meta-edc 1.0.7__py3-none-any.whl → 1.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. meta_ae/action_items.py +10 -2
  2. meta_ae/baker_recipes.py +1 -2
  3. meta_ae/tests/tests/test_actions.py +1 -2
  4. meta_analytics/README.rst +1 -2
  5. meta_analytics/notebooks/anu.ipynb +95 -0
  6. meta_analytics/notebooks/appointment_planning.ipynb +329 -0
  7. meta_analytics/notebooks/arvs.ipynb +103 -0
  8. meta_analytics/notebooks/cleaning/consent_v1_ext.ipynb +227 -0
  9. meta_analytics/notebooks/cleaning/offschedule_eos.ipynb +353 -0
  10. meta_analytics/notebooks/dsmc/renal_dysfunction.ipynb +435 -0
  11. meta_analytics/notebooks/endpoints/meta_endpoints_by_date.ipynb +664 -0
  12. meta_analytics/notebooks/followup_examination.ipynb +141 -0
  13. meta_analytics/notebooks/hba1c.ipynb +136 -0
  14. meta_analytics/notebooks/hiv_regimens.ipynb +122 -118
  15. meta_analytics/notebooks/incidence.ipynb +232 -0
  16. meta_analytics/notebooks/liver.ipynb +389 -0
  17. meta_analytics/notebooks/magreth.ipynb +645 -0
  18. meta_analytics/notebooks/monitoring_report.ipynb +721 -448
  19. meta_analytics/notebooks/pharmacy.ipynb +405 -306
  20. meta_analytics/notebooks/pharmacy_stock_202410.ipynb +306 -0
  21. meta_analytics/notebooks/steering.ipynb +61 -0
  22. meta_analytics/notebooks/undiagnosed/meta3_screening_consort_chart.ipynb +1176 -0
  23. meta_analytics/notebooks/undiagnosed/meta3_screening_undiagnosed.ipynb +519 -0
  24. meta_analytics/notebooks/undiagnosed/meta_screening_table2.ipynb +964 -0
  25. meta_analytics/notebooks/undiagnosed/screen_undiagnosed_or.ipynb +296 -0
  26. meta_analytics/notebooks/undiagnosed/screening.ipynb +273 -0
  27. meta_analytics/notebooks/undiagnosed/screening2.ipynb +958 -0
  28. meta_analytics/notebooks/undiagnosed/screening_undiagnosed_20241002.ipynb +958 -0
  29. meta_analytics/notebooks/ven.ipynb +191 -0
  30. meta_analytics/notebooks/vitals.ipynb +263 -0
  31. meta_edc/settings/debug.py +3 -2
  32. meta_edc/urls.py +1 -0
  33. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/METADATA +3 -3
  34. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/RECORD +62 -35
  35. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/WHEEL +1 -1
  36. meta_labs/reportables.py +14 -11
  37. meta_labs/tests/test_reportables.py +33 -12
  38. meta_pharmacy/notebooks/pharmacy.ipynb +41 -0
  39. meta_prn/admin/offschedule_pregnancy_admin.py +3 -3
  40. meta_prn/admin/onschedule_dm_referral_admin.py +5 -5
  41. meta_prn/form_validators/end_of_study.py +2 -2
  42. meta_prn/migrations/0063_historicaloffstudymedication_singleton_field_and_more.py +37 -0
  43. meta_prn/migrations/0064_auto_20250602_2143.py +18 -0
  44. meta_prn/models/end_of_study.py +2 -0
  45. meta_prn/models/off_study_medication.py +2 -0
  46. meta_reports/admin/last_imp_refill_admin.py +3 -2
  47. meta_screening/eligibility/eligibility_part_three/base_eligibility_part_three.py +59 -47
  48. meta_screening/form_validators/screening_part_three.py +6 -1
  49. meta_screening/tests/meta_test_case_mixin.py +3 -0
  50. meta_screening/tests/tests/test_forms.py +9 -2
  51. meta_screening/tests/tests/test_screening_part_three.py +11 -14
  52. meta_subject/action_items.py +2 -3
  53. meta_subject/choices.py +2 -1
  54. meta_subject/form_validators/delivery_form_validator.py +1 -0
  55. meta_subject/forms/blood_results/blood_results_rft_form.py +60 -3
  56. meta_subject/forms/delivery_form.py +2 -0
  57. meta_subject/migrations/0223_bloodresultsfbc_errors_bloodresultsgludummy_errors_and_more.py +83 -0
  58. meta_subject/migrations/0224_bloodresultsfbc_abnormal_summary_and_more.py +153 -0
  59. meta_subject/tests/tests/test_egfr.py +5 -5
  60. meta_analytics/dataframes/enrolled/__init__.py +0 -0
  61. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/AUTHORS.rst +0 -0
  62. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/licenses/LICENSE +0 -0
  63. {meta_edc-1.0.7.dist-info → meta_edc-1.1.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,389 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "%%capture\n",
11
+ "import os\n",
12
+ "from pathlib import Path\n",
13
+ "import pandas as pd\n",
14
+ "from dj_notebook import activate\n",
15
+ "\n",
16
+ "env_file = os.environ[\"META_ENV\"]\n",
17
+ "reports_folder = Path(os.environ[\"META_REPORTS_FOLDER\"])\n",
18
+ "analysis_folder = Path(os.environ[\"META_ANALYSIS_FOLDER\"])\n",
19
+ "pharmacy_folder = Path(os.environ[\"META_PHARMACY_FOLDER\"])\n",
20
+ "plus = activate(dotenv_file=env_file)\n",
21
+ "pd.set_option('future.no_silent_downcasting', True)"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": null,
27
+ "id": "1",
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "from datetime import date\n",
32
+ "from edc_pdutils.dataframes import get_subject_visit, get_subject_consent\n",
33
+ "from meta_analytics.dataframes import get_screening_df\n",
34
+ "from edc_pdutils.dataframes import get_crf"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "id": "2",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "cutoff_date = date(2025,5, 31)"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "id": "3",
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "df_visit = get_subject_visit(\"meta_subject.subjectvisit\").query(\"visit_code==1000.0\").reset_index(drop=True)"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "id": "4",
61
+ "metadata": {},
62
+ "outputs": [],
63
+ "source": [
64
+ "# merge with consent for dob\n",
65
+ "df_consent = get_subject_consent(model=\"meta_consent.subjectconsent\")[[\"subject_identifier\", \"gender\", \"dob\", \"age_in_years\", \"consent_datetime\"]]\n",
66
+ "df_visit = df_visit.merge(df_consent, on=\"subject_identifier\", how=\"left\")\n",
67
+ "df_visit[\"age_in_years\"] = df_visit[\"age_in_years\"].astype(\"Int64\")\n",
68
+ "df_visit[\"dob\"] = df_visit[\"dob\"].astype(\"datetime64[ns]\")\n",
69
+ "df_visit[\"consent_datetime\"] = df_visit[\"consent_datetime\"].dt.normalize()"
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "code",
74
+ "execution_count": null,
75
+ "id": "5",
76
+ "metadata": {},
77
+ "outputs": [],
78
+ "source": [
79
+ "columns = [\n",
80
+ " \"subject_identifier\",\n",
81
+ " # \"gender\",\n",
82
+ " # \"age_in_years\",\n",
83
+ " \"ethnicity\",\n",
84
+ " \"fbg_value\",\n",
85
+ " \"fbg_date\",\n",
86
+ " \"fbg_units\",\n",
87
+ " \"bmi\",\n",
88
+ " \"weight\",\n",
89
+ " \"height\",\n",
90
+ " \"severe_htn\",\n",
91
+ " \"dia_blood_pressure_avg\",\n",
92
+ " \"sys_blood_pressure_avg\",\n",
93
+ " \"waist_circumference\",\n",
94
+ "]\n",
95
+ "\n",
96
+ "df_screening = (\n",
97
+ " get_screening_df()\n",
98
+ " .query(\"subject_identifier.str.startswith('105-')\")\n",
99
+ " .rename(columns={\"calculated_bmi_value\":\"bmi\", \"fbg_datetime\":\"fbg_date\"})\n",
100
+ " .reset_index()\n",
101
+ ")\n",
102
+ "df_screening[\"fbg_value\"] = df_screening[\"fbg_value\"].astype(\"Float64\")\n",
103
+ "df_screening[\"bmi\"] = df_screening[\"bmi\"].astype(\"Float64\")\n",
104
+ "df_screening[\"height\"] = df_screening[\"height\"].astype(\"Float64\")\n",
105
+ "df_screening[\"weight\"] = df_screening[\"weight\"].astype(\"Float64\")\n",
106
+ "df_screening[\"waist_circumference\"] = df_screening[\"waist_circumference\"].astype(\"Float64\")\n",
107
+ "df_screening[\"dia_blood_pressure_avg\"] = df_screening[\"dia_blood_pressure_avg\"].astype(\"Float64\")\n",
108
+ "df_screening[\"sys_blood_pressure_avg\"] = df_screening[\"sys_blood_pressure_avg\"].astype(\"Float64\")\n",
109
+ "df_screening[\"fbg_date\"] = df_screening[\"fbg_date\"].dt.tz_localize(None).dt.normalize()\n",
110
+ "\n",
111
+ "df_screening.loc[df_screening.fasting_duration_delta.dt.total_seconds()<28800, \"fbg\"] = pd.NA\n",
112
+ "df_screening.loc[df_screening.fasting_duration_delta.dt.total_seconds()<28800, \"fbg_units\"] = pd.NA\n",
113
+ "\n",
114
+ "# merge with vars from screening\n",
115
+ "df_visit = df_visit.merge(df_screening[columns], on=\"subject_identifier\", how=\"left\")"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "id": "6",
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "columns = [\n",
126
+ " \"subject_visit_id\",\n",
127
+ " \"rft_date\",\n",
128
+ " \"crf\",\n",
129
+ " \"creatinine_value\",\n",
130
+ " \"creatinine_units\",\n",
131
+ " \"creatinine_abnormal\",\n",
132
+ " \"egfr_value\",\n",
133
+ " \"egfr_units\",\n",
134
+ " \"egfr_abnormal\",\n",
135
+ " \"urea_value\",\n",
136
+ " \"urea_units\",\n",
137
+ " \"urea_abnormal\",\n",
138
+ " \"uric_acid_value\",\n",
139
+ " \"uric_acid_units\",\n",
140
+ " \"uric_acid_abnormal\",\n",
141
+ "]\n",
142
+ "df_bloodresultsrft = get_crf(model=\"meta_subject.bloodresultsrft\", subject_visit_model=\"meta_subject.subjectvisit\").rename(columns={\"report_datetime\": \"rft_date\"}).reset_index(drop=True)\n",
143
+ "df_bloodresultsrft[\"rft_date\"] = df_bloodresultsrft[\"rft_date\"].dt.tz_localize(None).dt.normalize()\n",
144
+ "df_bloodresultsrft[\"crf\"] = \"bloodresultsrft\"\n",
145
+ "\n",
146
+ "for col in columns:\n",
147
+ " if col.endswith(\"_value\"):\n",
148
+ " df_bloodresultsrft[col] = df_bloodresultsrft[col].astype(\"Float64\")\n",
149
+ "\n",
150
+ "df_visit = df_visit.merge(df_bloodresultsrft.query(\"visit_code==1000.0\")[columns], on=\"subject_visit_id\", how=\"left\")\n"
151
+ ]
152
+ },
153
+ {
154
+ "cell_type": "code",
155
+ "execution_count": null,
156
+ "id": "7",
157
+ "metadata": {},
158
+ "outputs": [],
159
+ "source": [
160
+ "columns = [\n",
161
+ " \"subject_visit_id\",\n",
162
+ " \"ast_value\",\n",
163
+ " \"ast_units\",\n",
164
+ " \"ast_abnormal\",\n",
165
+ " \"alt_value\",\n",
166
+ " \"alt_units\",\n",
167
+ " \"alt_abnormal\",\n",
168
+ " \"alp_value\",\n",
169
+ " \"alp_units\",\n",
170
+ " \"alp_abnormal\",\n",
171
+ " \"amylase_value\",\n",
172
+ " \"amylase_units\",\n",
173
+ " \"amylase_abnormal\",\n",
174
+ " \"ggt_value\",\n",
175
+ " \"ggt_units\",\n",
176
+ " \"ggt_abnormal\",\n",
177
+ " \"albumin_value\",\n",
178
+ " \"albumin_units\",\n",
179
+ " \"albumin_abnormal\",\n",
180
+ "]\n",
181
+ "df_bloodresultslft = get_crf(model=\"meta_subject.bloodresultslft\", subject_visit_model=\"meta_subject.subjectvisit\").rename(columns={\"report_datetime\":\"lft_date\"}).reset_index(drop=True)\n",
182
+ "df_bloodresultslft[\"lft_date\"] = df_bloodresultslft[\"lft_date\"].dt.tz_localize(None).dt.normalize()\n",
183
+ "df_bloodresultslft[\"crf\"] = \"bloodresultslft\"\n",
184
+ "\n",
185
+ "for col in columns:\n",
186
+ " if col.endswith(\"_value\"):\n",
187
+ " df_bloodresultslft[col] = df_bloodresultslft[col].astype(\"Float64\")\n",
188
+ "\n",
189
+ "# df_bloodresultslft.query(\"visit_code==1000.0\")[columns]\n",
190
+ "df_visit = df_visit.merge(df_bloodresultslft.query(\"visit_code==1000.0\")[columns], on=\"subject_visit_id\", how=\"left\")\n"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "id": "8",
197
+ "metadata": {},
198
+ "outputs": [],
199
+ "source": [
200
+ "columns = [\n",
201
+ " \"subject_visit_id\",\n",
202
+ " \"lipids_date\",\n",
203
+ " \"crf\",\n",
204
+ " \"hdl_value\",\n",
205
+ " \"hdl_units\",\n",
206
+ " \"hdl_abnormal\",\n",
207
+ " \"ldl_value\",\n",
208
+ " \"ldl_units\",\n",
209
+ " \"ldl_abnormal\",\n",
210
+ " \"trig_value\",\n",
211
+ " \"trig_units\",\n",
212
+ " \"trig_abnormal\",\n",
213
+ " \"chol_value\",\n",
214
+ " \"chol_units\",\n",
215
+ " \"chol_abnormal\",\n",
216
+ "]\n",
217
+ "df_bloodresultslipids = get_crf(model=\"meta_subject.bloodresultslipids\", subject_visit_model=\"meta_subject.subjectvisit\").rename(columns={\"report_datetime\": \"lipids_date\"}).reset_index(drop=True)\n",
218
+ "df_bloodresultslipids[\"lipids_date\"] = df_bloodresultslipids[\"lipids_date\"].dt.tz_localize(None).dt.normalize()\n",
219
+ "df_bloodresultslipids[\"crf\"] = \"bloodresultslipids\"\n",
220
+ "for col in columns:\n",
221
+ " if col.endswith(\"_value\"):\n",
222
+ " df_bloodresultslipids[col] = df_bloodresultslipids[col].astype(\"Float64\")\n",
223
+ "# df_bloodresultslipids.query(\"visit_code==1000.0\")[columns]\n",
224
+ "df_visit = df_visit.merge(df_bloodresultslipids.query(\"visit_code==1000.0\")[columns], on=\"subject_visit_id\", how=\"left\")\n",
225
+ "\n"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": null,
231
+ "id": "9",
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": [
235
+ "columns = [\n",
236
+ " \"subject_visit_id\",\n",
237
+ " \"fbc_date\",\n",
238
+ " \"crf\",\n",
239
+ " \"haemoglobin_value\",\n",
240
+ " \"haemoglobin_units\",\n",
241
+ " \"haemoglobin_abnormal\",\n",
242
+ " \"wbc_value\",\n",
243
+ " \"wbc_units\",\n",
244
+ " \"wbc_abnormal\",\n",
245
+ " \"rbc_value\",\n",
246
+ " \"rbc_units\",\n",
247
+ " \"rbc_abnormal\",\n",
248
+ " \"platelets_value\",\n",
249
+ " \"platelets_units\",\n",
250
+ " \"platelets_abnormal\",\n",
251
+ "]\n",
252
+ "df_bloodresultsfbc = get_crf(model=\"meta_subject.bloodresultsfbc\", subject_visit_model=\"meta_subject.subjectvisit\").rename(columns={\"report_datetime\": \"fbc_date\"}).reset_index(drop=True)\n",
253
+ "df_bloodresultsfbc[\"fbc_date\"] = df_bloodresultsfbc[\"fbc_date\"].dt.tz_localize(None).dt.normalize()\n",
254
+ "df_bloodresultsfbc[\"crf\"] = \"bloodresultsfbc\"\n",
255
+ "for col in columns:\n",
256
+ " if col.endswith(\"_value\"):\n",
257
+ " df_bloodresultsfbc[col] = df_bloodresultsfbc[col].astype(\"Float64\")\n",
258
+ "\n",
259
+ "df_visit = df_visit.merge(df_bloodresultsfbc.query(\"visit_code==1000.0\")[columns], on=\"subject_visit_id\", how=\"left\")\n"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": null,
265
+ "id": "10",
266
+ "metadata": {},
267
+ "outputs": [],
268
+ "source": [
269
+ "columns = [\n",
270
+ " \"subject_visit_id\",\n",
271
+ " \"current_smoker\",\n",
272
+ " \"former_smoker\",\n",
273
+ " \"hiv_diagnosis_date\",\n",
274
+ " \"current_arv_regimen\",\n",
275
+ " \"current_arv_regimen_start_date\",\n",
276
+ " ]\n",
277
+ "df_patient_history = get_crf(\n",
278
+ " model=\"meta_subject.patienthistory\",\n",
279
+ " subject_visit_model=\"meta_subject.subjectvisit\")\n",
280
+ "df_patient_history[\"hiv_diagnosis_date\"] = df_patient_history[\"hiv_diagnosis_date\"].dt.tz_localize(None).dt.normalize()\n",
281
+ "df_patient_history[\"current_arv_regimen_start_date\"] = df_patient_history[\"current_arv_regimen_start_date\"].dt.tz_localize(None).dt.normalize()\n",
282
+ "\n",
283
+ "df_visit = df_visit.merge(df_patient_history.query(\"visit_code==1000.0\")[columns], on=\"subject_visit_id\", how=\"left\")"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "code",
288
+ "execution_count": null,
289
+ "id": "11",
290
+ "metadata": {},
291
+ "outputs": [],
292
+ "source": [
293
+ "columns = [\"subject_visit_id\", \"weight\", \"waist_circumference\", \"severe_htn\", \"dia_blood_pressure_avg\", \"sys_blood_pressure_avg\"]\n",
294
+ "df_physical_exam = get_crf(\n",
295
+ " model=\"meta_subject.physicalexam\",\n",
296
+ " subject_visit_model=\"meta_subject.subjectvisit\",\n",
297
+ ")\n",
298
+ "\n",
299
+ "df_visit = df_visit.merge(df_physical_exam[[\"subject_visit_id\", \"weight\", \"waist_circumference\"]], on=\"subject_visit_id\", how=\"left\", suffixes=(\"\", \"_physicalexam\"))\n",
300
+ "df_visit['weight_physicalexam'] = df_visit['weight_physicalexam'].astype(\"Float64\")\n",
301
+ "df_visit['waist_circumference_physicalexam'] = df_visit['waist_circumference_physicalexam'].astype(\"Float64\")\n",
302
+ "\n",
303
+ "df_visit['weight'] = df_visit['weight'].fillna(df_visit['weight_physicalexam'])\n",
304
+ "df_visit['waist_circumference'] = df_visit['waist_circumference'].fillna(df_visit['waist_circumference_physicalexam'])\n",
305
+ "\n",
306
+ "df_visit = df_visit.drop(columns=[\"weight_physicalexam\", \"waist_circumference_physicalexam\"])"
307
+ ]
308
+ },
309
+ {
310
+ "cell_type": "code",
311
+ "execution_count": null,
312
+ "id": "12",
313
+ "metadata": {},
314
+ "outputs": [],
315
+ "source": [
316
+ "df_visit = (df_visit\n",
317
+ " .drop(columns=[col for col in df_visit.columns if col.endswith(\"_y\")])\n",
318
+ " .drop(columns=[col for col in df_visit.columns if col.endswith(\"_x\")])\n",
319
+ " .drop(columns=[\n",
320
+ " \"appointment_id\",\n",
321
+ " \"appt_datetime\",\n",
322
+ " \"appt_status\",\n",
323
+ " \"appt_timing\",\n",
324
+ " \"baseline_datetime\",\n",
325
+ " \"crf\",\n",
326
+ " \"endline_visit_code\",\n",
327
+ " \"endline_visit_code_str\",\n",
328
+ " \"endline_visit_datetime\",\n",
329
+ " \"followup_days\",\n",
330
+ " \"reason\",\n",
331
+ " \"reason_missed\",\n",
332
+ " \"reason_missed_other\",\n",
333
+ " \"reason_unscheduled\",\n",
334
+ " \"reason_unscheduled_other\",\n",
335
+ " \"subject_visit_id\",\n",
336
+ " \"visit_code_str\",\n",
337
+ "]))"
338
+ ]
339
+ },
340
+ {
341
+ "cell_type": "code",
342
+ "execution_count": null,
343
+ "id": "13",
344
+ "metadata": {},
345
+ "outputs": [],
346
+ "source": [
347
+ "for col in [col for col in df_visit.columns if col.endswith(\"_abnormal\")]:\n",
348
+ " df_visit[col] = df_visit[col].astype(str)\n",
349
+ "for col in [col for col in df_visit.columns if col.endswith(\"_units\")]:\n",
350
+ " df_visit[col] = df_visit[col].astype(str)"
351
+ ]
352
+ },
353
+ {
354
+ "cell_type": "code",
355
+ "execution_count": null,
356
+ "id": "14",
357
+ "metadata": {},
358
+ "outputs": [],
359
+ "source": [
360
+ "df_visit.to_stata(\n",
361
+ " path=analysis_folder / \"liver.dta\",\n",
362
+ " version=118,\n",
363
+ " write_index=False,\n",
364
+ ")"
365
+ ]
366
+ }
367
+ ],
368
+ "metadata": {
369
+ "kernelspec": {
370
+ "display_name": "Python 3",
371
+ "language": "python",
372
+ "name": "python3"
373
+ },
374
+ "language_info": {
375
+ "codemirror_mode": {
376
+ "name": "ipython",
377
+ "version": 2
378
+ },
379
+ "file_extension": ".py",
380
+ "mimetype": "text/x-python",
381
+ "name": "python",
382
+ "nbconvert_exporter": "python",
383
+ "pygments_lexer": "ipython2",
384
+ "version": "2.7.6"
385
+ }
386
+ },
387
+ "nbformat": 4,
388
+ "nbformat_minor": 5
389
+ }