,
|
|
621
633
|
memory_usage_mb=111,
|
|
622
634
|
embed_dim=312,
|
|
623
635
|
license="mit",
|
|
624
636
|
max_tokens=2048,
|
|
625
637
|
reference="https://huggingface.co/sergeyzh/rubert-tiny-turbo",
|
|
626
638
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
627
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
639
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
628
640
|
use_instructions=False,
|
|
629
641
|
public_training_code=None,
|
|
630
642
|
public_training_data=None,
|
|
@@ -641,13 +653,14 @@ rubert_mini_frida = ModelMeta(
|
|
|
641
653
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
642
654
|
release_date="2025-03-02",
|
|
643
655
|
n_parameters=32_300_000,
|
|
656
|
+
n_embedding_parameters=26_154_336,
|
|
644
657
|
memory_usage_mb=123,
|
|
645
658
|
embed_dim=312,
|
|
646
659
|
license="mit",
|
|
647
660
|
max_tokens=2048,
|
|
648
661
|
reference="https://huggingface.co/sergeyzh/rubert-mini-frida",
|
|
649
662
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
650
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
663
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
651
664
|
use_instructions=True,
|
|
652
665
|
public_training_code=None,
|
|
653
666
|
public_training_data=None,
|
|
@@ -669,13 +682,14 @@ labse_ru_turbo = ModelMeta(
|
|
|
669
682
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
670
683
|
release_date="2024-06-27",
|
|
671
684
|
n_parameters=129_000_000,
|
|
685
|
+
n_embedding_parameters=42_303_744,
|
|
672
686
|
memory_usage_mb=490,
|
|
673
687
|
embed_dim=768,
|
|
674
688
|
license="mit",
|
|
675
689
|
max_tokens=512,
|
|
676
690
|
reference="https://huggingface.co/sergeyzh/LaBSE-ru-turbo",
|
|
677
691
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
678
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
692
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
679
693
|
use_instructions=False,
|
|
680
694
|
training_datasets=turbo_models_datasets,
|
|
681
695
|
public_training_code=None,
|
|
@@ -720,6 +734,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
720
734
|
use_instructions=True,
|
|
721
735
|
reference="https://huggingface.co/ai-forever/ru-en-RoSBERTa",
|
|
722
736
|
n_parameters=404_000_000,
|
|
737
|
+
n_embedding_parameters=100_869_120,
|
|
723
738
|
memory_usage_mb=1540,
|
|
724
739
|
max_tokens=512,
|
|
725
740
|
embed_dim=1024,
|
|
@@ -745,7 +760,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
745
760
|
},
|
|
746
761
|
public_training_data=None,
|
|
747
762
|
public_training_code=None,
|
|
748
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
763
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
749
764
|
citation="""@misc{snegirev2024russianfocusedembeddersexplorationrumteb,
|
|
750
765
|
title={The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design},
|
|
751
766
|
author={Artem Snegirev and Maria Tikhonova and Anna Maksimova and Alena Fenogenova and Alexander Abramov},
|
|
@@ -886,6 +901,7 @@ frida = ModelMeta(
|
|
|
886
901
|
use_instructions=True,
|
|
887
902
|
reference="https://huggingface.co/ai-forever/FRIDA",
|
|
888
903
|
n_parameters=823_000_000,
|
|
904
|
+
n_embedding_parameters=143_847_936,
|
|
889
905
|
memory_usage_mb=3141,
|
|
890
906
|
max_tokens=512,
|
|
891
907
|
embed_dim=1536,
|
|
@@ -895,7 +911,7 @@ frida = ModelMeta(
|
|
|
895
911
|
training_datasets=frida_training_datasets,
|
|
896
912
|
public_training_data=None,
|
|
897
913
|
public_training_code=None,
|
|
898
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
914
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
899
915
|
citation=None,
|
|
900
916
|
)
|
|
901
917
|
|
|
@@ -918,13 +934,14 @@ giga_embeddings = ModelMeta(
|
|
|
918
934
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
919
935
|
release_date="2025-09-23",
|
|
920
936
|
n_parameters=3_227_176_961,
|
|
937
|
+
n_embedding_parameters=None,
|
|
921
938
|
memory_usage_mb=12865,
|
|
922
939
|
embed_dim=2048,
|
|
923
940
|
license="mit",
|
|
924
941
|
max_tokens=4096,
|
|
925
942
|
reference="https://huggingface.co/ai-sage/Giga-Embeddings-instruct",
|
|
926
943
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
927
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
944
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
928
945
|
use_instructions=True,
|
|
929
946
|
public_training_code=None,
|
|
930
947
|
public_training_data=None,
|
|
@@ -950,13 +967,14 @@ berta = ModelMeta(
|
|
|
950
967
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
951
968
|
release_date="2025-03-10",
|
|
952
969
|
n_parameters=128_000_000,
|
|
970
|
+
n_embedding_parameters=42_303_744,
|
|
953
971
|
memory_usage_mb=489,
|
|
954
972
|
embed_dim=768,
|
|
955
973
|
license="mit",
|
|
956
974
|
max_tokens=512,
|
|
957
975
|
reference="https://huggingface.co/sergeyzh/BERTA",
|
|
958
976
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
959
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
977
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
960
978
|
use_instructions=True,
|
|
961
979
|
training_datasets=berta_training_datasets,
|
|
962
980
|
public_training_code=None,
|
|
@@ -1025,6 +1043,7 @@ user2_small = ModelMeta(
|
|
|
1025
1043
|
use_instructions=True,
|
|
1026
1044
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1027
1045
|
n_parameters=34_400_000,
|
|
1046
|
+
n_embedding_parameters=None,
|
|
1028
1047
|
memory_usage_mb=131,
|
|
1029
1048
|
max_tokens=8192,
|
|
1030
1049
|
embed_dim=384,
|
|
@@ -1034,7 +1053,7 @@ user2_small = ModelMeta(
|
|
|
1034
1053
|
training_datasets=user2_training_data,
|
|
1035
1054
|
public_training_data=None,
|
|
1036
1055
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1037
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
1056
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
1038
1057
|
citation="""@misc{deepvk2025user,
|
|
1039
1058
|
title={USER2},
|
|
1040
1059
|
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
@@ -1058,6 +1077,7 @@ user2_base = ModelMeta(
|
|
|
1058
1077
|
use_instructions=True,
|
|
1059
1078
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1060
1079
|
n_parameters=149_000_000,
|
|
1080
|
+
n_embedding_parameters=None,
|
|
1061
1081
|
memory_usage_mb=568,
|
|
1062
1082
|
max_tokens=8192,
|
|
1063
1083
|
embed_dim=768,
|
|
@@ -1067,7 +1087,7 @@ user2_base = ModelMeta(
|
|
|
1067
1087
|
training_datasets=user2_training_data,
|
|
1068
1088
|
public_training_data=None,
|
|
1069
1089
|
public_training_code="https://github.com/BlessedTatonka/some_code/tree/2899f27d51efdf4217fc6453799ff197e9792f1e",
|
|
1070
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
1090
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
1071
1091
|
citation="""@misc{deepvk2025user,
|
|
1072
1092
|
title={USER2},
|
|
1073
1093
|
author={Malashenko, Boris and Spirin, Egor and Sokolov Andrey},
|
|
@@ -38,13 +38,14 @@ cl_nagoya_ruri_v3_30m = ModelMeta(
|
|
|
38
38
|
revision="24899e5de370b56d179604a007c0d727bf144504",
|
|
39
39
|
release_date="2025-04-07",
|
|
40
40
|
n_parameters=36_705_536,
|
|
41
|
+
n_embedding_parameters=None,
|
|
41
42
|
memory_usage_mb=140,
|
|
42
43
|
embed_dim=256,
|
|
43
44
|
license="apache-2.0",
|
|
44
45
|
max_tokens=8192,
|
|
45
46
|
reference="https://huggingface.co/cl-nagoya/ruri-v3-30m",
|
|
46
47
|
similarity_fn_name="cosine",
|
|
47
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
48
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
48
49
|
use_instructions=True,
|
|
49
50
|
superseded_by=None,
|
|
50
51
|
training_datasets={
|
|
@@ -69,13 +70,14 @@ cl_nagoya_ruri_v3_70m = ModelMeta(
|
|
|
69
70
|
revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
|
|
70
71
|
release_date="2025-04-09",
|
|
71
72
|
n_parameters=36_705_536,
|
|
73
|
+
n_embedding_parameters=None,
|
|
72
74
|
memory_usage_mb=140,
|
|
73
75
|
embed_dim=256,
|
|
74
76
|
license="apache-2.0",
|
|
75
77
|
max_tokens=8192,
|
|
76
78
|
reference="https://huggingface.co/cl-nagoya/ruri-v3-70m",
|
|
77
79
|
similarity_fn_name="cosine",
|
|
78
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
80
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
79
81
|
use_instructions=True,
|
|
80
82
|
superseded_by=None,
|
|
81
83
|
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
@@ -98,13 +100,14 @@ cl_nagoya_ruri_v3_130m = ModelMeta(
|
|
|
98
100
|
revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
|
|
99
101
|
release_date="2025-04-09",
|
|
100
102
|
n_parameters=132_140_544,
|
|
103
|
+
n_embedding_parameters=None,
|
|
101
104
|
memory_usage_mb=504,
|
|
102
105
|
embed_dim=512,
|
|
103
106
|
license="apache-2.0",
|
|
104
107
|
max_tokens=8192,
|
|
105
108
|
reference="https://huggingface.co/cl-nagoya/ruri-v3-130m",
|
|
106
109
|
similarity_fn_name="cosine",
|
|
107
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
110
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
108
111
|
use_instructions=True,
|
|
109
112
|
superseded_by=None,
|
|
110
113
|
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
@@ -127,13 +130,14 @@ cl_nagoya_ruri_v3_310m = ModelMeta(
|
|
|
127
130
|
revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
|
|
128
131
|
release_date="2025-04-09",
|
|
129
132
|
n_parameters=314_611_968,
|
|
133
|
+
n_embedding_parameters=None,
|
|
130
134
|
memory_usage_mb=1200,
|
|
131
135
|
embed_dim=768,
|
|
132
136
|
license="apache-2.0",
|
|
133
137
|
max_tokens=8192,
|
|
134
138
|
reference="https://huggingface.co/cl-nagoya/ruri-v3-310m",
|
|
135
139
|
similarity_fn_name="cosine",
|
|
136
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
140
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
137
141
|
use_instructions=True,
|
|
138
142
|
superseded_by=None,
|
|
139
143
|
training_datasets={"MrTidyRetrieval", "MIRACLRetrieval"},
|
|
@@ -157,13 +161,14 @@ cl_nagoya_ruri_small_v2 = ModelMeta(
|
|
|
157
161
|
revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
|
|
158
162
|
release_date="2024-12-05",
|
|
159
163
|
n_parameters=68_087_808,
|
|
164
|
+
n_embedding_parameters=25_165_824,
|
|
160
165
|
memory_usage_mb=260,
|
|
161
166
|
embed_dim=768,
|
|
162
167
|
license="apache-2.0",
|
|
163
168
|
max_tokens=512,
|
|
164
169
|
reference="https://huggingface.co/cl-nagoya/ruri-small-v2",
|
|
165
170
|
similarity_fn_name="cosine",
|
|
166
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
171
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
167
172
|
use_instructions=True,
|
|
168
173
|
adapted_from="line-corporation/line-distilbert-base-japanese",
|
|
169
174
|
superseded_by=None,
|
|
@@ -186,13 +191,14 @@ cl_nagoya_ruri_base_v2 = ModelMeta(
|
|
|
186
191
|
revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
|
|
187
192
|
release_date="2024-12-05",
|
|
188
193
|
n_parameters=111_207_168,
|
|
194
|
+
n_embedding_parameters=25_165_824,
|
|
189
195
|
memory_usage_mb=424,
|
|
190
196
|
embed_dim=768,
|
|
191
197
|
license="apache-2.0",
|
|
192
198
|
max_tokens=512,
|
|
193
199
|
reference="https://huggingface.co/cl-nagoya/ruri-base-v2",
|
|
194
200
|
similarity_fn_name="cosine",
|
|
195
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
201
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
196
202
|
use_instructions=True,
|
|
197
203
|
adapted_from="tohoku-nlp/bert-base-japanese-v3",
|
|
198
204
|
superseded_by=None,
|
|
@@ -215,13 +221,14 @@ cl_nagoya_ruri_large_v2 = ModelMeta(
|
|
|
215
221
|
revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
|
|
216
222
|
release_date="2024-12-06",
|
|
217
223
|
n_parameters=337_441_792,
|
|
224
|
+
n_embedding_parameters=33_554_432,
|
|
218
225
|
memory_usage_mb=1287,
|
|
219
226
|
embed_dim=1024,
|
|
220
227
|
license="apache-2.0",
|
|
221
228
|
max_tokens=512,
|
|
222
229
|
reference="https://huggingface.co/cl-nagoya/ruri-large-v2",
|
|
223
230
|
similarity_fn_name="cosine",
|
|
224
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
231
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
225
232
|
use_instructions=True,
|
|
226
233
|
adapted_from="tohoku-nlp/bert-large-japanese-v2",
|
|
227
234
|
superseded_by=None,
|
|
@@ -245,13 +252,14 @@ cl_nagoya_ruri_small_v1 = ModelMeta(
|
|
|
245
252
|
revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
|
|
246
253
|
release_date="2024-08-28",
|
|
247
254
|
n_parameters=68_087_808,
|
|
255
|
+
n_embedding_parameters=25_165_824,
|
|
248
256
|
memory_usage_mb=130,
|
|
249
257
|
embed_dim=768,
|
|
250
258
|
license="apache-2.0",
|
|
251
259
|
max_tokens=512,
|
|
252
260
|
reference="https://huggingface.co/cl-nagoya/ruri-small",
|
|
253
261
|
similarity_fn_name="cosine",
|
|
254
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
262
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
255
263
|
use_instructions=True,
|
|
256
264
|
adapted_from="line-corporation/line-distilbert-base-japanese",
|
|
257
265
|
superseded_by="cl-nagoya/ruri-small-v2",
|
|
@@ -274,13 +282,14 @@ cl_nagoya_ruri_base_v1 = ModelMeta(
|
|
|
274
282
|
revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
|
|
275
283
|
release_date="2024-08-28",
|
|
276
284
|
n_parameters=111_207_168,
|
|
285
|
+
n_embedding_parameters=25_165_824,
|
|
277
286
|
memory_usage_mb=212,
|
|
278
287
|
embed_dim=768,
|
|
279
288
|
license="apache-2.0",
|
|
280
289
|
max_tokens=512,
|
|
281
290
|
reference="https://huggingface.co/cl-nagoya/ruri-base",
|
|
282
291
|
similarity_fn_name="cosine",
|
|
283
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
292
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
284
293
|
use_instructions=True,
|
|
285
294
|
adapted_from="tohoku-nlp/bert-base-japanese-v3",
|
|
286
295
|
superseded_by="cl-nagoya/ruri-base-v2",
|
|
@@ -304,13 +313,14 @@ cl_nagoya_ruri_large_v1 = ModelMeta(
|
|
|
304
313
|
revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
|
|
305
314
|
release_date="2024-08-28",
|
|
306
315
|
n_parameters=337_441_792,
|
|
316
|
+
n_embedding_parameters=33_554_432,
|
|
307
317
|
memory_usage_mb=644,
|
|
308
318
|
embed_dim=1024,
|
|
309
319
|
license="apache-2.0",
|
|
310
320
|
max_tokens=512,
|
|
311
321
|
reference="https://huggingface.co/cl-nagoya/ruri-large",
|
|
312
322
|
similarity_fn_name="cosine",
|
|
313
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
323
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
314
324
|
use_instructions=True,
|
|
315
325
|
adapted_from="tohoku-nlp/bert-large-japanese-v2",
|
|
316
326
|
superseded_by="cl-nagoya/ruri-large-v2",
|
|
@@ -1,12 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
1
5
|
from mteb.models.instruct_wrapper import (
|
|
2
6
|
InstructSentenceTransformerModel,
|
|
3
7
|
instruct_wrapper,
|
|
4
8
|
)
|
|
5
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
6
|
-
from mteb.types import PromptType
|
|
7
10
|
|
|
8
11
|
from .e5_instruct import E5_MISTRAL_TRAINING_DATA
|
|
9
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from mteb.types import PromptType
|
|
15
|
+
|
|
10
16
|
|
|
11
17
|
def instruction_template(
|
|
12
18
|
instruction: str, prompt_type: PromptType | None = None
|
|
@@ -52,13 +58,14 @@ SFR_Embedding_2_R = ModelMeta(
|
|
|
52
58
|
revision="91762139d94ed4371a9fa31db5551272e0b83818",
|
|
53
59
|
release_date="2024-06-14", # initial commit of hf model.
|
|
54
60
|
n_parameters=7_110_000_000,
|
|
61
|
+
n_embedding_parameters=None,
|
|
55
62
|
memory_usage_mb=13563,
|
|
56
63
|
embed_dim=4096,
|
|
57
64
|
license="cc-by-nc-4.0",
|
|
58
65
|
max_tokens=32768,
|
|
59
66
|
reference="https://huggingface.co/Salesforce/SFR-Embedding-2_R",
|
|
60
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
61
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
68
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
62
69
|
use_instructions=True,
|
|
63
70
|
adapted_from="intfloat/e5-mistral-7b-instruct",
|
|
64
71
|
public_training_code=None,
|
|
@@ -90,13 +97,14 @@ SFR_Embedding_Code_2B_R = ModelMeta(
|
|
|
90
97
|
revision="c73d8631a005876ed5abde34db514b1fb6566973",
|
|
91
98
|
release_date="2025-01-17", # initial commit of hf model.
|
|
92
99
|
n_parameters=2_610_000_000,
|
|
100
|
+
n_embedding_parameters=None,
|
|
93
101
|
memory_usage_mb=4986,
|
|
94
102
|
embed_dim=2304,
|
|
95
103
|
license="cc-by-nc-4.0",
|
|
96
104
|
max_tokens=8192,
|
|
97
105
|
reference="https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R",
|
|
98
106
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
99
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
100
108
|
use_instructions=True,
|
|
101
109
|
adapted_from="google/gemma-2-2b-it",
|
|
102
110
|
public_training_code=None,
|
|
@@ -128,13 +136,14 @@ SFR_Embedding_Mistral = ModelMeta(
|
|
|
128
136
|
revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
|
|
129
137
|
release_date="2024-01-24", # initial commit of hf model.
|
|
130
138
|
n_parameters=7_110_000_000,
|
|
139
|
+
n_embedding_parameters=None,
|
|
131
140
|
memory_usage_mb=13563,
|
|
132
141
|
embed_dim=4096,
|
|
133
142
|
license="cc-by-nc-4.0",
|
|
134
143
|
max_tokens=32768,
|
|
135
144
|
reference="https://huggingface.co/Salesforce/SFR-Embedding-Mistral",
|
|
136
145
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
137
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
146
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
138
147
|
use_instructions=True,
|
|
139
148
|
public_training_code=None,
|
|
140
149
|
public_training_data=None,
|
|
@@ -51,13 +51,14 @@ samilpwc_expr = ModelMeta(
|
|
|
51
51
|
revision="33358978be40f36491045f9c2a359d38c3f50047",
|
|
52
52
|
release_date="2025-08-12",
|
|
53
53
|
n_parameters=560_000_000,
|
|
54
|
+
n_embedding_parameters=256_002_048,
|
|
54
55
|
memory_usage_mb=2136,
|
|
55
56
|
embed_dim=1024,
|
|
56
57
|
license="apache-2.0",
|
|
57
58
|
max_tokens=514,
|
|
58
59
|
reference="https://huggingface.co/SamilPwC-AXNode-GenAI/PwC-Embedding_expr",
|
|
59
60
|
similarity_fn_name="cosine",
|
|
60
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
61
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
61
62
|
use_instructions=True,
|
|
62
63
|
public_training_code=None,
|
|
63
64
|
public_training_data=None,
|
|
@@ -124,13 +124,14 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
|
124
124
|
revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
|
|
125
125
|
release_date="2025-07-30",
|
|
126
126
|
n_parameters=1_224_038_144,
|
|
127
|
+
n_embedding_parameters=183_500_800,
|
|
127
128
|
memory_usage_mb=4669,
|
|
128
129
|
embed_dim=1792,
|
|
129
130
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE",
|
|
130
131
|
max_tokens=8192,
|
|
131
132
|
reference="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b",
|
|
132
133
|
similarity_fn_name="cosine",
|
|
133
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
134
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
134
135
|
use_instructions=True,
|
|
135
136
|
adapted_from="sbintuitions/sarashina2.2-1b",
|
|
136
137
|
superseded_by=None,
|
|
@@ -150,13 +151,14 @@ sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
|
|
|
150
151
|
revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
|
|
151
152
|
release_date="2024-11-22",
|
|
152
153
|
n_parameters=1_224_038_144,
|
|
154
|
+
n_embedding_parameters=183_500_800,
|
|
153
155
|
memory_usage_mb=4669,
|
|
154
156
|
embed_dim=1792,
|
|
155
157
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE",
|
|
156
158
|
max_tokens=8192,
|
|
157
159
|
reference="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b",
|
|
158
160
|
similarity_fn_name="cosine",
|
|
159
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
161
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
160
162
|
use_instructions=False,
|
|
161
163
|
adapted_from="sbintuitions/sarashina2.1-1b",
|
|
162
164
|
superseded_by="sbintuitions/sarashina-embedding-v2-1b",
|
|
@@ -27,13 +27,14 @@ searchmap_preview = ModelMeta(
|
|
|
27
27
|
use_instructions=True,
|
|
28
28
|
release_date="2025-03-05",
|
|
29
29
|
n_parameters=435_000_000,
|
|
30
|
+
n_embedding_parameters=None,
|
|
30
31
|
memory_usage_mb=1660,
|
|
31
32
|
embed_dim=4096,
|
|
32
33
|
license="mit",
|
|
33
34
|
max_tokens=8192,
|
|
34
35
|
reference="https://huggingface.co/VPLabs/SearchMap_Preview",
|
|
35
36
|
similarity_fn_name="cosine",
|
|
36
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
37
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
37
38
|
public_training_code=None,
|
|
38
39
|
public_training_data=None,
|
|
39
40
|
training_datasets=None,
|
|
@@ -13,16 +13,18 @@ import torch
|
|
|
13
13
|
from torch.utils.data import DataLoader
|
|
14
14
|
|
|
15
15
|
from mteb._requires_package import requires_package
|
|
16
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
18
17
|
from mteb.models.model_implementations.bge_models import bge_chinese_training_data
|
|
19
18
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
20
19
|
from mteb.models.model_meta import ModelMeta
|
|
21
|
-
from mteb.types import
|
|
20
|
+
from mteb.types import PromptType
|
|
22
21
|
|
|
23
22
|
if TYPE_CHECKING:
|
|
24
23
|
from PIL import Image
|
|
25
24
|
|
|
25
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
26
|
+
from mteb.types import Array, BatchedInput
|
|
27
|
+
|
|
26
28
|
|
|
27
29
|
logger = logging.getLogger(__name__)
|
|
28
30
|
|
|
@@ -429,6 +431,7 @@ seed_embedding = ModelMeta(
|
|
|
429
431
|
embed_dim=2048,
|
|
430
432
|
open_weights=False,
|
|
431
433
|
n_parameters=None,
|
|
434
|
+
n_embedding_parameters=None,
|
|
432
435
|
memory_usage_mb=None,
|
|
433
436
|
license=None,
|
|
434
437
|
reference="https://seed1-6-embedding.github.io/",
|