mteb 2.5.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/__init__.py +2 -0
- mteb/_create_dataloaders.py +78 -30
- mteb/_evaluators/any_sts_evaluator.py +13 -6
- mteb/_evaluators/clustering_evaluator.py +13 -5
- mteb/_evaluators/evaluator.py +12 -4
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +22 -11
- mteb/_evaluators/pair_classification_evaluator.py +17 -7
- mteb/_evaluators/retrieval_evaluator.py +23 -14
- mteb/_evaluators/retrieval_metrics.py +26 -19
- mteb/_evaluators/sklearn_evaluator.py +27 -17
- mteb/_evaluators/text/bitext_mining_evaluator.py +36 -20
- mteb/_evaluators/text/summarization_evaluator.py +31 -20
- mteb/_evaluators/zeroshot_classification_evaluator.py +16 -5
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +9 -3
- mteb/abstasks/_data_filter/task_pipelines.py +10 -2
- mteb/abstasks/_statistics_calculation.py +21 -11
- mteb/abstasks/_stratification.py +18 -18
- mteb/abstasks/abstask.py +78 -44
- mteb/abstasks/aggregate_task_metadata.py +21 -18
- mteb/abstasks/aggregated_task.py +23 -35
- mteb/abstasks/classification.py +39 -18
- mteb/abstasks/clustering.py +37 -20
- mteb/abstasks/clustering_legacy.py +30 -16
- mteb/abstasks/image/image_text_pair_classification.py +26 -9
- mteb/abstasks/multilabel_classification.py +33 -21
- mteb/abstasks/pair_classification.py +44 -19
- mteb/abstasks/regression.py +18 -10
- mteb/abstasks/retrieval.py +82 -52
- mteb/abstasks/retrieval_dataset_loaders.py +50 -39
- mteb/abstasks/sts.py +34 -15
- mteb/abstasks/task_metadata.py +44 -37
- mteb/abstasks/text/bitext_mining.py +57 -35
- mteb/abstasks/text/reranking.py +10 -8
- mteb/abstasks/text/summarization.py +26 -10
- mteb/abstasks/zeroshot_classification.py +27 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +15 -3
- mteb/benchmarks/benchmarks/__init__.py +6 -0
- mteb/benchmarks/benchmarks/benchmarks.py +153 -13
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/benchmarks/get_benchmark.py +14 -55
- mteb/cache.py +189 -31
- mteb/cli/_display_tasks.py +10 -4
- mteb/cli/build_cli.py +112 -13
- mteb/cli/generate_model_card.py +50 -23
- mteb/deprecated_evaluator.py +72 -54
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2CybersecurityRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EconomicRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2EnergyRetrieval.json +32 -0
- mteb/descriptive_stats/Image/DocumentUnderstanding/KoVidore2HrRetrieval.json +32 -0
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/ChemRxivRetrieval.json +30 -0
- mteb/descriptive_stats/Retrieval/EuroPIRQRetrieval.json +116 -0
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/evaluate.py +71 -47
- mteb/filter_tasks.py +36 -32
- mteb/get_tasks.py +37 -33
- mteb/languages/language_scripts.py +11 -4
- mteb/leaderboard/app.py +172 -37
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +20 -14
- mteb/models/abs_encoder.py +30 -16
- mteb/models/cache_wrappers/cache_backend_protocol.py +7 -7
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +10 -5
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +13 -4
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +43 -25
- mteb/models/cache_wrappers/cache_wrapper.py +16 -11
- mteb/models/get_model_meta.py +53 -9
- mteb/models/instruct_wrapper.py +41 -13
- mteb/models/model_implementations/align_models.py +11 -5
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +6 -4
- mteb/models/model_implementations/ara_models.py +2 -1
- mteb/models/model_implementations/arctic_models.py +16 -8
- mteb/models/model_implementations/b1ade_models.py +2 -1
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +85 -22
- mteb/models/model_implementations/bica_model.py +4 -3
- mteb/models/model_implementations/blip2_models.py +13 -6
- mteb/models/model_implementations/blip_models.py +33 -20
- mteb/models/model_implementations/bm25.py +27 -17
- mteb/models/model_implementations/bmretriever_models.py +16 -6
- mteb/models/model_implementations/cadet_models.py +2 -1
- mteb/models/model_implementations/cde_models.py +22 -9
- mteb/models/model_implementations/clip_models.py +18 -10
- mteb/models/model_implementations/clips_models.py +6 -3
- mteb/models/model_implementations/codefuse_models.py +10 -5
- mteb/models/model_implementations/codesage_models.py +6 -3
- mteb/models/model_implementations/cohere_models.py +19 -9
- mteb/models/model_implementations/cohere_v.py +16 -6
- mteb/models/model_implementations/colpali_models.py +10 -6
- mteb/models/model_implementations/colqwen_models.py +24 -38
- mteb/models/model_implementations/colsmol_models.py +5 -3
- mteb/models/model_implementations/conan_models.py +12 -5
- mteb/models/model_implementations/dino_models.py +70 -46
- mteb/models/model_implementations/e5_instruct.py +27 -4
- mteb/models/model_implementations/e5_models.py +18 -9
- mteb/models/model_implementations/e5_v.py +16 -10
- mteb/models/model_implementations/eagerworks_models.py +12 -5
- mteb/models/model_implementations/emillykkejensen_models.py +9 -6
- mteb/models/model_implementations/en_code_retriever.py +2 -1
- mteb/models/model_implementations/euler_models.py +3 -2
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +18 -9
- mteb/models/model_implementations/facebookai.py +16 -2
- mteb/models/model_implementations/geogpt_models.py +2 -1
- mteb/models/model_implementations/gme_v_models.py +13 -8
- mteb/models/model_implementations/google_models.py +16 -5
- mteb/models/model_implementations/granite_vision_embedding_models.py +8 -6
- mteb/models/model_implementations/gritlm_models.py +5 -2
- mteb/models/model_implementations/gte_models.py +34 -13
- mteb/models/model_implementations/hinvec_models.py +7 -2
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +36 -6
- mteb/models/model_implementations/inf_models.py +4 -2
- mteb/models/model_implementations/jasper_models.py +16 -7
- mteb/models/model_implementations/jina_clip.py +58 -14
- mteb/models/model_implementations/jina_models.py +35 -16
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +13 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +6 -4
- mteb/models/model_implementations/kfst.py +2 -1
- mteb/models/model_implementations/kowshik24_models.py +2 -1
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +2 -1
- mteb/models/model_implementations/linq_models.py +8 -2
- mteb/models/model_implementations/listconranker.py +11 -5
- mteb/models/model_implementations/llm2clip_models.py +18 -10
- mteb/models/model_implementations/llm2vec_models.py +28 -14
- mteb/models/model_implementations/mcinext_models.py +12 -3
- mteb/models/model_implementations/mdbr_models.py +19 -3
- mteb/models/model_implementations/misc_models.py +131 -68
- mteb/models/model_implementations/mixedbread_ai_models.py +335 -0
- mteb/models/model_implementations/mme5_models.py +3 -2
- mteb/models/model_implementations/moco_models.py +15 -8
- mteb/models/model_implementations/mod_models.py +3 -2
- mteb/models/model_implementations/model2vec_models.py +37 -18
- mteb/models/model_implementations/moka_models.py +4 -1
- mteb/models/model_implementations/nbailab.py +6 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +15 -7
- mteb/models/model_implementations/nomic_models.py +47 -19
- mteb/models/model_implementations/nomic_models_vision.py +6 -4
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +20 -8
- mteb/models/model_implementations/nvidia_models.py +165 -22
- mteb/models/model_implementations/octen_models.py +64 -3
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +30 -17
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +20 -9
- mteb/models/model_implementations/ops_moa_models.py +10 -3
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +2 -1
- mteb/models/model_implementations/pawan_models.py +2 -1
- mteb/models/model_implementations/piccolo_models.py +3 -1
- mteb/models/model_implementations/pixie_models.py +56 -0
- mteb/models/model_implementations/promptriever_models.py +20 -10
- mteb/models/model_implementations/pylate_models.py +41 -21
- mteb/models/model_implementations/qodo_models.py +4 -2
- mteb/models/model_implementations/qtack_models.py +2 -1
- mteb/models/model_implementations/qwen3_models.py +14 -4
- mteb/models/model_implementations/qzhou_models.py +4 -2
- mteb/models/model_implementations/random_baseline.py +7 -6
- mteb/models/model_implementations/rasgaard_models.py +3 -2
- mteb/models/model_implementations/reasonir_model.py +66 -1
- mteb/models/model_implementations/repllama_models.py +18 -9
- mteb/models/model_implementations/rerankers_custom.py +25 -10
- mteb/models/model_implementations/rerankers_monot5_based.py +41 -21
- mteb/models/model_implementations/richinfoai_models.py +2 -1
- mteb/models/model_implementations/ru_sentence_models.py +40 -20
- mteb/models/model_implementations/ruri_models.py +20 -10
- mteb/models/model_implementations/salesforce_models.py +13 -4
- mteb/models/model_implementations/samilpwc_models.py +2 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +4 -2
- mteb/models/model_implementations/searchmap_models.py +2 -1
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +119 -148
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +142 -22
- mteb/models/model_implementations/shuu_model.py +2 -1
- mteb/models/model_implementations/siglip_models.py +39 -24
- mteb/models/model_implementations/slm_models.py +419 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +2 -1
- mteb/models/model_implementations/stella_models.py +23 -4
- mteb/models/model_implementations/tarka_models.py +4 -2
- mteb/models/model_implementations/text2vec_models.py +12 -3
- mteb/models/model_implementations/ua_sentence_models.py +2 -1
- mteb/models/model_implementations/uae_models.py +17 -5
- mteb/models/model_implementations/vdr_models.py +9 -2
- mteb/models/model_implementations/vi_vn_models.py +12 -6
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +14 -7
- mteb/models/model_implementations/voyage_models.py +136 -4
- mteb/models/model_implementations/voyage_v.py +17 -10
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +2 -1
- mteb/models/model_implementations/yuan_models.py +2 -1
- mteb/models/model_implementations/yuan_models_en.py +3 -2
- mteb/models/model_meta.py +127 -40
- mteb/models/models_protocols.py +43 -22
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +21 -10
- mteb/models/search_wrappers.py +63 -29
- mteb/models/sentence_transformer_wrapper.py +52 -26
- mteb/models/vllm_wrapper.py +329 -0
- mteb/py.typed +0 -0
- mteb/results/benchmark_results.py +48 -35
- mteb/results/model_result.py +68 -32
- mteb/results/task_result.py +110 -72
- mteb/similarity_functions.py +19 -9
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +2 -2
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +2 -2
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +2 -2
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +6 -6
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +2 -2
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +16 -16
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +2 -2
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +3 -3
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +3 -3
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +44 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/chemrxiv.py +33 -0
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/kor/__init__.py +15 -1
- mteb/tasks/retrieval/kor/kovidore2_bench_retrieval.py +142 -0
- mteb/tasks/retrieval/multilingual/__init__.py +2 -0
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/euro_pirq_retrieval.py +43 -0
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/vidore3_bench_retrieval.py +90 -100
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +3 -3
- mteb/tasks/retrieval/nob/snl_retrieval.py +3 -3
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/tur/tur_hist_quad.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/__init__.py +2 -0
- mteb/types/_encoder_io.py +13 -1
- mteb/types/_result.py +2 -1
- mteb/types/statistics.py +18 -5
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/METADATA +15 -4
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/RECORD +528 -486
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- mteb/models/model_implementations/mxbai_models.py +0 -111
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -2,19 +2,22 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
import logging
|
|
4
4
|
import math
|
|
5
|
+
import warnings
|
|
5
6
|
from typing import TYPE_CHECKING, Any
|
|
6
7
|
|
|
7
8
|
import torch
|
|
8
|
-
from torch.utils.data import DataLoader
|
|
9
9
|
from tqdm.autonotebook import tqdm
|
|
10
10
|
|
|
11
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
12
11
|
from mteb.models.abs_encoder import AbsEncoder
|
|
13
12
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
-
from mteb.types import
|
|
13
|
+
from mteb.types import PromptType
|
|
15
14
|
|
|
16
15
|
if TYPE_CHECKING:
|
|
17
16
|
from PIL import Image
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types import Array, BatchedInput
|
|
18
21
|
|
|
19
22
|
logger = logging.getLogger(__name__)
|
|
20
23
|
|
|
@@ -261,9 +264,9 @@ def smart_resize(
|
|
|
261
264
|
w_bar = ceil_by_factor(width * beta, factor)
|
|
262
265
|
|
|
263
266
|
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
)
|
|
267
|
+
msg = f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
|
268
|
+
logger.warning(msg)
|
|
269
|
+
warnings.warn(msg)
|
|
267
270
|
if h_bar > w_bar:
|
|
268
271
|
h_bar = w_bar * MAX_RATIO
|
|
269
272
|
else:
|
|
@@ -353,13 +356,14 @@ gme_qwen2vl_2b = ModelMeta(
|
|
|
353
356
|
release_date="2024-12-24",
|
|
354
357
|
modalities=["image", "text"],
|
|
355
358
|
n_parameters=2_210_000_000,
|
|
359
|
+
n_embedding_parameters=233_373_696,
|
|
356
360
|
memory_usage_mb=8427,
|
|
357
361
|
embed_dim=1536,
|
|
358
362
|
license="apache-2.0",
|
|
359
363
|
max_tokens=32768,
|
|
360
364
|
reference="https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
|
361
365
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
362
|
-
framework=["PyTorch"],
|
|
366
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
363
367
|
use_instructions=True,
|
|
364
368
|
public_training_code=None,
|
|
365
369
|
public_training_data=None,
|
|
@@ -377,13 +381,14 @@ gme_qwen2vl_7b = ModelMeta(
|
|
|
377
381
|
release_date="2024-12-24",
|
|
378
382
|
modalities=["image", "text"],
|
|
379
383
|
n_parameters=8_290_000_000,
|
|
384
|
+
n_embedding_parameters=544_997_376,
|
|
380
385
|
memory_usage_mb=31629,
|
|
381
386
|
embed_dim=3584,
|
|
382
387
|
license="apache-2.0",
|
|
383
388
|
max_tokens=32768,
|
|
384
389
|
reference="https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
|
385
390
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
386
|
-
framework=["PyTorch"],
|
|
391
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
387
392
|
use_instructions=True,
|
|
388
393
|
public_training_code=None,
|
|
389
394
|
public_training_data=None,
|
|
@@ -1,17 +1,23 @@
|
|
|
1
|
-
from
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
2
4
|
|
|
3
5
|
import numpy as np
|
|
4
6
|
from packaging.version import Version
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
from tqdm.auto import tqdm
|
|
7
8
|
from transformers import __version__ as transformers_version
|
|
8
9
|
|
|
9
10
|
from mteb._requires_package import requires_package
|
|
10
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
11
11
|
from mteb.models import sentence_transformers_loader
|
|
12
12
|
from mteb.models.abs_encoder import AbsEncoder
|
|
13
13
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
14
|
-
from mteb.types import
|
|
14
|
+
from mteb.types import PromptType
|
|
15
|
+
|
|
16
|
+
if TYPE_CHECKING:
|
|
17
|
+
from torch.utils.data import DataLoader
|
|
18
|
+
|
|
19
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
20
|
+
from mteb.types import Array, BatchedInput
|
|
15
21
|
|
|
16
22
|
MULTILINGUAL_EVALUATED_LANGUAGES = [
|
|
17
23
|
"arb-Arab",
|
|
@@ -156,6 +162,7 @@ google_text_emb_004 = ModelMeta(
|
|
|
156
162
|
revision="1", # revision is intended for implementation
|
|
157
163
|
release_date="2024-05-14",
|
|
158
164
|
n_parameters=None,
|
|
165
|
+
n_embedding_parameters=None,
|
|
159
166
|
memory_usage_mb=None,
|
|
160
167
|
max_tokens=2048,
|
|
161
168
|
embed_dim=768,
|
|
@@ -181,6 +188,7 @@ google_text_emb_005 = ModelMeta(
|
|
|
181
188
|
revision="1", # revision is intended for implementation
|
|
182
189
|
release_date="2024-11-18",
|
|
183
190
|
n_parameters=None,
|
|
191
|
+
n_embedding_parameters=None,
|
|
184
192
|
memory_usage_mb=None,
|
|
185
193
|
max_tokens=2048,
|
|
186
194
|
embed_dim=768,
|
|
@@ -206,6 +214,7 @@ google_text_multilingual_emb_002 = ModelMeta(
|
|
|
206
214
|
revision="1",
|
|
207
215
|
release_date="2024-05-14",
|
|
208
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
209
218
|
memory_usage_mb=None,
|
|
210
219
|
max_tokens=2048,
|
|
211
220
|
embed_dim=768,
|
|
@@ -231,6 +240,7 @@ google_gemini_embedding_001 = ModelMeta(
|
|
|
231
240
|
revision="1",
|
|
232
241
|
release_date="2025-03-07",
|
|
233
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
234
244
|
memory_usage_mb=None,
|
|
235
245
|
max_tokens=2048,
|
|
236
246
|
embed_dim=3072,
|
|
@@ -266,11 +276,12 @@ embedding_gemma_300m = ModelMeta(
|
|
|
266
276
|
revision="64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2",
|
|
267
277
|
release_date="2025-09-04",
|
|
268
278
|
n_parameters=307_581_696,
|
|
279
|
+
n_embedding_parameters=201_326_592,
|
|
269
280
|
embed_dim=768,
|
|
270
281
|
max_tokens=2048,
|
|
271
282
|
license="gemma",
|
|
272
283
|
reference="https://ai.google.dev/gemma/docs/embeddinggemma/model_card",
|
|
273
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
284
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
274
285
|
use_instructions=True,
|
|
275
286
|
public_training_code=None,
|
|
276
287
|
public_training_data=None,
|
|
@@ -4,20 +4,21 @@ import logging
|
|
|
4
4
|
from typing import TYPE_CHECKING, Any
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
|
-
from torch.utils.data import DataLoader
|
|
8
7
|
from tqdm.auto import tqdm
|
|
9
8
|
|
|
10
9
|
from mteb._requires_package import (
|
|
11
10
|
requires_image_dependencies,
|
|
12
11
|
)
|
|
13
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
14
12
|
from mteb.models.model_meta import ModelMeta
|
|
15
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
16
|
-
|
|
17
|
-
logger = logging.getLogger(__name__)
|
|
18
13
|
|
|
19
14
|
if TYPE_CHECKING:
|
|
20
15
|
from PIL import Image
|
|
16
|
+
from torch.utils.data import DataLoader
|
|
17
|
+
|
|
18
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
19
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
20
|
+
|
|
21
|
+
logger = logging.getLogger(__name__)
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
class GraniteVisionEmbeddingWrapper:
|
|
@@ -172,6 +173,7 @@ granite_vision_embedding = ModelMeta(
|
|
|
172
173
|
release_date="2025-06-11",
|
|
173
174
|
modalities=["image", "text"],
|
|
174
175
|
n_parameters=2_980_000_000,
|
|
176
|
+
n_embedding_parameters=None,
|
|
175
177
|
memory_usage_mb=11351,
|
|
176
178
|
max_tokens=128000,
|
|
177
179
|
embed_dim=128,
|
|
@@ -179,7 +181,7 @@ granite_vision_embedding = ModelMeta(
|
|
|
179
181
|
open_weights=True,
|
|
180
182
|
public_training_code=None,
|
|
181
183
|
public_training_data=None,
|
|
182
|
-
framework=["PyTorch"],
|
|
184
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
185
|
reference="https://huggingface.co/ibm-granite/granite-vision-3.3-2b-embedding",
|
|
184
186
|
similarity_fn_name="MaxSim",
|
|
185
187
|
use_instructions=True,
|
|
@@ -44,13 +44,14 @@ gritlm7b = ModelMeta(
|
|
|
44
44
|
revision="13f00a0e36500c80ce12870ea513846a066004af",
|
|
45
45
|
release_date="2024-02-15",
|
|
46
46
|
n_parameters=7_240_000_000,
|
|
47
|
+
n_embedding_parameters=131_072_000,
|
|
47
48
|
memory_usage_mb=13813,
|
|
48
49
|
embed_dim=4096,
|
|
49
50
|
license="apache-2.0",
|
|
50
51
|
max_tokens=32768,
|
|
51
52
|
reference="https://huggingface.co/GritLM/GritLM-7B",
|
|
52
53
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
53
|
-
framework=["GritLM", "PyTorch"],
|
|
54
|
+
framework=["GritLM", "PyTorch", "Transformers", "safetensors"],
|
|
54
55
|
use_instructions=True,
|
|
55
56
|
training_datasets=GRIT_LM_TRAINING_DATA,
|
|
56
57
|
# section 3.1 "We finetune our final models from Mistral 7B [68] and Mixtral 8x7B [69] using adaptations of E5 [160] and the Tülu 2 data
|
|
@@ -73,13 +74,15 @@ gritlm8x7b = ModelMeta(
|
|
|
73
74
|
revision="7f089b13e3345510281733ca1e6ff871b5b4bc76",
|
|
74
75
|
release_date="2024-02-15",
|
|
75
76
|
n_parameters=57_920_000_000,
|
|
77
|
+
n_embedding_parameters=None,
|
|
78
|
+
n_active_parameters_override=13_000_000_000,
|
|
76
79
|
memory_usage_mb=89079,
|
|
77
80
|
embed_dim=32768,
|
|
78
81
|
license="apache-2.0",
|
|
79
82
|
max_tokens=32768,
|
|
80
83
|
reference="https://huggingface.co/GritLM/GritLM-8x7B",
|
|
81
84
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
82
|
-
framework=["GritLM", "PyTorch"],
|
|
85
|
+
framework=["GritLM", "PyTorch", "Transformers", "safetensors"],
|
|
83
86
|
use_instructions=True,
|
|
84
87
|
training_datasets=GRIT_LM_TRAINING_DATA,
|
|
85
88
|
citation=GRITLM_CITATION,
|
|
@@ -48,12 +48,13 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
48
48
|
revision="e26182b2122f4435e8b3ebecbf363990f409b45b",
|
|
49
49
|
release_date="2024-06-15", # initial commit of hf model.
|
|
50
50
|
n_parameters=7_613_000_000,
|
|
51
|
+
n_embedding_parameters=543_499_264,
|
|
51
52
|
memory_usage_mb=29040,
|
|
52
53
|
embed_dim=3584,
|
|
53
54
|
license="apache-2.0",
|
|
54
55
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
55
56
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
56
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
57
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
57
58
|
use_instructions=True,
|
|
58
59
|
citation=GTE_CITATION,
|
|
59
60
|
public_training_code=None,
|
|
@@ -80,13 +81,14 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
80
81
|
revision="07d27e5226328010336563bc1b564a5e3436a298",
|
|
81
82
|
release_date="2024-04-20", # initial commit of hf model.
|
|
82
83
|
n_parameters=7_720_000_000,
|
|
84
|
+
n_embedding_parameters=None,
|
|
83
85
|
memory_usage_mb=29449,
|
|
84
86
|
embed_dim=4096,
|
|
85
87
|
license="apache-2.0",
|
|
86
88
|
max_tokens=32_768,
|
|
87
89
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
|
88
90
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
89
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
91
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
90
92
|
use_instructions=True,
|
|
91
93
|
public_training_code=None,
|
|
92
94
|
public_training_data=None,
|
|
@@ -117,13 +119,14 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
117
119
|
revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd",
|
|
118
120
|
release_date="2024-07-29", # initial commit of hf model.
|
|
119
121
|
n_parameters=1_780_000_000,
|
|
122
|
+
n_embedding_parameters=232_928_256,
|
|
120
123
|
memory_usage_mb=6776,
|
|
121
124
|
embed_dim=8960,
|
|
122
125
|
license="apache-2.0",
|
|
123
126
|
max_tokens=32_768,
|
|
124
127
|
reference="https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
125
128
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
126
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
129
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
127
130
|
use_instructions=True,
|
|
128
131
|
public_training_code=None,
|
|
129
132
|
public_training_data=None,
|
|
@@ -145,13 +148,14 @@ gte_small_zh = ModelMeta(
|
|
|
145
148
|
revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a",
|
|
146
149
|
release_date="2023-11-08", # initial commit of hf model.
|
|
147
150
|
n_parameters=int(30.3 * 1e6),
|
|
151
|
+
n_embedding_parameters=10_817_536,
|
|
148
152
|
memory_usage_mb=58,
|
|
149
153
|
embed_dim=1024,
|
|
150
154
|
license="mit",
|
|
151
155
|
max_tokens=512,
|
|
152
156
|
reference="https://huggingface.co/thenlper/gte-small-zh",
|
|
153
157
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
154
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
158
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
155
159
|
use_instructions=False,
|
|
156
160
|
public_training_code=None,
|
|
157
161
|
public_training_data=None,
|
|
@@ -173,13 +177,14 @@ gte_base_zh = ModelMeta(
|
|
|
173
177
|
revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c",
|
|
174
178
|
release_date="2023-11-08", # initial commit of hf model.
|
|
175
179
|
n_parameters=int(102 * 1e6),
|
|
180
|
+
n_embedding_parameters=16_226_304,
|
|
176
181
|
memory_usage_mb=195,
|
|
177
182
|
embed_dim=1024,
|
|
178
183
|
license="mit",
|
|
179
184
|
max_tokens=512,
|
|
180
185
|
reference="https://huggingface.co/thenlper/gte-base-zh",
|
|
181
186
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
182
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
187
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
183
188
|
use_instructions=False,
|
|
184
189
|
public_training_code=None,
|
|
185
190
|
public_training_data=None,
|
|
@@ -201,13 +206,14 @@ gte_large_zh = ModelMeta(
|
|
|
201
206
|
revision="64c364e579de308104a9b2c170ca009502f4f545",
|
|
202
207
|
release_date="2023-11-08", # initial commit of hf model.
|
|
203
208
|
n_parameters=int(326 * 1e6),
|
|
209
|
+
n_embedding_parameters=21_635_072,
|
|
204
210
|
memory_usage_mb=621,
|
|
205
211
|
embed_dim=1024,
|
|
206
212
|
license="mit",
|
|
207
213
|
max_tokens=512,
|
|
208
214
|
reference="https://huggingface.co/thenlper/gte-large-zh",
|
|
209
215
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
210
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
216
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
211
217
|
use_instructions=False,
|
|
212
218
|
public_training_code=None,
|
|
213
219
|
public_training_data=None,
|
|
@@ -330,13 +336,14 @@ gte_multilingual_base = ModelMeta(
|
|
|
330
336
|
revision="ca1791e0bcc104f6db161f27de1340241b13c5a4",
|
|
331
337
|
release_date="2024-07-20", # initial commit of hf model.
|
|
332
338
|
n_parameters=int(305 * 1e6),
|
|
339
|
+
n_embedding_parameters=192_036_864,
|
|
333
340
|
memory_usage_mb=582,
|
|
334
341
|
embed_dim=768,
|
|
335
342
|
license="apache-2.0",
|
|
336
343
|
max_tokens=8192,
|
|
337
344
|
reference="https://huggingface.co/Alibaba-NLP/gte-multilingual-base",
|
|
338
345
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
339
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
346
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
340
347
|
use_instructions=False,
|
|
341
348
|
public_training_code=None,
|
|
342
349
|
public_training_data=None, # couldn't find
|
|
@@ -359,13 +366,20 @@ gte_modernbert_base = ModelMeta(
|
|
|
359
366
|
revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4",
|
|
360
367
|
release_date="2025-01-21", # initial commit of hf model.
|
|
361
368
|
n_parameters=int(149 * 1e6),
|
|
369
|
+
n_embedding_parameters=None,
|
|
362
370
|
memory_usage_mb=284,
|
|
363
371
|
embed_dim=768,
|
|
364
372
|
license="apache-2.0",
|
|
365
373
|
max_tokens=8192,
|
|
366
374
|
reference="https://huggingface.co/Alibaba-NLP/gte-modernbert-base",
|
|
367
375
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
368
|
-
framework=[
|
|
376
|
+
framework=[
|
|
377
|
+
"Sentence Transformers",
|
|
378
|
+
"PyTorch",
|
|
379
|
+
"Transformers",
|
|
380
|
+
"ONNX",
|
|
381
|
+
"safetensors",
|
|
382
|
+
],
|
|
369
383
|
use_instructions=False,
|
|
370
384
|
public_training_code=None, # couldn't find
|
|
371
385
|
public_training_data=None,
|
|
@@ -396,13 +410,20 @@ gte_base_en_v15 = ModelMeta(
|
|
|
396
410
|
revision="a829fd0e060bb84554da0dfd354d0de0f7712b7f", # can be any
|
|
397
411
|
release_date="2024-06-20", # initial commit of hf model
|
|
398
412
|
n_parameters=137_000_000,
|
|
413
|
+
n_embedding_parameters=23_445_504,
|
|
399
414
|
memory_usage_mb=None,
|
|
400
415
|
embed_dim=768,
|
|
401
416
|
license="apache-2.0",
|
|
402
417
|
max_tokens=8192,
|
|
403
418
|
reference="https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5",
|
|
404
419
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
405
|
-
framework=[
|
|
420
|
+
framework=[
|
|
421
|
+
"Sentence Transformers",
|
|
422
|
+
"PyTorch",
|
|
423
|
+
"Transformers",
|
|
424
|
+
"ONNX",
|
|
425
|
+
"safetensors",
|
|
426
|
+
],
|
|
406
427
|
use_instructions=False,
|
|
407
428
|
superseded_by=None,
|
|
408
429
|
adapted_from=None,
|
|
@@ -410,21 +431,21 @@ gte_base_en_v15 = ModelMeta(
|
|
|
410
431
|
public_training_data=None,
|
|
411
432
|
training_datasets=None,
|
|
412
433
|
citation="""@misc{zhang2024mgte,
|
|
413
|
-
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
|
434
|
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
|
414
435
|
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
|
|
415
436
|
year={2024},
|
|
416
437
|
eprint={2407.19669},
|
|
417
438
|
archivePrefix={arXiv},
|
|
418
439
|
primaryClass={cs.CL},
|
|
419
|
-
url={https://arxiv.org/abs/2407.19669},
|
|
440
|
+
url={https://arxiv.org/abs/2407.19669},
|
|
420
441
|
}
|
|
421
442
|
@misc{li2023gte,
|
|
422
|
-
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
|
443
|
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
|
423
444
|
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
|
424
445
|
year={2023},
|
|
425
446
|
eprint={2308.03281},
|
|
426
447
|
archivePrefix={arXiv},
|
|
427
448
|
primaryClass={cs.CL},
|
|
428
|
-
url={https://arxiv.org/abs/2308.03281},
|
|
449
|
+
url={https://arxiv.org/abs/2308.03281},
|
|
429
450
|
}""",
|
|
430
451
|
)
|
|
@@ -1,9 +1,13 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
2
5
|
|
|
3
6
|
from mteb.models.model_meta import ModelMeta
|
|
4
7
|
from mteb.models.sentence_transformer_wrapper import sentence_transformers_loader
|
|
5
|
-
from mteb.types import PromptType
|
|
6
8
|
|
|
9
|
+
if TYPE_CHECKING:
|
|
10
|
+
from mteb.types import PromptType
|
|
7
11
|
logger = logging.getLogger(__name__)
|
|
8
12
|
|
|
9
13
|
|
|
@@ -43,13 +47,14 @@ Hinvec_bidir = ModelMeta(
|
|
|
43
47
|
revision="d4fc678720cc1b8c5d18599ce2d9a4d6090c8b6b",
|
|
44
48
|
release_date="2025-06-19",
|
|
45
49
|
n_parameters=939_591_680,
|
|
50
|
+
n_embedding_parameters=None,
|
|
46
51
|
memory_usage_mb=3715,
|
|
47
52
|
embed_dim=2048,
|
|
48
53
|
license="cc-by-nc-4.0",
|
|
49
54
|
max_tokens=2048,
|
|
50
55
|
reference="https://huggingface.co/Sailesh97/Hinvec",
|
|
51
56
|
similarity_fn_name="cosine",
|
|
52
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
57
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
53
58
|
use_instructions=True,
|
|
54
59
|
training_datasets=hinvec_training_datasets,
|
|
55
60
|
public_training_code=None,
|
|
@@ -100,13 +100,20 @@ granite_107m_multilingual = ModelMeta(
|
|
|
100
100
|
revision="47db56afe692f731540413c67dd818ff492277e7",
|
|
101
101
|
release_date="2024-12-18",
|
|
102
102
|
n_parameters=107_000_000,
|
|
103
|
+
n_embedding_parameters=96_000_768,
|
|
103
104
|
memory_usage_mb=204,
|
|
104
105
|
embed_dim=384,
|
|
105
106
|
license="apache-2.0",
|
|
106
107
|
max_tokens=512,
|
|
107
108
|
reference="https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual",
|
|
108
109
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
109
|
-
framework=[
|
|
110
|
+
framework=[
|
|
111
|
+
"Sentence Transformers",
|
|
112
|
+
"PyTorch",
|
|
113
|
+
"Transformers",
|
|
114
|
+
"ONNX",
|
|
115
|
+
"safetensors",
|
|
116
|
+
],
|
|
110
117
|
adapted_from=None,
|
|
111
118
|
superseded_by=None,
|
|
112
119
|
public_training_code=None,
|
|
@@ -125,13 +132,20 @@ granite_278m_multilingual = ModelMeta(
|
|
|
125
132
|
revision="84e3546b88b0cb69f8078608a1df558020bcbf1f",
|
|
126
133
|
release_date="2024-12-18",
|
|
127
134
|
n_parameters=278_000_000,
|
|
135
|
+
n_embedding_parameters=192_001_536,
|
|
128
136
|
memory_usage_mb=530,
|
|
129
137
|
embed_dim=768,
|
|
130
138
|
license="apache-2.0",
|
|
131
139
|
max_tokens=512,
|
|
132
140
|
reference="https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual",
|
|
133
141
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
134
|
-
framework=[
|
|
142
|
+
framework=[
|
|
143
|
+
"Sentence Transformers",
|
|
144
|
+
"PyTorch",
|
|
145
|
+
"Transformers",
|
|
146
|
+
"ONNX",
|
|
147
|
+
"safetensors",
|
|
148
|
+
],
|
|
135
149
|
adapted_from=None,
|
|
136
150
|
superseded_by=None,
|
|
137
151
|
public_training_code=None,
|
|
@@ -150,13 +164,20 @@ granite_30m_english = ModelMeta(
|
|
|
150
164
|
revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5",
|
|
151
165
|
release_date="2024-12-18",
|
|
152
166
|
n_parameters=30_000_000,
|
|
167
|
+
n_embedding_parameters=19_301_760,
|
|
153
168
|
memory_usage_mb=58,
|
|
154
169
|
embed_dim=384,
|
|
155
170
|
license="apache-2.0",
|
|
156
171
|
max_tokens=512,
|
|
157
172
|
reference="https://huggingface.co/ibm-granite/granite-embedding-30m-english",
|
|
158
173
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
159
|
-
framework=[
|
|
174
|
+
framework=[
|
|
175
|
+
"Sentence Transformers",
|
|
176
|
+
"PyTorch",
|
|
177
|
+
"ONNX",
|
|
178
|
+
"safetensors",
|
|
179
|
+
"Transformers",
|
|
180
|
+
],
|
|
160
181
|
adapted_from=None,
|
|
161
182
|
superseded_by=None,
|
|
162
183
|
public_training_code=None,
|
|
@@ -175,13 +196,20 @@ granite_125m_english = ModelMeta(
|
|
|
175
196
|
revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730",
|
|
176
197
|
release_date="2024-12-18",
|
|
177
198
|
n_parameters=125_000_000,
|
|
199
|
+
n_embedding_parameters=38_603_520,
|
|
178
200
|
memory_usage_mb=238,
|
|
179
201
|
embed_dim=768,
|
|
180
202
|
license="apache-2.0",
|
|
181
203
|
max_tokens=512,
|
|
182
204
|
reference="https://huggingface.co/ibm-granite/granite-embedding-125m-english",
|
|
183
205
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
184
|
-
framework=[
|
|
206
|
+
framework=[
|
|
207
|
+
"Sentence Transformers",
|
|
208
|
+
"PyTorch",
|
|
209
|
+
"ONNX",
|
|
210
|
+
"safetensors",
|
|
211
|
+
"Transformers",
|
|
212
|
+
],
|
|
185
213
|
adapted_from=None,
|
|
186
214
|
superseded_by=None,
|
|
187
215
|
public_training_code=None,
|
|
@@ -201,13 +229,14 @@ granite_english_r2 = ModelMeta(
|
|
|
201
229
|
revision="6e7b8ce0e76270394ac4669ba4bbd7133b60b7f9",
|
|
202
230
|
release_date="2025-08-15",
|
|
203
231
|
n_parameters=149_000_000,
|
|
232
|
+
n_embedding_parameters=None,
|
|
204
233
|
memory_usage_mb=284,
|
|
205
234
|
embed_dim=768,
|
|
206
235
|
license="apache-2.0",
|
|
207
236
|
max_tokens=8192,
|
|
208
237
|
reference="https://huggingface.co/ibm-granite/granite-embedding-english-r2",
|
|
209
238
|
similarity_fn_name="cosine",
|
|
210
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
239
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
211
240
|
adapted_from=None,
|
|
212
241
|
superseded_by=None,
|
|
213
242
|
public_training_code=None,
|
|
@@ -226,13 +255,14 @@ granite_small_english_r2 = ModelMeta(
|
|
|
226
255
|
revision="54a8d2616a0844355a5164432d3f6dafb37b17a3",
|
|
227
256
|
release_date="2025-08-15",
|
|
228
257
|
n_parameters=47_000_000,
|
|
258
|
+
n_embedding_parameters=None,
|
|
229
259
|
memory_usage_mb=91,
|
|
230
260
|
embed_dim=384,
|
|
231
261
|
license="apache-2.0",
|
|
232
262
|
max_tokens=8192,
|
|
233
263
|
reference="https://huggingface.co/ibm-granite/granite-embedding-small-english-r2",
|
|
234
264
|
similarity_fn_name="cosine",
|
|
235
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
265
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
236
266
|
adapted_from=None,
|
|
237
267
|
superseded_by=None,
|
|
238
268
|
public_training_code=None,
|
|
@@ -56,13 +56,14 @@ inf_retriever_v1 = ModelMeta(
|
|
|
56
56
|
revision="cb70ca7c31dfa866b2eff2dad229c144d8ddfd91",
|
|
57
57
|
release_date="2024-12-24", # initial commit of hf model.
|
|
58
58
|
n_parameters=7_069_121_024,
|
|
59
|
+
n_embedding_parameters=None,
|
|
59
60
|
memory_usage_mb=13483,
|
|
60
61
|
embed_dim=3584,
|
|
61
62
|
license="apache-2.0",
|
|
62
63
|
max_tokens=32768,
|
|
63
64
|
reference="https://huggingface.co/infly/inf-retriever-v1",
|
|
64
65
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
65
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
66
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
66
67
|
use_instructions=True,
|
|
67
68
|
adapted_from="Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
68
69
|
public_training_code=None,
|
|
@@ -83,13 +84,14 @@ inf_retriever_v1_1_5b = ModelMeta(
|
|
|
83
84
|
revision="c9c05c2dd50707a486966ba81703021ae2094a06",
|
|
84
85
|
release_date="2025-02-08", # initial commit of hf model.
|
|
85
86
|
n_parameters=1_543_268_864,
|
|
87
|
+
n_embedding_parameters=232_928_256,
|
|
86
88
|
memory_usage_mb=2944,
|
|
87
89
|
embed_dim=1536,
|
|
88
90
|
license="apache-2.0",
|
|
89
91
|
max_tokens=32768,
|
|
90
92
|
reference="https://huggingface.co/infly/inf-retriever-v1-1.5b",
|
|
91
93
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
92
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
94
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
93
95
|
use_instructions=True,
|
|
94
96
|
adapted_from="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
95
97
|
public_training_code=None,
|
|
@@ -1,11 +1,10 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from
|
|
3
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
4
5
|
|
|
5
6
|
import torch
|
|
6
|
-
from torch.utils.data import DataLoader
|
|
7
7
|
|
|
8
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
9
8
|
from mteb.models.abs_encoder import AbsEncoder
|
|
10
9
|
from mteb.models.instruct_wrapper import InstructSentenceTransformerModel
|
|
11
10
|
from mteb.models.model_implementations.bge_models import (
|
|
@@ -17,7 +16,15 @@ from mteb.models.model_implementations.e5_instruct import E5_MISTRAL_TRAINING_DA
|
|
|
17
16
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
18
17
|
from mteb.models.model_implementations.qzhou_models import qzhou_training_data
|
|
19
18
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
20
|
-
from mteb.types import
|
|
19
|
+
from mteb.types import PromptType
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
|
|
24
|
+
from torch.utils.data import DataLoader
|
|
25
|
+
|
|
26
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
27
|
+
from mteb.types import Array, BatchedInput
|
|
21
28
|
|
|
22
29
|
logger = logging.getLogger(__name__)
|
|
23
30
|
|
|
@@ -292,13 +299,14 @@ jasper_en_v1 = ModelMeta(
|
|
|
292
299
|
revision="d6330ce98f8a0d741e781df845904c9484f00efa",
|
|
293
300
|
release_date="2024-12-11", # first commit
|
|
294
301
|
n_parameters=1_999_000_000,
|
|
302
|
+
n_embedding_parameters=232_932_864,
|
|
295
303
|
memory_usage_mb=3802,
|
|
296
304
|
max_tokens=131072,
|
|
297
305
|
embed_dim=8960,
|
|
298
306
|
license="apache-2.0",
|
|
299
307
|
reference="https://huggingface.co/infgrad/jasper_en_vision_language_v1",
|
|
300
308
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
301
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
309
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
302
310
|
use_instructions=True,
|
|
303
311
|
adapted_from=None,
|
|
304
312
|
superseded_by=None,
|
|
@@ -339,13 +347,14 @@ Jasper_Token_Compression_600M = ModelMeta(
|
|
|
339
347
|
revision="06a100f753a5a96d9e583b3af79c6fcdfacc4719",
|
|
340
348
|
release_date="2025-11-14",
|
|
341
349
|
n_parameters=595776512,
|
|
350
|
+
n_embedding_parameters=None,
|
|
342
351
|
memory_usage_mb=2272,
|
|
343
352
|
embed_dim=2048,
|
|
344
353
|
license="mit",
|
|
345
354
|
max_tokens=32768,
|
|
346
355
|
reference="https://huggingface.co/infgrad/Jasper-Token-Compression-600M",
|
|
347
356
|
similarity_fn_name="cosine",
|
|
348
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
357
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
349
358
|
use_instructions=True,
|
|
350
359
|
public_training_code="https://github.com/DunZhang/Jasper-Token-Compression-Training",
|
|
351
360
|
# public_training_data: unsupervised data for distillation
|